1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "Mips.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/IntrinsicsMips.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "mips-isel"
39
runOnMachineFunction(MachineFunction & MF)40 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
41 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
42 if (Subtarget->inMips16Mode())
43 return false;
44 return MipsDAGToDAGISel::runOnMachineFunction(MF);
45 }
46
getAnalysisUsage(AnalysisUsage & AU) const47 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
48 AU.addRequired<DominatorTreeWrapperPass>();
49 SelectionDAGISel::getAnalysisUsage(AU);
50 }
51
addDSPCtrlRegOperands(bool IsDef,MachineInstr & MI,MachineFunction & MF)52 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
53 MachineFunction &MF) {
54 MachineInstrBuilder MIB(MF, &MI);
55 unsigned Mask = MI.getOperand(1).getImm();
56 unsigned Flag =
57 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58
59 if (Mask & 1)
60 MIB.addReg(Mips::DSPPos, Flag);
61
62 if (Mask & 2)
63 MIB.addReg(Mips::DSPSCount, Flag);
64
65 if (Mask & 4)
66 MIB.addReg(Mips::DSPCarry, Flag);
67
68 if (Mask & 8)
69 MIB.addReg(Mips::DSPOutFlag, Flag);
70
71 if (Mask & 16)
72 MIB.addReg(Mips::DSPCCond, Flag);
73
74 if (Mask & 32)
75 MIB.addReg(Mips::DSPEFI, Flag);
76 }
77
getMSACtrlReg(const SDValue RegIdx) const78 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
79 uint64_t RegNum = cast<ConstantSDNode>(RegIdx)->getZExtValue();
80 return Mips::MSACtrlRegClass.getRegister(RegNum);
81 }
82
replaceUsesWithZeroReg(MachineRegisterInfo * MRI,const MachineInstr & MI)83 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
84 const MachineInstr& MI) {
85 unsigned DstReg = 0, ZeroReg = 0;
86
87 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
88 if ((MI.getOpcode() == Mips::ADDiu) &&
89 (MI.getOperand(1).getReg() == Mips::ZERO) &&
90 (MI.getOperand(2).isImm()) &&
91 (MI.getOperand(2).getImm() == 0)) {
92 DstReg = MI.getOperand(0).getReg();
93 ZeroReg = Mips::ZERO;
94 } else if ((MI.getOpcode() == Mips::DADDiu) &&
95 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
96 (MI.getOperand(2).isImm()) &&
97 (MI.getOperand(2).getImm() == 0)) {
98 DstReg = MI.getOperand(0).getReg();
99 ZeroReg = Mips::ZERO_64;
100 }
101
102 if (!DstReg)
103 return false;
104
105 // Replace uses with ZeroReg.
106 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
107 E = MRI->use_end(); U != E;) {
108 MachineOperand &MO = *U;
109 unsigned OpNo = U.getOperandNo();
110 MachineInstr *MI = MO.getParent();
111 ++U;
112
113 // Do not replace if it is a phi's operand or is tied to def operand.
114 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
115 continue;
116
117 // Also, we have to check that the register class of the operand
118 // contains the zero register.
119 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
120 continue;
121
122 MO.setReg(ZeroReg);
123 }
124
125 return true;
126 }
127
emitMCountABI(MachineInstr & MI,MachineBasicBlock & MBB,MachineFunction & MF)128 void MipsSEDAGToDAGISel::emitMCountABI(MachineInstr &MI, MachineBasicBlock &MBB,
129 MachineFunction &MF) {
130 MachineInstrBuilder MIB(MF, &MI);
131 if (!Subtarget->isABI_O32()) { // N32, N64
132 // Save current return address.
133 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR64))
134 .addDef(Mips::AT_64)
135 .addUse(Mips::RA_64, RegState::Undef)
136 .addUse(Mips::ZERO_64);
137 // Stops instruction above from being removed later on.
138 MIB.addUse(Mips::AT_64, RegState::Implicit);
139 } else { // O32
140 // Save current return address.
141 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR))
142 .addDef(Mips::AT)
143 .addUse(Mips::RA, RegState::Undef)
144 .addUse(Mips::ZERO);
145 // _mcount pops 2 words from stack.
146 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::ADDiu))
147 .addDef(Mips::SP)
148 .addUse(Mips::SP)
149 .addImm(-8);
150 // Stops first instruction above from being removed later on.
151 MIB.addUse(Mips::AT, RegState::Implicit);
152 }
153 }
154
processFunctionAfterISel(MachineFunction & MF)155 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
156 MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg(MF);
157
158 MachineRegisterInfo *MRI = &MF.getRegInfo();
159
160 for (auto &MBB: MF) {
161 for (auto &MI: MBB) {
162 switch (MI.getOpcode()) {
163 case Mips::RDDSP:
164 addDSPCtrlRegOperands(false, MI, MF);
165 break;
166 case Mips::WRDSP:
167 addDSPCtrlRegOperands(true, MI, MF);
168 break;
169 case Mips::BuildPairF64_64:
170 case Mips::ExtractElementF64_64:
171 if (!Subtarget->useOddSPReg()) {
172 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
173 break;
174 }
175 LLVM_FALLTHROUGH;
176 case Mips::BuildPairF64:
177 case Mips::ExtractElementF64:
178 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
179 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
180 break;
181 case Mips::JAL:
182 case Mips::JAL_MM:
183 if (MI.getOperand(0).isGlobal() &&
184 MI.getOperand(0).getGlobal()->getGlobalIdentifier() == "_mcount")
185 emitMCountABI(MI, MBB, MF);
186 break;
187 case Mips::JALRPseudo:
188 case Mips::JALR64Pseudo:
189 case Mips::JALR16_MM:
190 if (MI.getOperand(2).isMCSymbol() &&
191 MI.getOperand(2).getMCSymbol()->getName() == "_mcount")
192 emitMCountABI(MI, MBB, MF);
193 break;
194 case Mips::JALR:
195 if (MI.getOperand(3).isMCSymbol() &&
196 MI.getOperand(3).getMCSymbol()->getName() == "_mcount")
197 emitMCountABI(MI, MBB, MF);
198 break;
199 default:
200 replaceUsesWithZeroReg(MRI, MI);
201 }
202 }
203 }
204 }
205
selectAddE(SDNode * Node,const SDLoc & DL) const206 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
207 SDValue InFlag = Node->getOperand(2);
208 unsigned Opc = InFlag.getOpcode();
209 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
210 EVT VT = LHS.getValueType();
211
212 // In the base case, we can rely on the carry bit from the addsc
213 // instruction.
214 if (Opc == ISD::ADDC) {
215 SDValue Ops[3] = {LHS, RHS, InFlag};
216 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
217 return;
218 }
219
220 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
221
222 // The more complex case is when there is a chain of ISD::ADDE nodes like:
223 // (adde (adde (adde (addc a b) c) d) e).
224 //
225 // The addwc instruction does not write to the carry bit, instead it writes
226 // to bit 20 of the dsp control register. To match this series of nodes, each
227 // intermediate adde node must be expanded to write the carry bit before the
228 // addition.
229
230 // Start by reading the overflow field for addsc and moving the value to the
231 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
232 // corresponds to reading/writing the entire control register to/from a GPR.
233
234 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
235
236 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
237
238 SDNode *DSPCtrlField = CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32,
239 MVT::Glue, CstOne, InFlag);
240
241 SDNode *Carry = CurDAG->getMachineNode(
242 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
243
244 SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
245 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
246 SDValue(Carry, 0)};
247 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
248
249 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
250 // would like about whether bit 20 always gets overwritten by addwc.
251 // Hence take an extremely conservative view and presume it's sticky. We
252 // therefore need to clear it.
253
254 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
255
256 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
257 SDNode *DSPCtrlFinal =
258 CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
259
260 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
261 SDValue(DSPCtrlFinal, 0), CstOne);
262
263 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
264 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
265 }
266
267 /// Match frameindex
selectAddrFrameIndex(SDValue Addr,SDValue & Base,SDValue & Offset) const268 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
269 SDValue &Offset) const {
270 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
271 EVT ValTy = Addr.getValueType();
272
273 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
274 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
275 return true;
276 }
277 return false;
278 }
279
280 /// Match frameindex+offset and frameindex|offset
selectAddrFrameIndexOffset(SDValue Addr,SDValue & Base,SDValue & Offset,unsigned OffsetBits,unsigned ShiftAmount=0) const281 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
282 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
283 unsigned ShiftAmount = 0) const {
284 if (CurDAG->isBaseWithConstantOffset(Addr)) {
285 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
286 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
287 EVT ValTy = Addr.getValueType();
288
289 // If the first operand is a FI, get the TargetFI Node
290 if (FrameIndexSDNode *FIN =
291 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
292 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
293 else {
294 Base = Addr.getOperand(0);
295 // If base is a FI, additional offset calculation is done in
296 // eliminateFrameIndex, otherwise we need to check the alignment
297 const Align Alignment(1ULL << ShiftAmount);
298 if (!isAligned(Alignment, CN->getZExtValue()))
299 return false;
300 }
301
302 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
303 ValTy);
304 return true;
305 }
306 }
307 return false;
308 }
309
310 /// ComplexPattern used on MipsInstrInfo
311 /// Used on Mips Load/Store instructions
selectAddrRegImm(SDValue Addr,SDValue & Base,SDValue & Offset) const312 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
313 SDValue &Offset) const {
314 // if Address is FI, get the TargetFrameIndex.
315 if (selectAddrFrameIndex(Addr, Base, Offset))
316 return true;
317
318 // on PIC code Load GA
319 if (Addr.getOpcode() == MipsISD::Wrapper) {
320 Base = Addr.getOperand(0);
321 Offset = Addr.getOperand(1);
322 return true;
323 }
324
325 if (!TM.isPositionIndependent()) {
326 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
327 Addr.getOpcode() == ISD::TargetGlobalAddress))
328 return false;
329 }
330
331 // Addresses of the form FI+const or FI|const
332 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
333 return true;
334
335 // Operand is a result from an ADD.
336 if (Addr.getOpcode() == ISD::ADD) {
337 // When loading from constant pools, load the lower address part in
338 // the instruction itself. Example, instead of:
339 // lui $2, %hi($CPI1_0)
340 // addiu $2, $2, %lo($CPI1_0)
341 // lwc1 $f0, 0($2)
342 // Generate:
343 // lui $2, %hi($CPI1_0)
344 // lwc1 $f0, %lo($CPI1_0)($2)
345 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
346 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
347 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
348 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
349 isa<JumpTableSDNode>(Opnd0)) {
350 Base = Addr.getOperand(0);
351 Offset = Opnd0;
352 return true;
353 }
354 }
355 }
356
357 return false;
358 }
359
360 /// ComplexPattern used on MipsInstrInfo
361 /// Used on Mips Load/Store instructions
selectAddrDefault(SDValue Addr,SDValue & Base,SDValue & Offset) const362 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
363 SDValue &Offset) const {
364 Base = Addr;
365 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
366 return true;
367 }
368
selectIntAddr(SDValue Addr,SDValue & Base,SDValue & Offset) const369 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
370 SDValue &Offset) const {
371 return selectAddrRegImm(Addr, Base, Offset) ||
372 selectAddrDefault(Addr, Base, Offset);
373 }
374
selectAddrRegImm9(SDValue Addr,SDValue & Base,SDValue & Offset) const375 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
376 SDValue &Offset) const {
377 if (selectAddrFrameIndex(Addr, Base, Offset))
378 return true;
379
380 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
381 return true;
382
383 return false;
384 }
385
386 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
selectAddrRegImm11(SDValue Addr,SDValue & Base,SDValue & Offset) const387 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
388 SDValue &Offset) const {
389 if (selectAddrFrameIndex(Addr, Base, Offset))
390 return true;
391
392 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
393 return true;
394
395 return false;
396 }
397
398 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
selectAddrRegImm12(SDValue Addr,SDValue & Base,SDValue & Offset) const399 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
400 SDValue &Offset) const {
401 if (selectAddrFrameIndex(Addr, Base, Offset))
402 return true;
403
404 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
405 return true;
406
407 return false;
408 }
409
selectAddrRegImm16(SDValue Addr,SDValue & Base,SDValue & Offset) const410 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
411 SDValue &Offset) const {
412 if (selectAddrFrameIndex(Addr, Base, Offset))
413 return true;
414
415 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
416 return true;
417
418 return false;
419 }
420
selectIntAddr11MM(SDValue Addr,SDValue & Base,SDValue & Offset) const421 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
422 SDValue &Offset) const {
423 return selectAddrRegImm11(Addr, Base, Offset) ||
424 selectAddrDefault(Addr, Base, Offset);
425 }
426
selectIntAddr12MM(SDValue Addr,SDValue & Base,SDValue & Offset) const427 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
428 SDValue &Offset) const {
429 return selectAddrRegImm12(Addr, Base, Offset) ||
430 selectAddrDefault(Addr, Base, Offset);
431 }
432
selectIntAddr16MM(SDValue Addr,SDValue & Base,SDValue & Offset) const433 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
434 SDValue &Offset) const {
435 return selectAddrRegImm16(Addr, Base, Offset) ||
436 selectAddrDefault(Addr, Base, Offset);
437 }
438
selectIntAddrLSL2MM(SDValue Addr,SDValue & Base,SDValue & Offset) const439 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
440 SDValue &Offset) const {
441 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
442 if (isa<FrameIndexSDNode>(Base))
443 return false;
444
445 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
446 unsigned CnstOff = CN->getZExtValue();
447 return (CnstOff == (CnstOff & 0x3c));
448 }
449
450 return false;
451 }
452
453 // For all other cases where "lw" would be selected, don't select "lw16"
454 // because it would result in additional instructions to prepare operands.
455 if (selectAddrRegImm(Addr, Base, Offset))
456 return false;
457
458 return selectAddrDefault(Addr, Base, Offset);
459 }
460
selectIntAddrSImm10(SDValue Addr,SDValue & Base,SDValue & Offset) const461 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
462 SDValue &Offset) const {
463
464 if (selectAddrFrameIndex(Addr, Base, Offset))
465 return true;
466
467 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
468 return true;
469
470 return selectAddrDefault(Addr, Base, Offset);
471 }
472
selectIntAddrSImm10Lsl1(SDValue Addr,SDValue & Base,SDValue & Offset) const473 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
474 SDValue &Offset) const {
475 if (selectAddrFrameIndex(Addr, Base, Offset))
476 return true;
477
478 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
479 return true;
480
481 return selectAddrDefault(Addr, Base, Offset);
482 }
483
selectIntAddrSImm10Lsl2(SDValue Addr,SDValue & Base,SDValue & Offset) const484 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
485 SDValue &Offset) const {
486 if (selectAddrFrameIndex(Addr, Base, Offset))
487 return true;
488
489 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
490 return true;
491
492 return selectAddrDefault(Addr, Base, Offset);
493 }
494
selectIntAddrSImm10Lsl3(SDValue Addr,SDValue & Base,SDValue & Offset) const495 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
496 SDValue &Offset) const {
497 if (selectAddrFrameIndex(Addr, Base, Offset))
498 return true;
499
500 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
501 return true;
502
503 return selectAddrDefault(Addr, Base, Offset);
504 }
505
506 // Select constant vector splats.
507 //
508 // Returns true and sets Imm if:
509 // * MSA is enabled
510 // * N is a ISD::BUILD_VECTOR representing a constant splat
selectVSplat(SDNode * N,APInt & Imm,unsigned MinSizeInBits) const511 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
512 unsigned MinSizeInBits) const {
513 if (!Subtarget->hasMSA())
514 return false;
515
516 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
517
518 if (!Node)
519 return false;
520
521 APInt SplatValue, SplatUndef;
522 unsigned SplatBitSize;
523 bool HasAnyUndefs;
524
525 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
526 MinSizeInBits, !Subtarget->isLittle()))
527 return false;
528
529 Imm = SplatValue;
530
531 return true;
532 }
533
534 // Select constant vector splats.
535 //
536 // In addition to the requirements of selectVSplat(), this function returns
537 // true and sets Imm if:
538 // * The splat value is the same width as the elements of the vector
539 // * The splat value fits in an integer with the specified signed-ness and
540 // width.
541 //
542 // This function looks through ISD::BITCAST nodes.
543 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
544 // sometimes a shuffle in big-endian mode.
545 //
546 // It's worth noting that this function is not used as part of the selection
547 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
548 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
549 // MipsSEDAGToDAGISel::selectNode.
550 bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N,SDValue & Imm,bool Signed,unsigned ImmBitSize) const551 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
552 unsigned ImmBitSize) const {
553 APInt ImmValue;
554 EVT EltTy = N->getValueType(0).getVectorElementType();
555
556 if (N->getOpcode() == ISD::BITCAST)
557 N = N->getOperand(0);
558
559 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
560 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
561
562 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
563 (!Signed && ImmValue.isIntN(ImmBitSize))) {
564 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
565 return true;
566 }
567 }
568
569 return false;
570 }
571
572 // Select constant vector splats.
573 bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N,SDValue & Imm) const574 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
575 return selectVSplatCommon(N, Imm, false, 1);
576 }
577
578 bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N,SDValue & Imm) const579 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
580 return selectVSplatCommon(N, Imm, false, 2);
581 }
582
583 bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N,SDValue & Imm) const584 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
585 return selectVSplatCommon(N, Imm, false, 3);
586 }
587
588 // Select constant vector splats.
589 bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N,SDValue & Imm) const590 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
591 return selectVSplatCommon(N, Imm, false, 4);
592 }
593
594 // Select constant vector splats.
595 bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N,SDValue & Imm) const596 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
597 return selectVSplatCommon(N, Imm, false, 5);
598 }
599
600 // Select constant vector splats.
601 bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N,SDValue & Imm) const602 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
603 return selectVSplatCommon(N, Imm, false, 6);
604 }
605
606 // Select constant vector splats.
607 bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N,SDValue & Imm) const608 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
609 return selectVSplatCommon(N, Imm, false, 8);
610 }
611
612 // Select constant vector splats.
613 bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N,SDValue & Imm) const614 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
615 return selectVSplatCommon(N, Imm, true, 5);
616 }
617
618 // Select constant vector splats whose value is a power of 2.
619 //
620 // In addition to the requirements of selectVSplat(), this function returns
621 // true and sets Imm if:
622 // * The splat value is the same width as the elements of the vector
623 // * The splat value is a power of two.
624 //
625 // This function looks through ISD::BITCAST nodes.
626 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
627 // sometimes a shuffle in big-endian mode.
selectVSplatUimmPow2(SDValue N,SDValue & Imm) const628 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
629 APInt ImmValue;
630 EVT EltTy = N->getValueType(0).getVectorElementType();
631
632 if (N->getOpcode() == ISD::BITCAST)
633 N = N->getOperand(0);
634
635 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
636 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
637 int32_t Log2 = ImmValue.exactLogBase2();
638
639 if (Log2 != -1) {
640 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
641 return true;
642 }
643 }
644
645 return false;
646 }
647
648 // Select constant vector splats whose value only has a consecutive sequence
649 // of left-most bits set (e.g. 0b11...1100...00).
650 //
651 // In addition to the requirements of selectVSplat(), this function returns
652 // true and sets Imm if:
653 // * The splat value is the same width as the elements of the vector
654 // * The splat value is a consecutive sequence of left-most bits.
655 //
656 // This function looks through ISD::BITCAST nodes.
657 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
658 // sometimes a shuffle in big-endian mode.
selectVSplatMaskL(SDValue N,SDValue & Imm) const659 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
660 APInt ImmValue;
661 EVT EltTy = N->getValueType(0).getVectorElementType();
662
663 if (N->getOpcode() == ISD::BITCAST)
664 N = N->getOperand(0);
665
666 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
667 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
668 // Extract the run of set bits starting with bit zero from the bitwise
669 // inverse of ImmValue, and test that the inverse of this is the same
670 // as the original value.
671 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
672
673 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
674 EltTy);
675 return true;
676 }
677 }
678
679 return false;
680 }
681
682 // Select constant vector splats whose value only has a consecutive sequence
683 // of right-most bits set (e.g. 0b00...0011...11).
684 //
685 // In addition to the requirements of selectVSplat(), this function returns
686 // true and sets Imm if:
687 // * The splat value is the same width as the elements of the vector
688 // * The splat value is a consecutive sequence of right-most bits.
689 //
690 // This function looks through ISD::BITCAST nodes.
691 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
692 // sometimes a shuffle in big-endian mode.
selectVSplatMaskR(SDValue N,SDValue & Imm) const693 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
694 APInt ImmValue;
695 EVT EltTy = N->getValueType(0).getVectorElementType();
696
697 if (N->getOpcode() == ISD::BITCAST)
698 N = N->getOperand(0);
699
700 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
701 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
702 // Extract the run of set bits starting with bit zero, and test that the
703 // result is the same as the original value
704 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
705 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
706 EltTy);
707 return true;
708 }
709 }
710
711 return false;
712 }
713
selectVSplatUimmInvPow2(SDValue N,SDValue & Imm) const714 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
715 SDValue &Imm) const {
716 APInt ImmValue;
717 EVT EltTy = N->getValueType(0).getVectorElementType();
718
719 if (N->getOpcode() == ISD::BITCAST)
720 N = N->getOperand(0);
721
722 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
723 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
724 int32_t Log2 = (~ImmValue).exactLogBase2();
725
726 if (Log2 != -1) {
727 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
728 return true;
729 }
730 }
731
732 return false;
733 }
734
trySelect(SDNode * Node)735 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
736 unsigned Opcode = Node->getOpcode();
737 SDLoc DL(Node);
738
739 ///
740 // Instruction Selection not handled by the auto-generated
741 // tablegen selection should be handled here.
742 ///
743 switch(Opcode) {
744 default: break;
745
746 case Mips::PseudoD_SELECT_I:
747 case Mips::PseudoD_SELECT_I64: {
748 MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32;
749 SDValue cond = Node->getOperand(0);
750 SDValue Hi1 = Node->getOperand(1);
751 SDValue Lo1 = Node->getOperand(2);
752 SDValue Hi2 = Node->getOperand(3);
753 SDValue Lo2 = Node->getOperand(4);
754
755 SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2};
756 EVT NodeTys[] = {VT, VT};
757 ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit()
758 ? Mips::PseudoD_SELECT_I64
759 : Mips::PseudoD_SELECT_I,
760 DL, NodeTys, ops));
761 return true;
762 }
763
764 case ISD::ADDE: {
765 selectAddE(Node, DL);
766 return true;
767 }
768
769 case ISD::ConstantFP: {
770 auto *CN = cast<ConstantFPSDNode>(Node);
771 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
772 if (Subtarget->isGP64bit()) {
773 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
774 Mips::ZERO_64, MVT::i64);
775 ReplaceNode(Node,
776 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
777 } else if (Subtarget->isFP64bit()) {
778 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
779 Mips::ZERO, MVT::i32);
780 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
781 MVT::f64, Zero, Zero));
782 } else {
783 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
784 Mips::ZERO, MVT::i32);
785 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
786 MVT::f64, Zero, Zero));
787 }
788 return true;
789 }
790 break;
791 }
792
793 case ISD::Constant: {
794 auto *CN = cast<ConstantSDNode>(Node);
795 int64_t Imm = CN->getSExtValue();
796 unsigned Size = CN->getValueSizeInBits(0);
797
798 if (isInt<32>(Imm))
799 break;
800
801 MipsAnalyzeImmediate AnalyzeImm;
802
803 const MipsAnalyzeImmediate::InstSeq &Seq =
804 AnalyzeImm.Analyze(Imm, Size, false);
805
806 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
807 SDLoc DL(CN);
808 SDNode *RegOpnd;
809 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
810 DL, MVT::i64);
811
812 // The first instruction can be a LUi which is different from other
813 // instructions (ADDiu, ORI and SLL) in that it does not have a register
814 // operand.
815 if (Inst->Opc == Mips::LUi64)
816 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
817 else
818 RegOpnd =
819 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
820 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
821 ImmOpnd);
822
823 // The remaining instructions in the sequence are handled here.
824 for (++Inst; Inst != Seq.end(); ++Inst) {
825 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
826 MVT::i64);
827 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
828 SDValue(RegOpnd, 0), ImmOpnd);
829 }
830
831 ReplaceNode(Node, RegOpnd);
832 return true;
833 }
834
835 case ISD::INTRINSIC_W_CHAIN: {
836 const unsigned IntrinsicOpcode =
837 cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
838 switch (IntrinsicOpcode) {
839 default:
840 break;
841
842 case Intrinsic::mips_cfcmsa: {
843 SDValue ChainIn = Node->getOperand(0);
844 SDValue RegIdx = Node->getOperand(2);
845 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
846 getMSACtrlReg(RegIdx), MVT::i32);
847 ReplaceNode(Node, Reg.getNode());
848 return true;
849 }
850 case Intrinsic::mips_ldr_d:
851 case Intrinsic::mips_ldr_w: {
852 unsigned Op = (IntrinsicOpcode == Intrinsic::mips_ldr_d) ? Mips::LDR_D
853 : Mips::LDR_W;
854
855 SDLoc DL(Node);
856 assert(Node->getNumOperands() == 4 && "Unexpected number of operands.");
857 const SDValue &Chain = Node->getOperand(0);
858 const SDValue &Intrinsic = Node->getOperand(1);
859 const SDValue &Pointer = Node->getOperand(2);
860 const SDValue &Constant = Node->getOperand(3);
861
862 assert(Chain.getValueType() == MVT::Other);
863 (void)Intrinsic;
864 assert(Intrinsic.getOpcode() == ISD::TargetConstant &&
865 Constant.getOpcode() == ISD::Constant &&
866 "Invalid instruction operand.");
867
868 // Convert Constant to TargetConstant.
869 const ConstantInt *Val =
870 cast<ConstantSDNode>(Constant)->getConstantIntValue();
871 SDValue Imm =
872 CurDAG->getTargetConstant(*Val, DL, Constant.getValueType());
873
874 SmallVector<SDValue, 3> Ops{Pointer, Imm, Chain};
875
876 assert(Node->getNumValues() == 2);
877 assert(Node->getValueType(0).is128BitVector());
878 assert(Node->getValueType(1) == MVT::Other);
879 SmallVector<EVT, 2> ResTys{Node->getValueType(0), Node->getValueType(1)};
880
881 ReplaceNode(Node, CurDAG->getMachineNode(Op, DL, ResTys, Ops));
882
883 return true;
884 }
885 }
886 break;
887 }
888
889 case ISD::INTRINSIC_WO_CHAIN: {
890 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
891 default:
892 break;
893
894 case Intrinsic::mips_move_v:
895 // Like an assignment but will always produce a move.v even if
896 // unnecessary.
897 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
898 Node->getValueType(0),
899 Node->getOperand(1)));
900 return true;
901 }
902 break;
903 }
904
905 case ISD::INTRINSIC_VOID: {
906 const unsigned IntrinsicOpcode =
907 cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
908 switch (IntrinsicOpcode) {
909 default:
910 break;
911
912 case Intrinsic::mips_ctcmsa: {
913 SDValue ChainIn = Node->getOperand(0);
914 SDValue RegIdx = Node->getOperand(2);
915 SDValue Value = Node->getOperand(3);
916 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
917 getMSACtrlReg(RegIdx), Value);
918 ReplaceNode(Node, ChainOut.getNode());
919 return true;
920 }
921 case Intrinsic::mips_str_d:
922 case Intrinsic::mips_str_w: {
923 unsigned Op = (IntrinsicOpcode == Intrinsic::mips_str_d) ? Mips::STR_D
924 : Mips::STR_W;
925
926 SDLoc DL(Node);
927 assert(Node->getNumOperands() == 5 && "Unexpected number of operands.");
928 const SDValue &Chain = Node->getOperand(0);
929 const SDValue &Intrinsic = Node->getOperand(1);
930 const SDValue &Vec = Node->getOperand(2);
931 const SDValue &Pointer = Node->getOperand(3);
932 const SDValue &Constant = Node->getOperand(4);
933
934 assert(Chain.getValueType() == MVT::Other);
935 (void)Intrinsic;
936 assert(Intrinsic.getOpcode() == ISD::TargetConstant &&
937 Constant.getOpcode() == ISD::Constant &&
938 "Invalid instruction operand.");
939
940 // Convert Constant to TargetConstant.
941 const ConstantInt *Val =
942 cast<ConstantSDNode>(Constant)->getConstantIntValue();
943 SDValue Imm =
944 CurDAG->getTargetConstant(*Val, DL, Constant.getValueType());
945
946 SmallVector<SDValue, 4> Ops{Vec, Pointer, Imm, Chain};
947
948 assert(Node->getNumValues() == 1);
949 assert(Node->getValueType(0) == MVT::Other);
950 SmallVector<EVT, 1> ResTys{Node->getValueType(0)};
951
952 ReplaceNode(Node, CurDAG->getMachineNode(Op, DL, ResTys, Ops));
953 return true;
954 }
955 }
956 break;
957 }
958
959 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
960 // to be done in this fashion so that we respect the differences between
961 // dins and dinsm, as the difference is that the size operand has the range
962 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
963 // means SelectionDAGISel would have to test all the operands at once to
964 // match the instruction.
965 case MipsISD::Ins: {
966
967 // Sanity checking for the node operands.
968 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
969 return false;
970
971 if (Node->getNumOperands() != 4)
972 return false;
973
974 if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
975 Node->getOperand(2)->getOpcode() != ISD::Constant)
976 return false;
977
978 MVT ResTy = Node->getSimpleValueType(0);
979 uint64_t Pos = Node->getConstantOperandVal(1);
980 uint64_t Size = Node->getConstantOperandVal(2);
981
982 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
983 if (!Size)
984 return false;
985
986 if (Pos + Size > 64)
987 return false;
988
989 if (ResTy != MVT::i32 && ResTy != MVT::i64)
990 return false;
991
992 unsigned Opcode = 0;
993 if (ResTy == MVT::i32) {
994 if (Pos + Size <= 32)
995 Opcode = Mips::INS;
996 } else {
997 if (Pos + Size <= 32)
998 Opcode = Mips::DINS;
999 else if (Pos < 32 && 1 < Size)
1000 Opcode = Mips::DINSM;
1001 else
1002 Opcode = Mips::DINSU;
1003 }
1004
1005 if (Opcode) {
1006 SDValue Ops[4] = {
1007 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
1008 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
1009
1010 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
1011 return true;
1012 }
1013
1014 return false;
1015 }
1016
1017 case MipsISD::ThreadPointer: {
1018 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
1019 unsigned RdhwrOpc, DestReg;
1020
1021 if (PtrVT == MVT::i32) {
1022 RdhwrOpc = Mips::RDHWR;
1023 DestReg = Mips::V1;
1024 } else {
1025 RdhwrOpc = Mips::RDHWR64;
1026 DestReg = Mips::V1_64;
1027 }
1028
1029 SDNode *Rdhwr =
1030 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), MVT::Glue,
1031 CurDAG->getRegister(Mips::HWR29, MVT::i32),
1032 CurDAG->getTargetConstant(0, DL, MVT::i32));
1033 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
1034 SDValue(Rdhwr, 0), SDValue(Rdhwr, 1));
1035 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT,
1036 Chain.getValue(1));
1037 ReplaceNode(Node, ResNode.getNode());
1038 return true;
1039 }
1040
1041 case ISD::BUILD_VECTOR: {
1042 // Select appropriate ldi.[bhwd] instructions for constant splats of
1043 // 128-bit when MSA is enabled. Fixup any register class mismatches that
1044 // occur as a result.
1045 //
1046 // This allows the compiler to use a wider range of immediates than would
1047 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
1048 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
1049 // 0x01010101 } without using a constant pool. This would be sub-optimal
1050 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
1051 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
1052 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
1053
1054 const MipsABIInfo &ABI =
1055 static_cast<const MipsTargetMachine &>(TM).getABI();
1056
1057 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
1058 APInt SplatValue, SplatUndef;
1059 unsigned SplatBitSize;
1060 bool HasAnyUndefs;
1061 unsigned LdiOp;
1062 EVT ResVecTy = BVN->getValueType(0);
1063 EVT ViaVecTy;
1064
1065 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
1066 return false;
1067
1068 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1069 HasAnyUndefs, 8,
1070 !Subtarget->isLittle()))
1071 return false;
1072
1073 switch (SplatBitSize) {
1074 default:
1075 return false;
1076 case 8:
1077 LdiOp = Mips::LDI_B;
1078 ViaVecTy = MVT::v16i8;
1079 break;
1080 case 16:
1081 LdiOp = Mips::LDI_H;
1082 ViaVecTy = MVT::v8i16;
1083 break;
1084 case 32:
1085 LdiOp = Mips::LDI_W;
1086 ViaVecTy = MVT::v4i32;
1087 break;
1088 case 64:
1089 LdiOp = Mips::LDI_D;
1090 ViaVecTy = MVT::v2i64;
1091 break;
1092 }
1093
1094 SDNode *Res = nullptr;
1095
1096 // If we have a signed 10 bit integer, we can splat it directly.
1097 //
1098 // If we have something bigger we can synthesize the value into a GPR and
1099 // splat from there.
1100 if (SplatValue.isSignedIntN(10)) {
1101 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
1102 ViaVecTy.getVectorElementType());
1103
1104 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
1105 } else if (SplatValue.isSignedIntN(16) &&
1106 ((ABI.IsO32() && SplatBitSize < 64) ||
1107 (ABI.IsN32() || ABI.IsN64()))) {
1108 // Only handle signed 16 bit values when the element size is GPR width.
1109 // MIPS64 can handle all the cases but MIPS32 would need to handle
1110 // negative cases specifically here. Instead, handle those cases as
1111 // 64bit values.
1112
1113 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
1114 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
1115 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
1116 SDValue ZeroVal = CurDAG->getRegister(
1117 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1118
1119 const unsigned FILLOp =
1120 SplatBitSize == 16
1121 ? Mips::FILL_H
1122 : (SplatBitSize == 32 ? Mips::FILL_W
1123 : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1124
1125 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1126 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1127 "Attempting to use fill.d on MIPS32!");
1128
1129 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1130 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1131
1132 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1133 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1134
1135 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1136 // Only handle the cases where the splat size agrees with the size
1137 // of the SplatValue here.
1138 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1139 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1140 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1141
1142 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1143 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1144
1145 if (Hi)
1146 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1147
1148 if (Lo)
1149 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1150 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1151
1152 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1153 Res =
1154 CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1155
1156 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1157 (ABI.IsN32() || ABI.IsN64())) {
1158 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1159 // integers due to having 64bit registers. lui will cause the necessary
1160 // zero/sign extension.
1161 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1162 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1163 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1164
1165 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1166 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1167
1168 if (Hi)
1169 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1170
1171 if (Lo)
1172 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1173 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1174
1175 Res = CurDAG->getMachineNode(
1176 Mips::SUBREG_TO_REG, DL, MVT::i64,
1177 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1178 SDValue(Res, 0),
1179 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1180
1181 Res =
1182 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1183
1184 } else if (SplatValue.isSignedIntN(64)) {
1185 // If we have a 64 bit Splat value, we perform a similar sequence to the
1186 // above:
1187 //
1188 // MIPS32: MIPS64:
1189 // lui $res, %highest(val) lui $res, %highest(val)
1190 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1191 // lui $res2, %hi(val) lui $res2, %hi(val)
1192 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1193 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1194 // $res4 = insert.w $res3[1], $res fill.d $res
1195 // splat.d $res4, 0
1196 //
1197 // The ability to use dinsu is guaranteed as MSA requires MIPSR5.
1198 // This saves having to materialize the value by shifts and ors.
1199 //
1200 // FIXME: Implement the preferred sequence for MIPS64R6:
1201 //
1202 // MIPS64R6:
1203 // ori $res, $zero, %lo(val)
1204 // daui $res, $res, %hi(val)
1205 // dahi $res, $res, %higher(val)
1206 // dati $res, $res, %highest(cal)
1207 // fill.d $res
1208 //
1209
1210 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1211 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1212 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1213 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1214
1215 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1216 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1217 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1218 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1219 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1220
1221 // Independent of whether we're targeting MIPS64 or not, the basic
1222 // operations are the same. Also, directly use the $zero register if
1223 // the 16 bit chunk is zero.
1224 //
1225 // For optimization purposes we always synthesize the splat value as
1226 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1227 // just before combining the values with dinsu to produce an i64. This
1228 // enables SelectionDAG to aggressively share components of splat values
1229 // where possible.
1230 //
1231 // FIXME: This is the general constant synthesis problem. This code
1232 // should be factored out into a class shared between all the
1233 // classes that need it. Specifically, for a splat size of 64
1234 // bits that's a negative number we can do better than LUi/ORi
1235 // for the upper 32bits.
1236
1237 if (Hi)
1238 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1239
1240 if (Lo)
1241 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1242 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1243
1244 SDNode *HiRes;
1245 if (Highest)
1246 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1247
1248 if (Higher)
1249 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1250 Highest ? SDValue(HiRes, 0) : ZeroVal,
1251 HigherVal);
1252
1253
1254 if (ABI.IsO32()) {
1255 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1256 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1257
1258 Res = CurDAG->getMachineNode(
1259 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1260 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1261 CurDAG->getTargetConstant(1, DL, MVT::i32));
1262
1263 const TargetLowering *TLI = getTargetLowering();
1264 const TargetRegisterClass *RC =
1265 TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1266
1267 Res = CurDAG->getMachineNode(
1268 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1269 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1270
1271 Res = CurDAG->getMachineNode(
1272 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1273 CurDAG->getTargetConstant(0, DL, MVT::i32));
1274 } else if (ABI.IsN64() || ABI.IsN32()) {
1275
1276 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1277 const bool HiResNonZero = Highest || Higher;
1278 const bool ResNonZero = Hi || Lo;
1279
1280 if (HiResNonZero)
1281 HiRes = CurDAG->getMachineNode(
1282 Mips::SUBREG_TO_REG, DL, MVT::i64,
1283 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1284 SDValue(HiRes, 0),
1285 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1286
1287 if (ResNonZero)
1288 Res = CurDAG->getMachineNode(
1289 Mips::SUBREG_TO_REG, DL, MVT::i64,
1290 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1291 SDValue(Res, 0),
1292 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1293
1294 // We have 3 cases:
1295 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1296 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1297 // Both are non zero => dinsu Res, HiRes, 32, 32
1298 //
1299 // The obvious "missing" case is when both are zero, but that case is
1300 // handled by the ldi case.
1301 if (ResNonZero) {
1302 IntegerType *Int32Ty =
1303 IntegerType::get(MF->getFunction().getContext(), 32);
1304 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1305 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1306 CurDAG->getConstant(*Const32, DL, MVT::i32),
1307 CurDAG->getConstant(*Const32, DL, MVT::i32),
1308 SDValue(Res, 0)};
1309
1310 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1311 } else if (HiResNonZero) {
1312 Res = CurDAG->getMachineNode(
1313 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1314 CurDAG->getTargetConstant(0, DL, MVT::i32));
1315 } else
1316 llvm_unreachable(
1317 "Zero splat value handled by non-zero 64bit splat synthesis!");
1318
1319 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64,
1320 SDValue(Res, 0));
1321 } else
1322 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1323
1324 } else
1325 return false;
1326
1327 if (ResVecTy != ViaVecTy) {
1328 // If LdiOp is writing to a different register class to ResVecTy, then
1329 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1330 // since the source and destination register sets contain the same
1331 // registers.
1332 const TargetLowering *TLI = getTargetLowering();
1333 MVT ResVecTySimple = ResVecTy.getSimpleVT();
1334 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1335 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1336 ResVecTy, SDValue(Res, 0),
1337 CurDAG->getTargetConstant(RC->getID(), DL,
1338 MVT::i32));
1339 }
1340
1341 ReplaceNode(Node, Res);
1342 return true;
1343 }
1344
1345 }
1346
1347 return false;
1348 }
1349
1350 bool MipsSEDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1351 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1352 std::vector<SDValue> &OutOps) {
1353 SDValue Base, Offset;
1354
1355 switch(ConstraintID) {
1356 default:
1357 llvm_unreachable("Unexpected asm memory constraint");
1358 // All memory constraints can at least accept raw pointers.
1359 case InlineAsm::Constraint_m:
1360 case InlineAsm::Constraint_o:
1361 if (selectAddrRegImm16(Op, Base, Offset)) {
1362 OutOps.push_back(Base);
1363 OutOps.push_back(Offset);
1364 return false;
1365 }
1366 OutOps.push_back(Op);
1367 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1368 return false;
1369 case InlineAsm::Constraint_R:
1370 // The 'R' constraint is supposed to be much more complicated than this.
1371 // However, it's becoming less useful due to architectural changes and
1372 // ought to be replaced by other constraints such as 'ZC'.
1373 // For now, support 9-bit signed offsets which is supportable by all
1374 // subtargets for all instructions.
1375 if (selectAddrRegImm9(Op, Base, Offset)) {
1376 OutOps.push_back(Base);
1377 OutOps.push_back(Offset);
1378 return false;
1379 }
1380 OutOps.push_back(Op);
1381 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1382 return false;
1383 case InlineAsm::Constraint_ZC:
1384 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1385 // given subtarget.
1386 if (Subtarget->inMicroMipsMode()) {
1387 // On microMIPS, they can handle 12-bit offsets.
1388 if (selectAddrRegImm12(Op, Base, Offset)) {
1389 OutOps.push_back(Base);
1390 OutOps.push_back(Offset);
1391 return false;
1392 }
1393 } else if (Subtarget->hasMips32r6()) {
1394 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1395 if (selectAddrRegImm9(Op, Base, Offset)) {
1396 OutOps.push_back(Base);
1397 OutOps.push_back(Offset);
1398 return false;
1399 }
1400 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1401 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1402 OutOps.push_back(Base);
1403 OutOps.push_back(Offset);
1404 return false;
1405 }
1406 // In all cases, 0-bit offsets are acceptable.
1407 OutOps.push_back(Op);
1408 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1409 return false;
1410 }
1411 return true;
1412 }
1413
createMipsSEISelDag(MipsTargetMachine & TM,CodeGenOpt::Level OptLevel)1414 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1415 CodeGenOpt::Level OptLevel) {
1416 return new MipsSEDAGToDAGISel(TM, OptLevel);
1417 }
1418