1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9def IsTargetXPLINK64      : Predicate<"Subtarget->isTargetXPLINK64()">;
10def IsTargetELF           : Predicate<"Subtarget->isTargetELF()">;
11
12//===----------------------------------------------------------------------===//
13// Stack allocation
14//===----------------------------------------------------------------------===//
15
16// The callseq_start node requires the hasSideEffects flag, even though these
17// instructions are noops on SystemZ.
18let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
19  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
20                                [(callseq_start timm:$amt1, timm:$amt2)]>;
21  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
22                                [(callseq_end timm:$amt1, timm:$amt2)]>;
23}
24
25// Takes as input the value of the stack pointer after a dynamic allocation
26// has been made.  Sets the output to the address of the dynamically-
27// allocated area itself, skipping the outgoing arguments.
28//
29// This expands to an LA or LAY instruction.  We restrict the offset
30// to the range of LA and keep the LAY range in reserve for when
31// the size of the outgoing arguments is added.
32def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
33                         [(set GR64:$dst, dynalloc12only:$src)]>;
34
35let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
36    usesCustomInserter = 1 in
37  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
38                             (ins GR64:$oldSP, GR64:$space),
39           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
40
41let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
42    hasSideEffects = 1 in
43  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
44
45//===----------------------------------------------------------------------===//
46// Branch instructions
47//===----------------------------------------------------------------------===//
48
49// Conditional branches.
50let isBranch = 1, isTerminator = 1, Uses = [CC] in {
51  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
52  // with the condition-code mask being the first operand.  It seems friendlier
53  // to use mnemonic forms like JE and JLH when writing out the assembly though.
54  let isCodeGenOnly = 1 in {
55    // An assembler extended mnemonic for BRC.
56    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
57    // An assembler extended mnemonic for BRCL.  (The extension is "G"
58    // rather than "L" because "JL" is "Jump if Less".)
59    def BRCL : CondBranchRIL<"jg#", 0xC04>;
60    let isIndirectBranch = 1 in {
61      def BC  : CondBranchRX<"b#",  0x47>;
62      def BCR : CondBranchRR<"b#r", 0x07>;
63      def BIC : CondBranchRXY<"bi#", 0xe347>,
64                Requires<[FeatureMiscellaneousExtensions2]>;
65    }
66  }
67
68  // Allow using the raw forms directly from the assembler (and occasional
69  // special code generation needs) as well.
70  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
71  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
72  let isIndirectBranch = 1 in {
73    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
74    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
75    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
76                 Requires<[FeatureMiscellaneousExtensions2]>;
77  }
78
79  // Define AsmParser extended mnemonics for each general condition-code mask
80  // (integer or floating-point)
81  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
82                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
83    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
84    def JGAsm#V : FixedCondBranchRIL<CV<V>, "j{g|l}#", 0xC04>;
85    let isIndirectBranch = 1 in {
86      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
87      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
88      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
89                    Requires<[FeatureMiscellaneousExtensions2]>;
90    }
91  }
92}
93
94// Unconditional branches.  These are in fact simply variants of the
95// conditional branches with the condition mask set to "always".
96let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
97  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
98  def JG : FixedCondBranchRIL<CondAlways, "j{g|lu}", 0xC04>;
99  let isIndirectBranch = 1 in {
100    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
101    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
102    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
103             Requires<[FeatureMiscellaneousExtensions2]>;
104  }
105}
106
107// NOPs.  These are again variants of the conditional branches, with the
108// condition mask set to "never".  NOP_bare can't be an InstAlias since it
109// would need R0D hard coded which is not part of ADDR64BitRegClass.
110def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
111let isAsmParserOnly = 1, hasNoSchedulingInfo = 1, M1 = 0, XBD2 = 0 in
112  def NOP_bare  : InstRXb<0x47,(outs), (ins), "nop", []>;
113def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;
114def NOPR_bare : InstAlias<"nopr", (BCRAsm 0, R0D), 0>;
115
116// An alias of BRC 0, label
117def JNOP : InstAlias<"jnop\t$RI2", (BRCAsm 0, brtarget16:$RI2), 0>;
118
119// An alias of BRCL 0, label
120// jgnop on att ; jlnop on hlasm
121def JGNOP : InstAlias<"{jgnop|jlnop}\t$RI2", (BRCLAsm 0, brtarget32:$RI2), 0>;
122
123// Fused compare-and-branch instructions.
124//
125// These instructions do not use or clobber the condition codes.
126// We nevertheless pretend that the relative compare-and-branch
127// instructions clobber CC, so that we can lower them to separate
128// comparisons and BRCLs if the branch ends up being out of range.
129let isBranch = 1, isTerminator = 1 in {
130  // As for normal branches, we handle these instructions internally in
131  // their raw CRJ-like form, but use assembly macros like CRJE when writing
132  // them out.  Using the *Pair multiclasses, we also create the raw forms.
133  let Defs = [CC] in {
134    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
135    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
136    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
137    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
138    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
139    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
140    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
141    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
142  }
143  let isIndirectBranch = 1 in {
144    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
145    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
146    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
147    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
148    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
149    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
150    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
151    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
152  }
153
154  // Define AsmParser mnemonics for each integer condition-code mask.
155  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
156                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
157    let Defs = [CC] in {
158      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
159      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
160      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
161                                          imm32sx8>;
162      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
163                                          imm64sx8>;
164      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
165      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
166      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
167                                          imm32zx8>;
168      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
169                                          imm64zx8>;
170    }
171    let isIndirectBranch = 1 in {
172      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
173      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
174      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
175                                         imm32sx8>;
176      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
177                                         imm64sx8>;
178      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
179      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
180      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
181                                         imm32zx8>;
182      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
183                                         imm64zx8>;
184    }
185  }
186}
187
188// Decrement a register and branch if it is nonzero.  These don't clobber CC,
189// but we might need to split long relative branches into sequences that do.
190let isBranch = 1, isTerminator = 1 in {
191  let Defs = [CC] in {
192    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
193    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
194  }
195  // This doesn't need to clobber CC since we never need to split it.
196  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
197              Requires<[FeatureHighWord]>;
198
199  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
200  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
201  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
202  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
203}
204
205let isBranch = 1, isTerminator = 1 in {
206  let Defs = [CC] in {
207    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
208    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
209    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
210    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
211  }
212  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
213  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
214  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
215  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
216}
217
218//===----------------------------------------------------------------------===//
219// Trap instructions
220//===----------------------------------------------------------------------===//
221
222// Unconditional trap.
223let hasCtrlDep = 1, hasSideEffects = 1 in
224  def Trap : Alias<4, (outs), (ins), [(trap)]>;
225
226// Conditional trap.
227let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
228  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
229
230// Fused compare-and-trap instructions.
231let hasCtrlDep = 1, hasSideEffects = 1 in {
232  // These patterns work the same way as for compare-and-branch.
233  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
234  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
235  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
236  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
237  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
238  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
239  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
240  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
241  let Predicates = [FeatureMiscellaneousExtensions] in {
242    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
243    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
244  }
245
246  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
247                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
248    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
249    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
250    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
251    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
252    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
253                                         imm32sx16>;
254    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
255                                         imm64sx16>;
256    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
257                                         imm32zx16>;
258    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
259                                         imm64zx16>;
260    let Predicates = [FeatureMiscellaneousExtensions] in {
261      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
262      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
263    }
264  }
265}
266
267//===----------------------------------------------------------------------===//
268// Call and return instructions
269//===----------------------------------------------------------------------===//
270
271// Define the general form of the call instructions for the asm parser.
272// These instructions don't hard-code %r14 as the return address register.
273let isCall = 1, Defs = [CC] in {
274  def BRAS  : CallRI <"bras", 0xA75>;
275  def BRASL : CallRIL<"brasl", 0xC05>;
276  def BAS   : CallRX <"bas", 0x4D>;
277  def BASR  : CallRR <"basr", 0x0D>;
278}
279
280// z/OS XPLINK
281let Predicates = [IsTargetXPLINK64] in {
282  let isCall = 1, Defs = [R7D, CC], Uses = [FPC] in {
283    def CallBRASL_XPLINK64 : Alias<8, (outs), (ins pcrel32:$I2, variable_ops),
284                          [(z_call pcrel32:$I2)]>;
285    def CallBASR_XPLINK64  : Alias<4, (outs), (ins ADDR64:$R2, variable_ops),
286                          [(z_call ADDR64:$R2)]>;
287  }
288}
289
290// Regular calls.
291// z/Linux ELF
292let Predicates = [IsTargetELF] in {
293  let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
294    def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
295                          [(z_call pcrel32:$I2)]>;
296    def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
297                          [(z_call ADDR64:$R2)]>;
298  }
299
300  // TLS calls.  These will be lowered into a call to __tls_get_offset,
301  // with an extra relocation specifying the TLS symbol.
302  let isCall = 1, Defs = [R14D, CC] in {
303    def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
304                           [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
305    def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
306                           [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
307  }
308}
309
310// Sibling calls. Indirect sibling calls must be via R6 for XPLink,
311// R1 used for ELF
312let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
313  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
314                     [(z_sibcall pcrel32:$I2)]>;
315  def CallBR : Alias<2, (outs), (ins ADDR64:$R2),
316                     [(z_sibcall ADDR64:$R2)]>;
317}
318
319// Conditional sibling calls.
320let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
321  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
322                                   pcrel32:$I2), []>;
323  def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1,
324                                  ADDR64:$R2), []>;
325}
326
327// Fused compare and conditional sibling calls.
328let isCall = 1, isTerminator = 1, isReturn = 1 in {
329  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
330  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
331  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
332  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
333  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
334  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
335  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
336  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
337}
338
339// A return instruction (br %r14) for ELF and (b 2 %r7) for XPLink.
340let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
341  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
342
343// A conditional return instruction (bcr <cond>, %r14).
344let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
345  def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
346
347// Fused compare and conditional returns.
348let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
349  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
350  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
351  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
352  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
353  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
354  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
355  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
356  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
357}
358
359//===----------------------------------------------------------------------===//
360// Select instructions
361//===----------------------------------------------------------------------===//
362
363def Select32    : SelectWrapper<i32, GR32>,
364                  Requires<[FeatureNoLoadStoreOnCond]>;
365def Select64    : SelectWrapper<i64, GR64>,
366                  Requires<[FeatureNoLoadStoreOnCond]>;
367
368// We don't define 32-bit Mux stores if we don't have STOCFH, because the
369// low-only STOC should then always be used if possible.
370defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
371                                 nonvolatile_anyextloadi8, bdxaddr20only>,
372                      Requires<[FeatureHighWord]>;
373defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
374                                 nonvolatile_anyextloadi16, bdxaddr20only>,
375                      Requires<[FeatureHighWord]>;
376defm CondStore32Mux : CondStores<GRX32, simple_store,
377                                 simple_load, bdxaddr20only>,
378                      Requires<[FeatureLoadStoreOnCond2]>;
379defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
380                                 nonvolatile_anyextloadi8, bdxaddr20only>;
381defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
382                                 nonvolatile_anyextloadi16, bdxaddr20only>;
383defm CondStore32    : CondStores<GR32, simple_store,
384                                 simple_load, bdxaddr20only>;
385
386defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
387                    nonvolatile_anyextloadi8, bdxaddr20only>;
388defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
389                    nonvolatile_anyextloadi16, bdxaddr20only>;
390defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
391                    nonvolatile_anyextloadi32, bdxaddr20only>;
392defm CondStore64 : CondStores<GR64, simple_store,
393                              simple_load, bdxaddr20only>;
394
395//===----------------------------------------------------------------------===//
396// Move instructions
397//===----------------------------------------------------------------------===//
398
399// Register moves.
400def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
401def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
402
403let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
404  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
405  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
406}
407
408let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
409  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
410
411// Immediate moves.
412let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
413  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
414  // deopending on the choice of register.
415  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
416               Requires<[FeatureHighWord]>;
417  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
418  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
419
420  // Other 16-bit immediates.
421  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
422  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
423  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
424  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
425
426  // 32-bit immediates.
427  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
428  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
429  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
430}
431
432// Register loads.
433let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
434  // Expands to L, LY or LFH, depending on the choice of register.
435  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
436             Requires<[FeatureHighWord]>;
437  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
438  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
439            Requires<[FeatureHighWord]>;
440  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
441
442  // These instructions are split after register allocation, so we don't
443  // want a custom inserter.
444  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
445    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
446                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
447  }
448}
449let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
450  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
451  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
452}
453
454let canFoldAsLoad = 1 in {
455  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
456  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
457}
458
459// Load and zero rightmost byte.
460let Predicates = [FeatureLoadAndZeroRightmostByte] in {
461  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
462  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
463  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
464            (LZRF bdxaddr20only:$src)>;
465  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
466            (LZRG bdxaddr20only:$src)>;
467}
468
469// Load and trap.
470let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
471  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
472  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
473  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
474}
475
476// Register stores.
477let SimpleBDXStore = 1, mayStore = 1 in {
478  // Expands to ST, STY or STFH, depending on the choice of register.
479  def STMux : StoreRXYPseudo<store, GRX32, 4>,
480              Requires<[FeatureHighWord]>;
481  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
482  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
483             Requires<[FeatureHighWord]>;
484  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
485
486  // These instructions are split after register allocation, so we don't
487  // want a custom inserter.
488  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
489    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
490                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
491  }
492}
493def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
494def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
495
496// 8-bit immediate stores to 8-bit fields.
497defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
498
499// 16-bit immediate stores to 16-, 32- or 64-bit fields.
500def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
501def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
502def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
503
504// Memory-to-memory moves.
505let mayLoad = 1, mayStore = 1 in
506  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
507let mayLoad = 1, mayStore = 1, Defs = [CC] in {
508  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
509  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
510  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
511}
512
513// Move right.
514let Predicates = [FeatureMiscellaneousExtensions3],
515    mayLoad = 1, mayStore = 1, Uses = [R0L] in
516  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
517
518// String moves.
519let mayLoad = 1, mayStore = 1, Defs = [CC] in
520  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
521
522//===----------------------------------------------------------------------===//
523// Conditional move instructions
524//===----------------------------------------------------------------------===//
525
526let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
527  // Select.
528  let isCommutable = 1 in {
529    // Expands to SELR or SELFHR or a branch-and-move sequence,
530    // depending on the choice of registers.
531    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
532    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
533    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
534    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
535  }
536
537  // Define AsmParser extended mnemonics for each general condition-code mask.
538  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
539                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
540    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
541                                          GR32, GR32, GR32>;
542    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
543                                          GRH32, GRH32, GRH32>;
544    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
545                                          GR64, GR64, GR64>;
546  }
547}
548
549let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
550  // Load immediate on condition.  Matched via DAG pattern and created
551  // by the PeepholeOptimizer via FoldImmediate.
552
553  // Expands to LOCHI or LOCHHI, depending on the choice of register.
554  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
555  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
556  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
557  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
558
559  // Move register on condition.  Matched via DAG pattern and
560  // created by early if-conversion.
561  let isCommutable = 1 in {
562    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
563    // depending on the choice of registers.
564    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
565    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
566  }
567
568  // Load on condition.  Matched via DAG pattern.
569  // Expands to LOC or LOCFH, depending on the choice of register.
570  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
571  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
572
573  // Store on condition.  Expanded from CondStore* pseudos.
574  // Expands to STOC or STOCFH, depending on the choice of register.
575  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
576  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
577
578  // Define AsmParser extended mnemonics for each general condition-code mask.
579  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
580                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
581    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
582                                         imm32sx16>;
583    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
584                                         imm64sx16>;
585    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
586                                         imm32sx16>;
587    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
588    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
589    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
590  }
591}
592
593let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
594  // Move register on condition.  Matched via DAG pattern and
595  // created by early if-conversion.
596  let isCommutable = 1 in {
597    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
598    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
599  }
600
601  // Load on condition.  Matched via DAG pattern.
602  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
603  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
604
605  // Store on condition.  Expanded from CondStore* pseudos.
606  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
607  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
608
609  // Define AsmParser extended mnemonics for each general condition-code mask.
610  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
611                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
612    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
613    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
614    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
615    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
616    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
617    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
618  }
619}
620//===----------------------------------------------------------------------===//
621// Sign extensions
622//===----------------------------------------------------------------------===//
623//
624// Note that putting these before zero extensions mean that we will prefer
625// them for anyextload*.  There's not really much to choose between the two
626// either way, but signed-extending loads have a short LH and a long LHY,
627// while zero-extending loads have only the long LLH.
628//
629//===----------------------------------------------------------------------===//
630
631// 32-bit extensions from registers.
632def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
633def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
634
635// 64-bit extensions from registers.
636def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
637def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
638def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
639
640let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
641  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
642
643// Match 32-to-64-bit sign extensions in which the source is already
644// in a 64-bit register.
645def : Pat<(sext_inreg GR64:$src, i32),
646          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
647
648// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
649// depending on the choice of register.
650def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
651            Requires<[FeatureHighWord]>;
652def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
653def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
654          Requires<[FeatureHighWord]>;
655
656// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
657// depending on the choice of register.
658def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
659            Requires<[FeatureHighWord]>;
660defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
661def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
662            Requires<[FeatureHighWord]>;
663def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
664
665// 64-bit extensions from memory.
666def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
667def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
668def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
669def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
670def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
671let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
672  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
673
674//===----------------------------------------------------------------------===//
675// Zero extensions
676//===----------------------------------------------------------------------===//
677
678// 32-bit extensions from registers.
679
680// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
681def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
682              Requires<[FeatureHighWord]>;
683def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
684// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
685def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
686              Requires<[FeatureHighWord]>;
687def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
688
689// 64-bit extensions from registers.
690def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
691def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
692def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
693
694// Match 32-to-64-bit zero extensions in which the source is already
695// in a 64-bit register.
696def : Pat<(and GR64:$src, 0xffffffff),
697          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
698
699// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
700// depending on the choice of register.
701def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
702             Requires<[FeatureHighWord]>;
703def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
704def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
705           Requires<[FeatureHighWord]>;
706
707// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
708// depending on the choice of register.
709def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
710             Requires<[FeatureHighWord]>;
711def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
712def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
713            Requires<[FeatureHighWord]>;
714def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
715
716// 64-bit extensions from memory.
717def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
718def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
719def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
720def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
721def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
722
723// 31-to-64-bit zero extensions.
724def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
725def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
726def : Pat<(and GR64:$src, 0x7fffffff),
727          (LLGTR GR64:$src)>;
728def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
729          (LLGT bdxaddr20only:$src)>;
730
731// Load and zero rightmost byte.
732let Predicates = [FeatureLoadAndZeroRightmostByte] in {
733  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
734  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
735            (LLZRGF bdxaddr20only:$src)>;
736}
737
738// Load and trap.
739let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
740  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
741  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
742}
743
744// Extend GR64s to GR128s.
745let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
746  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
747
748//===----------------------------------------------------------------------===//
749// "Any" extensions
750//===----------------------------------------------------------------------===//
751
752// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
753def : Pat<(i64 (anyext GR32:$src)),
754          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
755
756// Extend GR64s to GR128s.
757let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
758  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
759
760//===----------------------------------------------------------------------===//
761// Truncations
762//===----------------------------------------------------------------------===//
763
764// Truncations of 64-bit registers to 32-bit registers.
765def : Pat<(i32 (trunc GR64:$src)),
766          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
767
768// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
769// STC, STCY or STCH, depending on the choice of register.
770def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
771             Requires<[FeatureHighWord]>;
772defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
773def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
774           Requires<[FeatureHighWord]>;
775
776// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
777// STH, STHY or STHH, depending on the choice of register.
778def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
779             Requires<[FeatureHighWord]>;
780defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
781def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
782           Requires<[FeatureHighWord]>;
783def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
784
785// Truncations of 64-bit registers to memory.
786defm : StoreGR64Pair<STC, STCY, truncstorei8>;
787defm : StoreGR64Pair<STH, STHY, truncstorei16>;
788def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
789defm : StoreGR64Pair<ST, STY, truncstorei32>;
790def  : StoreGR64PC<STRL, aligned_truncstorei32>;
791
792// Store characters under mask -- not (yet) used for codegen.
793defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
794def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
795
796//===----------------------------------------------------------------------===//
797// Multi-register moves
798//===----------------------------------------------------------------------===//
799
800// Multi-register loads.
801defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
802def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
803def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
804def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
805
806// Multi-register stores.
807defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
808def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
809def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
810
811//===----------------------------------------------------------------------===//
812// Byte swaps
813//===----------------------------------------------------------------------===//
814
815// Byte-swapping register moves.
816def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
817def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
818
819// Byte-swapping loads.
820def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
821def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
822def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
823
824// Byte-swapping stores.
825def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
826def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
827def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
828
829// Byte-swapping memory-to-memory moves.
830let mayLoad = 1, mayStore = 1 in
831  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
832
833//===----------------------------------------------------------------------===//
834// Load address instructions
835//===----------------------------------------------------------------------===//
836
837// Load BDX-style addresses.
838let isAsCheapAsAMove = 1, isReMaterializable = 1 in
839  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
840
841// Load a PC-relative address.  There's no version of this instruction
842// with a 16-bit offset, so there's no relaxation.
843let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
844  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
845
846// Load the Global Offset Table address.  This will be lowered into a
847//     larl $R1, _GLOBAL_OFFSET_TABLE_
848// instruction.
849def GOT : Alias<6, (outs GR64:$R1), (ins),
850                [(set GR64:$R1, (global_offset_table))]>;
851
852//===----------------------------------------------------------------------===//
853// Absolute and Negation
854//===----------------------------------------------------------------------===//
855
856let Defs = [CC] in {
857  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
858    def LPR  : UnaryRR <"lpr",  0x10,   abs, GR32, GR32>;
859    def LPGR : UnaryRRE<"lpgr", 0xB900, abs, GR64, GR64>;
860  }
861  let CCValues = 0xE, CompareZeroCCMask = 0xE in
862    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
863}
864defm : SXU<abs, LPGFR>;
865
866let Defs = [CC] in {
867  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
868    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
869    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
870  }
871  let CCValues = 0xE, CompareZeroCCMask = 0xE in
872    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
873}
874defm : SXU<z_inegabs, LNGFR>;
875
876let Defs = [CC] in {
877  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
878    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
879    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
880  }
881  let CCValues = 0xE, CompareZeroCCMask = 0xE in
882    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
883}
884defm : SXU<ineg, LCGFR>;
885
886//===----------------------------------------------------------------------===//
887// Insertion
888//===----------------------------------------------------------------------===//
889
890let isCodeGenOnly = 1 in
891  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
892defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
893
894defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
895defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
896
897defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
898defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
899
900// Insert characters under mask -- not (yet) used for codegen.
901let Defs = [CC] in {
902  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
903  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
904}
905
906// Insertions of a 16-bit immediate, leaving other bits unaffected.
907// We don't have or_as_insert equivalents of these operations because
908// OI is available instead.
909//
910// IIxMux expands to II[LH]x, depending on the choice of register.
911def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
912             Requires<[FeatureHighWord]>;
913def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
914             Requires<[FeatureHighWord]>;
915def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
916def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
917def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
918def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
919def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
920def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
921def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
922def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
923
924// ...likewise for 32-bit immediates.  For GR32s this is a general
925// full-width move.  (We use IILF rather than something like LLILF
926// for 32-bit moves because IILF leaves the upper 32 bits of the
927// GR64 unchanged.)
928let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
929  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
930               Requires<[FeatureHighWord]>;
931  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
932  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
933}
934def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
935def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
936
937// An alternative model of inserthf, with the first operand being
938// a zero-extended value.
939def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
940          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
941                  imm64hf32:$imm)>;
942
943//===----------------------------------------------------------------------===//
944// Addition
945//===----------------------------------------------------------------------===//
946
947// Addition producing a signed overflow flag.
948let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
949  // Addition of a register.
950  let isCommutable = 1 in {
951    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
952    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
953  }
954  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
955
956  // Addition to a high register.
957  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
958              Requires<[FeatureHighWord]>;
959  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
960              Requires<[FeatureHighWord]>;
961
962  // Addition of signed 16-bit immediates.
963  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
964  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
965  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
966
967  // Addition of signed 32-bit immediates.
968  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
969               Requires<[FeatureHighWord]>;
970  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
971  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
972             Requires<[FeatureHighWord]>;
973  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
974
975  // Addition of memory.
976  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
977  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
978  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
979             Requires<[FeatureMiscellaneousExtensions2]>;
980  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
981  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;
982
983  // Addition to memory.
984  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
985  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
986}
987defm : SXB<z_sadd, GR64, AGFR>;
988
989// Addition producing a carry.
990let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
991  // Addition of a register.
992  let isCommutable = 1 in {
993    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
994    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
995  }
996  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
997
998  // Addition to a high register.
999  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
1000               Requires<[FeatureHighWord]>;
1001  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
1002               Requires<[FeatureHighWord]>;
1003
1004  // Addition of signed 16-bit immediates.
1005  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
1006                Requires<[FeatureDistinctOps]>;
1007  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
1008                Requires<[FeatureDistinctOps]>;
1009
1010  // Addition of unsigned 32-bit immediates.
1011  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
1012  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
1013
1014  // Addition of signed 32-bit immediates.
1015  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
1016              Requires<[FeatureHighWord]>;
1017
1018  // Addition of memory.
1019  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
1020  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
1021  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;
1022
1023  // Addition to memory.
1024  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
1025  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1026}
1027defm : ZXB<z_uadd, GR64, ALGFR>;
1028
1029// Addition producing and using a carry.
1030let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1031  // Addition of a register.
1032  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1033  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1034
1035  // Addition of memory.
1036  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
1037  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
1038}
1039
1040// Addition that does not modify the condition code.
1041def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1042             Requires<[FeatureHighWord]>;
1043
1044
1045//===----------------------------------------------------------------------===//
1046// Subtraction
1047//===----------------------------------------------------------------------===//
1048
1049// Subtraction producing a signed overflow flag.
1050let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1051    CCIfNoSignedWrap = 1 in {
1052  // Subtraction of a register.
1053  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1054  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1055  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1056
1057  // Subtraction from a high register.
1058  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1059              Requires<[FeatureHighWord]>;
1060  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1061              Requires<[FeatureHighWord]>;
1062
1063  // Subtraction of memory.
1064  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
1065  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
1066  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
1067             Requires<[FeatureMiscellaneousExtensions2]>;
1068  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
1069  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
1070}
1071defm : SXB<z_ssub, GR64, SGFR>;
1072
1073// Subtracting an immediate is the same as adding the negated immediate.
1074let AddedComplexity = 1 in {
1075  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1076            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1077        Requires<[FeatureHighWord]>;
1078  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1079            (AFIMux GR32:$src1, simm32n:$src2)>,
1080        Requires<[FeatureHighWord]>;
1081  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1082            (AHI GR32:$src1, imm32sx16n:$src2)>;
1083  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1084            (AFI GR32:$src1, simm32n:$src2)>;
1085  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1086            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1087  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1088            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1089}
1090
1091// And vice versa in one special case, where we need to load a
1092// constant into a register in any case, but the negated constant
1093// requires fewer instructions to load.
1094def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1095          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1096def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1097          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1098
1099// Subtraction producing a carry.
1100let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1101  // Subtraction of a register.
1102  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1103  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1104  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1105
1106  // Subtraction from a high register.
1107  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1108               Requires<[FeatureHighWord]>;
1109  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1110               Requires<[FeatureHighWord]>;
1111
1112  // Subtraction of unsigned 32-bit immediates.
1113  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1114  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1115
1116  // Subtraction of memory.
1117  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
1118  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
1119  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
1120}
1121defm : ZXB<z_usub, GR64, SLGFR>;
1122
1123// Subtracting an immediate is the same as adding the negated immediate.
1124let AddedComplexity = 1 in {
1125  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1126            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1127        Requires<[FeatureDistinctOps]>;
1128  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1129            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1130        Requires<[FeatureDistinctOps]>;
1131}
1132
1133// And vice versa in one special case (but we prefer addition).
1134def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1135          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1136
1137// Subtraction producing and using a carry.
1138let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1139  // Subtraction of a register.
1140  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1141  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1142
1143  // Subtraction of memory.
1144  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
1145  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
1146}
1147
1148
1149//===----------------------------------------------------------------------===//
1150// AND
1151//===----------------------------------------------------------------------===//
1152
1153let Defs = [CC] in {
1154  // ANDs of a register.
1155  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1156    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1157    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1158  }
1159
1160  let isConvertibleToThreeAddress = 1 in {
1161    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1162    // The CC result only reflects the 16-bit field, not the full register.
1163    //
1164    // NIxMux expands to NI[LH]x, depending on the choice of register.
1165    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1166                 Requires<[FeatureHighWord]>;
1167    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1168                 Requires<[FeatureHighWord]>;
1169    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1170    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1171    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1172    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1173    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1174    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1175    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1176    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1177
1178    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1179    // The CC result only reflects the 32-bit field, which means we can
1180    // use it as a zero indicator for i32 operations but not otherwise.
1181    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1182      // Expands to NILF or NIHF, depending on the choice of register.
1183      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1184                   Requires<[FeatureHighWord]>;
1185      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1186      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1187    }
1188    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1189    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1190  }
1191
1192  // ANDs of memory.
1193  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1194    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
1195    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
1196  }
1197
1198  // AND to memory
1199  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1200
1201  // Block AND.
1202  let mayLoad = 1, mayStore = 1 in
1203    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
1204}
1205defm : RMWIByte<and, bdaddr12pair, NI>;
1206defm : RMWIByte<and, bdaddr20pair, NIY>;
1207
1208//===----------------------------------------------------------------------===//
1209// OR
1210//===----------------------------------------------------------------------===//
1211
1212let Defs = [CC] in {
1213  // ORs of a register.
1214  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1215    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1216    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1217  }
1218
1219  // ORs of a 16-bit immediate, leaving other bits unaffected.
1220  // The CC result only reflects the 16-bit field, not the full register.
1221  //
1222  // OIxMux expands to OI[LH]x, depending on the choice of register.
1223  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1224               Requires<[FeatureHighWord]>;
1225  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1226               Requires<[FeatureHighWord]>;
1227  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1228  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1229  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1230  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1231  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1232  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1233  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1234  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1235
1236  // ORs of a 32-bit immediate, leaving other bits unaffected.
1237  // The CC result only reflects the 32-bit field, which means we can
1238  // use it as a zero indicator for i32 operations but not otherwise.
1239  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1240    // Expands to OILF or OIHF, depending on the choice of register.
1241    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1242                 Requires<[FeatureHighWord]>;
1243    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1244    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1245  }
1246  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1247  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1248
1249  // ORs of memory.
1250  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1251    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
1252    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
1253  }
1254
1255  // OR to memory
1256  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1257
1258  // Block OR.
1259  let mayLoad = 1, mayStore = 1 in
1260    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
1261}
1262defm : RMWIByte<or, bdaddr12pair, OI>;
1263defm : RMWIByte<or, bdaddr20pair, OIY>;
1264
1265//===----------------------------------------------------------------------===//
1266// XOR
1267//===----------------------------------------------------------------------===//
1268
1269let Defs = [CC] in {
1270  // XORs of a register.
1271  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1272    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1273    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1274  }
1275
1276  // XORs of a 32-bit immediate, leaving other bits unaffected.
1277  // The CC result only reflects the 32-bit field, which means we can
1278  // use it as a zero indicator for i32 operations but not otherwise.
1279  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1280    // Expands to XILF or XIHF, depending on the choice of register.
1281    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1282                 Requires<[FeatureHighWord]>;
1283    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1284    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1285  }
1286  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1287  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1288
1289  // XORs of memory.
1290  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1291    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
1292    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
1293  }
1294
1295  // XOR to memory
1296  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1297
1298  // Block XOR.
1299  let mayLoad = 1, mayStore = 1 in
1300    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
1301}
1302defm : RMWIByte<xor, bdaddr12pair, XI>;
1303defm : RMWIByte<xor, bdaddr20pair, XIY>;
1304
1305//===----------------------------------------------------------------------===//
1306// Combined logical operations
1307//===----------------------------------------------------------------------===//
1308
1309let Predicates = [FeatureMiscellaneousExtensions3],
1310    Defs = [CC] in {
1311  // AND with complement.
1312  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1313    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1314    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1315  }
1316
1317  // OR with complement.
1318  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1319    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1320    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1321  }
1322
1323  // NAND.
1324  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1325    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1326    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1327  }
1328
1329  // NOR.
1330  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1331    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1332    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1333  }
1334
1335  // NXOR.
1336  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1337    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1338    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1339  }
1340}
1341
1342//===----------------------------------------------------------------------===//
1343// Multiplication
1344//===----------------------------------------------------------------------===//
1345
1346// Multiplication of a register, setting the condition code.  We prefer these
1347// over MS(G)R if available, even though we cannot use the condition code,
1348// since they are three-operand instructions.
1349let Predicates = [FeatureMiscellaneousExtensions2],
1350    Defs = [CC], isCommutable = 1 in {
1351  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1352  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1353}
1354
1355// Multiplication of a register.
1356let isCommutable = 1 in {
1357  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1358  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1359}
1360def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1361defm : SXB<mul, GR64, MSGFR>;
1362
1363// Multiplication of a signed 16-bit immediate.
1364def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1365def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1366
1367// Multiplication of a signed 32-bit immediate.
1368def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1369def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1370
1371// Multiplication of memory.
1372defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
1373defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
1374def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
1375            Requires<[FeatureMiscellaneousExtensions2]>;
1376def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
1377def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
1378
1379// Multiplication of memory, setting the condition code.
1380let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1381  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, load, 4>;
1382  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, load, 8>;
1383}
1384
1385// Multiplication of a register, producing two results.
1386def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1387def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1388           Requires<[FeatureMiscellaneousExtensions2]>;
1389def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1390def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1391
1392def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1393          (MGRK GR64:$src1, GR64:$src2)>;
1394def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1395          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1396
1397// Multiplication of memory, producing two results.
1398def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
1399def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
1400def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
1401          Requires<[FeatureMiscellaneousExtensions2]>;
1402def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
1403def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
1404
1405def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1406          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1407def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1408          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1409
1410//===----------------------------------------------------------------------===//
1411// Division and remainder
1412//===----------------------------------------------------------------------===//
1413
1414let hasSideEffects = 1 in {  // Do not speculatively execute.
1415  // Division and remainder, from registers.
1416  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1417  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1418  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1419  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1420  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1421
1422  // Division and remainder, from memory.
1423  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
1424  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
1425  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
1426  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
1427  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
1428}
1429def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1430          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1431def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
1432          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1433def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1434          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1435def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1436          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1437
1438def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1439          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1440                                       subreg_l32)), GR32:$src2)>;
1441def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
1442          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1443                                      subreg_l32)), bdxaddr20only:$src2)>;
1444def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1445          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1446def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1447          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1448
1449//===----------------------------------------------------------------------===//
1450// Shifts
1451//===----------------------------------------------------------------------===//
1452
1453// Logical shift left.
1454defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1455def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1456def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1457
1458// Arithmetic shift left.
1459let Defs = [CC] in {
1460  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1461  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1462  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1463}
1464
1465// Logical shift right.
1466defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1467def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1468def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1469
1470// Arithmetic shift right.
1471let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1472  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1473  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1474  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1475}
1476
1477// Rotate left.
1478def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1479def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1480
1481// Rotate second operand left and inserted selected bits into first operand.
1482// These can act like 32-bit operands provided that the constant start and
1483// end bits (operands 2 and 3) are in the range [32, 64).
1484let Defs = [CC] in {
1485  let isCodeGenOnly = 1 in
1486    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1487  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1488    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1489}
1490
1491// On zEC12 we have a variant of RISBG that does not set CC.
1492let Predicates = [FeatureMiscellaneousExtensions] in
1493  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1494
1495// Forms of RISBG that only affect one word of the destination register.
1496// They do not set CC.
1497let Predicates = [FeatureHighWord] in {
1498  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1499  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1500  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1501  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1502  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1503  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1504  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1505}
1506
1507// Rotate second operand left and perform a logical operation with selected
1508// bits of the first operand.  The CC result only describes the selected bits,
1509// so isn't useful for a full comparison against zero.
1510let Defs = [CC] in {
1511  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1512  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1513  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1514}
1515
1516//===----------------------------------------------------------------------===//
1517// Comparison
1518//===----------------------------------------------------------------------===//
1519
1520// Signed comparisons.  We put these before the unsigned comparisons because
1521// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1522// of the unsigned forms do.
1523let Defs = [CC], CCValues = 0xE in {
1524  // Comparison with a register.
1525  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1526  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1527  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1528
1529  // Comparison with a high register.
1530  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1531             Requires<[FeatureHighWord]>;
1532  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1533             Requires<[FeatureHighWord]>;
1534
1535  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1536  // depending on the choice of register.
1537  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1538               Requires<[FeatureHighWord]>;
1539  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1540  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1541
1542  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1543  // depending on the choice of register.
1544  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1545               Requires<[FeatureHighWord]>;
1546  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1547  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1548             Requires<[FeatureHighWord]>;
1549  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1550
1551  // Comparison with memory.
1552  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1553  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
1554               Requires<[FeatureHighWord]>;
1555  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1556  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
1557               Requires<[FeatureHighWord]>;
1558  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1559  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1560  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1561  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1562  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1563  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1564  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1565  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1566
1567  // Comparison between memory and a signed 16-bit immediate.
1568  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1569  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1570  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1571}
1572defm : SXB<z_scmp, GR64, CGFR>;
1573
1574// Unsigned comparisons.
1575let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1576  // Comparison with a register.
1577  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1578  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1579  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1580
1581  // Comparison with a high register.
1582  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1583              Requires<[FeatureHighWord]>;
1584  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1585              Requires<[FeatureHighWord]>;
1586
1587  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1588  // or CLIH, depending on the choice of register.
1589  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1590                Requires<[FeatureHighWord]>;
1591  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1592  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1593              Requires<[FeatureHighWord]>;
1594  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1595
1596  // Comparison with memory.
1597  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
1598                Requires<[FeatureHighWord]>;
1599  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1600  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
1601                Requires<[FeatureHighWord]>;
1602  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1603  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1604  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1605                             aligned_azextloadi16>;
1606  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1607                             aligned_load>;
1608  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1609                             aligned_azextloadi16>;
1610  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1611                             aligned_azextloadi32>;
1612  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1613                             aligned_load>;
1614
1615  // Comparison between memory and an unsigned 8-bit immediate.
1616  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1617
1618  // Comparison between memory and an unsigned 16-bit immediate.
1619  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1620  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1621  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1622}
1623defm : ZXB<z_ucmp, GR64, CLGFR>;
1624
1625// Memory-to-memory comparison.
1626let mayLoad = 1, Defs = [CC] in {
1627  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
1628  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1629  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1630  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1631}
1632
1633// String comparison.
1634let mayLoad = 1, Defs = [CC] in
1635  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1636
1637// Test under mask.
1638let Defs = [CC] in {
1639  // TMxMux expands to TM[LH]x, depending on the choice of register.
1640  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1641               Requires<[FeatureHighWord]>;
1642  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1643               Requires<[FeatureHighWord]>;
1644  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1645  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1646  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1647  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1648
1649  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1650  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1651  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1652  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1653
1654  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1655}
1656
1657def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1658def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1659
1660// Compare logical characters under mask -- not (yet) used for codegen.
1661let Defs = [CC] in {
1662  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1663  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1664}
1665
1666//===----------------------------------------------------------------------===//
1667// Prefetch and execution hint
1668//===----------------------------------------------------------------------===//
1669
1670let mayLoad = 1, mayStore = 1 in {
1671  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1672  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1673}
1674
1675let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1676  // Branch Prediction Preload
1677  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1678  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1679
1680  // Next Instruction Access Intent
1681  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1682}
1683
1684//===----------------------------------------------------------------------===//
1685// Atomic operations
1686//===----------------------------------------------------------------------===//
1687
1688// A serialization instruction that acts as a barrier for all memory
1689// accesses, which expands to "bcr 14, 0".
1690let hasSideEffects = 1 in
1691def Serialize : Alias<2, (outs), (ins), []>;
1692
1693// A pseudo instruction that serves as a compiler barrier.
1694let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
1695def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;
1696
1697let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1698  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
1699  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
1700  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1701  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1702  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
1703  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
1704  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
1705  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
1706  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
1707  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
1708}
1709
1710def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1711def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
1712def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
1713
1714def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1715def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1716let Predicates = [FeatureNoInterlockedAccess1] in {
1717  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
1718  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1719  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1720  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
1721  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1722  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1723}
1724
1725def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1726def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1727def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1728
1729def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1730def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1731let Predicates = [FeatureNoInterlockedAccess1] in {
1732  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
1733  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
1734                                                 imm32ll16c>;
1735  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
1736                                                 imm32lh16c>;
1737  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1738  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
1739  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1740                                                 imm64ll16c>;
1741  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1742                                                 imm64lh16c>;
1743  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1744                                                 imm64hl16c>;
1745  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1746                                                 imm64hh16c>;
1747  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1748                                                 imm64lf32c>;
1749  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1750                                                 imm64hf32c>;
1751}
1752
1753def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1754def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1755let Predicates = [FeatureNoInterlockedAccess1] in {
1756  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
1757  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1758  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1759  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1760  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
1761  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1762  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1763  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1764  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1765  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1766  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1767}
1768
1769def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1770def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1771let Predicates = [FeatureNoInterlockedAccess1] in {
1772  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1773  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1774  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1775  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1776  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1777}
1778
1779def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1780def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1781                                               imm32lh16c>;
1782def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1783def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1784                                                imm32ll16c>;
1785def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1786                                                imm32lh16c>;
1787def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1788def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1789def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1790                                                imm64ll16c>;
1791def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1792                                                imm64lh16c>;
1793def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1794                                                imm64hl16c>;
1795def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1796                                                imm64hh16c>;
1797def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1798                                                imm64lf32c>;
1799def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1800                                                imm64hf32c>;
1801
1802def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1803def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
1804def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
1805
1806def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1807def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
1808def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
1809
1810def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1811def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1812def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1813
1814def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1815def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1816def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1817
1818def ATOMIC_CMP_SWAPW
1819  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1820                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1821                                  uimm32:$bitsize),
1822           [(set GR32:$dst,
1823                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1824                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1825                                     uimm32:$bitsize))]> {
1826  let Defs = [CC];
1827  let mayLoad = 1;
1828  let mayStore = 1;
1829  let usesCustomInserter = 1;
1830  let hasNoSchedulingInfo = 1;
1831}
1832
1833// Test and set.
1834let mayLoad = 1, Defs = [CC] in
1835  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1836
1837// Compare and swap.
1838let Defs = [CC] in {
1839  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1840  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1841}
1842
1843// Compare double and swap.
1844let Defs = [CC] in {
1845  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1846  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1847}
1848
1849// Compare and swap and store.
1850let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1851  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1852
1853// Perform locked operation.
1854let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1855  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1856
1857// Load/store pair from/to quadword.
1858def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1859def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1860
1861// Load pair disjoint.
1862let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1863  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1864  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1865}
1866
1867//===----------------------------------------------------------------------===//
1868// Translate and convert
1869//===----------------------------------------------------------------------===//
1870
1871let mayLoad = 1, mayStore = 1 in
1872  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1873
1874let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1875  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1876  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1877}
1878
1879let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1880  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1881
1882let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1883  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1884  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1885}
1886
1887let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1888  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1889  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1890  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1891  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1892}
1893
1894let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1895  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1896  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1897  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1898  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1899  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1900  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1901
1902  let isAsmParserOnly = 1 in {
1903    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1904    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1905  }
1906}
1907
1908//===----------------------------------------------------------------------===//
1909// Message-security assist
1910//===----------------------------------------------------------------------===//
1911
1912let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1913  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1914  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1915
1916  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1917  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1918  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1919
1920  let Predicates = [FeatureMessageSecurityAssist4] in {
1921    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1922    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1923    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1924                                               GR128, GR128, GR128>;
1925    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1926  }
1927
1928  let Predicates = [FeatureMessageSecurityAssist5] in
1929    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1930  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1931    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1932
1933  let Predicates = [FeatureMessageSecurityAssist8] in
1934    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1935                                              GR128, GR128, GR128>;
1936
1937  let Predicates = [FeatureMessageSecurityAssist9] in
1938    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1939}
1940
1941//===----------------------------------------------------------------------===//
1942// Guarded storage
1943//===----------------------------------------------------------------------===//
1944
1945// These instructions use and/or modify the guarded storage control
1946// registers, which we do not otherwise model, so they should have
1947// hasSideEffects.
1948let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1949  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1950  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1951
1952  let mayLoad = 1 in
1953    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1954  let mayStore = 1 in
1955    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1956}
1957
1958//===----------------------------------------------------------------------===//
1959// Decimal arithmetic
1960//===----------------------------------------------------------------------===//
1961
1962defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
1963def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;
1964
1965defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1966def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1967
1968let mayLoad = 1, mayStore = 1 in {
1969  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1970  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1971  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1972
1973  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1974  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
1975  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
1976  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
1977  let Defs = [CC] in {
1978    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
1979    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
1980  }
1981}
1982
1983let mayLoad = 1, mayStore = 1 in {
1984  let Defs = [CC] in {
1985    def AP : SideEffectBinarySSb<"ap", 0xFA>;
1986    def SP : SideEffectBinarySSb<"sp", 0xFB>;
1987    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
1988    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
1989  }
1990  def MP : SideEffectBinarySSb<"mp", 0xFC>;
1991  def DP : SideEffectBinarySSb<"dp", 0xFD>;
1992  let Defs = [CC] in {
1993    def ED : SideEffectBinarySSa<"ed", 0xDE>;
1994    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
1995  }
1996}
1997
1998let Defs = [CC] in {
1999  def CP : CompareSSb<"cp", 0xF9>;
2000  def TP : TestRSL<"tp", 0xEBC0>;
2001}
2002
2003//===----------------------------------------------------------------------===//
2004// Access registers
2005//===----------------------------------------------------------------------===//
2006
2007// Read a 32-bit access register into a GR32.  As with all GR32 operations,
2008// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
2009// when a 64-bit address is stored in a pair of access registers.
2010def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
2011
2012// Set access register.
2013def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
2014
2015// Copy access register.
2016def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
2017
2018// Load address extended.
2019defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
2020
2021// Load access multiple.
2022defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
2023
2024// Store access multiple.
2025defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
2026
2027//===----------------------------------------------------------------------===//
2028// Program mask and addressing mode
2029//===----------------------------------------------------------------------===//
2030
2031// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
2032let Uses = [CC] in
2033  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2034
2035// Set CC and program mask from a register.
2036let hasSideEffects = 1, Defs = [CC] in
2037  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2038
2039// Branch and link - like BAS, but also extracts CC and program mask.
2040let isCall = 1, Uses = [CC], Defs = [CC] in {
2041  def BAL  : CallRX<"bal", 0x45>;
2042  def BALR : CallRR<"balr", 0x05>;
2043}
2044
2045// Test addressing mode.
2046let Defs = [CC] in
2047  def TAM : SideEffectInherentE<"tam", 0x010B>;
2048
2049// Set addressing mode.
2050let hasSideEffects = 1 in {
2051  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2052  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2053  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2054}
2055
2056// Branch and set mode.  Not really a call, but also sets an output register.
2057let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2058  def BSM : CallRR<"bsm", 0x0B>;
2059
2060// Branch and save and set mode.
2061let isCall = 1, Defs = [CC] in
2062  def BASSM : CallRR<"bassm", 0x0C>;
2063
2064//===----------------------------------------------------------------------===//
2065// Transactional execution
2066//===----------------------------------------------------------------------===//
2067
2068let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2069  // Transaction Begin
2070  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2071    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2072    let hasNoSchedulingInfo = 1 in
2073     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2074    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2075                                      int_s390_tbeginc, imm32zx16>;
2076  }
2077
2078  // Transaction End
2079  let Defs = [CC] in
2080    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2081
2082  // Transaction Abort
2083  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2084      hasSideEffects = 1 in
2085    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2086
2087  // Nontransactional Store
2088  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2089
2090  // Extract Transaction Nesting Depth
2091  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2092}
2093
2094//===----------------------------------------------------------------------===//
2095// Processor assist
2096//===----------------------------------------------------------------------===//
2097
2098let Predicates = [FeatureProcessorAssist] in {
2099  let hasSideEffects = 1 in
2100    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2101  def : Pat<(int_s390_ppa_txassist GR32:$src),
2102            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2103                 zero_reg, 1)>;
2104}
2105
2106//===----------------------------------------------------------------------===//
2107// Miscellaneous Instructions.
2108//===----------------------------------------------------------------------===//
2109
2110// Find leftmost one, AKA count leading zeros.  The instruction actually
2111// returns a pair of GR64s, the first giving the number of leading zeros
2112// and the second giving a copy of the source with the leftmost one bit
2113// cleared.  We only use the first result here.
2114let Defs = [CC] in
2115  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2116def : Pat<(i64 (ctlz GR64:$src)),
2117          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2118
2119// Population count.  Counts bits set per byte or doubleword.
2120let Predicates = [FeatureMiscellaneousExtensions3] in {
2121  let Defs = [CC] in
2122    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2123  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2124}
2125let Predicates = [FeaturePopulationCount], Defs = [CC] in
2126  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2127
2128// Search a block of memory for a character.
2129let mayLoad = 1, Defs = [CC] in
2130  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2131let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2132  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2133
2134// Compare until substring equal.
2135let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2136  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2137
2138// Compare and form codeword.
2139let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2140  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2141
2142// Update tree.
2143let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2144    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2145  def UPT : SideEffectInherentE<"upt", 0x0102>;
2146
2147// Checksum.
2148let mayLoad = 1, Defs = [CC] in
2149  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2150
2151// Compression call.
2152let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2153  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2154
2155// Sort lists.
2156let Predicates = [FeatureEnhancedSort],
2157    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2158  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2159
2160// Deflate conversion call.
2161let Predicates = [FeatureDeflateConversion],
2162    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2163  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2164                                           GR128, GR128, GR64>;
2165
2166// NNPA.
2167let Predicates = [FeatureNNPAssist],
2168    mayLoad = 1, mayStore = 1, Defs = [R0D, CC], Uses = [R0D, R1D] in
2169  def NNPA : SideEffectInherentRRE<"nnpa", 0xB93B>;
2170
2171// Execute.
2172let hasSideEffects = 1 in {
2173  def EX   : SideEffectBinaryRX<"ex", 0x44, ADDR64>;
2174  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, ADDR64>;
2175  let hasNoSchedulingInfo = 1 in
2176    def EXRL_Pseudo : Alias<6, (outs), (ins i64imm:$TargetOpc, ADDR64:$lenMinus1,
2177                                          bdaddr12only:$bdl1, bdaddr12only:$bd2),
2178                                          []>;
2179}
2180
2181//===----------------------------------------------------------------------===//
2182// .insn directive instructions
2183//===----------------------------------------------------------------------===//
2184
2185let isCodeGenOnly = 1, hasSideEffects = 1 in {
2186  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2187  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2188                                             imm32sx16:$I2),
2189                                ".insn ri,$enc,$R1,$I2", []>;
2190  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2191                                              AnyReg:$R3, brtarget16:$I2),
2192                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2193  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2194                                              brtarget32:$I2),
2195                                 ".insn ril,$enc,$R1,$I2", []>;
2196  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2197                                               uimm32:$I2),
2198                                  ".insn rilu,$enc,$R1,$I2", []>;
2199  def InsnRIS : DirectiveInsnRIS<(outs),
2200                                 (ins imm64zx48:$enc, AnyReg:$R1,
2201                                      imm32sx8:$I2, imm32zx4:$M3,
2202                                      bdaddr12only:$BD4),
2203                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2204  def InsnRR : DirectiveInsnRR<(outs),
2205                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2206                               ".insn rr,$enc,$R1,$R2", []>;
2207  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2208                                              AnyReg:$R1, AnyReg:$R2),
2209                                 ".insn rre,$enc,$R1,$R2", []>;
2210  def InsnRRF : DirectiveInsnRRF<(outs),
2211                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2212                                      AnyReg:$R3, imm32zx4:$M4),
2213                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2214  def InsnRRS : DirectiveInsnRRS<(outs),
2215                                 (ins imm64zx48:$enc, AnyReg:$R1,
2216                                      AnyReg:$R2, imm32zx4:$M3,
2217                                      bdaddr12only:$BD4),
2218                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2219  def InsnRS  : DirectiveInsnRS<(outs),
2220                                (ins imm64zx32:$enc, AnyReg:$R1,
2221                                     AnyReg:$R3, bdaddr12only:$BD2),
2222                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2223  def InsnRSE : DirectiveInsnRSE<(outs),
2224                                 (ins imm64zx48:$enc, AnyReg:$R1,
2225                                      AnyReg:$R3, bdaddr12only:$BD2),
2226                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2227  def InsnRSI : DirectiveInsnRSI<(outs),
2228                                 (ins imm64zx48:$enc, AnyReg:$R1,
2229                                      AnyReg:$R3, brtarget16:$RI2),
2230                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2231  def InsnRSY : DirectiveInsnRSY<(outs),
2232                                 (ins imm64zx48:$enc, AnyReg:$R1,
2233                                      AnyReg:$R3, bdaddr20only:$BD2),
2234                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2235  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2236                                             bdxaddr12only:$XBD2),
2237                                ".insn rx,$enc,$R1,$XBD2", []>;
2238  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2239                                              bdxaddr12only:$XBD2),
2240                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2241  def InsnRXF : DirectiveInsnRXF<(outs),
2242                                 (ins imm64zx48:$enc, AnyReg:$R1,
2243                                      AnyReg:$R3, bdxaddr12only:$XBD2),
2244                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2245  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2246                                              bdxaddr20only:$XBD2),
2247                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2248  def InsnS : DirectiveInsnS<(outs),
2249                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
2250                             ".insn s,$enc,$BD2", []>;
2251  def InsnSI : DirectiveInsnSI<(outs),
2252                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
2253                                    imm32sx8:$I2),
2254                               ".insn si,$enc,$BD1,$I2", []>;
2255  def InsnSIY : DirectiveInsnSIY<(outs),
2256                                 (ins imm64zx48:$enc,
2257                                      bdaddr20only:$BD1, imm32zx8:$I2),
2258                                 ".insn siy,$enc,$BD1,$I2", []>;
2259  def InsnSIL : DirectiveInsnSIL<(outs),
2260                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2261                                      imm32zx16:$I2),
2262                                 ".insn sil,$enc,$BD1,$I2", []>;
2263  def InsnSS : DirectiveInsnSS<(outs),
2264                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
2265                                    bdaddr12only:$BD2, AnyReg:$R3),
2266                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2267  def InsnSSE : DirectiveInsnSSE<(outs),
2268                                 (ins imm64zx48:$enc,
2269                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
2270                                 ".insn sse,$enc,$BD1,$BD2", []>;
2271  def InsnSSF : DirectiveInsnSSF<(outs),
2272                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2273                                      bdaddr12only:$BD2, AnyReg:$R3),
2274                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2275  def InsnVRI : DirectiveInsnVRI<(outs),
2276                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2277                                  imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
2278                                 ".insn vri,$enc,$V1,$V2,$I3,$M4,$M5", []>;
2279  def InsnVRR : DirectiveInsnVRR<(outs),
2280                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2281                                  VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
2282                                  imm32zx4:$M6),
2283                                  ".insn vrr,$enc,$V1,$V2,$V3,$M4,$M5,$M6", []>;
2284  def InsnVRS : DirectiveInsnVRS<(outs),
2285                                 (ins imm64zx48:$enc, AnyReg:$R1, VR128:$V3,
2286                                  bdaddr12only:$BD2, imm32zx4:$M4),
2287                                 ".insn vrs,$enc,$BD2,$M4", []>;
2288  def InsnVRV : DirectiveInsnVRV<(outs),
2289                                 (ins imm64zx48:$enc, VR128:$V1,
2290                                      bdvaddr12only:$VBD2, imm32zx4:$M3),
2291                                 ".insn vrv,$enc,$V1,$VBD2,$M3", []>;
2292  def InsnVRX : DirectiveInsnVRX<(outs),
2293                                 (ins imm64zx48:$enc, VR128:$V1,
2294                                  bdxaddr12only:$XBD2, imm32zx4:$M3),
2295                                 ".insn vrx,$enc,$V1,$XBD2,$M3", []>;
2296  def InsnVSI : DirectiveInsnVSI<(outs),
2297                                 (ins imm64zx48:$enc, VR128:$V1,
2298                                  bdaddr12only:$BD2, imm32zx8:$I3),
2299                                  ".insn vsi,$enc,$V1,$BD2,$I3", []>;
2300}
2301
2302//===----------------------------------------------------------------------===//
2303// Peepholes.
2304//===----------------------------------------------------------------------===//
2305
2306// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2307// equivalent to (and (xor x, -1), y)
2308def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2309                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2310
2311// Shift/rotate instructions only use the last 6 bits of the second operand
2312// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2313// last 16 bits.
2314// Complexity is added so that we match this before we match NILF on the AND
2315// operation alone.
2316let AddedComplexity = 4 in {
2317  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2318            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2319
2320  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2321            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2322
2323  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2324            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2325
2326  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2327            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2328
2329  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2330            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2331
2332  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2333            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2334
2335  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2336            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2337
2338  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2339            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2340}
2341
2342// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2343// use the last 6 bits of the second operand register (making it modulo 64).
2344let AddedComplexity = 4 in {
2345  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2346            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2347
2348  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2349            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2350
2351  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2352            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2353
2354  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2355            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2356}
2357
2358// Peepholes for turning scalar operations into block operations.
2359defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
2360                      XCSequence, 1>;
2361defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
2362                      XCSequence, 2>;
2363defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
2364                      XCSequence, 4>;
2365defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
2366                      OCSequence, XCSequence, 1>;
2367defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
2368                      XCSequence, 2>;
2369defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
2370                      XCSequence, 4>;
2371defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
2372                      XCSequence, 8>;
2373
2374//===----------------------------------------------------------------------===//
2375// Mnemonic Aliases
2376//===----------------------------------------------------------------------===//
2377
2378def JCT   : MnemonicAlias<"jct", "brct">;
2379def JCTG  : MnemonicAlias<"jctg", "brctg">;
2380def JAS   : MnemonicAlias<"jas", "bras">;
2381def JASL  : MnemonicAlias<"jasl", "brasl">;
2382def JXH   : MnemonicAlias<"jxh", "brxh">;
2383def JXLE  : MnemonicAlias<"jxle", "brxle">;
2384def JXHG  : MnemonicAlias<"jxhg", "brxhg">;
2385def JXLEG : MnemonicAlias<"jxleg", "brxlg">;
2386
2387def BRU   : MnemonicAlias<"bru", "j">;
2388def BRUL  : MnemonicAlias<"brul", "jg", "att">;
2389def BRUL_HLASM  : MnemonicAlias<"brul", "jlu", "hlasm">;
2390
2391foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
2392              "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
2393  defm BRUAsm#V  : MnemonicCondBranchAlias <CV<V>, "br#", "j#">;
2394  defm BRULAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jg#", "att">;
2395  defm BRUL_HLASMAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jl#", "hlasm">;
2396}
2397