1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
39 #include "llvm/Transforms/InstCombine/InstCombiner.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44
45 using namespace llvm;
46 using namespace PatternMatch;
47
48 #define DEBUG_TYPE "instcombine"
49
50 STATISTIC(NumAggregateReconstructionsSimplified,
51 "Number of aggregate reconstructions turned into reuse of the "
52 "original aggregate");
53
54 /// Return true if the value is cheaper to scalarize than it is to leave as a
55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
56 /// one known element from a vector constant.
57 ///
58 /// FIXME: It's possible to create more instructions than previously existed.
cheapToScalarize(Value * V,bool IsConstantExtractIndex)59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
60 // If we can pick a scalar constant value out of a vector, that is free.
61 if (auto *C = dyn_cast<Constant>(V))
62 return IsConstantExtractIndex || C->getSplatValue();
63
64 // An insertelement to the same constant index as our extract will simplify
65 // to the scalar inserted element. An insertelement to a different constant
66 // index is irrelevant to our extract.
67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
68 return IsConstantExtractIndex;
69
70 if (match(V, m_OneUse(m_Load(m_Value()))))
71 return true;
72
73 if (match(V, m_OneUse(m_UnOp())))
74 return true;
75
76 Value *V0, *V1;
77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
78 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
79 cheapToScalarize(V1, IsConstantExtractIndex))
80 return true;
81
82 CmpInst::Predicate UnusedPred;
83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
84 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
85 cheapToScalarize(V1, IsConstantExtractIndex))
86 return true;
87
88 return false;
89 }
90
91 // If we have a PHI node with a vector type that is only used to feed
92 // itself and be an operand of extractelement at a constant location,
93 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
95 PHINode *PN) {
96 SmallVector<Instruction *, 2> Extracts;
97 // The users we want the PHI to have are:
98 // 1) The EI ExtractElement (we already know this)
99 // 2) Possibly more ExtractElements with the same index.
100 // 3) Another operand, which will feed back into the PHI.
101 Instruction *PHIUser = nullptr;
102 for (auto U : PN->users()) {
103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
104 if (EI.getIndexOperand() == EU->getIndexOperand())
105 Extracts.push_back(EU);
106 else
107 return nullptr;
108 } else if (!PHIUser) {
109 PHIUser = cast<Instruction>(U);
110 } else {
111 return nullptr;
112 }
113 }
114
115 if (!PHIUser)
116 return nullptr;
117
118 // Verify that this PHI user has one use, which is the PHI itself,
119 // and that it is a binary operation which is cheap to scalarize.
120 // otherwise return nullptr.
121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
123 return nullptr;
124
125 // Create a scalar PHI node that will replace the vector PHI node
126 // just before the current PHI node.
127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
129 // Scalarize each PHI operand.
130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
131 Value *PHIInVal = PN->getIncomingValue(i);
132 BasicBlock *inBB = PN->getIncomingBlock(i);
133 Value *Elt = EI.getIndexOperand();
134 // If the operand is the PHI induction variable:
135 if (PHIInVal == PHIUser) {
136 // Scalarize the binary operation. Its first operand is the
137 // scalar PHI, and the second operand is extracted from the other
138 // vector operand.
139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
141 Value *Op = InsertNewInstWith(
142 ExtractElementInst::Create(B0->getOperand(opId), Elt,
143 B0->getOperand(opId)->getName() + ".Elt"),
144 *B0);
145 Value *newPHIUser = InsertNewInstWith(
146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
147 scalarPHI, Op, B0), *B0);
148 scalarPHI->addIncoming(newPHIUser, inBB);
149 } else {
150 // Scalarize PHI input:
151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
152 // Insert the new instruction into the predecessor basic block.
153 Instruction *pos = dyn_cast<Instruction>(PHIInVal);
154 BasicBlock::iterator InsertPos;
155 if (pos && !isa<PHINode>(pos)) {
156 InsertPos = ++pos->getIterator();
157 } else {
158 InsertPos = inBB->getFirstInsertionPt();
159 }
160
161 InsertNewInstWith(newEI, *InsertPos);
162
163 scalarPHI->addIncoming(newEI, inBB);
164 }
165 }
166
167 for (auto E : Extracts)
168 replaceInstUsesWith(*E, scalarPHI);
169
170 return &EI;
171 }
172
foldBitcastExtElt(ExtractElementInst & Ext,InstCombiner::BuilderTy & Builder,bool IsBigEndian)173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
174 InstCombiner::BuilderTy &Builder,
175 bool IsBigEndian) {
176 Value *X;
177 uint64_t ExtIndexC;
178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
179 !X->getType()->isVectorTy() ||
180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
181 return nullptr;
182
183 // If this extractelement is using a bitcast from a vector of the same number
184 // of elements, see if we can find the source element from the source vector:
185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
186 auto *SrcTy = cast<VectorType>(X->getType());
187 Type *DestTy = Ext.getType();
188 ElementCount NumSrcElts = SrcTy->getElementCount();
189 ElementCount NumElts =
190 cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
191 if (NumSrcElts == NumElts)
192 if (Value *Elt = findScalarElement(X, ExtIndexC))
193 return new BitCastInst(Elt, DestTy);
194
195 assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
196 "Src and Dst must be the same sort of vector type");
197
198 // If the source elements are wider than the destination, try to shift and
199 // truncate a subset of scalar bits of an insert op.
200 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
201 Value *Scalar;
202 uint64_t InsIndexC;
203 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
204 m_ConstantInt(InsIndexC))))
205 return nullptr;
206
207 // The extract must be from the subset of vector elements that we inserted
208 // into. Example: if we inserted element 1 of a <2 x i64> and we are
209 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
210 // of elements 4-7 of the bitcasted vector.
211 unsigned NarrowingRatio =
212 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
213 if (ExtIndexC / NarrowingRatio != InsIndexC)
214 return nullptr;
215
216 // We are extracting part of the original scalar. How that scalar is
217 // inserted into the vector depends on the endian-ness. Example:
218 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
219 // +--+--+--+--+--+--+--+--+
220 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
221 // extelt <4 x i16> V', 3: | |S2|S3|
222 // +--+--+--+--+--+--+--+--+
223 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
224 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
225 // In this example, we must right-shift little-endian. Big-endian is just a
226 // truncate.
227 unsigned Chunk = ExtIndexC % NarrowingRatio;
228 if (IsBigEndian)
229 Chunk = NarrowingRatio - 1 - Chunk;
230
231 // Bail out if this is an FP vector to FP vector sequence. That would take
232 // more instructions than we started with unless there is no shift, and it
233 // may not be handled as well in the backend.
234 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
235 bool NeedDestBitcast = DestTy->isFloatingPointTy();
236 if (NeedSrcBitcast && NeedDestBitcast)
237 return nullptr;
238
239 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
240 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
241 unsigned ShAmt = Chunk * DestWidth;
242
243 // TODO: This limitation is more strict than necessary. We could sum the
244 // number of new instructions and subtract the number eliminated to know if
245 // we can proceed.
246 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
247 if (NeedSrcBitcast || NeedDestBitcast)
248 return nullptr;
249
250 if (NeedSrcBitcast) {
251 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
252 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
253 }
254
255 if (ShAmt) {
256 // Bail out if we could end with more instructions than we started with.
257 if (!Ext.getVectorOperand()->hasOneUse())
258 return nullptr;
259 Scalar = Builder.CreateLShr(Scalar, ShAmt);
260 }
261
262 if (NeedDestBitcast) {
263 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
264 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
265 }
266 return new TruncInst(Scalar, DestTy);
267 }
268
269 return nullptr;
270 }
271
272 /// Find elements of V demanded by UserInstr.
findDemandedEltsBySingleUser(Value * V,Instruction * UserInstr)273 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
274 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
275
276 // Conservatively assume that all elements are needed.
277 APInt UsedElts(APInt::getAllOnesValue(VWidth));
278
279 switch (UserInstr->getOpcode()) {
280 case Instruction::ExtractElement: {
281 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
282 assert(EEI->getVectorOperand() == V);
283 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
284 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
285 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
286 }
287 break;
288 }
289 case Instruction::ShuffleVector: {
290 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
291 unsigned MaskNumElts =
292 cast<FixedVectorType>(UserInstr->getType())->getNumElements();
293
294 UsedElts = APInt(VWidth, 0);
295 for (unsigned i = 0; i < MaskNumElts; i++) {
296 unsigned MaskVal = Shuffle->getMaskValue(i);
297 if (MaskVal == -1u || MaskVal >= 2 * VWidth)
298 continue;
299 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
300 UsedElts.setBit(MaskVal);
301 if (Shuffle->getOperand(1) == V &&
302 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
303 UsedElts.setBit(MaskVal - VWidth);
304 }
305 break;
306 }
307 default:
308 break;
309 }
310 return UsedElts;
311 }
312
313 /// Find union of elements of V demanded by all its users.
314 /// If it is known by querying findDemandedEltsBySingleUser that
315 /// no user demands an element of V, then the corresponding bit
316 /// remains unset in the returned value.
findDemandedEltsByAllUsers(Value * V)317 static APInt findDemandedEltsByAllUsers(Value *V) {
318 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
319
320 APInt UnionUsedElts(VWidth, 0);
321 for (const Use &U : V->uses()) {
322 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
323 UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
324 } else {
325 UnionUsedElts = APInt::getAllOnesValue(VWidth);
326 break;
327 }
328
329 if (UnionUsedElts.isAllOnesValue())
330 break;
331 }
332
333 return UnionUsedElts;
334 }
335
visitExtractElementInst(ExtractElementInst & EI)336 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
337 Value *SrcVec = EI.getVectorOperand();
338 Value *Index = EI.getIndexOperand();
339 if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
340 SQ.getWithInstruction(&EI)))
341 return replaceInstUsesWith(EI, V);
342
343 // If extracting a specified index from the vector, see if we can recursively
344 // find a previously computed scalar that was inserted into the vector.
345 auto *IndexC = dyn_cast<ConstantInt>(Index);
346 if (IndexC) {
347 ElementCount EC = EI.getVectorOperandType()->getElementCount();
348 unsigned NumElts = EC.getKnownMinValue();
349
350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
351 Intrinsic::ID IID = II->getIntrinsicID();
352 // Index needs to be lower than the minimum size of the vector, because
353 // for scalable vector, the vector size is known at run time.
354 if (IID == Intrinsic::experimental_stepvector &&
355 IndexC->getValue().ult(NumElts)) {
356 Type *Ty = EI.getType();
357 unsigned BitWidth = Ty->getIntegerBitWidth();
358 Value *Idx;
359 // Return index when its value does not exceed the allowed limit
360 // for the element type of the vector, otherwise return undefined.
361 if (IndexC->getValue().getActiveBits() <= BitWidth)
362 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
363 else
364 Idx = UndefValue::get(Ty);
365 return replaceInstUsesWith(EI, Idx);
366 }
367 }
368
369 // InstSimplify should handle cases where the index is invalid.
370 // For fixed-length vector, it's invalid to extract out-of-range element.
371 if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
372 return nullptr;
373
374 // This instruction only demands the single element from the input vector.
375 // Skip for scalable type, the number of elements is unknown at
376 // compile-time.
377 if (!EC.isScalable() && NumElts != 1) {
378 // If the input vector has a single use, simplify it based on this use
379 // property.
380 if (SrcVec->hasOneUse()) {
381 APInt UndefElts(NumElts, 0);
382 APInt DemandedElts(NumElts, 0);
383 DemandedElts.setBit(IndexC->getZExtValue());
384 if (Value *V =
385 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
386 return replaceOperand(EI, 0, V);
387 } else {
388 // If the input vector has multiple uses, simplify it based on a union
389 // of all elements used.
390 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
391 if (!DemandedElts.isAllOnesValue()) {
392 APInt UndefElts(NumElts, 0);
393 if (Value *V = SimplifyDemandedVectorElts(
394 SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
395 true /* AllowMultipleUsers */)) {
396 if (V != SrcVec) {
397 SrcVec->replaceAllUsesWith(V);
398 return &EI;
399 }
400 }
401 }
402 }
403 }
404
405 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
406 return I;
407
408 // If there's a vector PHI feeding a scalar use through this extractelement
409 // instruction, try to scalarize the PHI.
410 if (auto *Phi = dyn_cast<PHINode>(SrcVec))
411 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
412 return ScalarPHI;
413 }
414
415 // TODO come up with a n-ary matcher that subsumes both unary and
416 // binary matchers.
417 UnaryOperator *UO;
418 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
419 // extelt (unop X), Index --> unop (extelt X, Index)
420 Value *X = UO->getOperand(0);
421 Value *E = Builder.CreateExtractElement(X, Index);
422 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
423 }
424
425 BinaryOperator *BO;
426 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
427 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
428 Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
429 Value *E0 = Builder.CreateExtractElement(X, Index);
430 Value *E1 = Builder.CreateExtractElement(Y, Index);
431 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
432 }
433
434 Value *X, *Y;
435 CmpInst::Predicate Pred;
436 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
437 cheapToScalarize(SrcVec, IndexC)) {
438 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
439 Value *E0 = Builder.CreateExtractElement(X, Index);
440 Value *E1 = Builder.CreateExtractElement(Y, Index);
441 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
442 }
443
444 if (auto *I = dyn_cast<Instruction>(SrcVec)) {
445 if (auto *IE = dyn_cast<InsertElementInst>(I)) {
446 // Extracting the inserted element?
447 if (IE->getOperand(2) == Index)
448 return replaceInstUsesWith(EI, IE->getOperand(1));
449 // If the inserted and extracted elements are constants, they must not
450 // be the same value, extract from the pre-inserted value instead.
451 if (isa<Constant>(IE->getOperand(2)) && IndexC)
452 return replaceOperand(EI, 0, IE->getOperand(0));
453 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
454 auto *VecType = cast<VectorType>(GEP->getType());
455 ElementCount EC = VecType->getElementCount();
456 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
457 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
458 // Find out why we have a vector result - these are a few examples:
459 // 1. We have a scalar pointer and a vector of indices, or
460 // 2. We have a vector of pointers and a scalar index, or
461 // 3. We have a vector of pointers and a vector of indices, etc.
462 // Here we only consider combining when there is exactly one vector
463 // operand, since the optimization is less obviously a win due to
464 // needing more than one extractelements.
465
466 unsigned VectorOps =
467 llvm::count_if(GEP->operands(), [](const Value *V) {
468 return isa<VectorType>(V->getType());
469 });
470 if (VectorOps > 1)
471 return nullptr;
472 assert(VectorOps == 1 && "Expected exactly one vector GEP operand!");
473
474 Value *NewPtr = GEP->getPointerOperand();
475 if (isa<VectorType>(NewPtr->getType()))
476 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
477
478 SmallVector<Value *> NewOps;
479 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
480 Value *Op = GEP->getOperand(I);
481 if (isa<VectorType>(Op->getType()))
482 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
483 else
484 NewOps.push_back(Op);
485 }
486
487 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
488 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr,
489 NewOps);
490 NewGEP->setIsInBounds(GEP->isInBounds());
491 return NewGEP;
492 }
493 return nullptr;
494 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
495 // If this is extracting an element from a shufflevector, figure out where
496 // it came from and extract from the appropriate input element instead.
497 // Restrict the following transformation to fixed-length vector.
498 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
499 int SrcIdx =
500 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
501 Value *Src;
502 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
503 ->getNumElements();
504
505 if (SrcIdx < 0)
506 return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
507 if (SrcIdx < (int)LHSWidth)
508 Src = SVI->getOperand(0);
509 else {
510 SrcIdx -= LHSWidth;
511 Src = SVI->getOperand(1);
512 }
513 Type *Int32Ty = Type::getInt32Ty(EI.getContext());
514 return ExtractElementInst::Create(
515 Src, ConstantInt::get(Int32Ty, SrcIdx, false));
516 }
517 } else if (auto *CI = dyn_cast<CastInst>(I)) {
518 // Canonicalize extractelement(cast) -> cast(extractelement).
519 // Bitcasts can change the number of vector elements, and they cost
520 // nothing.
521 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
522 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
523 return CastInst::Create(CI->getOpcode(), EE, EI.getType());
524 }
525 }
526 }
527 return nullptr;
528 }
529
530 /// If V is a shuffle of values that ONLY returns elements from either LHS or
531 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<int> & Mask)532 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
533 SmallVectorImpl<int> &Mask) {
534 assert(LHS->getType() == RHS->getType() &&
535 "Invalid CollectSingleShuffleElements");
536 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
537
538 if (match(V, m_Undef())) {
539 Mask.assign(NumElts, -1);
540 return true;
541 }
542
543 if (V == LHS) {
544 for (unsigned i = 0; i != NumElts; ++i)
545 Mask.push_back(i);
546 return true;
547 }
548
549 if (V == RHS) {
550 for (unsigned i = 0; i != NumElts; ++i)
551 Mask.push_back(i + NumElts);
552 return true;
553 }
554
555 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
556 // If this is an insert of an extract from some other vector, include it.
557 Value *VecOp = IEI->getOperand(0);
558 Value *ScalarOp = IEI->getOperand(1);
559 Value *IdxOp = IEI->getOperand(2);
560
561 if (!isa<ConstantInt>(IdxOp))
562 return false;
563 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
564
565 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
566 // We can handle this if the vector we are inserting into is
567 // transitively ok.
568 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
569 // If so, update the mask to reflect the inserted undef.
570 Mask[InsertedIdx] = -1;
571 return true;
572 }
573 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
574 if (isa<ConstantInt>(EI->getOperand(1))) {
575 unsigned ExtractedIdx =
576 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
577 unsigned NumLHSElts =
578 cast<FixedVectorType>(LHS->getType())->getNumElements();
579
580 // This must be extracting from either LHS or RHS.
581 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
582 // We can handle this if the vector we are inserting into is
583 // transitively ok.
584 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
585 // If so, update the mask to reflect the inserted value.
586 if (EI->getOperand(0) == LHS) {
587 Mask[InsertedIdx % NumElts] = ExtractedIdx;
588 } else {
589 assert(EI->getOperand(0) == RHS);
590 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
591 }
592 return true;
593 }
594 }
595 }
596 }
597 }
598
599 return false;
600 }
601
602 /// If we have insertion into a vector that is wider than the vector that we
603 /// are extracting from, try to widen the source vector to allow a single
604 /// shufflevector to replace one or more insert/extract pairs.
replaceExtractElements(InsertElementInst * InsElt,ExtractElementInst * ExtElt,InstCombinerImpl & IC)605 static void replaceExtractElements(InsertElementInst *InsElt,
606 ExtractElementInst *ExtElt,
607 InstCombinerImpl &IC) {
608 auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
609 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
610 unsigned NumInsElts = InsVecType->getNumElements();
611 unsigned NumExtElts = ExtVecType->getNumElements();
612
613 // The inserted-to vector must be wider than the extracted-from vector.
614 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
615 NumExtElts >= NumInsElts)
616 return;
617
618 // Create a shuffle mask to widen the extended-from vector using poison
619 // values. The mask selects all of the values of the original vector followed
620 // by as many poison values as needed to create a vector of the same length
621 // as the inserted-to vector.
622 SmallVector<int, 16> ExtendMask;
623 for (unsigned i = 0; i < NumExtElts; ++i)
624 ExtendMask.push_back(i);
625 for (unsigned i = NumExtElts; i < NumInsElts; ++i)
626 ExtendMask.push_back(-1);
627
628 Value *ExtVecOp = ExtElt->getVectorOperand();
629 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
630 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
631 ? ExtVecOpInst->getParent()
632 : ExtElt->getParent();
633
634 // TODO: This restriction matches the basic block check below when creating
635 // new extractelement instructions. If that limitation is removed, this one
636 // could also be removed. But for now, we just bail out to ensure that we
637 // will replace the extractelement instruction that is feeding our
638 // insertelement instruction. This allows the insertelement to then be
639 // replaced by a shufflevector. If the insertelement is not replaced, we can
640 // induce infinite looping because there's an optimization for extractelement
641 // that will delete our widening shuffle. This would trigger another attempt
642 // here to create that shuffle, and we spin forever.
643 if (InsertionBlock != InsElt->getParent())
644 return;
645
646 // TODO: This restriction matches the check in visitInsertElementInst() and
647 // prevents an infinite loop caused by not turning the extract/insert pair
648 // into a shuffle. We really should not need either check, but we're lacking
649 // folds for shufflevectors because we're afraid to generate shuffle masks
650 // that the backend can't handle.
651 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
652 return;
653
654 auto *WideVec =
655 new ShuffleVectorInst(ExtVecOp, PoisonValue::get(ExtVecType), ExtendMask);
656
657 // Insert the new shuffle after the vector operand of the extract is defined
658 // (as long as it's not a PHI) or at the start of the basic block of the
659 // extract, so any subsequent extracts in the same basic block can use it.
660 // TODO: Insert before the earliest ExtractElementInst that is replaced.
661 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
662 WideVec->insertAfter(ExtVecOpInst);
663 else
664 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
665
666 // Replace extracts from the original narrow vector with extracts from the new
667 // wide vector.
668 for (User *U : ExtVecOp->users()) {
669 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
670 if (!OldExt || OldExt->getParent() != WideVec->getParent())
671 continue;
672 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
673 NewExt->insertAfter(OldExt);
674 IC.replaceInstUsesWith(*OldExt, NewExt);
675 }
676 }
677
678 /// We are building a shuffle to create V, which is a sequence of insertelement,
679 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
680 /// not rely on the second vector source. Return a std::pair containing the
681 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
682 /// parameter as required.
683 ///
684 /// Note: we intentionally don't try to fold earlier shuffles since they have
685 /// often been chosen carefully to be efficiently implementable on the target.
686 using ShuffleOps = std::pair<Value *, Value *>;
687
collectShuffleElements(Value * V,SmallVectorImpl<int> & Mask,Value * PermittedRHS,InstCombinerImpl & IC)688 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
689 Value *PermittedRHS,
690 InstCombinerImpl &IC) {
691 assert(V->getType()->isVectorTy() && "Invalid shuffle!");
692 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
693
694 if (match(V, m_Undef())) {
695 Mask.assign(NumElts, -1);
696 return std::make_pair(
697 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
698 }
699
700 if (isa<ConstantAggregateZero>(V)) {
701 Mask.assign(NumElts, 0);
702 return std::make_pair(V, nullptr);
703 }
704
705 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
706 // If this is an insert of an extract from some other vector, include it.
707 Value *VecOp = IEI->getOperand(0);
708 Value *ScalarOp = IEI->getOperand(1);
709 Value *IdxOp = IEI->getOperand(2);
710
711 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
712 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
713 unsigned ExtractedIdx =
714 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
715 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
716
717 // Either the extracted from or inserted into vector must be RHSVec,
718 // otherwise we'd end up with a shuffle of three inputs.
719 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
720 Value *RHS = EI->getOperand(0);
721 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
722 assert(LR.second == nullptr || LR.second == RHS);
723
724 if (LR.first->getType() != RHS->getType()) {
725 // Although we are giving up for now, see if we can create extracts
726 // that match the inserts for another round of combining.
727 replaceExtractElements(IEI, EI, IC);
728
729 // We tried our best, but we can't find anything compatible with RHS
730 // further up the chain. Return a trivial shuffle.
731 for (unsigned i = 0; i < NumElts; ++i)
732 Mask[i] = i;
733 return std::make_pair(V, nullptr);
734 }
735
736 unsigned NumLHSElts =
737 cast<FixedVectorType>(RHS->getType())->getNumElements();
738 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
739 return std::make_pair(LR.first, RHS);
740 }
741
742 if (VecOp == PermittedRHS) {
743 // We've gone as far as we can: anything on the other side of the
744 // extractelement will already have been converted into a shuffle.
745 unsigned NumLHSElts =
746 cast<FixedVectorType>(EI->getOperand(0)->getType())
747 ->getNumElements();
748 for (unsigned i = 0; i != NumElts; ++i)
749 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
750 return std::make_pair(EI->getOperand(0), PermittedRHS);
751 }
752
753 // If this insertelement is a chain that comes from exactly these two
754 // vectors, return the vector and the effective shuffle.
755 if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
756 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
757 Mask))
758 return std::make_pair(EI->getOperand(0), PermittedRHS);
759 }
760 }
761 }
762
763 // Otherwise, we can't do anything fancy. Return an identity vector.
764 for (unsigned i = 0; i != NumElts; ++i)
765 Mask.push_back(i);
766 return std::make_pair(V, nullptr);
767 }
768
769 /// Look for chain of insertvalue's that fully define an aggregate, and trace
770 /// back the values inserted, see if they are all were extractvalue'd from
771 /// the same source aggregate from the exact same element indexes.
772 /// If they were, just reuse the source aggregate.
773 /// This potentially deals with PHI indirections.
foldAggregateConstructionIntoAggregateReuse(InsertValueInst & OrigIVI)774 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
775 InsertValueInst &OrigIVI) {
776 Type *AggTy = OrigIVI.getType();
777 unsigned NumAggElts;
778 switch (AggTy->getTypeID()) {
779 case Type::StructTyID:
780 NumAggElts = AggTy->getStructNumElements();
781 break;
782 case Type::ArrayTyID:
783 NumAggElts = AggTy->getArrayNumElements();
784 break;
785 default:
786 llvm_unreachable("Unhandled aggregate type?");
787 }
788
789 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
790 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
791 // FIXME: any interesting patterns to be caught with larger limit?
792 assert(NumAggElts > 0 && "Aggregate should have elements.");
793 if (NumAggElts > 2)
794 return nullptr;
795
796 static constexpr auto NotFound = None;
797 static constexpr auto FoundMismatch = nullptr;
798
799 // Try to find a value of each element of an aggregate.
800 // FIXME: deal with more complex, not one-dimensional, aggregate types
801 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
802
803 // Do we know values for each element of the aggregate?
804 auto KnowAllElts = [&AggElts]() {
805 return all_of(AggElts,
806 [](Optional<Instruction *> Elt) { return Elt != NotFound; });
807 };
808
809 int Depth = 0;
810
811 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
812 // every element being overwritten twice, which should never happen.
813 static const int DepthLimit = 2 * NumAggElts;
814
815 // Recurse up the chain of `insertvalue` aggregate operands until either we've
816 // reconstructed full initializer or can't visit any more `insertvalue`'s.
817 for (InsertValueInst *CurrIVI = &OrigIVI;
818 Depth < DepthLimit && CurrIVI && !KnowAllElts();
819 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
820 ++Depth) {
821 auto *InsertedValue =
822 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
823 if (!InsertedValue)
824 return nullptr; // Inserted value must be produced by an instruction.
825
826 ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
827
828 // Don't bother with more than single-level aggregates.
829 if (Indices.size() != 1)
830 return nullptr; // FIXME: deal with more complex aggregates?
831
832 // Now, we may have already previously recorded the value for this element
833 // of an aggregate. If we did, that means the CurrIVI will later be
834 // overwritten with the already-recorded value. But if not, let's record it!
835 Optional<Instruction *> &Elt = AggElts[Indices.front()];
836 Elt = Elt.getValueOr(InsertedValue);
837
838 // FIXME: should we handle chain-terminating undef base operand?
839 }
840
841 // Was that sufficient to deduce the full initializer for the aggregate?
842 if (!KnowAllElts())
843 return nullptr; // Give up then.
844
845 // We now want to find the source[s] of the aggregate elements we've found.
846 // And with "source" we mean the original aggregate[s] from which
847 // the inserted elements were extracted. This may require PHI translation.
848
849 enum class AggregateDescription {
850 /// When analyzing the value that was inserted into an aggregate, we did
851 /// not manage to find defining `extractvalue` instruction to analyze.
852 NotFound,
853 /// When analyzing the value that was inserted into an aggregate, we did
854 /// manage to find defining `extractvalue` instruction[s], and everything
855 /// matched perfectly - aggregate type, element insertion/extraction index.
856 Found,
857 /// When analyzing the value that was inserted into an aggregate, we did
858 /// manage to find defining `extractvalue` instruction, but there was
859 /// a mismatch: either the source type from which the extraction was didn't
860 /// match the aggregate type into which the insertion was,
861 /// or the extraction/insertion channels mismatched,
862 /// or different elements had different source aggregates.
863 FoundMismatch
864 };
865 auto Describe = [](Optional<Value *> SourceAggregate) {
866 if (SourceAggregate == NotFound)
867 return AggregateDescription::NotFound;
868 if (*SourceAggregate == FoundMismatch)
869 return AggregateDescription::FoundMismatch;
870 return AggregateDescription::Found;
871 };
872
873 // Given the value \p Elt that was being inserted into element \p EltIdx of an
874 // aggregate AggTy, see if \p Elt was originally defined by an
875 // appropriate extractvalue (same element index, same aggregate type).
876 // If found, return the source aggregate from which the extraction was.
877 // If \p PredBB is provided, does PHI translation of an \p Elt first.
878 auto FindSourceAggregate =
879 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
880 Optional<BasicBlock *> PredBB) -> Optional<Value *> {
881 // For now(?), only deal with, at most, a single level of PHI indirection.
882 if (UseBB && PredBB)
883 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
884 // FIXME: deal with multiple levels of PHI indirection?
885
886 // Did we find an extraction?
887 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
888 if (!EVI)
889 return NotFound;
890
891 Value *SourceAggregate = EVI->getAggregateOperand();
892
893 // Is the extraction from the same type into which the insertion was?
894 if (SourceAggregate->getType() != AggTy)
895 return FoundMismatch;
896 // And the element index doesn't change between extraction and insertion?
897 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
898 return FoundMismatch;
899
900 return SourceAggregate; // AggregateDescription::Found
901 };
902
903 // Given elements AggElts that were constructing an aggregate OrigIVI,
904 // see if we can find appropriate source aggregate for each of the elements,
905 // and see it's the same aggregate for each element. If so, return it.
906 auto FindCommonSourceAggregate =
907 [&](Optional<BasicBlock *> UseBB,
908 Optional<BasicBlock *> PredBB) -> Optional<Value *> {
909 Optional<Value *> SourceAggregate;
910
911 for (auto I : enumerate(AggElts)) {
912 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
913 "We don't store nullptr in SourceAggregate!");
914 assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
915 (I.index() != 0) &&
916 "SourceAggregate should be valid after the the first element,");
917
918 // For this element, is there a plausible source aggregate?
919 // FIXME: we could special-case undef element, IFF we know that in the
920 // source aggregate said element isn't poison.
921 Optional<Value *> SourceAggregateForElement =
922 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
923
924 // Okay, what have we found? Does that correlate with previous findings?
925
926 // Regardless of whether or not we have previously found source
927 // aggregate for previous elements (if any), if we didn't find one for
928 // this element, passthrough whatever we have just found.
929 if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
930 return SourceAggregateForElement;
931
932 // Okay, we have found source aggregate for this element.
933 // Let's see what we already know from previous elements, if any.
934 switch (Describe(SourceAggregate)) {
935 case AggregateDescription::NotFound:
936 // This is apparently the first element that we have examined.
937 SourceAggregate = SourceAggregateForElement; // Record the aggregate!
938 continue; // Great, now look at next element.
939 case AggregateDescription::Found:
940 // We have previously already successfully examined other elements.
941 // Is this the same source aggregate we've found for other elements?
942 if (*SourceAggregateForElement != *SourceAggregate)
943 return FoundMismatch;
944 continue; // Still the same aggregate, look at next element.
945 case AggregateDescription::FoundMismatch:
946 llvm_unreachable("Can't happen. We would have early-exited then.");
947 };
948 }
949
950 assert(Describe(SourceAggregate) == AggregateDescription::Found &&
951 "Must be a valid Value");
952 return *SourceAggregate;
953 };
954
955 Optional<Value *> SourceAggregate;
956
957 // Can we find the source aggregate without looking at predecessors?
958 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
959 if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
960 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
961 return nullptr; // Conflicting source aggregates!
962 ++NumAggregateReconstructionsSimplified;
963 return replaceInstUsesWith(OrigIVI, *SourceAggregate);
964 }
965
966 // Okay, apparently we need to look at predecessors.
967
968 // We should be smart about picking the "use" basic block, which will be the
969 // merge point for aggregate, where we'll insert the final PHI that will be
970 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
971 // We should look in which blocks each of the AggElts is being defined,
972 // they all should be defined in the same basic block.
973 BasicBlock *UseBB = nullptr;
974
975 for (const Optional<Instruction *> &I : AggElts) {
976 BasicBlock *BB = (*I)->getParent();
977 // If it's the first instruction we've encountered, record the basic block.
978 if (!UseBB) {
979 UseBB = BB;
980 continue;
981 }
982 // Otherwise, this must be the same basic block we've seen previously.
983 if (UseBB != BB)
984 return nullptr;
985 }
986
987 // If *all* of the elements are basic-block-independent, meaning they are
988 // either function arguments, or constant expressions, then if we didn't
989 // handle them without predecessor-aware handling, we won't handle them now.
990 if (!UseBB)
991 return nullptr;
992
993 // If we didn't manage to find source aggregate without looking at
994 // predecessors, and there are no predecessors to look at, then we're done.
995 if (pred_empty(UseBB))
996 return nullptr;
997
998 // Arbitrary predecessor count limit.
999 static const int PredCountLimit = 64;
1000
1001 // Cache the (non-uniqified!) list of predecessors in a vector,
1002 // checking the limit at the same time for efficiency.
1003 SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1004 for (BasicBlock *Pred : predecessors(UseBB)) {
1005 // Don't bother if there are too many predecessors.
1006 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1007 return nullptr;
1008 Preds.emplace_back(Pred);
1009 }
1010
1011 // For each predecessor, what is the source aggregate,
1012 // from which all the elements were originally extracted from?
1013 // Note that we want for the map to have stable iteration order!
1014 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1015 for (BasicBlock *Pred : Preds) {
1016 std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1017 SourceAggregates.insert({Pred, nullptr});
1018 // Did we already evaluate this predecessor?
1019 if (!IV.second)
1020 continue;
1021
1022 // Let's hope that when coming from predecessor Pred, all elements of the
1023 // aggregate produced by OrigIVI must have been originally extracted from
1024 // the same aggregate. Is that so? Can we find said original aggregate?
1025 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1026 if (Describe(SourceAggregate) != AggregateDescription::Found)
1027 return nullptr; // Give up.
1028 IV.first->second = *SourceAggregate;
1029 }
1030
1031 // All good! Now we just need to thread the source aggregates here.
1032 // Note that we have to insert the new PHI here, ourselves, because we can't
1033 // rely on InstCombinerImpl::run() inserting it into the right basic block.
1034 // Note that the same block can be a predecessor more than once,
1035 // and we need to preserve that invariant for the PHI node.
1036 BuilderTy::InsertPointGuard Guard(Builder);
1037 Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1038 auto *PHI =
1039 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1040 for (BasicBlock *Pred : Preds)
1041 PHI->addIncoming(SourceAggregates[Pred], Pred);
1042
1043 ++NumAggregateReconstructionsSimplified;
1044 return replaceInstUsesWith(OrigIVI, PHI);
1045 }
1046
1047 /// Try to find redundant insertvalue instructions, like the following ones:
1048 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1049 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
1050 /// Here the second instruction inserts values at the same indices, as the
1051 /// first one, making the first one redundant.
1052 /// It should be transformed to:
1053 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)1054 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1055 bool IsRedundant = false;
1056 ArrayRef<unsigned int> FirstIndices = I.getIndices();
1057
1058 // If there is a chain of insertvalue instructions (each of them except the
1059 // last one has only one use and it's another insertvalue insn from this
1060 // chain), check if any of the 'children' uses the same indices as the first
1061 // instruction. In this case, the first one is redundant.
1062 Value *V = &I;
1063 unsigned Depth = 0;
1064 while (V->hasOneUse() && Depth < 10) {
1065 User *U = V->user_back();
1066 auto UserInsInst = dyn_cast<InsertValueInst>(U);
1067 if (!UserInsInst || U->getOperand(0) != V)
1068 break;
1069 if (UserInsInst->getIndices() == FirstIndices) {
1070 IsRedundant = true;
1071 break;
1072 }
1073 V = UserInsInst;
1074 Depth++;
1075 }
1076
1077 if (IsRedundant)
1078 return replaceInstUsesWith(I, I.getOperand(0));
1079
1080 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1081 return NewI;
1082
1083 return nullptr;
1084 }
1085
isShuffleEquivalentToSelect(ShuffleVectorInst & Shuf)1086 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1087 // Can not analyze scalable type, the number of elements is not a compile-time
1088 // constant.
1089 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1090 return false;
1091
1092 int MaskSize = Shuf.getShuffleMask().size();
1093 int VecSize =
1094 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1095
1096 // A vector select does not change the size of the operands.
1097 if (MaskSize != VecSize)
1098 return false;
1099
1100 // Each mask element must be undefined or choose a vector element from one of
1101 // the source operands without crossing vector lanes.
1102 for (int i = 0; i != MaskSize; ++i) {
1103 int Elt = Shuf.getMaskValue(i);
1104 if (Elt != -1 && Elt != i && Elt != i + VecSize)
1105 return false;
1106 }
1107
1108 return true;
1109 }
1110
1111 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1112 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1113 /// shufflevector(insertelt(X, %k, 0), poison, zero)
foldInsSequenceIntoSplat(InsertElementInst & InsElt)1114 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1115 // We are interested in the last insert in a chain. So if this insert has a
1116 // single user and that user is an insert, bail.
1117 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1118 return nullptr;
1119
1120 VectorType *VecTy = InsElt.getType();
1121 // Can not handle scalable type, the number of elements is not a compile-time
1122 // constant.
1123 if (isa<ScalableVectorType>(VecTy))
1124 return nullptr;
1125 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1126
1127 // Do not try to do this for a one-element vector, since that's a nop,
1128 // and will cause an inf-loop.
1129 if (NumElements == 1)
1130 return nullptr;
1131
1132 Value *SplatVal = InsElt.getOperand(1);
1133 InsertElementInst *CurrIE = &InsElt;
1134 SmallBitVector ElementPresent(NumElements, false);
1135 InsertElementInst *FirstIE = nullptr;
1136
1137 // Walk the chain backwards, keeping track of which indices we inserted into,
1138 // until we hit something that isn't an insert of the splatted value.
1139 while (CurrIE) {
1140 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1141 if (!Idx || CurrIE->getOperand(1) != SplatVal)
1142 return nullptr;
1143
1144 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1145 // Check none of the intermediate steps have any additional uses, except
1146 // for the root insertelement instruction, which can be re-used, if it
1147 // inserts at position 0.
1148 if (CurrIE != &InsElt &&
1149 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1150 return nullptr;
1151
1152 ElementPresent[Idx->getZExtValue()] = true;
1153 FirstIE = CurrIE;
1154 CurrIE = NextIE;
1155 }
1156
1157 // If this is just a single insertelement (not a sequence), we are done.
1158 if (FirstIE == &InsElt)
1159 return nullptr;
1160
1161 // If we are not inserting into an undef vector, make sure we've seen an
1162 // insert into every element.
1163 // TODO: If the base vector is not undef, it might be better to create a splat
1164 // and then a select-shuffle (blend) with the base vector.
1165 if (!match(FirstIE->getOperand(0), m_Undef()))
1166 if (!ElementPresent.all())
1167 return nullptr;
1168
1169 // Create the insert + shuffle.
1170 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1171 PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1172 Constant *Zero = ConstantInt::get(Int32Ty, 0);
1173 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1174 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1175
1176 // Splat from element 0, but replace absent elements with undef in the mask.
1177 SmallVector<int, 16> Mask(NumElements, 0);
1178 for (unsigned i = 0; i != NumElements; ++i)
1179 if (!ElementPresent[i])
1180 Mask[i] = -1;
1181
1182 return new ShuffleVectorInst(FirstIE, PoisonVec, Mask);
1183 }
1184
1185 /// Try to fold an insert element into an existing splat shuffle by changing
1186 /// the shuffle's mask to include the index of this insert element.
foldInsEltIntoSplat(InsertElementInst & InsElt)1187 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1188 // Check if the vector operand of this insert is a canonical splat shuffle.
1189 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1190 if (!Shuf || !Shuf->isZeroEltSplat())
1191 return nullptr;
1192
1193 // Bail out early if shuffle is scalable type. The number of elements in
1194 // shuffle mask is unknown at compile-time.
1195 if (isa<ScalableVectorType>(Shuf->getType()))
1196 return nullptr;
1197
1198 // Check for a constant insertion index.
1199 uint64_t IdxC;
1200 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1201 return nullptr;
1202
1203 // Check if the splat shuffle's input is the same as this insert's scalar op.
1204 Value *X = InsElt.getOperand(1);
1205 Value *Op0 = Shuf->getOperand(0);
1206 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1207 return nullptr;
1208
1209 // Replace the shuffle mask element at the index of this insert with a zero.
1210 // For example:
1211 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
1212 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
1213 unsigned NumMaskElts =
1214 cast<FixedVectorType>(Shuf->getType())->getNumElements();
1215 SmallVector<int, 16> NewMask(NumMaskElts);
1216 for (unsigned i = 0; i != NumMaskElts; ++i)
1217 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1218
1219 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
1220 }
1221
1222 /// Try to fold an extract+insert element into an existing identity shuffle by
1223 /// changing the shuffle's mask to include the index of this insert element.
foldInsEltIntoIdentityShuffle(InsertElementInst & InsElt)1224 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1225 // Check if the vector operand of this insert is an identity shuffle.
1226 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1227 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1228 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1229 return nullptr;
1230
1231 // Bail out early if shuffle is scalable type. The number of elements in
1232 // shuffle mask is unknown at compile-time.
1233 if (isa<ScalableVectorType>(Shuf->getType()))
1234 return nullptr;
1235
1236 // Check for a constant insertion index.
1237 uint64_t IdxC;
1238 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1239 return nullptr;
1240
1241 // Check if this insert's scalar op is extracted from the identity shuffle's
1242 // input vector.
1243 Value *Scalar = InsElt.getOperand(1);
1244 Value *X = Shuf->getOperand(0);
1245 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1246 return nullptr;
1247
1248 // Replace the shuffle mask element at the index of this extract+insert with
1249 // that same index value.
1250 // For example:
1251 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1252 unsigned NumMaskElts =
1253 cast<FixedVectorType>(Shuf->getType())->getNumElements();
1254 SmallVector<int, 16> NewMask(NumMaskElts);
1255 ArrayRef<int> OldMask = Shuf->getShuffleMask();
1256 for (unsigned i = 0; i != NumMaskElts; ++i) {
1257 if (i != IdxC) {
1258 // All mask elements besides the inserted element remain the same.
1259 NewMask[i] = OldMask[i];
1260 } else if (OldMask[i] == (int)IdxC) {
1261 // If the mask element was already set, there's nothing to do
1262 // (demanded elements analysis may unset it later).
1263 return nullptr;
1264 } else {
1265 assert(OldMask[i] == UndefMaskElem &&
1266 "Unexpected shuffle mask element for identity shuffle");
1267 NewMask[i] = IdxC;
1268 }
1269 }
1270
1271 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1272 }
1273
1274 /// If we have an insertelement instruction feeding into another insertelement
1275 /// and the 2nd is inserting a constant into the vector, canonicalize that
1276 /// constant insertion before the insertion of a variable:
1277 ///
1278 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1279 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1280 ///
1281 /// This has the potential of eliminating the 2nd insertelement instruction
1282 /// via constant folding of the scalar constant into a vector constant.
hoistInsEltConst(InsertElementInst & InsElt2,InstCombiner::BuilderTy & Builder)1283 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1284 InstCombiner::BuilderTy &Builder) {
1285 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1286 if (!InsElt1 || !InsElt1->hasOneUse())
1287 return nullptr;
1288
1289 Value *X, *Y;
1290 Constant *ScalarC;
1291 ConstantInt *IdxC1, *IdxC2;
1292 if (match(InsElt1->getOperand(0), m_Value(X)) &&
1293 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1294 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1295 match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1296 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1297 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1298 return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1299 }
1300
1301 return nullptr;
1302 }
1303
1304 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1305 /// --> shufflevector X, CVec', Mask'
foldConstantInsEltIntoShuffle(InsertElementInst & InsElt)1306 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1307 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1308 // Bail out if the parent has more than one use. In that case, we'd be
1309 // replacing the insertelt with a shuffle, and that's not a clear win.
1310 if (!Inst || !Inst->hasOneUse())
1311 return nullptr;
1312 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1313 // The shuffle must have a constant vector operand. The insertelt must have
1314 // a constant scalar being inserted at a constant position in the vector.
1315 Constant *ShufConstVec, *InsEltScalar;
1316 uint64_t InsEltIndex;
1317 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1318 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1319 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1320 return nullptr;
1321
1322 // Adding an element to an arbitrary shuffle could be expensive, but a
1323 // shuffle that selects elements from vectors without crossing lanes is
1324 // assumed cheap.
1325 // If we're just adding a constant into that shuffle, it will still be
1326 // cheap.
1327 if (!isShuffleEquivalentToSelect(*Shuf))
1328 return nullptr;
1329
1330 // From the above 'select' check, we know that the mask has the same number
1331 // of elements as the vector input operands. We also know that each constant
1332 // input element is used in its lane and can not be used more than once by
1333 // the shuffle. Therefore, replace the constant in the shuffle's constant
1334 // vector with the insertelt constant. Replace the constant in the shuffle's
1335 // mask vector with the insertelt index plus the length of the vector
1336 // (because the constant vector operand of a shuffle is always the 2nd
1337 // operand).
1338 ArrayRef<int> Mask = Shuf->getShuffleMask();
1339 unsigned NumElts = Mask.size();
1340 SmallVector<Constant *, 16> NewShufElts(NumElts);
1341 SmallVector<int, 16> NewMaskElts(NumElts);
1342 for (unsigned I = 0; I != NumElts; ++I) {
1343 if (I == InsEltIndex) {
1344 NewShufElts[I] = InsEltScalar;
1345 NewMaskElts[I] = InsEltIndex + NumElts;
1346 } else {
1347 // Copy over the existing values.
1348 NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1349 NewMaskElts[I] = Mask[I];
1350 }
1351 }
1352
1353 // Create new operands for a shuffle that includes the constant of the
1354 // original insertelt. The old shuffle will be dead now.
1355 return new ShuffleVectorInst(Shuf->getOperand(0),
1356 ConstantVector::get(NewShufElts), NewMaskElts);
1357 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1358 // Transform sequences of insertelements ops with constant data/indexes into
1359 // a single shuffle op.
1360 // Can not handle scalable type, the number of elements needed to create
1361 // shuffle mask is not a compile-time constant.
1362 if (isa<ScalableVectorType>(InsElt.getType()))
1363 return nullptr;
1364 unsigned NumElts =
1365 cast<FixedVectorType>(InsElt.getType())->getNumElements();
1366
1367 uint64_t InsertIdx[2];
1368 Constant *Val[2];
1369 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1370 !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1371 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1372 !match(IEI->getOperand(1), m_Constant(Val[1])))
1373 return nullptr;
1374 SmallVector<Constant *, 16> Values(NumElts);
1375 SmallVector<int, 16> Mask(NumElts);
1376 auto ValI = std::begin(Val);
1377 // Generate new constant vector and mask.
1378 // We have 2 values/masks from the insertelements instructions. Insert them
1379 // into new value/mask vectors.
1380 for (uint64_t I : InsertIdx) {
1381 if (!Values[I]) {
1382 Values[I] = *ValI;
1383 Mask[I] = NumElts + I;
1384 }
1385 ++ValI;
1386 }
1387 // Remaining values are filled with 'undef' values.
1388 for (unsigned I = 0; I < NumElts; ++I) {
1389 if (!Values[I]) {
1390 Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1391 Mask[I] = I;
1392 }
1393 }
1394 // Create new operands for a shuffle that includes the constant of the
1395 // original insertelt.
1396 return new ShuffleVectorInst(IEI->getOperand(0),
1397 ConstantVector::get(Values), Mask);
1398 }
1399 return nullptr;
1400 }
1401
visitInsertElementInst(InsertElementInst & IE)1402 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1403 Value *VecOp = IE.getOperand(0);
1404 Value *ScalarOp = IE.getOperand(1);
1405 Value *IdxOp = IE.getOperand(2);
1406
1407 if (auto *V = SimplifyInsertElementInst(
1408 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1409 return replaceInstUsesWith(IE, V);
1410
1411 // If the scalar is bitcast and inserted into undef, do the insert in the
1412 // source type followed by bitcast.
1413 // TODO: Generalize for insert into any constant, not just undef?
1414 Value *ScalarSrc;
1415 if (match(VecOp, m_Undef()) &&
1416 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1417 (ScalarSrc->getType()->isIntegerTy() ||
1418 ScalarSrc->getType()->isFloatingPointTy())) {
1419 // inselt undef, (bitcast ScalarSrc), IdxOp -->
1420 // bitcast (inselt undef, ScalarSrc, IdxOp)
1421 Type *ScalarTy = ScalarSrc->getType();
1422 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1423 UndefValue *NewUndef = UndefValue::get(VecTy);
1424 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1425 return new BitCastInst(NewInsElt, IE.getType());
1426 }
1427
1428 // If the vector and scalar are both bitcast from the same element type, do
1429 // the insert in that source type followed by bitcast.
1430 Value *VecSrc;
1431 if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1432 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1433 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1434 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1435 cast<VectorType>(VecSrc->getType())->getElementType() ==
1436 ScalarSrc->getType()) {
1437 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1438 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1439 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1440 return new BitCastInst(NewInsElt, IE.getType());
1441 }
1442
1443 // If the inserted element was extracted from some other fixed-length vector
1444 // and both indexes are valid constants, try to turn this into a shuffle.
1445 // Can not handle scalable vector type, the number of elements needed to
1446 // create shuffle mask is not a compile-time constant.
1447 uint64_t InsertedIdx, ExtractedIdx;
1448 Value *ExtVecOp;
1449 if (isa<FixedVectorType>(IE.getType()) &&
1450 match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1451 match(ScalarOp,
1452 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1453 isa<FixedVectorType>(ExtVecOp->getType()) &&
1454 ExtractedIdx <
1455 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1456 // TODO: Looking at the user(s) to determine if this insert is a
1457 // fold-to-shuffle opportunity does not match the usual instcombine
1458 // constraints. We should decide if the transform is worthy based only
1459 // on this instruction and its operands, but that may not work currently.
1460 //
1461 // Here, we are trying to avoid creating shuffles before reaching
1462 // the end of a chain of extract-insert pairs. This is complicated because
1463 // we do not generally form arbitrary shuffle masks in instcombine
1464 // (because those may codegen poorly), but collectShuffleElements() does
1465 // exactly that.
1466 //
1467 // The rules for determining what is an acceptable target-independent
1468 // shuffle mask are fuzzy because they evolve based on the backend's
1469 // capabilities and real-world impact.
1470 auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1471 if (!Insert.hasOneUse())
1472 return true;
1473 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1474 if (!InsertUser)
1475 return true;
1476 return false;
1477 };
1478
1479 // Try to form a shuffle from a chain of extract-insert ops.
1480 if (isShuffleRootCandidate(IE)) {
1481 SmallVector<int, 16> Mask;
1482 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1483
1484 // The proposed shuffle may be trivial, in which case we shouldn't
1485 // perform the combine.
1486 if (LR.first != &IE && LR.second != &IE) {
1487 // We now have a shuffle of LHS, RHS, Mask.
1488 if (LR.second == nullptr)
1489 LR.second = UndefValue::get(LR.first->getType());
1490 return new ShuffleVectorInst(LR.first, LR.second, Mask);
1491 }
1492 }
1493 }
1494
1495 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1496 unsigned VWidth = VecTy->getNumElements();
1497 APInt UndefElts(VWidth, 0);
1498 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1499 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1500 if (V != &IE)
1501 return replaceInstUsesWith(IE, V);
1502 return &IE;
1503 }
1504 }
1505
1506 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1507 return Shuf;
1508
1509 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1510 return NewInsElt;
1511
1512 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1513 return Broadcast;
1514
1515 if (Instruction *Splat = foldInsEltIntoSplat(IE))
1516 return Splat;
1517
1518 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1519 return IdentityShuf;
1520
1521 return nullptr;
1522 }
1523
1524 /// Return true if we can evaluate the specified expression tree if the vector
1525 /// elements were shuffled in a different order.
canEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)1526 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1527 unsigned Depth = 5) {
1528 // We can always reorder the elements of a constant.
1529 if (isa<Constant>(V))
1530 return true;
1531
1532 // We won't reorder vector arguments. No IPO here.
1533 Instruction *I = dyn_cast<Instruction>(V);
1534 if (!I) return false;
1535
1536 // Two users may expect different orders of the elements. Don't try it.
1537 if (!I->hasOneUse())
1538 return false;
1539
1540 if (Depth == 0) return false;
1541
1542 switch (I->getOpcode()) {
1543 case Instruction::UDiv:
1544 case Instruction::SDiv:
1545 case Instruction::URem:
1546 case Instruction::SRem:
1547 // Propagating an undefined shuffle mask element to integer div/rem is not
1548 // allowed because those opcodes can create immediate undefined behavior
1549 // from an undefined element in an operand.
1550 if (llvm::is_contained(Mask, -1))
1551 return false;
1552 LLVM_FALLTHROUGH;
1553 case Instruction::Add:
1554 case Instruction::FAdd:
1555 case Instruction::Sub:
1556 case Instruction::FSub:
1557 case Instruction::Mul:
1558 case Instruction::FMul:
1559 case Instruction::FDiv:
1560 case Instruction::FRem:
1561 case Instruction::Shl:
1562 case Instruction::LShr:
1563 case Instruction::AShr:
1564 case Instruction::And:
1565 case Instruction::Or:
1566 case Instruction::Xor:
1567 case Instruction::ICmp:
1568 case Instruction::FCmp:
1569 case Instruction::Trunc:
1570 case Instruction::ZExt:
1571 case Instruction::SExt:
1572 case Instruction::FPToUI:
1573 case Instruction::FPToSI:
1574 case Instruction::UIToFP:
1575 case Instruction::SIToFP:
1576 case Instruction::FPTrunc:
1577 case Instruction::FPExt:
1578 case Instruction::GetElementPtr: {
1579 // Bail out if we would create longer vector ops. We could allow creating
1580 // longer vector ops, but that may result in more expensive codegen.
1581 Type *ITy = I->getType();
1582 if (ITy->isVectorTy() &&
1583 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1584 return false;
1585 for (Value *Operand : I->operands()) {
1586 if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1587 return false;
1588 }
1589 return true;
1590 }
1591 case Instruction::InsertElement: {
1592 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1593 if (!CI) return false;
1594 int ElementNumber = CI->getLimitedValue();
1595
1596 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1597 // can't put an element into multiple indices.
1598 bool SeenOnce = false;
1599 for (int i = 0, e = Mask.size(); i != e; ++i) {
1600 if (Mask[i] == ElementNumber) {
1601 if (SeenOnce)
1602 return false;
1603 SeenOnce = true;
1604 }
1605 }
1606 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1607 }
1608 }
1609 return false;
1610 }
1611
1612 /// Rebuild a new instruction just like 'I' but with the new operands given.
1613 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)1614 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1615 // We don't want to use the IRBuilder here because we want the replacement
1616 // instructions to appear next to 'I', not the builder's insertion point.
1617 switch (I->getOpcode()) {
1618 case Instruction::Add:
1619 case Instruction::FAdd:
1620 case Instruction::Sub:
1621 case Instruction::FSub:
1622 case Instruction::Mul:
1623 case Instruction::FMul:
1624 case Instruction::UDiv:
1625 case Instruction::SDiv:
1626 case Instruction::FDiv:
1627 case Instruction::URem:
1628 case Instruction::SRem:
1629 case Instruction::FRem:
1630 case Instruction::Shl:
1631 case Instruction::LShr:
1632 case Instruction::AShr:
1633 case Instruction::And:
1634 case Instruction::Or:
1635 case Instruction::Xor: {
1636 BinaryOperator *BO = cast<BinaryOperator>(I);
1637 assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1638 BinaryOperator *New =
1639 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1640 NewOps[0], NewOps[1], "", BO);
1641 if (isa<OverflowingBinaryOperator>(BO)) {
1642 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1643 New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1644 }
1645 if (isa<PossiblyExactOperator>(BO)) {
1646 New->setIsExact(BO->isExact());
1647 }
1648 if (isa<FPMathOperator>(BO))
1649 New->copyFastMathFlags(I);
1650 return New;
1651 }
1652 case Instruction::ICmp:
1653 assert(NewOps.size() == 2 && "icmp with #ops != 2");
1654 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1655 NewOps[0], NewOps[1]);
1656 case Instruction::FCmp:
1657 assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1658 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1659 NewOps[0], NewOps[1]);
1660 case Instruction::Trunc:
1661 case Instruction::ZExt:
1662 case Instruction::SExt:
1663 case Instruction::FPToUI:
1664 case Instruction::FPToSI:
1665 case Instruction::UIToFP:
1666 case Instruction::SIToFP:
1667 case Instruction::FPTrunc:
1668 case Instruction::FPExt: {
1669 // It's possible that the mask has a different number of elements from
1670 // the original cast. We recompute the destination type to match the mask.
1671 Type *DestTy = VectorType::get(
1672 I->getType()->getScalarType(),
1673 cast<VectorType>(NewOps[0]->getType())->getElementCount());
1674 assert(NewOps.size() == 1 && "cast with #ops != 1");
1675 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1676 "", I);
1677 }
1678 case Instruction::GetElementPtr: {
1679 Value *Ptr = NewOps[0];
1680 ArrayRef<Value*> Idx = NewOps.slice(1);
1681 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1682 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1683 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1684 return GEP;
1685 }
1686 }
1687 llvm_unreachable("failed to rebuild vector instructions");
1688 }
1689
evaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)1690 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1691 // Mask.size() does not need to be equal to the number of vector elements.
1692
1693 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1694 Type *EltTy = V->getType()->getScalarType();
1695 Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1696 if (match(V, m_Undef()))
1697 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1698
1699 if (isa<ConstantAggregateZero>(V))
1700 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1701
1702 if (Constant *C = dyn_cast<Constant>(V))
1703 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1704 Mask);
1705
1706 Instruction *I = cast<Instruction>(V);
1707 switch (I->getOpcode()) {
1708 case Instruction::Add:
1709 case Instruction::FAdd:
1710 case Instruction::Sub:
1711 case Instruction::FSub:
1712 case Instruction::Mul:
1713 case Instruction::FMul:
1714 case Instruction::UDiv:
1715 case Instruction::SDiv:
1716 case Instruction::FDiv:
1717 case Instruction::URem:
1718 case Instruction::SRem:
1719 case Instruction::FRem:
1720 case Instruction::Shl:
1721 case Instruction::LShr:
1722 case Instruction::AShr:
1723 case Instruction::And:
1724 case Instruction::Or:
1725 case Instruction::Xor:
1726 case Instruction::ICmp:
1727 case Instruction::FCmp:
1728 case Instruction::Trunc:
1729 case Instruction::ZExt:
1730 case Instruction::SExt:
1731 case Instruction::FPToUI:
1732 case Instruction::FPToSI:
1733 case Instruction::UIToFP:
1734 case Instruction::SIToFP:
1735 case Instruction::FPTrunc:
1736 case Instruction::FPExt:
1737 case Instruction::Select:
1738 case Instruction::GetElementPtr: {
1739 SmallVector<Value*, 8> NewOps;
1740 bool NeedsRebuild =
1741 (Mask.size() !=
1742 cast<FixedVectorType>(I->getType())->getNumElements());
1743 for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1744 Value *V;
1745 // Recursively call evaluateInDifferentElementOrder on vector arguments
1746 // as well. E.g. GetElementPtr may have scalar operands even if the
1747 // return value is a vector, so we need to examine the operand type.
1748 if (I->getOperand(i)->getType()->isVectorTy())
1749 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1750 else
1751 V = I->getOperand(i);
1752 NewOps.push_back(V);
1753 NeedsRebuild |= (V != I->getOperand(i));
1754 }
1755 if (NeedsRebuild) {
1756 return buildNew(I, NewOps);
1757 }
1758 return I;
1759 }
1760 case Instruction::InsertElement: {
1761 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1762
1763 // The insertelement was inserting at Element. Figure out which element
1764 // that becomes after shuffling. The answer is guaranteed to be unique
1765 // by CanEvaluateShuffled.
1766 bool Found = false;
1767 int Index = 0;
1768 for (int e = Mask.size(); Index != e; ++Index) {
1769 if (Mask[Index] == Element) {
1770 Found = true;
1771 break;
1772 }
1773 }
1774
1775 // If element is not in Mask, no need to handle the operand 1 (element to
1776 // be inserted). Just evaluate values in operand 0 according to Mask.
1777 if (!Found)
1778 return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1779
1780 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1781 return InsertElementInst::Create(V, I->getOperand(1),
1782 ConstantInt::get(I32Ty, Index), "", I);
1783 }
1784 }
1785 llvm_unreachable("failed to reorder elements of vector instruction!");
1786 }
1787
1788 // Returns true if the shuffle is extracting a contiguous range of values from
1789 // LHS, for example:
1790 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1791 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1792 // Shuffles to: |EE|FF|GG|HH|
1793 // +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,ArrayRef<int> Mask)1794 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1795 ArrayRef<int> Mask) {
1796 unsigned LHSElems =
1797 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
1798 unsigned MaskElems = Mask.size();
1799 unsigned BegIdx = Mask.front();
1800 unsigned EndIdx = Mask.back();
1801 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1802 return false;
1803 for (unsigned I = 0; I != MaskElems; ++I)
1804 if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1805 return false;
1806 return true;
1807 }
1808
1809 /// These are the ingredients in an alternate form binary operator as described
1810 /// below.
1811 struct BinopElts {
1812 BinaryOperator::BinaryOps Opcode;
1813 Value *Op0;
1814 Value *Op1;
BinopEltsBinopElts1815 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1816 Value *V0 = nullptr, Value *V1 = nullptr) :
1817 Opcode(Opc), Op0(V0), Op1(V1) {}
operator boolBinopElts1818 operator bool() const { return Opcode != 0; }
1819 };
1820
1821 /// Binops may be transformed into binops with different opcodes and operands.
1822 /// Reverse the usual canonicalization to enable folds with the non-canonical
1823 /// form of the binop. If a transform is possible, return the elements of the
1824 /// new binop. If not, return invalid elements.
getAlternateBinop(BinaryOperator * BO,const DataLayout & DL)1825 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1826 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1827 Type *Ty = BO->getType();
1828 switch (BO->getOpcode()) {
1829 case Instruction::Shl: {
1830 // shl X, C --> mul X, (1 << C)
1831 Constant *C;
1832 if (match(BO1, m_Constant(C))) {
1833 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1834 return { Instruction::Mul, BO0, ShlOne };
1835 }
1836 break;
1837 }
1838 case Instruction::Or: {
1839 // or X, C --> add X, C (when X and C have no common bits set)
1840 const APInt *C;
1841 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1842 return { Instruction::Add, BO0, BO1 };
1843 break;
1844 }
1845 default:
1846 break;
1847 }
1848 return {};
1849 }
1850
foldSelectShuffleWith1Binop(ShuffleVectorInst & Shuf)1851 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1852 assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1853
1854 // Are we shuffling together some value and that same value after it has been
1855 // modified by a binop with a constant?
1856 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1857 Constant *C;
1858 bool Op0IsBinop;
1859 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1860 Op0IsBinop = true;
1861 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1862 Op0IsBinop = false;
1863 else
1864 return nullptr;
1865
1866 // The identity constant for a binop leaves a variable operand unchanged. For
1867 // a vector, this is a splat of something like 0, -1, or 1.
1868 // If there's no identity constant for this binop, we're done.
1869 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1870 BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1871 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1872 if (!IdC)
1873 return nullptr;
1874
1875 // Shuffle identity constants into the lanes that return the original value.
1876 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1877 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1878 // The existing binop constant vector remains in the same operand position.
1879 ArrayRef<int> Mask = Shuf.getShuffleMask();
1880 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1881 ConstantExpr::getShuffleVector(IdC, C, Mask);
1882
1883 bool MightCreatePoisonOrUB =
1884 is_contained(Mask, UndefMaskElem) &&
1885 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1886 if (MightCreatePoisonOrUB)
1887 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
1888
1889 // shuf (bop X, C), X, M --> bop X, C'
1890 // shuf X, (bop X, C), M --> bop X, C'
1891 Value *X = Op0IsBinop ? Op1 : Op0;
1892 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1893 NewBO->copyIRFlags(BO);
1894
1895 // An undef shuffle mask element may propagate as an undef constant element in
1896 // the new binop. That would produce poison where the original code might not.
1897 // If we already made a safe constant, then there's no danger.
1898 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1899 NewBO->dropPoisonGeneratingFlags();
1900 return NewBO;
1901 }
1902
1903 /// If we have an insert of a scalar to a non-zero element of an undefined
1904 /// vector and then shuffle that value, that's the same as inserting to the zero
1905 /// element and shuffling. Splatting from the zero element is recognized as the
1906 /// canonical form of splat.
canonicalizeInsertSplat(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)1907 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1908 InstCombiner::BuilderTy &Builder) {
1909 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1910 ArrayRef<int> Mask = Shuf.getShuffleMask();
1911 Value *X;
1912 uint64_t IndexC;
1913
1914 // Match a shuffle that is a splat to a non-zero element.
1915 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
1916 m_ConstantInt(IndexC)))) ||
1917 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1918 return nullptr;
1919
1920 // Insert into element 0 of an undef vector.
1921 UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1922 Constant *Zero = Builder.getInt32(0);
1923 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1924
1925 // Splat from element 0. Any mask element that is undefined remains undefined.
1926 // For example:
1927 // shuf (inselt undef, X, 2), undef, <2,2,undef>
1928 // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1929 unsigned NumMaskElts =
1930 cast<FixedVectorType>(Shuf.getType())->getNumElements();
1931 SmallVector<int, 16> NewMask(NumMaskElts, 0);
1932 for (unsigned i = 0; i != NumMaskElts; ++i)
1933 if (Mask[i] == UndefMaskElem)
1934 NewMask[i] = Mask[i];
1935
1936 return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1937 }
1938
1939 /// Try to fold shuffles that are the equivalent of a vector select.
foldSelectShuffle(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder,const DataLayout & DL)1940 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1941 InstCombiner::BuilderTy &Builder,
1942 const DataLayout &DL) {
1943 if (!Shuf.isSelect())
1944 return nullptr;
1945
1946 // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1947 // Commuting undef to operand 0 conflicts with another canonicalization.
1948 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
1949 if (!match(Shuf.getOperand(1), m_Undef()) &&
1950 Shuf.getMaskValue(0) >= (int)NumElts) {
1951 // TODO: Can we assert that both operands of a shuffle-select are not undef
1952 // (otherwise, it would have been folded by instsimplify?
1953 Shuf.commute();
1954 return &Shuf;
1955 }
1956
1957 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1958 return I;
1959
1960 BinaryOperator *B0, *B1;
1961 if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1962 !match(Shuf.getOperand(1), m_BinOp(B1)))
1963 return nullptr;
1964
1965 Value *X, *Y;
1966 Constant *C0, *C1;
1967 bool ConstantsAreOp1;
1968 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1969 match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1970 ConstantsAreOp1 = true;
1971 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1972 match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1973 ConstantsAreOp1 = false;
1974 else
1975 return nullptr;
1976
1977 // We need matching binops to fold the lanes together.
1978 BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1979 BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1980 bool DropNSW = false;
1981 if (ConstantsAreOp1 && Opc0 != Opc1) {
1982 // TODO: We drop "nsw" if shift is converted into multiply because it may
1983 // not be correct when the shift amount is BitWidth - 1. We could examine
1984 // each vector element to determine if it is safe to keep that flag.
1985 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1986 DropNSW = true;
1987 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1988 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1989 Opc0 = AltB0.Opcode;
1990 C0 = cast<Constant>(AltB0.Op1);
1991 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1992 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1993 Opc1 = AltB1.Opcode;
1994 C1 = cast<Constant>(AltB1.Op1);
1995 }
1996 }
1997
1998 if (Opc0 != Opc1)
1999 return nullptr;
2000
2001 // The opcodes must be the same. Use a new name to make that clear.
2002 BinaryOperator::BinaryOps BOpc = Opc0;
2003
2004 // Select the constant elements needed for the single binop.
2005 ArrayRef<int> Mask = Shuf.getShuffleMask();
2006 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2007
2008 // We are moving a binop after a shuffle. When a shuffle has an undefined
2009 // mask element, the result is undefined, but it is not poison or undefined
2010 // behavior. That is not necessarily true for div/rem/shift.
2011 bool MightCreatePoisonOrUB =
2012 is_contained(Mask, UndefMaskElem) &&
2013 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2014 if (MightCreatePoisonOrUB)
2015 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2016 ConstantsAreOp1);
2017
2018 Value *V;
2019 if (X == Y) {
2020 // Remove a binop and the shuffle by rearranging the constant:
2021 // shuffle (op V, C0), (op V, C1), M --> op V, C'
2022 // shuffle (op C0, V), (op C1, V), M --> op C', V
2023 V = X;
2024 } else {
2025 // If there are 2 different variable operands, we must create a new shuffle
2026 // (select) first, so check uses to ensure that we don't end up with more
2027 // instructions than we started with.
2028 if (!B0->hasOneUse() && !B1->hasOneUse())
2029 return nullptr;
2030
2031 // If we use the original shuffle mask and op1 is *variable*, we would be
2032 // putting an undef into operand 1 of div/rem/shift. This is either UB or
2033 // poison. We do not have to guard against UB when *constants* are op1
2034 // because safe constants guarantee that we do not overflow sdiv/srem (and
2035 // there's no danger for other opcodes).
2036 // TODO: To allow this case, create a new shuffle mask with no undefs.
2037 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2038 return nullptr;
2039
2040 // Note: In general, we do not create new shuffles in InstCombine because we
2041 // do not know if a target can lower an arbitrary shuffle optimally. In this
2042 // case, the shuffle uses the existing mask, so there is no additional risk.
2043
2044 // Select the variable vectors first, then perform the binop:
2045 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2046 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2047 V = Builder.CreateShuffleVector(X, Y, Mask);
2048 }
2049
2050 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
2051 BinaryOperator::Create(BOpc, NewC, V);
2052
2053 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2054 // 1. If we changed an opcode, poison conditions might have changed.
2055 // 2. If the shuffle had undef mask elements, the new binop might have undefs
2056 // where the original code did not. But if we already made a safe constant,
2057 // then there's no danger.
2058 NewBO->copyIRFlags(B0);
2059 NewBO->andIRFlags(B1);
2060 if (DropNSW)
2061 NewBO->setHasNoSignedWrap(false);
2062 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2063 NewBO->dropPoisonGeneratingFlags();
2064 return NewBO;
2065 }
2066
2067 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2068 /// Example (little endian):
2069 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
foldTruncShuffle(ShuffleVectorInst & Shuf,bool IsBigEndian)2070 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2071 bool IsBigEndian) {
2072 // This must be a bitcasted shuffle of 1 vector integer operand.
2073 Type *DestType = Shuf.getType();
2074 Value *X;
2075 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2076 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2077 return nullptr;
2078
2079 // The source type must have the same number of elements as the shuffle,
2080 // and the source element type must be larger than the shuffle element type.
2081 Type *SrcType = X->getType();
2082 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2083 cast<FixedVectorType>(SrcType)->getNumElements() !=
2084 cast<FixedVectorType>(DestType)->getNumElements() ||
2085 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2086 return nullptr;
2087
2088 assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2089 "Expected a shuffle that decreases length");
2090
2091 // Last, check that the mask chooses the correct low bits for each narrow
2092 // element in the result.
2093 uint64_t TruncRatio =
2094 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2095 ArrayRef<int> Mask = Shuf.getShuffleMask();
2096 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2097 if (Mask[i] == UndefMaskElem)
2098 continue;
2099 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2100 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2101 if (Mask[i] != (int)LSBIndex)
2102 return nullptr;
2103 }
2104
2105 return new TruncInst(X, DestType);
2106 }
2107
2108 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2109 /// narrowing (concatenating with undef and extracting back to the original
2110 /// length). This allows replacing the wide select with a narrow select.
narrowVectorSelect(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)2111 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2112 InstCombiner::BuilderTy &Builder) {
2113 // This must be a narrowing identity shuffle. It extracts the 1st N elements
2114 // of the 1st vector operand of a shuffle.
2115 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2116 return nullptr;
2117
2118 // The vector being shuffled must be a vector select that we can eliminate.
2119 // TODO: The one-use requirement could be eased if X and/or Y are constants.
2120 Value *Cond, *X, *Y;
2121 if (!match(Shuf.getOperand(0),
2122 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2123 return nullptr;
2124
2125 // We need a narrow condition value. It must be extended with undef elements
2126 // and have the same number of elements as this shuffle.
2127 unsigned NarrowNumElts =
2128 cast<FixedVectorType>(Shuf.getType())->getNumElements();
2129 Value *NarrowCond;
2130 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2131 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2132 NarrowNumElts ||
2133 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2134 return nullptr;
2135
2136 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2137 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2138 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2139 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2140 return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2141 }
2142
2143 /// Try to fold an extract subvector operation.
foldIdentityExtractShuffle(ShuffleVectorInst & Shuf)2144 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2145 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2146 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2147 return nullptr;
2148
2149 // Check if we are extracting all bits of an inserted scalar:
2150 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2151 Value *X;
2152 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2153 X->getType()->getPrimitiveSizeInBits() ==
2154 Shuf.getType()->getPrimitiveSizeInBits())
2155 return new BitCastInst(X, Shuf.getType());
2156
2157 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2158 Value *Y;
2159 ArrayRef<int> Mask;
2160 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2161 return nullptr;
2162
2163 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2164 // then combining may result in worse codegen.
2165 if (!Op0->hasOneUse())
2166 return nullptr;
2167
2168 // We are extracting a subvector from a shuffle. Remove excess elements from
2169 // the 1st shuffle mask to eliminate the extract.
2170 //
2171 // This transform is conservatively limited to identity extracts because we do
2172 // not allow arbitrary shuffle mask creation as a target-independent transform
2173 // (because we can't guarantee that will lower efficiently).
2174 //
2175 // If the extracting shuffle has an undef mask element, it transfers to the
2176 // new shuffle mask. Otherwise, copy the original mask element. Example:
2177 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2178 // shuf X, Y, <C0, undef, C2, undef>
2179 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2180 SmallVector<int, 16> NewMask(NumElts);
2181 assert(NumElts < Mask.size() &&
2182 "Identity with extract must have less elements than its inputs");
2183
2184 for (unsigned i = 0; i != NumElts; ++i) {
2185 int ExtractMaskElt = Shuf.getMaskValue(i);
2186 int MaskElt = Mask[i];
2187 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2188 }
2189 return new ShuffleVectorInst(X, Y, NewMask);
2190 }
2191
2192 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2193 /// operand with the operand of an insertelement.
foldShuffleWithInsert(ShuffleVectorInst & Shuf,InstCombinerImpl & IC)2194 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2195 InstCombinerImpl &IC) {
2196 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2197 SmallVector<int, 16> Mask;
2198 Shuf.getShuffleMask(Mask);
2199
2200 // The shuffle must not change vector sizes.
2201 // TODO: This restriction could be removed if the insert has only one use
2202 // (because the transform would require a new length-changing shuffle).
2203 int NumElts = Mask.size();
2204 if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements()))
2205 return nullptr;
2206
2207 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2208 // not be able to handle it there if the insertelement has >1 use.
2209 // If the shuffle has an insertelement operand but does not choose the
2210 // inserted scalar element from that value, then we can replace that shuffle
2211 // operand with the source vector of the insertelement.
2212 Value *X;
2213 uint64_t IdxC;
2214 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2215 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2216 if (!is_contained(Mask, (int)IdxC))
2217 return IC.replaceOperand(Shuf, 0, X);
2218 }
2219 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2220 // Offset the index constant by the vector width because we are checking for
2221 // accesses to the 2nd vector input of the shuffle.
2222 IdxC += NumElts;
2223 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2224 if (!is_contained(Mask, (int)IdxC))
2225 return IC.replaceOperand(Shuf, 1, X);
2226 }
2227
2228 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2229 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2230 // We need an insertelement with a constant index.
2231 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2232 m_ConstantInt(IndexC))))
2233 return false;
2234
2235 // Test the shuffle mask to see if it splices the inserted scalar into the
2236 // operand 1 vector of the shuffle.
2237 int NewInsIndex = -1;
2238 for (int i = 0; i != NumElts; ++i) {
2239 // Ignore undef mask elements.
2240 if (Mask[i] == -1)
2241 continue;
2242
2243 // The shuffle takes elements of operand 1 without lane changes.
2244 if (Mask[i] == NumElts + i)
2245 continue;
2246
2247 // The shuffle must choose the inserted scalar exactly once.
2248 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2249 return false;
2250
2251 // The shuffle is placing the inserted scalar into element i.
2252 NewInsIndex = i;
2253 }
2254
2255 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2256
2257 // Index is updated to the potentially translated insertion lane.
2258 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2259 return true;
2260 };
2261
2262 // If the shuffle is unnecessary, insert the scalar operand directly into
2263 // operand 1 of the shuffle. Example:
2264 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2265 Value *Scalar;
2266 ConstantInt *IndexC;
2267 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2268 return InsertElementInst::Create(V1, Scalar, IndexC);
2269
2270 // Try again after commuting shuffle. Example:
2271 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2272 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2273 std::swap(V0, V1);
2274 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2275 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2276 return InsertElementInst::Create(V1, Scalar, IndexC);
2277
2278 return nullptr;
2279 }
2280
foldIdentityPaddedShuffles(ShuffleVectorInst & Shuf)2281 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2282 // Match the operands as identity with padding (also known as concatenation
2283 // with undef) shuffles of the same source type. The backend is expected to
2284 // recreate these concatenations from a shuffle of narrow operands.
2285 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2286 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2287 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2288 !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2289 return nullptr;
2290
2291 // We limit this transform to power-of-2 types because we expect that the
2292 // backend can convert the simplified IR patterns to identical nodes as the
2293 // original IR.
2294 // TODO: If we can verify the same behavior for arbitrary types, the
2295 // power-of-2 checks can be removed.
2296 Value *X = Shuffle0->getOperand(0);
2297 Value *Y = Shuffle1->getOperand(0);
2298 if (X->getType() != Y->getType() ||
2299 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2300 !isPowerOf2_32(
2301 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2302 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2303 match(X, m_Undef()) || match(Y, m_Undef()))
2304 return nullptr;
2305 assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2306 match(Shuffle1->getOperand(1), m_Undef()) &&
2307 "Unexpected operand for identity shuffle");
2308
2309 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2310 // operands directly by adjusting the shuffle mask to account for the narrower
2311 // types:
2312 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2313 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2314 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2315 assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2316
2317 ArrayRef<int> Mask = Shuf.getShuffleMask();
2318 SmallVector<int, 16> NewMask(Mask.size(), -1);
2319 for (int i = 0, e = Mask.size(); i != e; ++i) {
2320 if (Mask[i] == -1)
2321 continue;
2322
2323 // If this shuffle is choosing an undef element from 1 of the sources, that
2324 // element is undef.
2325 if (Mask[i] < WideElts) {
2326 if (Shuffle0->getMaskValue(Mask[i]) == -1)
2327 continue;
2328 } else {
2329 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2330 continue;
2331 }
2332
2333 // If this shuffle is choosing from the 1st narrow op, the mask element is
2334 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2335 // element is offset down to adjust for the narrow vector widths.
2336 if (Mask[i] < WideElts) {
2337 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2338 NewMask[i] = Mask[i];
2339 } else {
2340 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2341 NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2342 }
2343 }
2344 return new ShuffleVectorInst(X, Y, NewMask);
2345 }
2346
visitShuffleVectorInst(ShuffleVectorInst & SVI)2347 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2348 Value *LHS = SVI.getOperand(0);
2349 Value *RHS = SVI.getOperand(1);
2350 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2351 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2352 SVI.getType(), ShufQuery))
2353 return replaceInstUsesWith(SVI, V);
2354
2355 // Bail out for scalable vectors
2356 if (isa<ScalableVectorType>(LHS->getType()))
2357 return nullptr;
2358
2359 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2360 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2361
2362 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2363 //
2364 // if X and Y are of the same (vector) type, and the element size is not
2365 // changed by the bitcasts, we can distribute the bitcasts through the
2366 // shuffle, hopefully reducing the number of instructions. We make sure that
2367 // at least one bitcast only has one use, so we don't *increase* the number of
2368 // instructions here.
2369 Value *X, *Y;
2370 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2371 X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2372 X->getType()->getScalarSizeInBits() ==
2373 SVI.getType()->getScalarSizeInBits() &&
2374 (LHS->hasOneUse() || RHS->hasOneUse())) {
2375 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2376 SVI.getName() + ".uncasted");
2377 return new BitCastInst(V, SVI.getType());
2378 }
2379
2380 ArrayRef<int> Mask = SVI.getShuffleMask();
2381 Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2382
2383 // Peek through a bitcasted shuffle operand by scaling the mask. If the
2384 // simulated shuffle can simplify, then this shuffle is unnecessary:
2385 // shuf (bitcast X), undef, Mask --> bitcast X'
2386 // TODO: This could be extended to allow length-changing shuffles.
2387 // The transform might also be obsoleted if we allowed canonicalization
2388 // of bitcasted shuffles.
2389 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2390 X->getType()->isVectorTy() && VWidth == LHSWidth) {
2391 // Try to create a scaled mask constant.
2392 auto *XType = cast<FixedVectorType>(X->getType());
2393 unsigned XNumElts = XType->getNumElements();
2394 SmallVector<int, 16> ScaledMask;
2395 if (XNumElts >= VWidth) {
2396 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2397 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2398 } else {
2399 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2400 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2401 ScaledMask.clear();
2402 }
2403 if (!ScaledMask.empty()) {
2404 // If the shuffled source vector simplifies, cast that value to this
2405 // shuffle's type.
2406 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2407 ScaledMask, XType, ShufQuery))
2408 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2409 }
2410 }
2411
2412 // shuffle x, x, mask --> shuffle x, undef, mask'
2413 if (LHS == RHS) {
2414 assert(!match(RHS, m_Undef()) &&
2415 "Shuffle with 2 undef ops not simplified?");
2416 // Remap any references to RHS to use LHS.
2417 SmallVector<int, 16> Elts;
2418 for (unsigned i = 0; i != VWidth; ++i) {
2419 // Propagate undef elements or force mask to LHS.
2420 if (Mask[i] < 0)
2421 Elts.push_back(UndefMaskElem);
2422 else
2423 Elts.push_back(Mask[i] % LHSWidth);
2424 }
2425 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
2426 }
2427
2428 // shuffle undef, x, mask --> shuffle x, undef, mask'
2429 if (match(LHS, m_Undef())) {
2430 SVI.commute();
2431 return &SVI;
2432 }
2433
2434 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2435 return I;
2436
2437 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2438 return I;
2439
2440 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2441 return I;
2442
2443 if (Instruction *I = narrowVectorSelect(SVI, Builder))
2444 return I;
2445
2446 APInt UndefElts(VWidth, 0);
2447 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2448 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2449 if (V != &SVI)
2450 return replaceInstUsesWith(SVI, V);
2451 return &SVI;
2452 }
2453
2454 if (Instruction *I = foldIdentityExtractShuffle(SVI))
2455 return I;
2456
2457 // These transforms have the potential to lose undef knowledge, so they are
2458 // intentionally placed after SimplifyDemandedVectorElts().
2459 if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2460 return I;
2461 if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2462 return I;
2463
2464 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2465 Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2466 return replaceInstUsesWith(SVI, V);
2467 }
2468
2469 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2470 // a non-vector type. We can instead bitcast the original vector followed by
2471 // an extract of the desired element:
2472 //
2473 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2474 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2475 // %1 = bitcast <4 x i8> %sroa to i32
2476 // Becomes:
2477 // %bc = bitcast <16 x i8> %in to <4 x i32>
2478 // %ext = extractelement <4 x i32> %bc, i32 0
2479 //
2480 // If the shuffle is extracting a contiguous range of values from the input
2481 // vector then each use which is a bitcast of the extracted size can be
2482 // replaced. This will work if the vector types are compatible, and the begin
2483 // index is aligned to a value in the casted vector type. If the begin index
2484 // isn't aligned then we can shuffle the original vector (keeping the same
2485 // vector type) before extracting.
2486 //
2487 // This code will bail out if the target type is fundamentally incompatible
2488 // with vectors of the source type.
2489 //
2490 // Example of <16 x i8>, target type i32:
2491 // Index range [4,8): v-----------v Will work.
2492 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2493 // <16 x i8>: | | | | | | | | | | | | | | | | |
2494 // <4 x i32>: | | | | |
2495 // +-----------+-----------+-----------+-----------+
2496 // Index range [6,10): ^-----------^ Needs an extra shuffle.
2497 // Target type i40: ^--------------^ Won't work, bail.
2498 bool MadeChange = false;
2499 if (isShuffleExtractingFromLHS(SVI, Mask)) {
2500 Value *V = LHS;
2501 unsigned MaskElems = Mask.size();
2502 auto *SrcTy = cast<FixedVectorType>(V->getType());
2503 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2504 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2505 assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2506 unsigned SrcNumElems = SrcTy->getNumElements();
2507 SmallVector<BitCastInst *, 8> BCs;
2508 DenseMap<Type *, Value *> NewBCs;
2509 for (User *U : SVI.users())
2510 if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2511 if (!BC->use_empty())
2512 // Only visit bitcasts that weren't previously handled.
2513 BCs.push_back(BC);
2514 for (BitCastInst *BC : BCs) {
2515 unsigned BegIdx = Mask.front();
2516 Type *TgtTy = BC->getDestTy();
2517 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2518 if (!TgtElemBitWidth)
2519 continue;
2520 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2521 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2522 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2523 if (!VecBitWidthsEqual)
2524 continue;
2525 if (!VectorType::isValidElementType(TgtTy))
2526 continue;
2527 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2528 if (!BegIsAligned) {
2529 // Shuffle the input so [0,NumElements) contains the output, and
2530 // [NumElems,SrcNumElems) is undef.
2531 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2532 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2533 ShuffleMask[I] = Idx;
2534 V = Builder.CreateShuffleVector(V, ShuffleMask,
2535 SVI.getName() + ".extract");
2536 BegIdx = 0;
2537 }
2538 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2539 assert(SrcElemsPerTgtElem);
2540 BegIdx /= SrcElemsPerTgtElem;
2541 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2542 auto *NewBC =
2543 BCAlreadyExists
2544 ? NewBCs[CastSrcTy]
2545 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2546 if (!BCAlreadyExists)
2547 NewBCs[CastSrcTy] = NewBC;
2548 auto *Ext = Builder.CreateExtractElement(
2549 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2550 // The shufflevector isn't being replaced: the bitcast that used it
2551 // is. InstCombine will visit the newly-created instructions.
2552 replaceInstUsesWith(*BC, Ext);
2553 MadeChange = true;
2554 }
2555 }
2556
2557 // If the LHS is a shufflevector itself, see if we can combine it with this
2558 // one without producing an unusual shuffle.
2559 // Cases that might be simplified:
2560 // 1.
2561 // x1=shuffle(v1,v2,mask1)
2562 // x=shuffle(x1,undef,mask)
2563 // ==>
2564 // x=shuffle(v1,undef,newMask)
2565 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2566 // 2.
2567 // x1=shuffle(v1,undef,mask1)
2568 // x=shuffle(x1,x2,mask)
2569 // where v1.size() == mask1.size()
2570 // ==>
2571 // x=shuffle(v1,x2,newMask)
2572 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2573 // 3.
2574 // x2=shuffle(v2,undef,mask2)
2575 // x=shuffle(x1,x2,mask)
2576 // where v2.size() == mask2.size()
2577 // ==>
2578 // x=shuffle(x1,v2,newMask)
2579 // newMask[i] = (mask[i] < x1.size())
2580 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2581 // 4.
2582 // x1=shuffle(v1,undef,mask1)
2583 // x2=shuffle(v2,undef,mask2)
2584 // x=shuffle(x1,x2,mask)
2585 // where v1.size() == v2.size()
2586 // ==>
2587 // x=shuffle(v1,v2,newMask)
2588 // newMask[i] = (mask[i] < x1.size())
2589 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2590 //
2591 // Here we are really conservative:
2592 // we are absolutely afraid of producing a shuffle mask not in the input
2593 // program, because the code gen may not be smart enough to turn a merged
2594 // shuffle into two specific shuffles: it may produce worse code. As such,
2595 // we only merge two shuffles if the result is either a splat or one of the
2596 // input shuffle masks. In this case, merging the shuffles just removes
2597 // one instruction, which we know is safe. This is good for things like
2598 // turning: (splat(splat)) -> splat, or
2599 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2600 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2601 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2602 if (LHSShuffle)
2603 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2604 LHSShuffle = nullptr;
2605 if (RHSShuffle)
2606 if (!match(RHSShuffle->getOperand(1), m_Undef()))
2607 RHSShuffle = nullptr;
2608 if (!LHSShuffle && !RHSShuffle)
2609 return MadeChange ? &SVI : nullptr;
2610
2611 Value* LHSOp0 = nullptr;
2612 Value* LHSOp1 = nullptr;
2613 Value* RHSOp0 = nullptr;
2614 unsigned LHSOp0Width = 0;
2615 unsigned RHSOp0Width = 0;
2616 if (LHSShuffle) {
2617 LHSOp0 = LHSShuffle->getOperand(0);
2618 LHSOp1 = LHSShuffle->getOperand(1);
2619 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2620 }
2621 if (RHSShuffle) {
2622 RHSOp0 = RHSShuffle->getOperand(0);
2623 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
2624 }
2625 Value* newLHS = LHS;
2626 Value* newRHS = RHS;
2627 if (LHSShuffle) {
2628 // case 1
2629 if (match(RHS, m_Undef())) {
2630 newLHS = LHSOp0;
2631 newRHS = LHSOp1;
2632 }
2633 // case 2 or 4
2634 else if (LHSOp0Width == LHSWidth) {
2635 newLHS = LHSOp0;
2636 }
2637 }
2638 // case 3 or 4
2639 if (RHSShuffle && RHSOp0Width == LHSWidth) {
2640 newRHS = RHSOp0;
2641 }
2642 // case 4
2643 if (LHSOp0 == RHSOp0) {
2644 newLHS = LHSOp0;
2645 newRHS = nullptr;
2646 }
2647
2648 if (newLHS == LHS && newRHS == RHS)
2649 return MadeChange ? &SVI : nullptr;
2650
2651 ArrayRef<int> LHSMask;
2652 ArrayRef<int> RHSMask;
2653 if (newLHS != LHS)
2654 LHSMask = LHSShuffle->getShuffleMask();
2655 if (RHSShuffle && newRHS != RHS)
2656 RHSMask = RHSShuffle->getShuffleMask();
2657
2658 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2659 SmallVector<int, 16> newMask;
2660 bool isSplat = true;
2661 int SplatElt = -1;
2662 // Create a new mask for the new ShuffleVectorInst so that the new
2663 // ShuffleVectorInst is equivalent to the original one.
2664 for (unsigned i = 0; i < VWidth; ++i) {
2665 int eltMask;
2666 if (Mask[i] < 0) {
2667 // This element is an undef value.
2668 eltMask = -1;
2669 } else if (Mask[i] < (int)LHSWidth) {
2670 // This element is from left hand side vector operand.
2671 //
2672 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2673 // new mask value for the element.
2674 if (newLHS != LHS) {
2675 eltMask = LHSMask[Mask[i]];
2676 // If the value selected is an undef value, explicitly specify it
2677 // with a -1 mask value.
2678 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2679 eltMask = -1;
2680 } else
2681 eltMask = Mask[i];
2682 } else {
2683 // This element is from right hand side vector operand
2684 //
2685 // If the value selected is an undef value, explicitly specify it
2686 // with a -1 mask value. (case 1)
2687 if (match(RHS, m_Undef()))
2688 eltMask = -1;
2689 // If RHS is going to be replaced (case 3 or 4), calculate the
2690 // new mask value for the element.
2691 else if (newRHS != RHS) {
2692 eltMask = RHSMask[Mask[i]-LHSWidth];
2693 // If the value selected is an undef value, explicitly specify it
2694 // with a -1 mask value.
2695 if (eltMask >= (int)RHSOp0Width) {
2696 assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
2697 "should have been check above");
2698 eltMask = -1;
2699 }
2700 } else
2701 eltMask = Mask[i]-LHSWidth;
2702
2703 // If LHS's width is changed, shift the mask value accordingly.
2704 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2705 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2706 // If newRHS == newLHS, we want to remap any references from newRHS to
2707 // newLHS so that we can properly identify splats that may occur due to
2708 // obfuscation across the two vectors.
2709 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2710 eltMask += newLHSWidth;
2711 }
2712
2713 // Check if this could still be a splat.
2714 if (eltMask >= 0) {
2715 if (SplatElt >= 0 && SplatElt != eltMask)
2716 isSplat = false;
2717 SplatElt = eltMask;
2718 }
2719
2720 newMask.push_back(eltMask);
2721 }
2722
2723 // If the result mask is equal to one of the original shuffle masks,
2724 // or is a splat, do the replacement.
2725 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2726 if (!newRHS)
2727 newRHS = UndefValue::get(newLHS->getType());
2728 return new ShuffleVectorInst(newLHS, newRHS, newMask);
2729 }
2730
2731 return MadeChange ? &SVI : nullptr;
2732 }
2733