1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/LoopUtils.h"
31
32 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
34 #else
35 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
36 #endif
37
38 using namespace llvm;
39
40 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
41 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
42 cl::desc("When performing SCEV expansion only if it is cheap to do, this "
43 "controls the budget that is considered cheap (default = 4)"));
44
45 using namespace PatternMatch;
46
47 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
48 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
49 /// creating a new one.
ReuseOrCreateCast(Value * V,Type * Ty,Instruction::CastOps Op,BasicBlock::iterator IP)50 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
51 Instruction::CastOps Op,
52 BasicBlock::iterator IP) {
53 // This function must be called with the builder having a valid insertion
54 // point. It doesn't need to be the actual IP where the uses of the returned
55 // cast will be added, but it must dominate such IP.
56 // We use this precondition to produce a cast that will dominate all its
57 // uses. In particular, this is crucial for the case where the builder's
58 // insertion point *is* the point where we were asked to put the cast.
59 // Since we don't know the builder's insertion point is actually
60 // where the uses will be added (only that it dominates it), we are
61 // not allowed to move it.
62 BasicBlock::iterator BIP = Builder.GetInsertPoint();
63
64 Value *Ret = nullptr;
65
66 // Check to see if there is already a cast!
67 for (User *U : V->users()) {
68 if (U->getType() != Ty)
69 continue;
70 CastInst *CI = dyn_cast<CastInst>(U);
71 if (!CI || CI->getOpcode() != Op)
72 continue;
73
74 // Found a suitable cast that is at IP or comes before IP. Use it. Note that
75 // the cast must also properly dominate the Builder's insertion point.
76 if (IP->getParent() == CI->getParent() && &*BIP != CI &&
77 (&*IP == CI || CI->comesBefore(&*IP))) {
78 Ret = CI;
79 break;
80 }
81 }
82
83 // Create a new cast.
84 if (!Ret) {
85 SCEVInsertPointGuard Guard(Builder, this);
86 Builder.SetInsertPoint(&*IP);
87 Ret = Builder.CreateCast(Op, V, Ty, V->getName());
88 }
89
90 // We assert at the end of the function since IP might point to an
91 // instruction with different dominance properties than a cast
92 // (an invoke for example) and not dominate BIP (but the cast does).
93 assert(!isa<Instruction>(Ret) ||
94 SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
95
96 return Ret;
97 }
98
99 BasicBlock::iterator
findInsertPointAfter(Instruction * I,Instruction * MustDominate) const100 SCEVExpander::findInsertPointAfter(Instruction *I,
101 Instruction *MustDominate) const {
102 BasicBlock::iterator IP = ++I->getIterator();
103 if (auto *II = dyn_cast<InvokeInst>(I))
104 IP = II->getNormalDest()->begin();
105
106 while (isa<PHINode>(IP))
107 ++IP;
108
109 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
110 ++IP;
111 } else if (isa<CatchSwitchInst>(IP)) {
112 IP = MustDominate->getParent()->getFirstInsertionPt();
113 } else {
114 assert(!IP->isEHPad() && "unexpected eh pad!");
115 }
116
117 // Adjust insert point to be after instructions inserted by the expander, so
118 // we can re-use already inserted instructions. Avoid skipping past the
119 // original \p MustDominate, in case it is an inserted instruction.
120 while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
121 ++IP;
122
123 return IP;
124 }
125
126 BasicBlock::iterator
GetOptimalInsertionPointForCastOf(Value * V) const127 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
128 // Cast the argument at the beginning of the entry block, after
129 // any bitcasts of other arguments.
130 if (Argument *A = dyn_cast<Argument>(V)) {
131 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
132 while ((isa<BitCastInst>(IP) &&
133 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
134 cast<BitCastInst>(IP)->getOperand(0) != A) ||
135 isa<DbgInfoIntrinsic>(IP))
136 ++IP;
137 return IP;
138 }
139
140 // Cast the instruction immediately after the instruction.
141 if (Instruction *I = dyn_cast<Instruction>(V))
142 return findInsertPointAfter(I, &*Builder.GetInsertPoint());
143
144 // Otherwise, this must be some kind of a constant,
145 // so let's plop this cast into the function's entry block.
146 assert(isa<Constant>(V) &&
147 "Expected the cast argument to be a global/constant");
148 return Builder.GetInsertBlock()
149 ->getParent()
150 ->getEntryBlock()
151 .getFirstInsertionPt();
152 }
153
154 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
155 /// which must be possible with a noop cast, doing what we can to share
156 /// the casts.
InsertNoopCastOfTo(Value * V,Type * Ty)157 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
158 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
159 assert((Op == Instruction::BitCast ||
160 Op == Instruction::PtrToInt ||
161 Op == Instruction::IntToPtr) &&
162 "InsertNoopCastOfTo cannot perform non-noop casts!");
163 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
164 "InsertNoopCastOfTo cannot change sizes!");
165
166 // inttoptr only works for integral pointers. For non-integral pointers, we
167 // can create a GEP on i8* null with the integral value as index. Note that
168 // it is safe to use GEP of null instead of inttoptr here, because only
169 // expressions already based on a GEP of null should be converted to pointers
170 // during expansion.
171 if (Op == Instruction::IntToPtr) {
172 auto *PtrTy = cast<PointerType>(Ty);
173 if (DL.isNonIntegralPointerType(PtrTy)) {
174 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
175 assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
176 "alloc size of i8 must by 1 byte for the GEP to be correct");
177 auto *GEP = Builder.CreateGEP(
178 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
179 return Builder.CreateBitCast(GEP, Ty);
180 }
181 }
182 // Short-circuit unnecessary bitcasts.
183 if (Op == Instruction::BitCast) {
184 if (V->getType() == Ty)
185 return V;
186 if (CastInst *CI = dyn_cast<CastInst>(V)) {
187 if (CI->getOperand(0)->getType() == Ty)
188 return CI->getOperand(0);
189 }
190 }
191 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
192 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
193 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
194 if (CastInst *CI = dyn_cast<CastInst>(V))
195 if ((CI->getOpcode() == Instruction::PtrToInt ||
196 CI->getOpcode() == Instruction::IntToPtr) &&
197 SE.getTypeSizeInBits(CI->getType()) ==
198 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
199 return CI->getOperand(0);
200 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
201 if ((CE->getOpcode() == Instruction::PtrToInt ||
202 CE->getOpcode() == Instruction::IntToPtr) &&
203 SE.getTypeSizeInBits(CE->getType()) ==
204 SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
205 return CE->getOperand(0);
206 }
207
208 // Fold a cast of a constant.
209 if (Constant *C = dyn_cast<Constant>(V))
210 return ConstantExpr::getCast(Op, C, Ty);
211
212 // Try to reuse existing cast, or insert one.
213 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
214 }
215
216 /// InsertBinop - Insert the specified binary operator, doing a small amount
217 /// of work to avoid inserting an obviously redundant operation, and hoisting
218 /// to an outer loop when the opportunity is there and it is safe.
InsertBinop(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,SCEV::NoWrapFlags Flags,bool IsSafeToHoist)219 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
220 Value *LHS, Value *RHS,
221 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
222 // Fold a binop with constant operands.
223 if (Constant *CLHS = dyn_cast<Constant>(LHS))
224 if (Constant *CRHS = dyn_cast<Constant>(RHS))
225 return ConstantExpr::get(Opcode, CLHS, CRHS);
226
227 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
228 unsigned ScanLimit = 6;
229 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
230 // Scanning starts from the last instruction before the insertion point.
231 BasicBlock::iterator IP = Builder.GetInsertPoint();
232 if (IP != BlockBegin) {
233 --IP;
234 for (; ScanLimit; --IP, --ScanLimit) {
235 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
236 // generated code.
237 if (isa<DbgInfoIntrinsic>(IP))
238 ScanLimit++;
239
240 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
241 // Ensure that no-wrap flags match.
242 if (isa<OverflowingBinaryOperator>(I)) {
243 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
244 return true;
245 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
246 return true;
247 }
248 // Conservatively, do not use any instruction which has any of exact
249 // flags installed.
250 if (isa<PossiblyExactOperator>(I) && I->isExact())
251 return true;
252 return false;
253 };
254 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
255 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
256 return &*IP;
257 if (IP == BlockBegin) break;
258 }
259 }
260
261 // Save the original insertion point so we can restore it when we're done.
262 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
263 SCEVInsertPointGuard Guard(Builder, this);
264
265 if (IsSafeToHoist) {
266 // Move the insertion point out of as many loops as we can.
267 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
268 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
269 BasicBlock *Preheader = L->getLoopPreheader();
270 if (!Preheader) break;
271
272 // Ok, move up a level.
273 Builder.SetInsertPoint(Preheader->getTerminator());
274 }
275 }
276
277 // If we haven't found this binop, insert it.
278 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
279 BO->setDebugLoc(Loc);
280 if (Flags & SCEV::FlagNUW)
281 BO->setHasNoUnsignedWrap();
282 if (Flags & SCEV::FlagNSW)
283 BO->setHasNoSignedWrap();
284
285 return BO;
286 }
287
288 /// FactorOutConstant - Test if S is divisible by Factor, using signed
289 /// division. If so, update S with Factor divided out and return true.
290 /// S need not be evenly divisible if a reasonable remainder can be
291 /// computed.
FactorOutConstant(const SCEV * & S,const SCEV * & Remainder,const SCEV * Factor,ScalarEvolution & SE,const DataLayout & DL)292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
293 const SCEV *Factor, ScalarEvolution &SE,
294 const DataLayout &DL) {
295 // Everything is divisible by one.
296 if (Factor->isOne())
297 return true;
298
299 // x/x == 1.
300 if (S == Factor) {
301 S = SE.getConstant(S->getType(), 1);
302 return true;
303 }
304
305 // For a Constant, check for a multiple of the given factor.
306 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
307 // 0/x == 0.
308 if (C->isZero())
309 return true;
310 // Check for divisibility.
311 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
312 ConstantInt *CI =
313 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
314 // If the quotient is zero and the remainder is non-zero, reject
315 // the value at this scale. It will be considered for subsequent
316 // smaller scales.
317 if (!CI->isZero()) {
318 const SCEV *Div = SE.getConstant(CI);
319 S = Div;
320 Remainder = SE.getAddExpr(
321 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
322 return true;
323 }
324 }
325 }
326
327 // In a Mul, check if there is a constant operand which is a multiple
328 // of the given factor.
329 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
330 // Size is known, check if there is a constant operand which is a multiple
331 // of the given factor. If so, we can factor it.
332 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
333 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
334 if (!C->getAPInt().srem(FC->getAPInt())) {
335 SmallVector<const SCEV *, 4> NewMulOps(M->operands());
336 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
337 S = SE.getMulExpr(NewMulOps);
338 return true;
339 }
340 }
341
342 // In an AddRec, check if both start and step are divisible.
343 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
344 const SCEV *Step = A->getStepRecurrence(SE);
345 const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
346 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
347 return false;
348 if (!StepRem->isZero())
349 return false;
350 const SCEV *Start = A->getStart();
351 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
352 return false;
353 S = SE.getAddRecExpr(Start, Step, A->getLoop(),
354 A->getNoWrapFlags(SCEV::FlagNW));
355 return true;
356 }
357
358 return false;
359 }
360
361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
362 /// is the number of SCEVAddRecExprs present, which are kept at the end of
363 /// the list.
364 ///
SimplifyAddOperands(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
366 Type *Ty,
367 ScalarEvolution &SE) {
368 unsigned NumAddRecs = 0;
369 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
370 ++NumAddRecs;
371 // Group Ops into non-addrecs and addrecs.
372 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
373 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
374 // Let ScalarEvolution sort and simplify the non-addrecs list.
375 const SCEV *Sum = NoAddRecs.empty() ?
376 SE.getConstant(Ty, 0) :
377 SE.getAddExpr(NoAddRecs);
378 // If it returned an add, use the operands. Otherwise it simplified
379 // the sum into a single value, so just use that.
380 Ops.clear();
381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
382 Ops.append(Add->op_begin(), Add->op_end());
383 else if (!Sum->isZero())
384 Ops.push_back(Sum);
385 // Then append the addrecs.
386 Ops.append(AddRecs.begin(), AddRecs.end());
387 }
388
389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
391 /// This helps expose more opportunities for folding parts of the expressions
392 /// into GEP indices.
393 ///
SplitAddRecs(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
395 Type *Ty,
396 ScalarEvolution &SE) {
397 // Find the addrecs.
398 SmallVector<const SCEV *, 8> AddRecs;
399 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
400 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
401 const SCEV *Start = A->getStart();
402 if (Start->isZero()) break;
403 const SCEV *Zero = SE.getConstant(Ty, 0);
404 AddRecs.push_back(SE.getAddRecExpr(Zero,
405 A->getStepRecurrence(SE),
406 A->getLoop(),
407 A->getNoWrapFlags(SCEV::FlagNW)));
408 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
409 Ops[i] = Zero;
410 Ops.append(Add->op_begin(), Add->op_end());
411 e += Add->getNumOperands();
412 } else {
413 Ops[i] = Start;
414 }
415 }
416 if (!AddRecs.empty()) {
417 // Add the addrecs onto the end of the list.
418 Ops.append(AddRecs.begin(), AddRecs.end());
419 // Resort the operand list, moving any constants to the front.
420 SimplifyAddOperands(Ops, Ty, SE);
421 }
422 }
423
424 /// expandAddToGEP - Expand an addition expression with a pointer type into
425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
426 /// BasicAliasAnalysis and other passes analyze the result. See the rules
427 /// for getelementptr vs. inttoptr in
428 /// http://llvm.org/docs/LangRef.html#pointeraliasing
429 /// for details.
430 ///
431 /// Design note: The correctness of using getelementptr here depends on
432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
433 /// they may introduce pointer arithmetic which may not be safely converted
434 /// into getelementptr.
435 ///
436 /// Design note: It might seem desirable for this function to be more
437 /// loop-aware. If some of the indices are loop-invariant while others
438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
439 /// loop-invariant portions of the overall computation outside the loop.
440 /// However, there are a few reasons this is not done here. Hoisting simple
441 /// arithmetic is a low-level optimization that often isn't very
442 /// important until late in the optimization process. In fact, passes
443 /// like InstructionCombining will combine GEPs, even if it means
444 /// pushing loop-invariant computation down into loops, so even if the
445 /// GEPs were split here, the work would quickly be undone. The
446 /// LoopStrengthReduction pass, which is usually run quite late (and
447 /// after the last InstructionCombining pass), takes care of hoisting
448 /// loop-invariant portions of expressions, after considering what
449 /// can be folded using target addressing modes.
450 ///
expandAddToGEP(const SCEV * const * op_begin,const SCEV * const * op_end,PointerType * PTy,Type * Ty,Value * V)451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
452 const SCEV *const *op_end,
453 PointerType *PTy,
454 Type *Ty,
455 Value *V) {
456 SmallVector<Value *, 4> GepIndices;
457 SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
458 bool AnyNonZeroIndices = false;
459
460 // Split AddRecs up into parts as either of the parts may be usable
461 // without the other.
462 SplitAddRecs(Ops, Ty, SE);
463
464 Type *IntIdxTy = DL.getIndexType(PTy);
465
466 // For opaque pointers, always generate i8 GEP.
467 if (!PTy->isOpaque()) {
468 // Descend down the pointer's type and attempt to convert the other
469 // operands into GEP indices, at each level. The first index in a GEP
470 // indexes into the array implied by the pointer operand; the rest of
471 // the indices index into the element or field type selected by the
472 // preceding index.
473 Type *ElTy = PTy->getElementType();
474 for (;;) {
475 // If the scale size is not 0, attempt to factor out a scale for
476 // array indexing.
477 SmallVector<const SCEV *, 8> ScaledOps;
478 if (ElTy->isSized()) {
479 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
480 if (!ElSize->isZero()) {
481 SmallVector<const SCEV *, 8> NewOps;
482 for (const SCEV *Op : Ops) {
483 const SCEV *Remainder = SE.getConstant(Ty, 0);
484 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
485 // Op now has ElSize factored out.
486 ScaledOps.push_back(Op);
487 if (!Remainder->isZero())
488 NewOps.push_back(Remainder);
489 AnyNonZeroIndices = true;
490 } else {
491 // The operand was not divisible, so add it to the list of
492 // operands we'll scan next iteration.
493 NewOps.push_back(Op);
494 }
495 }
496 // If we made any changes, update Ops.
497 if (!ScaledOps.empty()) {
498 Ops = NewOps;
499 SimplifyAddOperands(Ops, Ty, SE);
500 }
501 }
502 }
503
504 // Record the scaled array index for this level of the type. If
505 // we didn't find any operands that could be factored, tentatively
506 // assume that element zero was selected (since the zero offset
507 // would obviously be folded away).
508 Value *Scaled =
509 ScaledOps.empty()
510 ? Constant::getNullValue(Ty)
511 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
512 GepIndices.push_back(Scaled);
513
514 // Collect struct field index operands.
515 while (StructType *STy = dyn_cast<StructType>(ElTy)) {
516 bool FoundFieldNo = false;
517 // An empty struct has no fields.
518 if (STy->getNumElements() == 0) break;
519 // Field offsets are known. See if a constant offset falls within any of
520 // the struct fields.
521 if (Ops.empty())
522 break;
523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
524 if (SE.getTypeSizeInBits(C->getType()) <= 64) {
525 const StructLayout &SL = *DL.getStructLayout(STy);
526 uint64_t FullOffset = C->getValue()->getZExtValue();
527 if (FullOffset < SL.getSizeInBytes()) {
528 unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
529 GepIndices.push_back(
530 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
531 ElTy = STy->getTypeAtIndex(ElIdx);
532 Ops[0] =
533 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
534 AnyNonZeroIndices = true;
535 FoundFieldNo = true;
536 }
537 }
538 // If no struct field offsets were found, tentatively assume that
539 // field zero was selected (since the zero offset would obviously
540 // be folded away).
541 if (!FoundFieldNo) {
542 ElTy = STy->getTypeAtIndex(0u);
543 GepIndices.push_back(
544 Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
545 }
546 }
547
548 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
549 ElTy = ATy->getElementType();
550 else
551 // FIXME: Handle VectorType.
552 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
553 // constant, therefore can not be factored out. The generated IR is less
554 // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
555 break;
556 }
557 }
558
559 // If none of the operands were convertible to proper GEP indices, cast
560 // the base to i8* and do an ugly getelementptr with that. It's still
561 // better than ptrtoint+arithmetic+inttoptr at least.
562 if (!AnyNonZeroIndices) {
563 // Cast the base to i8*.
564 if (!PTy->isOpaque())
565 V = InsertNoopCastOfTo(V,
566 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
567
568 assert(!isa<Instruction>(V) ||
569 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
570
571 // Expand the operands for a plain byte offset.
572 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
573
574 // Fold a GEP with constant operands.
575 if (Constant *CLHS = dyn_cast<Constant>(V))
576 if (Constant *CRHS = dyn_cast<Constant>(Idx))
577 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
578 CLHS, CRHS);
579
580 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
581 unsigned ScanLimit = 6;
582 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
583 // Scanning starts from the last instruction before the insertion point.
584 BasicBlock::iterator IP = Builder.GetInsertPoint();
585 if (IP != BlockBegin) {
586 --IP;
587 for (; ScanLimit; --IP, --ScanLimit) {
588 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
589 // generated code.
590 if (isa<DbgInfoIntrinsic>(IP))
591 ScanLimit++;
592 if (IP->getOpcode() == Instruction::GetElementPtr &&
593 IP->getOperand(0) == V && IP->getOperand(1) == Idx)
594 return &*IP;
595 if (IP == BlockBegin) break;
596 }
597 }
598
599 // Save the original insertion point so we can restore it when we're done.
600 SCEVInsertPointGuard Guard(Builder, this);
601
602 // Move the insertion point out of as many loops as we can.
603 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
604 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
605 BasicBlock *Preheader = L->getLoopPreheader();
606 if (!Preheader) break;
607
608 // Ok, move up a level.
609 Builder.SetInsertPoint(Preheader->getTerminator());
610 }
611
612 // Emit a GEP.
613 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
614 }
615
616 {
617 SCEVInsertPointGuard Guard(Builder, this);
618
619 // Move the insertion point out of as many loops as we can.
620 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
621 if (!L->isLoopInvariant(V)) break;
622
623 bool AnyIndexNotLoopInvariant = any_of(
624 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
625
626 if (AnyIndexNotLoopInvariant)
627 break;
628
629 BasicBlock *Preheader = L->getLoopPreheader();
630 if (!Preheader) break;
631
632 // Ok, move up a level.
633 Builder.SetInsertPoint(Preheader->getTerminator());
634 }
635
636 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
637 // because ScalarEvolution may have changed the address arithmetic to
638 // compute a value which is beyond the end of the allocated object.
639 Value *Casted = V;
640 if (V->getType() != PTy)
641 Casted = InsertNoopCastOfTo(Casted, PTy);
642 Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices,
643 "scevgep");
644 Ops.push_back(SE.getUnknown(GEP));
645 }
646
647 return expand(SE.getAddExpr(Ops));
648 }
649
expandAddToGEP(const SCEV * Op,PointerType * PTy,Type * Ty,Value * V)650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
651 Value *V) {
652 const SCEV *const Ops[1] = {Op};
653 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
654 }
655
656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
657 /// SCEV expansion. If they are nested, this is the most nested. If they are
658 /// neighboring, pick the later.
PickMostRelevantLoop(const Loop * A,const Loop * B,DominatorTree & DT)659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
660 DominatorTree &DT) {
661 if (!A) return B;
662 if (!B) return A;
663 if (A->contains(B)) return B;
664 if (B->contains(A)) return A;
665 if (DT.dominates(A->getHeader(), B->getHeader())) return B;
666 if (DT.dominates(B->getHeader(), A->getHeader())) return A;
667 return A; // Arbitrarily break the tie.
668 }
669
670 /// getRelevantLoop - Get the most relevant loop associated with the given
671 /// expression, according to PickMostRelevantLoop.
getRelevantLoop(const SCEV * S)672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
673 // Test whether we've already computed the most relevant loop for this SCEV.
674 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
675 if (!Pair.second)
676 return Pair.first->second;
677
678 if (isa<SCEVConstant>(S))
679 // A constant has no relevant loops.
680 return nullptr;
681 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
682 if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
683 return Pair.first->second = SE.LI.getLoopFor(I->getParent());
684 // A non-instruction has no relevant loops.
685 return nullptr;
686 }
687 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
688 const Loop *L = nullptr;
689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
690 L = AR->getLoop();
691 for (const SCEV *Op : N->operands())
692 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
693 return RelevantLoops[N] = L;
694 }
695 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
696 const Loop *Result = getRelevantLoop(C->getOperand());
697 return RelevantLoops[C] = Result;
698 }
699 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
700 const Loop *Result = PickMostRelevantLoop(
701 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
702 return RelevantLoops[D] = Result;
703 }
704 llvm_unreachable("Unexpected SCEV type!");
705 }
706
707 namespace {
708
709 /// LoopCompare - Compare loops by PickMostRelevantLoop.
710 class LoopCompare {
711 DominatorTree &DT;
712 public:
LoopCompare(DominatorTree & dt)713 explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
714
operator ()(std::pair<const Loop *,const SCEV * > LHS,std::pair<const Loop *,const SCEV * > RHS) const715 bool operator()(std::pair<const Loop *, const SCEV *> LHS,
716 std::pair<const Loop *, const SCEV *> RHS) const {
717 // Keep pointer operands sorted at the end.
718 if (LHS.second->getType()->isPointerTy() !=
719 RHS.second->getType()->isPointerTy())
720 return LHS.second->getType()->isPointerTy();
721
722 // Compare loops with PickMostRelevantLoop.
723 if (LHS.first != RHS.first)
724 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
725
726 // If one operand is a non-constant negative and the other is not,
727 // put the non-constant negative on the right so that a sub can
728 // be used instead of a negate and add.
729 if (LHS.second->isNonConstantNegative()) {
730 if (!RHS.second->isNonConstantNegative())
731 return false;
732 } else if (RHS.second->isNonConstantNegative())
733 return true;
734
735 // Otherwise they are equivalent according to this comparison.
736 return false;
737 }
738 };
739
740 }
741
visitAddExpr(const SCEVAddExpr * S)742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
743 Type *Ty = SE.getEffectiveSCEVType(S->getType());
744
745 // Collect all the add operands in a loop, along with their associated loops.
746 // Iterate in reverse so that constants are emitted last, all else equal, and
747 // so that pointer operands are inserted first, which the code below relies on
748 // to form more involved GEPs.
749 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
750 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
751 E(S->op_begin()); I != E; ++I)
752 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
753
754 // Sort by loop. Use a stable sort so that constants follow non-constants and
755 // pointer operands precede non-pointer operands.
756 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
757
758 // Emit instructions to add all the operands. Hoist as much as possible
759 // out of loops, and form meaningful getelementptrs where possible.
760 Value *Sum = nullptr;
761 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
762 const Loop *CurLoop = I->first;
763 const SCEV *Op = I->second;
764 if (!Sum) {
765 // This is the first operand. Just expand it.
766 Sum = expand(Op);
767 ++I;
768 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
769 // The running sum expression is a pointer. Try to form a getelementptr
770 // at this level with that as the base.
771 SmallVector<const SCEV *, 4> NewOps;
772 for (; I != E && I->first == CurLoop; ++I) {
773 // If the operand is SCEVUnknown and not instructions, peek through
774 // it, to enable more of it to be folded into the GEP.
775 const SCEV *X = I->second;
776 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
777 if (!isa<Instruction>(U->getValue()))
778 X = SE.getSCEV(U->getValue());
779 NewOps.push_back(X);
780 }
781 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
782 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
783 // The running sum is an integer, and there's a pointer at this level.
784 // Try to form a getelementptr. If the running sum is instructions,
785 // use a SCEVUnknown to avoid re-analyzing them.
786 SmallVector<const SCEV *, 4> NewOps;
787 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
788 SE.getSCEV(Sum));
789 for (++I; I != E && I->first == CurLoop; ++I)
790 NewOps.push_back(I->second);
791 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
792 } else if (Op->isNonConstantNegative()) {
793 // Instead of doing a negate and add, just do a subtract.
794 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
795 Sum = InsertNoopCastOfTo(Sum, Ty);
796 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
797 /*IsSafeToHoist*/ true);
798 ++I;
799 } else {
800 // A simple add.
801 Value *W = expandCodeForImpl(Op, Ty, false);
802 Sum = InsertNoopCastOfTo(Sum, Ty);
803 // Canonicalize a constant to the RHS.
804 if (isa<Constant>(Sum)) std::swap(Sum, W);
805 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
806 /*IsSafeToHoist*/ true);
807 ++I;
808 }
809 }
810
811 return Sum;
812 }
813
visitMulExpr(const SCEVMulExpr * S)814 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
815 Type *Ty = SE.getEffectiveSCEVType(S->getType());
816
817 // Collect all the mul operands in a loop, along with their associated loops.
818 // Iterate in reverse so that constants are emitted last, all else equal.
819 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
820 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
821 E(S->op_begin()); I != E; ++I)
822 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
823
824 // Sort by loop. Use a stable sort so that constants follow non-constants.
825 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
826
827 // Emit instructions to mul all the operands. Hoist as much as possible
828 // out of loops.
829 Value *Prod = nullptr;
830 auto I = OpsAndLoops.begin();
831
832 // Expand the calculation of X pow N in the following manner:
833 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
834 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
835 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
836 auto E = I;
837 // Calculate how many times the same operand from the same loop is included
838 // into this power.
839 uint64_t Exponent = 0;
840 const uint64_t MaxExponent = UINT64_MAX >> 1;
841 // No one sane will ever try to calculate such huge exponents, but if we
842 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
843 // below when the power of 2 exceeds our Exponent, and we want it to be
844 // 1u << 31 at most to not deal with unsigned overflow.
845 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
846 ++Exponent;
847 ++E;
848 }
849 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
850
851 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
852 // that are needed into the result.
853 Value *P = expandCodeForImpl(I->second, Ty, false);
854 Value *Result = nullptr;
855 if (Exponent & 1)
856 Result = P;
857 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
858 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
859 /*IsSafeToHoist*/ true);
860 if (Exponent & BinExp)
861 Result = Result ? InsertBinop(Instruction::Mul, Result, P,
862 SCEV::FlagAnyWrap,
863 /*IsSafeToHoist*/ true)
864 : P;
865 }
866
867 I = E;
868 assert(Result && "Nothing was expanded?");
869 return Result;
870 };
871
872 while (I != OpsAndLoops.end()) {
873 if (!Prod) {
874 // This is the first operand. Just expand it.
875 Prod = ExpandOpBinPowN();
876 } else if (I->second->isAllOnesValue()) {
877 // Instead of doing a multiply by negative one, just do a negate.
878 Prod = InsertNoopCastOfTo(Prod, Ty);
879 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
880 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
881 ++I;
882 } else {
883 // A simple mul.
884 Value *W = ExpandOpBinPowN();
885 Prod = InsertNoopCastOfTo(Prod, Ty);
886 // Canonicalize a constant to the RHS.
887 if (isa<Constant>(Prod)) std::swap(Prod, W);
888 const APInt *RHS;
889 if (match(W, m_Power2(RHS))) {
890 // Canonicalize Prod*(1<<C) to Prod<<C.
891 assert(!Ty->isVectorTy() && "vector types are not SCEVable");
892 auto NWFlags = S->getNoWrapFlags();
893 // clear nsw flag if shl will produce poison value.
894 if (RHS->logBase2() == RHS->getBitWidth() - 1)
895 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
896 Prod = InsertBinop(Instruction::Shl, Prod,
897 ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
898 /*IsSafeToHoist*/ true);
899 } else {
900 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
901 /*IsSafeToHoist*/ true);
902 }
903 }
904 }
905
906 return Prod;
907 }
908
visitUDivExpr(const SCEVUDivExpr * S)909 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
910 Type *Ty = SE.getEffectiveSCEVType(S->getType());
911
912 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
913 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
914 const APInt &RHS = SC->getAPInt();
915 if (RHS.isPowerOf2())
916 return InsertBinop(Instruction::LShr, LHS,
917 ConstantInt::get(Ty, RHS.logBase2()),
918 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
919 }
920
921 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
922 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
923 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
924 }
925
926 /// Move parts of Base into Rest to leave Base with the minimal
927 /// expression that provides a pointer operand suitable for a
928 /// GEP expansion.
ExposePointerBase(const SCEV * & Base,const SCEV * & Rest,ScalarEvolution & SE)929 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
930 ScalarEvolution &SE) {
931 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
932 Base = A->getStart();
933 Rest = SE.getAddExpr(Rest,
934 SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
935 A->getStepRecurrence(SE),
936 A->getLoop(),
937 A->getNoWrapFlags(SCEV::FlagNW)));
938 }
939 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
940 Base = A->getOperand(A->getNumOperands()-1);
941 SmallVector<const SCEV *, 8> NewAddOps(A->operands());
942 NewAddOps.back() = Rest;
943 Rest = SE.getAddExpr(NewAddOps);
944 ExposePointerBase(Base, Rest, SE);
945 }
946 }
947
948 /// Determine if this is a well-behaved chain of instructions leading back to
949 /// the PHI. If so, it may be reused by expanded expressions.
isNormalAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)950 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
951 const Loop *L) {
952 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
953 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
954 return false;
955 // If any of the operands don't dominate the insert position, bail.
956 // Addrec operands are always loop-invariant, so this can only happen
957 // if there are instructions which haven't been hoisted.
958 if (L == IVIncInsertLoop) {
959 for (Use &Op : llvm::drop_begin(IncV->operands()))
960 if (Instruction *OInst = dyn_cast<Instruction>(Op))
961 if (!SE.DT.dominates(OInst, IVIncInsertPos))
962 return false;
963 }
964 // Advance to the next instruction.
965 IncV = dyn_cast<Instruction>(IncV->getOperand(0));
966 if (!IncV)
967 return false;
968
969 if (IncV->mayHaveSideEffects())
970 return false;
971
972 if (IncV == PN)
973 return true;
974
975 return isNormalAddRecExprPHI(PN, IncV, L);
976 }
977
978 /// getIVIncOperand returns an induction variable increment's induction
979 /// variable operand.
980 ///
981 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
982 /// operands dominate InsertPos.
983 ///
984 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
985 /// simple patterns generated by getAddRecExprPHILiterally and
986 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
getIVIncOperand(Instruction * IncV,Instruction * InsertPos,bool allowScale)987 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
988 Instruction *InsertPos,
989 bool allowScale) {
990 if (IncV == InsertPos)
991 return nullptr;
992
993 switch (IncV->getOpcode()) {
994 default:
995 return nullptr;
996 // Check for a simple Add/Sub or GEP of a loop invariant step.
997 case Instruction::Add:
998 case Instruction::Sub: {
999 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
1000 if (!OInst || SE.DT.dominates(OInst, InsertPos))
1001 return dyn_cast<Instruction>(IncV->getOperand(0));
1002 return nullptr;
1003 }
1004 case Instruction::BitCast:
1005 return dyn_cast<Instruction>(IncV->getOperand(0));
1006 case Instruction::GetElementPtr:
1007 for (Use &U : llvm::drop_begin(IncV->operands())) {
1008 if (isa<Constant>(U))
1009 continue;
1010 if (Instruction *OInst = dyn_cast<Instruction>(U)) {
1011 if (!SE.DT.dominates(OInst, InsertPos))
1012 return nullptr;
1013 }
1014 if (allowScale) {
1015 // allow any kind of GEP as long as it can be hoisted.
1016 continue;
1017 }
1018 // This must be a pointer addition of constants (pretty), which is already
1019 // handled, or some number of address-size elements (ugly). Ugly geps
1020 // have 2 operands. i1* is used by the expander to represent an
1021 // address-size element.
1022 if (IncV->getNumOperands() != 2)
1023 return nullptr;
1024 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
1025 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
1026 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1027 return nullptr;
1028 break;
1029 }
1030 return dyn_cast<Instruction>(IncV->getOperand(0));
1031 }
1032 }
1033
1034 /// If the insert point of the current builder or any of the builders on the
1035 /// stack of saved builders has 'I' as its insert point, update it to point to
1036 /// the instruction after 'I'. This is intended to be used when the instruction
1037 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a
1038 /// different block, the inconsistent insert point (with a mismatched
1039 /// Instruction and Block) can lead to an instruction being inserted in a block
1040 /// other than its parent.
fixupInsertPoints(Instruction * I)1041 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1042 BasicBlock::iterator It(*I);
1043 BasicBlock::iterator NewInsertPt = std::next(It);
1044 if (Builder.GetInsertPoint() == It)
1045 Builder.SetInsertPoint(&*NewInsertPt);
1046 for (auto *InsertPtGuard : InsertPointGuards)
1047 if (InsertPtGuard->GetInsertPoint() == It)
1048 InsertPtGuard->SetInsertPoint(NewInsertPt);
1049 }
1050
1051 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1052 /// it available to other uses in this loop. Recursively hoist any operands,
1053 /// until we reach a value that dominates InsertPos.
hoistIVInc(Instruction * IncV,Instruction * InsertPos)1054 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1055 if (SE.DT.dominates(IncV, InsertPos))
1056 return true;
1057
1058 // InsertPos must itself dominate IncV so that IncV's new position satisfies
1059 // its existing users.
1060 if (isa<PHINode>(InsertPos) ||
1061 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1062 return false;
1063
1064 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1065 return false;
1066
1067 // Check that the chain of IV operands leading back to Phi can be hoisted.
1068 SmallVector<Instruction*, 4> IVIncs;
1069 for(;;) {
1070 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1071 if (!Oper)
1072 return false;
1073 // IncV is safe to hoist.
1074 IVIncs.push_back(IncV);
1075 IncV = Oper;
1076 if (SE.DT.dominates(IncV, InsertPos))
1077 break;
1078 }
1079 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1080 fixupInsertPoints(*I);
1081 (*I)->moveBefore(InsertPos);
1082 }
1083 return true;
1084 }
1085
1086 /// Determine if this cyclic phi is in a form that would have been generated by
1087 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1088 /// as it is in a low-cost form, for example, no implied multiplication. This
1089 /// should match any patterns generated by getAddRecExprPHILiterally and
1090 /// expandAddtoGEP.
isExpandedAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)1091 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1092 const Loop *L) {
1093 for(Instruction *IVOper = IncV;
1094 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1095 /*allowScale=*/false));) {
1096 if (IVOper == PN)
1097 return true;
1098 }
1099 return false;
1100 }
1101
1102 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1103 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1104 /// need to materialize IV increments elsewhere to handle difficult situations.
expandIVInc(PHINode * PN,Value * StepV,const Loop * L,Type * ExpandTy,Type * IntTy,bool useSubtract)1105 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1106 Type *ExpandTy, Type *IntTy,
1107 bool useSubtract) {
1108 Value *IncV;
1109 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1110 if (ExpandTy->isPointerTy()) {
1111 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1112 // If the step isn't constant, don't use an implicitly scaled GEP, because
1113 // that would require a multiply inside the loop.
1114 if (!isa<ConstantInt>(StepV))
1115 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1116 GEPPtrTy->getAddressSpace());
1117 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1118 if (IncV->getType() != PN->getType())
1119 IncV = Builder.CreateBitCast(IncV, PN->getType());
1120 } else {
1121 IncV = useSubtract ?
1122 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1123 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1124 }
1125 return IncV;
1126 }
1127
1128 /// Hoist the addrec instruction chain rooted in the loop phi above the
1129 /// position. This routine assumes that this is possible (has been checked).
hoistBeforePos(DominatorTree * DT,Instruction * InstToHoist,Instruction * Pos,PHINode * LoopPhi)1130 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1131 Instruction *Pos, PHINode *LoopPhi) {
1132 do {
1133 if (DT->dominates(InstToHoist, Pos))
1134 break;
1135 // Make sure the increment is where we want it. But don't move it
1136 // down past a potential existing post-inc user.
1137 fixupInsertPoints(InstToHoist);
1138 InstToHoist->moveBefore(Pos);
1139 Pos = InstToHoist;
1140 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1141 } while (InstToHoist != LoopPhi);
1142 }
1143
1144 /// Check whether we can cheaply express the requested SCEV in terms of
1145 /// the available PHI SCEV by truncation and/or inversion of the step.
canBeCheaplyTransformed(ScalarEvolution & SE,const SCEVAddRecExpr * Phi,const SCEVAddRecExpr * Requested,bool & InvertStep)1146 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1147 const SCEVAddRecExpr *Phi,
1148 const SCEVAddRecExpr *Requested,
1149 bool &InvertStep) {
1150 // We can't transform to match a pointer PHI.
1151 if (Phi->getType()->isPointerTy())
1152 return false;
1153
1154 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1155 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1156
1157 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1158 return false;
1159
1160 // Try truncate it if necessary.
1161 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1162 if (!Phi)
1163 return false;
1164
1165 // Check whether truncation will help.
1166 if (Phi == Requested) {
1167 InvertStep = false;
1168 return true;
1169 }
1170
1171 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1172 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1173 InvertStep = true;
1174 return true;
1175 }
1176
1177 return false;
1178 }
1179
IsIncrementNSW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1180 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1181 if (!isa<IntegerType>(AR->getType()))
1182 return false;
1183
1184 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1185 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1186 const SCEV *Step = AR->getStepRecurrence(SE);
1187 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1188 SE.getSignExtendExpr(AR, WideTy));
1189 const SCEV *ExtendAfterOp =
1190 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1191 return ExtendAfterOp == OpAfterExtend;
1192 }
1193
IsIncrementNUW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1194 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1195 if (!isa<IntegerType>(AR->getType()))
1196 return false;
1197
1198 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1199 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1200 const SCEV *Step = AR->getStepRecurrence(SE);
1201 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1202 SE.getZeroExtendExpr(AR, WideTy));
1203 const SCEV *ExtendAfterOp =
1204 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1205 return ExtendAfterOp == OpAfterExtend;
1206 }
1207
1208 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1209 /// the base addrec, which is the addrec without any non-loop-dominating
1210 /// values, and return the PHI.
1211 PHINode *
getAddRecExprPHILiterally(const SCEVAddRecExpr * Normalized,const Loop * L,Type * ExpandTy,Type * IntTy,Type * & TruncTy,bool & InvertStep)1212 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1213 const Loop *L,
1214 Type *ExpandTy,
1215 Type *IntTy,
1216 Type *&TruncTy,
1217 bool &InvertStep) {
1218 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1219
1220 // Reuse a previously-inserted PHI, if present.
1221 BasicBlock *LatchBlock = L->getLoopLatch();
1222 if (LatchBlock) {
1223 PHINode *AddRecPhiMatch = nullptr;
1224 Instruction *IncV = nullptr;
1225 TruncTy = nullptr;
1226 InvertStep = false;
1227
1228 // Only try partially matching scevs that need truncation and/or
1229 // step-inversion if we know this loop is outside the current loop.
1230 bool TryNonMatchingSCEV =
1231 IVIncInsertLoop &&
1232 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1233
1234 for (PHINode &PN : L->getHeader()->phis()) {
1235 if (!SE.isSCEVable(PN.getType()))
1236 continue;
1237
1238 // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1239 // PHI has no meaning at all.
1240 if (!PN.isComplete()) {
1241 SCEV_DEBUG_WITH_TYPE(
1242 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1243 continue;
1244 }
1245
1246 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1247 if (!PhiSCEV)
1248 continue;
1249
1250 bool IsMatchingSCEV = PhiSCEV == Normalized;
1251 // We only handle truncation and inversion of phi recurrences for the
1252 // expanded expression if the expanded expression's loop dominates the
1253 // loop we insert to. Check now, so we can bail out early.
1254 if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1255 continue;
1256
1257 // TODO: this possibly can be reworked to avoid this cast at all.
1258 Instruction *TempIncV =
1259 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1260 if (!TempIncV)
1261 continue;
1262
1263 // Check whether we can reuse this PHI node.
1264 if (LSRMode) {
1265 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1266 continue;
1267 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1268 continue;
1269 } else {
1270 if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1271 continue;
1272 }
1273
1274 // Stop if we have found an exact match SCEV.
1275 if (IsMatchingSCEV) {
1276 IncV = TempIncV;
1277 TruncTy = nullptr;
1278 InvertStep = false;
1279 AddRecPhiMatch = &PN;
1280 break;
1281 }
1282
1283 // Try whether the phi can be translated into the requested form
1284 // (truncated and/or offset by a constant).
1285 if ((!TruncTy || InvertStep) &&
1286 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1287 // Record the phi node. But don't stop we might find an exact match
1288 // later.
1289 AddRecPhiMatch = &PN;
1290 IncV = TempIncV;
1291 TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1292 }
1293 }
1294
1295 if (AddRecPhiMatch) {
1296 // Potentially, move the increment. We have made sure in
1297 // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1298 if (L == IVIncInsertLoop)
1299 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1300
1301 // Ok, the add recurrence looks usable.
1302 // Remember this PHI, even in post-inc mode.
1303 InsertedValues.insert(AddRecPhiMatch);
1304 // Remember the increment.
1305 rememberInstruction(IncV);
1306 // Those values were not actually inserted but re-used.
1307 ReusedValues.insert(AddRecPhiMatch);
1308 ReusedValues.insert(IncV);
1309 return AddRecPhiMatch;
1310 }
1311 }
1312
1313 // Save the original insertion point so we can restore it when we're done.
1314 SCEVInsertPointGuard Guard(Builder, this);
1315
1316 // Another AddRec may need to be recursively expanded below. For example, if
1317 // this AddRec is quadratic, the StepV may itself be an AddRec in this
1318 // loop. Remove this loop from the PostIncLoops set before expanding such
1319 // AddRecs. Otherwise, we cannot find a valid position for the step
1320 // (i.e. StepV can never dominate its loop header). Ideally, we could do
1321 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1322 // so it's not worth implementing SmallPtrSet::swap.
1323 PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1324 PostIncLoops.clear();
1325
1326 // Expand code for the start value into the loop preheader.
1327 assert(L->getLoopPreheader() &&
1328 "Can't expand add recurrences without a loop preheader!");
1329 Value *StartV =
1330 expandCodeForImpl(Normalized->getStart(), ExpandTy,
1331 L->getLoopPreheader()->getTerminator(), false);
1332
1333 // StartV must have been be inserted into L's preheader to dominate the new
1334 // phi.
1335 assert(!isa<Instruction>(StartV) ||
1336 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1337 L->getHeader()));
1338
1339 // Expand code for the step value. Do this before creating the PHI so that PHI
1340 // reuse code doesn't see an incomplete PHI.
1341 const SCEV *Step = Normalized->getStepRecurrence(SE);
1342 // If the stride is negative, insert a sub instead of an add for the increment
1343 // (unless it's a constant, because subtracts of constants are canonicalized
1344 // to adds).
1345 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1346 if (useSubtract)
1347 Step = SE.getNegativeSCEV(Step);
1348 // Expand the step somewhere that dominates the loop header.
1349 Value *StepV = expandCodeForImpl(
1350 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1351
1352 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1353 // we actually do emit an addition. It does not apply if we emit a
1354 // subtraction.
1355 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1356 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1357
1358 // Create the PHI.
1359 BasicBlock *Header = L->getHeader();
1360 Builder.SetInsertPoint(Header, Header->begin());
1361 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1362 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1363 Twine(IVName) + ".iv");
1364
1365 // Create the step instructions and populate the PHI.
1366 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1367 BasicBlock *Pred = *HPI;
1368
1369 // Add a start value.
1370 if (!L->contains(Pred)) {
1371 PN->addIncoming(StartV, Pred);
1372 continue;
1373 }
1374
1375 // Create a step value and add it to the PHI.
1376 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1377 // instructions at IVIncInsertPos.
1378 Instruction *InsertPos = L == IVIncInsertLoop ?
1379 IVIncInsertPos : Pred->getTerminator();
1380 Builder.SetInsertPoint(InsertPos);
1381 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1382
1383 if (isa<OverflowingBinaryOperator>(IncV)) {
1384 if (IncrementIsNUW)
1385 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1386 if (IncrementIsNSW)
1387 cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1388 }
1389 PN->addIncoming(IncV, Pred);
1390 }
1391
1392 // After expanding subexpressions, restore the PostIncLoops set so the caller
1393 // can ensure that IVIncrement dominates the current uses.
1394 PostIncLoops = SavedPostIncLoops;
1395
1396 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1397 // effective when we are able to use an IV inserted here, so record it.
1398 InsertedValues.insert(PN);
1399 InsertedIVs.push_back(PN);
1400 return PN;
1401 }
1402
expandAddRecExprLiterally(const SCEVAddRecExpr * S)1403 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1404 Type *STy = S->getType();
1405 Type *IntTy = SE.getEffectiveSCEVType(STy);
1406 const Loop *L = S->getLoop();
1407
1408 // Determine a normalized form of this expression, which is the expression
1409 // before any post-inc adjustment is made.
1410 const SCEVAddRecExpr *Normalized = S;
1411 if (PostIncLoops.count(L)) {
1412 PostIncLoopSet Loops;
1413 Loops.insert(L);
1414 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1415 }
1416
1417 // Strip off any non-loop-dominating component from the addrec start.
1418 const SCEV *Start = Normalized->getStart();
1419 const SCEV *PostLoopOffset = nullptr;
1420 if (!SE.properlyDominates(Start, L->getHeader())) {
1421 PostLoopOffset = Start;
1422 Start = SE.getConstant(Normalized->getType(), 0);
1423 Normalized = cast<SCEVAddRecExpr>(
1424 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1425 Normalized->getLoop(),
1426 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1427 }
1428
1429 // Strip off any non-loop-dominating component from the addrec step.
1430 const SCEV *Step = Normalized->getStepRecurrence(SE);
1431 const SCEV *PostLoopScale = nullptr;
1432 if (!SE.dominates(Step, L->getHeader())) {
1433 PostLoopScale = Step;
1434 Step = SE.getConstant(Normalized->getType(), 1);
1435 if (!Start->isZero()) {
1436 // The normalization below assumes that Start is constant zero, so if
1437 // it isn't re-associate Start to PostLoopOffset.
1438 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1439 PostLoopOffset = Start;
1440 Start = SE.getConstant(Normalized->getType(), 0);
1441 }
1442 Normalized =
1443 cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1444 Start, Step, Normalized->getLoop(),
1445 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1446 }
1447
1448 // Expand the core addrec. If we need post-loop scaling, force it to
1449 // expand to an integer type to avoid the need for additional casting.
1450 Type *ExpandTy = PostLoopScale ? IntTy : STy;
1451 // We can't use a pointer type for the addrec if the pointer type is
1452 // non-integral.
1453 Type *AddRecPHIExpandTy =
1454 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1455
1456 // In some cases, we decide to reuse an existing phi node but need to truncate
1457 // it and/or invert the step.
1458 Type *TruncTy = nullptr;
1459 bool InvertStep = false;
1460 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1461 IntTy, TruncTy, InvertStep);
1462
1463 // Accommodate post-inc mode, if necessary.
1464 Value *Result;
1465 if (!PostIncLoops.count(L))
1466 Result = PN;
1467 else {
1468 // In PostInc mode, use the post-incremented value.
1469 BasicBlock *LatchBlock = L->getLoopLatch();
1470 assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1471 Result = PN->getIncomingValueForBlock(LatchBlock);
1472
1473 // We might be introducing a new use of the post-inc IV that is not poison
1474 // safe, in which case we should drop poison generating flags. Only keep
1475 // those flags for which SCEV has proven that they always hold.
1476 if (isa<OverflowingBinaryOperator>(Result)) {
1477 auto *I = cast<Instruction>(Result);
1478 if (!S->hasNoUnsignedWrap())
1479 I->setHasNoUnsignedWrap(false);
1480 if (!S->hasNoSignedWrap())
1481 I->setHasNoSignedWrap(false);
1482 }
1483
1484 // For an expansion to use the postinc form, the client must call
1485 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1486 // or dominated by IVIncInsertPos.
1487 if (isa<Instruction>(Result) &&
1488 !SE.DT.dominates(cast<Instruction>(Result),
1489 &*Builder.GetInsertPoint())) {
1490 // The induction variable's postinc expansion does not dominate this use.
1491 // IVUsers tries to prevent this case, so it is rare. However, it can
1492 // happen when an IVUser outside the loop is not dominated by the latch
1493 // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1494 // all cases. Consider a phi outside whose operand is replaced during
1495 // expansion with the value of the postinc user. Without fundamentally
1496 // changing the way postinc users are tracked, the only remedy is
1497 // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1498 // but hopefully expandCodeFor handles that.
1499 bool useSubtract =
1500 !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1501 if (useSubtract)
1502 Step = SE.getNegativeSCEV(Step);
1503 Value *StepV;
1504 {
1505 // Expand the step somewhere that dominates the loop header.
1506 SCEVInsertPointGuard Guard(Builder, this);
1507 StepV = expandCodeForImpl(
1508 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1509 }
1510 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1511 }
1512 }
1513
1514 // We have decided to reuse an induction variable of a dominating loop. Apply
1515 // truncation and/or inversion of the step.
1516 if (TruncTy) {
1517 Type *ResTy = Result->getType();
1518 // Normalize the result type.
1519 if (ResTy != SE.getEffectiveSCEVType(ResTy))
1520 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1521 // Truncate the result.
1522 if (TruncTy != Result->getType())
1523 Result = Builder.CreateTrunc(Result, TruncTy);
1524
1525 // Invert the result.
1526 if (InvertStep)
1527 Result = Builder.CreateSub(
1528 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1529 }
1530
1531 // Re-apply any non-loop-dominating scale.
1532 if (PostLoopScale) {
1533 assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1534 Result = InsertNoopCastOfTo(Result, IntTy);
1535 Result = Builder.CreateMul(Result,
1536 expandCodeForImpl(PostLoopScale, IntTy, false));
1537 }
1538
1539 // Re-apply any non-loop-dominating offset.
1540 if (PostLoopOffset) {
1541 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1542 if (Result->getType()->isIntegerTy()) {
1543 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1544 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1545 } else {
1546 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1547 }
1548 } else {
1549 Result = InsertNoopCastOfTo(Result, IntTy);
1550 Result = Builder.CreateAdd(
1551 Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1552 }
1553 }
1554
1555 return Result;
1556 }
1557
visitAddRecExpr(const SCEVAddRecExpr * S)1558 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1559 // In canonical mode we compute the addrec as an expression of a canonical IV
1560 // using evaluateAtIteration and expand the resulting SCEV expression. This
1561 // way we avoid introducing new IVs to carry on the comutation of the addrec
1562 // throughout the loop.
1563 //
1564 // For nested addrecs evaluateAtIteration might need a canonical IV of a
1565 // type wider than the addrec itself. Emitting a canonical IV of the
1566 // proper type might produce non-legal types, for example expanding an i64
1567 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1568 // back to non-canonical mode for nested addrecs.
1569 if (!CanonicalMode || (S->getNumOperands() > 2))
1570 return expandAddRecExprLiterally(S);
1571
1572 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1573 const Loop *L = S->getLoop();
1574
1575 // First check for an existing canonical IV in a suitable type.
1576 PHINode *CanonicalIV = nullptr;
1577 if (PHINode *PN = L->getCanonicalInductionVariable())
1578 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1579 CanonicalIV = PN;
1580
1581 // Rewrite an AddRec in terms of the canonical induction variable, if
1582 // its type is more narrow.
1583 if (CanonicalIV &&
1584 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1585 !S->getType()->isPointerTy()) {
1586 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1587 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1588 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1589 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1590 S->getNoWrapFlags(SCEV::FlagNW)));
1591 BasicBlock::iterator NewInsertPt =
1592 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1593 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1594 &*NewInsertPt, false);
1595 return V;
1596 }
1597
1598 // {X,+,F} --> X + {0,+,F}
1599 if (!S->getStart()->isZero()) {
1600 SmallVector<const SCEV *, 4> NewOps(S->operands());
1601 NewOps[0] = SE.getConstant(Ty, 0);
1602 const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1603 S->getNoWrapFlags(SCEV::FlagNW));
1604
1605 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1606 // comments on expandAddToGEP for details.
1607 const SCEV *Base = S->getStart();
1608 // Dig into the expression to find the pointer base for a GEP.
1609 const SCEV *ExposedRest = Rest;
1610 ExposePointerBase(Base, ExposedRest, SE);
1611 // If we found a pointer, expand the AddRec with a GEP.
1612 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1613 // Make sure the Base isn't something exotic, such as a multiplied
1614 // or divided pointer value. In those cases, the result type isn't
1615 // actually a pointer type.
1616 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1617 Value *StartV = expand(Base);
1618 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1619 return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1620 }
1621 }
1622
1623 // Just do a normal add. Pre-expand the operands to suppress folding.
1624 //
1625 // The LHS and RHS values are factored out of the expand call to make the
1626 // output independent of the argument evaluation order.
1627 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1628 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1629 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1630 }
1631
1632 // If we don't yet have a canonical IV, create one.
1633 if (!CanonicalIV) {
1634 // Create and insert the PHI node for the induction variable in the
1635 // specified loop.
1636 BasicBlock *Header = L->getHeader();
1637 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1638 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1639 &Header->front());
1640 rememberInstruction(CanonicalIV);
1641
1642 SmallSet<BasicBlock *, 4> PredSeen;
1643 Constant *One = ConstantInt::get(Ty, 1);
1644 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1645 BasicBlock *HP = *HPI;
1646 if (!PredSeen.insert(HP).second) {
1647 // There must be an incoming value for each predecessor, even the
1648 // duplicates!
1649 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1650 continue;
1651 }
1652
1653 if (L->contains(HP)) {
1654 // Insert a unit add instruction right before the terminator
1655 // corresponding to the back-edge.
1656 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1657 "indvar.next",
1658 HP->getTerminator());
1659 Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1660 rememberInstruction(Add);
1661 CanonicalIV->addIncoming(Add, HP);
1662 } else {
1663 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1664 }
1665 }
1666 }
1667
1668 // {0,+,1} --> Insert a canonical induction variable into the loop!
1669 if (S->isAffine() && S->getOperand(1)->isOne()) {
1670 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1671 "IVs with types different from the canonical IV should "
1672 "already have been handled!");
1673 return CanonicalIV;
1674 }
1675
1676 // {0,+,F} --> {0,+,1} * F
1677
1678 // If this is a simple linear addrec, emit it now as a special case.
1679 if (S->isAffine()) // {0,+,F} --> i*F
1680 return
1681 expand(SE.getTruncateOrNoop(
1682 SE.getMulExpr(SE.getUnknown(CanonicalIV),
1683 SE.getNoopOrAnyExtend(S->getOperand(1),
1684 CanonicalIV->getType())),
1685 Ty));
1686
1687 // If this is a chain of recurrences, turn it into a closed form, using the
1688 // folders, then expandCodeFor the closed form. This allows the folders to
1689 // simplify the expression without having to build a bunch of special code
1690 // into this folder.
1691 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
1692
1693 // Promote S up to the canonical IV type, if the cast is foldable.
1694 const SCEV *NewS = S;
1695 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1696 if (isa<SCEVAddRecExpr>(Ext))
1697 NewS = Ext;
1698
1699 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1700 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1701
1702 // Truncate the result down to the original type, if needed.
1703 const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1704 return expand(T);
1705 }
1706
visitPtrToIntExpr(const SCEVPtrToIntExpr * S)1707 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1708 Value *V =
1709 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1710 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1711 GetOptimalInsertionPointForCastOf(V));
1712 }
1713
visitTruncateExpr(const SCEVTruncateExpr * S)1714 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1715 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1716 Value *V = expandCodeForImpl(
1717 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1718 false);
1719 return Builder.CreateTrunc(V, Ty);
1720 }
1721
visitZeroExtendExpr(const SCEVZeroExtendExpr * S)1722 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1723 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1724 Value *V = expandCodeForImpl(
1725 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1726 false);
1727 return Builder.CreateZExt(V, Ty);
1728 }
1729
visitSignExtendExpr(const SCEVSignExtendExpr * S)1730 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1731 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1732 Value *V = expandCodeForImpl(
1733 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1734 false);
1735 return Builder.CreateSExt(V, Ty);
1736 }
1737
visitSMaxExpr(const SCEVSMaxExpr * S)1738 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1739 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1740 Type *Ty = LHS->getType();
1741 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1742 // In the case of mixed integer and pointer types, do the
1743 // rest of the comparisons as integer.
1744 Type *OpTy = S->getOperand(i)->getType();
1745 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1746 Ty = SE.getEffectiveSCEVType(Ty);
1747 LHS = InsertNoopCastOfTo(LHS, Ty);
1748 }
1749 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1750 Value *Sel;
1751 if (Ty->isIntegerTy())
1752 Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1753 /*FMFSource=*/nullptr, "smax");
1754 else {
1755 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1756 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1757 }
1758 LHS = Sel;
1759 }
1760 // In the case of mixed integer and pointer types, cast the
1761 // final result back to the pointer type.
1762 if (LHS->getType() != S->getType())
1763 LHS = InsertNoopCastOfTo(LHS, S->getType());
1764 return LHS;
1765 }
1766
visitUMaxExpr(const SCEVUMaxExpr * S)1767 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1768 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1769 Type *Ty = LHS->getType();
1770 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1771 // In the case of mixed integer and pointer types, do the
1772 // rest of the comparisons as integer.
1773 Type *OpTy = S->getOperand(i)->getType();
1774 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1775 Ty = SE.getEffectiveSCEVType(Ty);
1776 LHS = InsertNoopCastOfTo(LHS, Ty);
1777 }
1778 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1779 Value *Sel;
1780 if (Ty->isIntegerTy())
1781 Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1782 /*FMFSource=*/nullptr, "umax");
1783 else {
1784 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1785 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1786 }
1787 LHS = Sel;
1788 }
1789 // In the case of mixed integer and pointer types, cast the
1790 // final result back to the pointer type.
1791 if (LHS->getType() != S->getType())
1792 LHS = InsertNoopCastOfTo(LHS, S->getType());
1793 return LHS;
1794 }
1795
visitSMinExpr(const SCEVSMinExpr * S)1796 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1797 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1798 Type *Ty = LHS->getType();
1799 for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1800 // In the case of mixed integer and pointer types, do the
1801 // rest of the comparisons as integer.
1802 Type *OpTy = S->getOperand(i)->getType();
1803 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1804 Ty = SE.getEffectiveSCEVType(Ty);
1805 LHS = InsertNoopCastOfTo(LHS, Ty);
1806 }
1807 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1808 Value *Sel;
1809 if (Ty->isIntegerTy())
1810 Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1811 /*FMFSource=*/nullptr, "smin");
1812 else {
1813 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1814 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1815 }
1816 LHS = Sel;
1817 }
1818 // In the case of mixed integer and pointer types, cast the
1819 // final result back to the pointer type.
1820 if (LHS->getType() != S->getType())
1821 LHS = InsertNoopCastOfTo(LHS, S->getType());
1822 return LHS;
1823 }
1824
visitUMinExpr(const SCEVUMinExpr * S)1825 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1826 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1827 Type *Ty = LHS->getType();
1828 for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1829 // In the case of mixed integer and pointer types, do the
1830 // rest of the comparisons as integer.
1831 Type *OpTy = S->getOperand(i)->getType();
1832 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1833 Ty = SE.getEffectiveSCEVType(Ty);
1834 LHS = InsertNoopCastOfTo(LHS, Ty);
1835 }
1836 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1837 Value *Sel;
1838 if (Ty->isIntegerTy())
1839 Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1840 /*FMFSource=*/nullptr, "umin");
1841 else {
1842 Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1843 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1844 }
1845 LHS = Sel;
1846 }
1847 // In the case of mixed integer and pointer types, cast the
1848 // final result back to the pointer type.
1849 if (LHS->getType() != S->getType())
1850 LHS = InsertNoopCastOfTo(LHS, S->getType());
1851 return LHS;
1852 }
1853
expandCodeForImpl(const SCEV * SH,Type * Ty,Instruction * IP,bool Root)1854 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1855 Instruction *IP, bool Root) {
1856 setInsertPoint(IP);
1857 Value *V = expandCodeForImpl(SH, Ty, Root);
1858 return V;
1859 }
1860
expandCodeForImpl(const SCEV * SH,Type * Ty,bool Root)1861 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1862 // Expand the code for this SCEV.
1863 Value *V = expand(SH);
1864
1865 if (PreserveLCSSA) {
1866 if (auto *Inst = dyn_cast<Instruction>(V)) {
1867 // Create a temporary instruction to at the current insertion point, so we
1868 // can hand it off to the helper to create LCSSA PHIs if required for the
1869 // new use.
1870 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1871 // would accept a insertion point and return an LCSSA phi for that
1872 // insertion point, so there is no need to insert & remove the temporary
1873 // instruction.
1874 Instruction *Tmp;
1875 if (Inst->getType()->isIntegerTy())
1876 Tmp =
1877 cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1878 else {
1879 assert(Inst->getType()->isPointerTy());
1880 Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1881 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1882 }
1883 V = fixupLCSSAFormFor(Tmp, 0);
1884
1885 // Clean up temporary instruction.
1886 InsertedValues.erase(Tmp);
1887 InsertedPostIncValues.erase(Tmp);
1888 Tmp->eraseFromParent();
1889 }
1890 }
1891
1892 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1893 if (Ty) {
1894 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1895 "non-trivial casts should be done with the SCEVs directly!");
1896 V = InsertNoopCastOfTo(V, Ty);
1897 }
1898 return V;
1899 }
1900
1901 ScalarEvolution::ValueOffsetPair
FindValueInExprValueMap(const SCEV * S,const Instruction * InsertPt)1902 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1903 const Instruction *InsertPt) {
1904 auto *Set = SE.getSCEVValues(S);
1905 // If the expansion is not in CanonicalMode, and the SCEV contains any
1906 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1907 if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1908 // If S is scConstant, it may be worse to reuse an existing Value.
1909 if (S->getSCEVType() != scConstant && Set) {
1910 // Choose a Value from the set which dominates the insertPt.
1911 // insertPt should be inside the Value's parent loop so as not to break
1912 // the LCSSA form.
1913 for (auto const &VOPair : *Set) {
1914 Value *V = VOPair.first;
1915 ConstantInt *Offset = VOPair.second;
1916 Instruction *EntInst = nullptr;
1917 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1918 S->getType() == V->getType() &&
1919 EntInst->getFunction() == InsertPt->getFunction() &&
1920 SE.DT.dominates(EntInst, InsertPt) &&
1921 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1922 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1923 return {V, Offset};
1924 }
1925 }
1926 }
1927 return {nullptr, nullptr};
1928 }
1929
1930 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1931 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1932 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1933 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1934 // the expansion will try to reuse Value from ExprValueMap, and only when it
1935 // fails, expand the SCEV literally.
expand(const SCEV * S)1936 Value *SCEVExpander::expand(const SCEV *S) {
1937 // Compute an insertion point for this SCEV object. Hoist the instructions
1938 // as far out in the loop nest as possible.
1939 Instruction *InsertPt = &*Builder.GetInsertPoint();
1940
1941 // We can move insertion point only if there is no div or rem operations
1942 // otherwise we are risky to move it over the check for zero denominator.
1943 auto SafeToHoist = [](const SCEV *S) {
1944 return !SCEVExprContains(S, [](const SCEV *S) {
1945 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1946 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1947 // Division by non-zero constants can be hoisted.
1948 return SC->getValue()->isZero();
1949 // All other divisions should not be moved as they may be
1950 // divisions by zero and should be kept within the
1951 // conditions of the surrounding loops that guard their
1952 // execution (see PR35406).
1953 return true;
1954 }
1955 return false;
1956 });
1957 };
1958 if (SafeToHoist(S)) {
1959 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1960 L = L->getParentLoop()) {
1961 if (SE.isLoopInvariant(S, L)) {
1962 if (!L) break;
1963 if (BasicBlock *Preheader = L->getLoopPreheader())
1964 InsertPt = Preheader->getTerminator();
1965 else
1966 // LSR sets the insertion point for AddRec start/step values to the
1967 // block start to simplify value reuse, even though it's an invalid
1968 // position. SCEVExpander must correct for this in all cases.
1969 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1970 } else {
1971 // If the SCEV is computable at this level, insert it into the header
1972 // after the PHIs (and after any other instructions that we've inserted
1973 // there) so that it is guaranteed to dominate any user inside the loop.
1974 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1975 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1976
1977 while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1978 (isInsertedInstruction(InsertPt) ||
1979 isa<DbgInfoIntrinsic>(InsertPt))) {
1980 InsertPt = &*std::next(InsertPt->getIterator());
1981 }
1982 break;
1983 }
1984 }
1985 }
1986
1987 // Check to see if we already expanded this here.
1988 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1989 if (I != InsertedExpressions.end())
1990 return I->second;
1991
1992 SCEVInsertPointGuard Guard(Builder, this);
1993 Builder.SetInsertPoint(InsertPt);
1994
1995 // Expand the expression into instructions.
1996 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1997 Value *V = VO.first;
1998
1999 if (!V)
2000 V = visit(S);
2001 else if (VO.second) {
2002 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
2003 Type *Ety = Vty->getPointerElementType();
2004 int64_t Offset = VO.second->getSExtValue();
2005 int64_t ESize = SE.getTypeSizeInBits(Ety);
2006 if ((Offset * 8) % ESize == 0) {
2007 ConstantInt *Idx =
2008 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
2009 V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
2010 } else {
2011 ConstantInt *Idx =
2012 ConstantInt::getSigned(VO.second->getType(), -Offset);
2013 unsigned AS = Vty->getAddressSpace();
2014 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
2015 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
2016 "uglygep");
2017 V = Builder.CreateBitCast(V, Vty);
2018 }
2019 } else {
2020 V = Builder.CreateSub(V, VO.second);
2021 }
2022 }
2023 // Remember the expanded value for this SCEV at this location.
2024 //
2025 // This is independent of PostIncLoops. The mapped value simply materializes
2026 // the expression at this insertion point. If the mapped value happened to be
2027 // a postinc expansion, it could be reused by a non-postinc user, but only if
2028 // its insertion point was already at the head of the loop.
2029 InsertedExpressions[std::make_pair(S, InsertPt)] = V;
2030 return V;
2031 }
2032
rememberInstruction(Value * I)2033 void SCEVExpander::rememberInstruction(Value *I) {
2034 auto DoInsert = [this](Value *V) {
2035 if (!PostIncLoops.empty())
2036 InsertedPostIncValues.insert(V);
2037 else
2038 InsertedValues.insert(V);
2039 };
2040 DoInsert(I);
2041
2042 if (!PreserveLCSSA)
2043 return;
2044
2045 if (auto *Inst = dyn_cast<Instruction>(I)) {
2046 // A new instruction has been added, which might introduce new uses outside
2047 // a defining loop. Fix LCSSA from for each operand of the new instruction,
2048 // if required.
2049 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2050 OpIdx++)
2051 fixupLCSSAFormFor(Inst, OpIdx);
2052 }
2053 }
2054
2055 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2056 /// replace them with their most canonical representative. Return the number of
2057 /// phis eliminated.
2058 ///
2059 /// This does not depend on any SCEVExpander state but should be used in
2060 /// the same context that SCEVExpander is used.
2061 unsigned
replaceCongruentIVs(Loop * L,const DominatorTree * DT,SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetTransformInfo * TTI)2062 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2063 SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2064 const TargetTransformInfo *TTI) {
2065 // Find integer phis in order of increasing width.
2066 SmallVector<PHINode*, 8> Phis;
2067 for (PHINode &PN : L->getHeader()->phis())
2068 Phis.push_back(&PN);
2069
2070 if (TTI)
2071 llvm::sort(Phis, [](Value *LHS, Value *RHS) {
2072 // Put pointers at the back and make sure pointer < pointer = false.
2073 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2074 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2075 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2076 LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2077 });
2078
2079 unsigned NumElim = 0;
2080 DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2081 // Process phis from wide to narrow. Map wide phis to their truncation
2082 // so narrow phis can reuse them.
2083 for (PHINode *Phi : Phis) {
2084 auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2085 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2086 return V;
2087 if (!SE.isSCEVable(PN->getType()))
2088 return nullptr;
2089 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2090 if (!Const)
2091 return nullptr;
2092 return Const->getValue();
2093 };
2094
2095 // Fold constant phis. They may be congruent to other constant phis and
2096 // would confuse the logic below that expects proper IVs.
2097 if (Value *V = SimplifyPHINode(Phi)) {
2098 if (V->getType() != Phi->getType())
2099 continue;
2100 Phi->replaceAllUsesWith(V);
2101 DeadInsts.emplace_back(Phi);
2102 ++NumElim;
2103 SCEV_DEBUG_WITH_TYPE(DebugType,
2104 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
2105 << '\n');
2106 continue;
2107 }
2108
2109 if (!SE.isSCEVable(Phi->getType()))
2110 continue;
2111
2112 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2113 if (!OrigPhiRef) {
2114 OrigPhiRef = Phi;
2115 if (Phi->getType()->isIntegerTy() && TTI &&
2116 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2117 // This phi can be freely truncated to the narrowest phi type. Map the
2118 // truncated expression to it so it will be reused for narrow types.
2119 const SCEV *TruncExpr =
2120 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2121 ExprToIVMap[TruncExpr] = Phi;
2122 }
2123 continue;
2124 }
2125
2126 // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2127 // sense.
2128 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2129 continue;
2130
2131 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2132 Instruction *OrigInc = dyn_cast<Instruction>(
2133 OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2134 Instruction *IsomorphicInc =
2135 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2136
2137 if (OrigInc && IsomorphicInc) {
2138 // If this phi has the same width but is more canonical, replace the
2139 // original with it. As part of the "more canonical" determination,
2140 // respect a prior decision to use an IV chain.
2141 if (OrigPhiRef->getType() == Phi->getType() &&
2142 !(ChainedPhis.count(Phi) ||
2143 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2144 (ChainedPhis.count(Phi) ||
2145 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2146 std::swap(OrigPhiRef, Phi);
2147 std::swap(OrigInc, IsomorphicInc);
2148 }
2149 // Replacing the congruent phi is sufficient because acyclic
2150 // redundancy elimination, CSE/GVN, should handle the
2151 // rest. However, once SCEV proves that a phi is congruent,
2152 // it's often the head of an IV user cycle that is isomorphic
2153 // with the original phi. It's worth eagerly cleaning up the
2154 // common case of a single IV increment so that DeleteDeadPHIs
2155 // can remove cycles that had postinc uses.
2156 const SCEV *TruncExpr =
2157 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2158 if (OrigInc != IsomorphicInc &&
2159 TruncExpr == SE.getSCEV(IsomorphicInc) &&
2160 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2161 hoistIVInc(OrigInc, IsomorphicInc)) {
2162 SCEV_DEBUG_WITH_TYPE(
2163 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2164 << *IsomorphicInc << '\n');
2165 Value *NewInc = OrigInc;
2166 if (OrigInc->getType() != IsomorphicInc->getType()) {
2167 Instruction *IP = nullptr;
2168 if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2169 IP = &*PN->getParent()->getFirstInsertionPt();
2170 else
2171 IP = OrigInc->getNextNode();
2172
2173 IRBuilder<> Builder(IP);
2174 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2175 NewInc = Builder.CreateTruncOrBitCast(
2176 OrigInc, IsomorphicInc->getType(), IVName);
2177 }
2178 IsomorphicInc->replaceAllUsesWith(NewInc);
2179 DeadInsts.emplace_back(IsomorphicInc);
2180 }
2181 }
2182 }
2183 SCEV_DEBUG_WITH_TYPE(DebugType,
2184 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2185 << '\n');
2186 SCEV_DEBUG_WITH_TYPE(
2187 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2188 ++NumElim;
2189 Value *NewIV = OrigPhiRef;
2190 if (OrigPhiRef->getType() != Phi->getType()) {
2191 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2192 Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2193 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2194 }
2195 Phi->replaceAllUsesWith(NewIV);
2196 DeadInsts.emplace_back(Phi);
2197 }
2198 return NumElim;
2199 }
2200
2201 Optional<ScalarEvolution::ValueOffsetPair>
getRelatedExistingExpansion(const SCEV * S,const Instruction * At,Loop * L)2202 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2203 Loop *L) {
2204 using namespace llvm::PatternMatch;
2205
2206 SmallVector<BasicBlock *, 4> ExitingBlocks;
2207 L->getExitingBlocks(ExitingBlocks);
2208
2209 // Look for suitable value in simple conditions at the loop exits.
2210 for (BasicBlock *BB : ExitingBlocks) {
2211 ICmpInst::Predicate Pred;
2212 Instruction *LHS, *RHS;
2213
2214 if (!match(BB->getTerminator(),
2215 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2216 m_BasicBlock(), m_BasicBlock())))
2217 continue;
2218
2219 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2220 return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2221
2222 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2223 return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2224 }
2225
2226 // Use expand's logic which is used for reusing a previous Value in
2227 // ExprValueMap.
2228 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2229 if (VO.first)
2230 return VO;
2231
2232 // There is potential to make this significantly smarter, but this simple
2233 // heuristic already gets some interesting cases.
2234
2235 // Can not find suitable value.
2236 return None;
2237 }
2238
costAndCollectOperands(const SCEVOperand & WorkItem,const TargetTransformInfo & TTI,TargetTransformInfo::TargetCostKind CostKind,SmallVectorImpl<SCEVOperand> & Worklist)2239 template<typename T> static InstructionCost costAndCollectOperands(
2240 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2241 TargetTransformInfo::TargetCostKind CostKind,
2242 SmallVectorImpl<SCEVOperand> &Worklist) {
2243
2244 const T *S = cast<T>(WorkItem.S);
2245 InstructionCost Cost = 0;
2246 // Object to help map SCEV operands to expanded IR instructions.
2247 struct OperationIndices {
2248 OperationIndices(unsigned Opc, size_t min, size_t max) :
2249 Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2250 unsigned Opcode;
2251 size_t MinIdx;
2252 size_t MaxIdx;
2253 };
2254
2255 // Collect the operations of all the instructions that will be needed to
2256 // expand the SCEVExpr. This is so that when we come to cost the operands,
2257 // we know what the generated user(s) will be.
2258 SmallVector<OperationIndices, 2> Operations;
2259
2260 auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2261 Operations.emplace_back(Opcode, 0, 0);
2262 return TTI.getCastInstrCost(Opcode, S->getType(),
2263 S->getOperand(0)->getType(),
2264 TTI::CastContextHint::None, CostKind);
2265 };
2266
2267 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2268 unsigned MinIdx = 0,
2269 unsigned MaxIdx = 1) -> InstructionCost {
2270 Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2271 return NumRequired *
2272 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2273 };
2274
2275 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2276 unsigned MaxIdx) -> InstructionCost {
2277 Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2278 Type *OpType = S->getOperand(0)->getType();
2279 return NumRequired * TTI.getCmpSelInstrCost(
2280 Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2281 CmpInst::BAD_ICMP_PREDICATE, CostKind);
2282 };
2283
2284 switch (S->getSCEVType()) {
2285 case scCouldNotCompute:
2286 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2287 case scUnknown:
2288 case scConstant:
2289 return 0;
2290 case scPtrToInt:
2291 Cost = CastCost(Instruction::PtrToInt);
2292 break;
2293 case scTruncate:
2294 Cost = CastCost(Instruction::Trunc);
2295 break;
2296 case scZeroExtend:
2297 Cost = CastCost(Instruction::ZExt);
2298 break;
2299 case scSignExtend:
2300 Cost = CastCost(Instruction::SExt);
2301 break;
2302 case scUDivExpr: {
2303 unsigned Opcode = Instruction::UDiv;
2304 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2305 if (SC->getAPInt().isPowerOf2())
2306 Opcode = Instruction::LShr;
2307 Cost = ArithCost(Opcode, 1);
2308 break;
2309 }
2310 case scAddExpr:
2311 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2312 break;
2313 case scMulExpr:
2314 // TODO: this is a very pessimistic cost modelling for Mul,
2315 // because of Bin Pow algorithm actually used by the expander,
2316 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2317 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2318 break;
2319 case scSMaxExpr:
2320 case scUMaxExpr:
2321 case scSMinExpr:
2322 case scUMinExpr: {
2323 // FIXME: should this ask the cost for Intrinsic's?
2324 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2325 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2326 break;
2327 }
2328 case scAddRecExpr: {
2329 // In this polynominal, we may have some zero operands, and we shouldn't
2330 // really charge for those. So how many non-zero coeffients are there?
2331 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2332 return !Op->isZero();
2333 });
2334
2335 assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2336 assert(!(*std::prev(S->operands().end()))->isZero() &&
2337 "Last operand should not be zero");
2338
2339 // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2340 int NumNonZeroDegreeNonOneTerms =
2341 llvm::count_if(S->operands(), [](const SCEV *Op) {
2342 auto *SConst = dyn_cast<SCEVConstant>(Op);
2343 return !SConst || SConst->getAPInt().ugt(1);
2344 });
2345
2346 // Much like with normal add expr, the polynominal will require
2347 // one less addition than the number of it's terms.
2348 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2349 /*MinIdx*/ 1, /*MaxIdx*/ 1);
2350 // Here, *each* one of those will require a multiplication.
2351 InstructionCost MulCost =
2352 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2353 Cost = AddCost + MulCost;
2354
2355 // What is the degree of this polynominal?
2356 int PolyDegree = S->getNumOperands() - 1;
2357 assert(PolyDegree >= 1 && "Should be at least affine.");
2358
2359 // The final term will be:
2360 // Op_{PolyDegree} * x ^ {PolyDegree}
2361 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations.
2362 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for
2363 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free.
2364 // FIXME: this is conservatively correct, but might be overly pessimistic.
2365 Cost += MulCost * (PolyDegree - 1);
2366 break;
2367 }
2368 }
2369
2370 for (auto &CostOp : Operations) {
2371 for (auto SCEVOp : enumerate(S->operands())) {
2372 // Clamp the index to account for multiple IR operations being chained.
2373 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2374 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2375 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2376 }
2377 }
2378 return Cost;
2379 }
2380
isHighCostExpansionHelper(const SCEVOperand & WorkItem,Loop * L,const Instruction & At,InstructionCost & Cost,unsigned Budget,const TargetTransformInfo & TTI,SmallPtrSetImpl<const SCEV * > & Processed,SmallVectorImpl<SCEVOperand> & Worklist)2381 bool SCEVExpander::isHighCostExpansionHelper(
2382 const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2383 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2384 SmallPtrSetImpl<const SCEV *> &Processed,
2385 SmallVectorImpl<SCEVOperand> &Worklist) {
2386 if (Cost > Budget)
2387 return true; // Already run out of budget, give up.
2388
2389 const SCEV *S = WorkItem.S;
2390 // Was the cost of expansion of this expression already accounted for?
2391 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2392 return false; // We have already accounted for this expression.
2393
2394 // If we can find an existing value for this scev available at the point "At"
2395 // then consider the expression cheap.
2396 if (getRelatedExistingExpansion(S, &At, L))
2397 return false; // Consider the expression to be free.
2398
2399 TargetTransformInfo::TargetCostKind CostKind =
2400 L->getHeader()->getParent()->hasMinSize()
2401 ? TargetTransformInfo::TCK_CodeSize
2402 : TargetTransformInfo::TCK_RecipThroughput;
2403
2404 switch (S->getSCEVType()) {
2405 case scCouldNotCompute:
2406 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2407 case scUnknown:
2408 // Assume to be zero-cost.
2409 return false;
2410 case scConstant: {
2411 // Only evalulate the costs of constants when optimizing for size.
2412 if (CostKind != TargetTransformInfo::TCK_CodeSize)
2413 return 0;
2414 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2415 Type *Ty = S->getType();
2416 Cost += TTI.getIntImmCostInst(
2417 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2418 return Cost > Budget;
2419 }
2420 case scTruncate:
2421 case scPtrToInt:
2422 case scZeroExtend:
2423 case scSignExtend: {
2424 Cost +=
2425 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2426 return false; // Will answer upon next entry into this function.
2427 }
2428 case scUDivExpr: {
2429 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2430 // HowManyLessThans produced to compute a precise expression, rather than a
2431 // UDiv from the user's code. If we can't find a UDiv in the code with some
2432 // simple searching, we need to account for it's cost.
2433
2434 // At the beginning of this function we already tried to find existing
2435 // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2436 // pattern involving division. This is just a simple search heuristic.
2437 if (getRelatedExistingExpansion(
2438 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2439 return false; // Consider it to be free.
2440
2441 Cost +=
2442 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2443 return false; // Will answer upon next entry into this function.
2444 }
2445 case scAddExpr:
2446 case scMulExpr:
2447 case scUMaxExpr:
2448 case scSMaxExpr:
2449 case scUMinExpr:
2450 case scSMinExpr: {
2451 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2452 "Nary expr should have more than 1 operand.");
2453 // The simple nary expr will require one less op (or pair of ops)
2454 // than the number of it's terms.
2455 Cost +=
2456 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2457 return Cost > Budget;
2458 }
2459 case scAddRecExpr: {
2460 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2461 "Polynomial should be at least linear");
2462 Cost += costAndCollectOperands<SCEVAddRecExpr>(
2463 WorkItem, TTI, CostKind, Worklist);
2464 return Cost > Budget;
2465 }
2466 }
2467 llvm_unreachable("Unknown SCEV kind!");
2468 }
2469
expandCodeForPredicate(const SCEVPredicate * Pred,Instruction * IP)2470 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2471 Instruction *IP) {
2472 assert(IP);
2473 switch (Pred->getKind()) {
2474 case SCEVPredicate::P_Union:
2475 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2476 case SCEVPredicate::P_Equal:
2477 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2478 case SCEVPredicate::P_Wrap: {
2479 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2480 return expandWrapPredicate(AddRecPred, IP);
2481 }
2482 }
2483 llvm_unreachable("Unknown SCEV predicate type");
2484 }
2485
expandEqualPredicate(const SCEVEqualPredicate * Pred,Instruction * IP)2486 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2487 Instruction *IP) {
2488 Value *Expr0 =
2489 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2490 Value *Expr1 =
2491 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2492
2493 Builder.SetInsertPoint(IP);
2494 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2495 return I;
2496 }
2497
generateOverflowCheck(const SCEVAddRecExpr * AR,Instruction * Loc,bool Signed)2498 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2499 Instruction *Loc, bool Signed) {
2500 assert(AR->isAffine() && "Cannot generate RT check for "
2501 "non-affine expression");
2502
2503 SCEVUnionPredicate Pred;
2504 const SCEV *ExitCount =
2505 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2506
2507 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2508
2509 const SCEV *Step = AR->getStepRecurrence(SE);
2510 const SCEV *Start = AR->getStart();
2511
2512 Type *ARTy = AR->getType();
2513 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2514 unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2515
2516 // The expression {Start,+,Step} has nusw/nssw if
2517 // Step < 0, Start - |Step| * Backedge <= Start
2518 // Step >= 0, Start + |Step| * Backedge > Start
2519 // and |Step| * Backedge doesn't unsigned overflow.
2520
2521 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2522 Builder.SetInsertPoint(Loc);
2523 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2524
2525 IntegerType *Ty =
2526 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2527 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2528
2529 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2530 Value *NegStepValue =
2531 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2532 Value *StartValue = expandCodeForImpl(
2533 isa<PointerType>(ARExpandTy) ? Start
2534 : SE.getPtrToIntExpr(Start, ARExpandTy),
2535 ARExpandTy, Loc, false);
2536
2537 ConstantInt *Zero =
2538 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2539
2540 Builder.SetInsertPoint(Loc);
2541 // Compute |Step|
2542 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2543 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2544
2545 // Get the backedge taken count and truncate or extended to the AR type.
2546 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2547 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2548 Intrinsic::umul_with_overflow, Ty);
2549
2550 // Compute |Step| * Backedge
2551 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2552 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2553 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2554
2555 // Compute:
2556 // Start + |Step| * Backedge < Start
2557 // Start - |Step| * Backedge > Start
2558 Value *Add = nullptr, *Sub = nullptr;
2559 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2560 const SCEV *MulS = SE.getSCEV(MulV);
2561 const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2562 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2563 ARPtrTy);
2564 Sub = Builder.CreateBitCast(
2565 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2566 } else {
2567 Add = Builder.CreateAdd(StartValue, MulV);
2568 Sub = Builder.CreateSub(StartValue, MulV);
2569 }
2570
2571 Value *EndCompareGT = Builder.CreateICmp(
2572 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2573
2574 Value *EndCompareLT = Builder.CreateICmp(
2575 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2576
2577 // Select the answer based on the sign of Step.
2578 Value *EndCheck =
2579 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2580
2581 // If the backedge taken count type is larger than the AR type,
2582 // check that we don't drop any bits by truncating it. If we are
2583 // dropping bits, then we have overflow (unless the step is zero).
2584 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2585 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2586 auto *BackedgeCheck =
2587 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2588 ConstantInt::get(Loc->getContext(), MaxVal));
2589 BackedgeCheck = Builder.CreateAnd(
2590 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2591
2592 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2593 }
2594
2595 return Builder.CreateOr(EndCheck, OfMul);
2596 }
2597
expandWrapPredicate(const SCEVWrapPredicate * Pred,Instruction * IP)2598 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2599 Instruction *IP) {
2600 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2601 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2602
2603 // Add a check for NUSW
2604 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2605 NUSWCheck = generateOverflowCheck(A, IP, false);
2606
2607 // Add a check for NSSW
2608 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2609 NSSWCheck = generateOverflowCheck(A, IP, true);
2610
2611 if (NUSWCheck && NSSWCheck)
2612 return Builder.CreateOr(NUSWCheck, NSSWCheck);
2613
2614 if (NUSWCheck)
2615 return NUSWCheck;
2616
2617 if (NSSWCheck)
2618 return NSSWCheck;
2619
2620 return ConstantInt::getFalse(IP->getContext());
2621 }
2622
expandUnionPredicate(const SCEVUnionPredicate * Union,Instruction * IP)2623 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2624 Instruction *IP) {
2625 auto *BoolType = IntegerType::get(IP->getContext(), 1);
2626 Value *Check = ConstantInt::getNullValue(BoolType);
2627
2628 // Loop over all checks in this set.
2629 for (auto Pred : Union->getPredicates()) {
2630 auto *NextCheck = expandCodeForPredicate(Pred, IP);
2631 Builder.SetInsertPoint(IP);
2632 Check = Builder.CreateOr(Check, NextCheck);
2633 }
2634
2635 return Check;
2636 }
2637
fixupLCSSAFormFor(Instruction * User,unsigned OpIdx)2638 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2639 assert(PreserveLCSSA);
2640 SmallVector<Instruction *, 1> ToUpdate;
2641
2642 auto *OpV = User->getOperand(OpIdx);
2643 auto *OpI = dyn_cast<Instruction>(OpV);
2644 if (!OpI)
2645 return OpV;
2646
2647 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2648 Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2649 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2650 return OpV;
2651
2652 ToUpdate.push_back(OpI);
2653 SmallVector<PHINode *, 16> PHIsToRemove;
2654 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2655 for (PHINode *PN : PHIsToRemove) {
2656 if (!PN->use_empty())
2657 continue;
2658 InsertedValues.erase(PN);
2659 InsertedPostIncValues.erase(PN);
2660 PN->eraseFromParent();
2661 }
2662
2663 return User->getOperand(OpIdx);
2664 }
2665
2666 namespace {
2667 // Search for a SCEV subexpression that is not safe to expand. Any expression
2668 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2669 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2670 // instruction, but the important thing is that we prove the denominator is
2671 // nonzero before expansion.
2672 //
2673 // IVUsers already checks that IV-derived expressions are safe. So this check is
2674 // only needed when the expression includes some subexpression that is not IV
2675 // derived.
2676 //
2677 // Currently, we only allow division by a nonzero constant here. If this is
2678 // inadequate, we could easily allow division by SCEVUnknown by using
2679 // ValueTracking to check isKnownNonZero().
2680 //
2681 // We cannot generally expand recurrences unless the step dominates the loop
2682 // header. The expander handles the special case of affine recurrences by
2683 // scaling the recurrence outside the loop, but this technique isn't generally
2684 // applicable. Expanding a nested recurrence outside a loop requires computing
2685 // binomial coefficients. This could be done, but the recurrence has to be in a
2686 // perfectly reduced form, which can't be guaranteed.
2687 struct SCEVFindUnsafe {
2688 ScalarEvolution &SE;
2689 bool IsUnsafe;
2690
SCEVFindUnsafe__anonc82147a60f11::SCEVFindUnsafe2691 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2692
follow__anonc82147a60f11::SCEVFindUnsafe2693 bool follow(const SCEV *S) {
2694 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2695 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2696 if (!SC || SC->getValue()->isZero()) {
2697 IsUnsafe = true;
2698 return false;
2699 }
2700 }
2701 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2702 const SCEV *Step = AR->getStepRecurrence(SE);
2703 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2704 IsUnsafe = true;
2705 return false;
2706 }
2707 }
2708 return true;
2709 }
isDone__anonc82147a60f11::SCEVFindUnsafe2710 bool isDone() const { return IsUnsafe; }
2711 };
2712 }
2713
2714 namespace llvm {
isSafeToExpand(const SCEV * S,ScalarEvolution & SE)2715 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2716 SCEVFindUnsafe Search(SE);
2717 visitAll(S, Search);
2718 return !Search.IsUnsafe;
2719 }
2720
isSafeToExpandAt(const SCEV * S,const Instruction * InsertionPoint,ScalarEvolution & SE)2721 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2722 ScalarEvolution &SE) {
2723 if (!isSafeToExpand(S, SE))
2724 return false;
2725 // We have to prove that the expanded site of S dominates InsertionPoint.
2726 // This is easy when not in the same block, but hard when S is an instruction
2727 // to be expanded somewhere inside the same block as our insertion point.
2728 // What we really need here is something analogous to an OrderedBasicBlock,
2729 // but for the moment, we paper over the problem by handling two common and
2730 // cheap to check cases.
2731 if (SE.properlyDominates(S, InsertionPoint->getParent()))
2732 return true;
2733 if (SE.dominates(S, InsertionPoint->getParent())) {
2734 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2735 return true;
2736 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2737 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2738 return true;
2739 }
2740 return false;
2741 }
2742
cleanup()2743 void SCEVExpanderCleaner::cleanup() {
2744 // Result is used, nothing to remove.
2745 if (ResultUsed)
2746 return;
2747
2748 auto InsertedInstructions = Expander.getAllInsertedInstructions();
2749 #ifndef NDEBUG
2750 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2751 InsertedInstructions.end());
2752 (void)InsertedSet;
2753 #endif
2754 // Remove sets with value handles.
2755 Expander.clear();
2756
2757 // Sort so that earlier instructions do not dominate later instructions.
2758 stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2759 return DT.dominates(B, A);
2760 });
2761 // Remove all inserted instructions.
2762 for (Instruction *I : InsertedInstructions) {
2763
2764 #ifndef NDEBUG
2765 assert(all_of(I->users(),
2766 [&InsertedSet](Value *U) {
2767 return InsertedSet.contains(cast<Instruction>(U));
2768 }) &&
2769 "removed instruction should only be used by instructions inserted "
2770 "during expansion");
2771 #endif
2772 assert(!I->getType()->isVoidTy() &&
2773 "inserted instruction should have non-void types");
2774 I->replaceAllUsesWith(UndefValue::get(I->getType()));
2775 I->eraseFromParent();
2776 }
2777 }
2778 }
2779