1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 
17 #include "CodeGenIntrinsics.h"
18 #include "CodeGenTarget.h"
19 #include "SDNodeProperties.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <array>
28 #include <functional>
29 #include <map>
30 #include <numeric>
31 #include <set>
32 #include <vector>
33 
34 namespace llvm {
35 
36 class Record;
37 class Init;
38 class ListInit;
39 class DagInit;
40 class SDNodeInfo;
41 class TreePattern;
42 class TreePatternNode;
43 class CodeGenDAGPatterns;
44 
45 /// Shared pointer for TreePatternNode.
46 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
47 
48 /// This represents a set of MVTs. Since the underlying type for the MVT
49 /// is uint8_t, there are at most 256 values. To reduce the number of memory
50 /// allocations and deallocations, represent the set as a sequence of bits.
51 /// To reduce the allocations even further, make MachineValueTypeSet own
52 /// the storage and use std::array as the bit container.
53 struct MachineValueTypeSet {
54   static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
55                              uint8_t>::value,
56                 "Change uint8_t here to the SimpleValueType's type");
57   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
58   using WordType = uint64_t;
59   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
60   static unsigned constexpr NumWords = Capacity/WordWidth;
61   static_assert(NumWords*WordWidth == Capacity,
62                 "Capacity should be a multiple of WordWidth");
63 
64   LLVM_ATTRIBUTE_ALWAYS_INLINE
MachineValueTypeSetMachineValueTypeSet65   MachineValueTypeSet() {
66     clear();
67   }
68 
69   LLVM_ATTRIBUTE_ALWAYS_INLINE
sizeMachineValueTypeSet70   unsigned size() const {
71     unsigned Count = 0;
72     for (WordType W : Words)
73       Count += countPopulation(W);
74     return Count;
75   }
76   LLVM_ATTRIBUTE_ALWAYS_INLINE
clearMachineValueTypeSet77   void clear() {
78     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
79   }
80   LLVM_ATTRIBUTE_ALWAYS_INLINE
emptyMachineValueTypeSet81   bool empty() const {
82     for (WordType W : Words)
83       if (W != 0)
84         return false;
85     return true;
86   }
87   LLVM_ATTRIBUTE_ALWAYS_INLINE
countMachineValueTypeSet88   unsigned count(MVT T) const {
89     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
90   }
insertMachineValueTypeSet91   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
92     bool V = count(T.SimpleTy);
93     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
94     return {*this, V};
95   }
insertMachineValueTypeSet96   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
97     for (unsigned i = 0; i != NumWords; ++i)
98       Words[i] |= S.Words[i];
99     return *this;
100   }
101   LLVM_ATTRIBUTE_ALWAYS_INLINE
eraseMachineValueTypeSet102   void erase(MVT T) {
103     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
104   }
105 
106   struct const_iterator {
107     // Some implementations of the C++ library require these traits to be
108     // defined.
109     using iterator_category = std::forward_iterator_tag;
110     using value_type = MVT;
111     using difference_type = ptrdiff_t;
112     using pointer = const MVT*;
113     using reference = const MVT&;
114 
115     LLVM_ATTRIBUTE_ALWAYS_INLINE
116     MVT operator*() const {
117       assert(Pos != Capacity);
118       return MVT::SimpleValueType(Pos);
119     }
120     LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iteratorMachineValueTypeSet::const_iterator121     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
122       Pos = End ? Capacity : find_from_pos(0);
123     }
124     LLVM_ATTRIBUTE_ALWAYS_INLINE
125     const_iterator &operator++() {
126       assert(Pos != Capacity);
127       Pos = find_from_pos(Pos+1);
128       return *this;
129     }
130 
131     LLVM_ATTRIBUTE_ALWAYS_INLINE
132     bool operator==(const const_iterator &It) const {
133       return Set == It.Set && Pos == It.Pos;
134     }
135     LLVM_ATTRIBUTE_ALWAYS_INLINE
136     bool operator!=(const const_iterator &It) const {
137       return !operator==(It);
138     }
139 
140   private:
find_from_posMachineValueTypeSet::const_iterator141     unsigned find_from_pos(unsigned P) const {
142       unsigned SkipWords = P / WordWidth;
143       unsigned SkipBits = P % WordWidth;
144       unsigned Count = SkipWords * WordWidth;
145 
146       // If P is in the middle of a word, process it manually here, because
147       // the trailing bits need to be masked off to use findFirstSet.
148       if (SkipBits != 0) {
149         WordType W = Set->Words[SkipWords];
150         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
151         if (W != 0)
152           return Count + findFirstSet(W);
153         Count += WordWidth;
154         SkipWords++;
155       }
156 
157       for (unsigned i = SkipWords; i != NumWords; ++i) {
158         WordType W = Set->Words[i];
159         if (W != 0)
160           return Count + findFirstSet(W);
161         Count += WordWidth;
162       }
163       return Capacity;
164     }
165 
166     const MachineValueTypeSet *Set;
167     unsigned Pos;
168   };
169 
170   LLVM_ATTRIBUTE_ALWAYS_INLINE
beginMachineValueTypeSet171   const_iterator begin() const { return const_iterator(this, false); }
172   LLVM_ATTRIBUTE_ALWAYS_INLINE
endMachineValueTypeSet173   const_iterator end()   const { return const_iterator(this, true); }
174 
175   LLVM_ATTRIBUTE_ALWAYS_INLINE
176   bool operator==(const MachineValueTypeSet &S) const {
177     return Words == S.Words;
178   }
179   LLVM_ATTRIBUTE_ALWAYS_INLINE
180   bool operator!=(const MachineValueTypeSet &S) const {
181     return !operator==(S);
182   }
183 
184 private:
185   friend struct const_iterator;
186   std::array<WordType,NumWords> Words;
187 };
188 
189 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
190   using SetType = MachineValueTypeSet;
191   SmallVector<unsigned, 16> AddrSpaces;
192 
193   TypeSetByHwMode() = default;
194   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
195   TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
TypeSetByHwModeTypeSetByHwMode196   TypeSetByHwMode(MVT::SimpleValueType VT)
197     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
TypeSetByHwModeTypeSetByHwMode198   TypeSetByHwMode(ValueTypeByHwMode VT)
199     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
200   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
201 
getOrCreateTypeSetByHwMode202   SetType &getOrCreate(unsigned Mode) {
203     return Map[Mode];
204   }
205 
206   bool isValueTypeByHwMode(bool AllowEmpty) const;
207   ValueTypeByHwMode getValueTypeByHwMode() const;
208 
209   LLVM_ATTRIBUTE_ALWAYS_INLINE
isMachineValueTypeTypeSetByHwMode210   bool isMachineValueType() const {
211     return isDefaultOnly() && Map.begin()->second.size() == 1;
212   }
213 
214   LLVM_ATTRIBUTE_ALWAYS_INLINE
getMachineValueTypeTypeSetByHwMode215   MVT getMachineValueType() const {
216     assert(isMachineValueType());
217     return *Map.begin()->second.begin();
218   }
219 
220   bool isPossible() const;
221 
222   LLVM_ATTRIBUTE_ALWAYS_INLINE
isDefaultOnlyTypeSetByHwMode223   bool isDefaultOnly() const {
224     return Map.size() == 1 && Map.begin()->first == DefaultMode;
225   }
226 
isPointerTypeSetByHwMode227   bool isPointer() const {
228     return getValueTypeByHwMode().isPointer();
229   }
230 
getPtrAddrSpaceTypeSetByHwMode231   unsigned getPtrAddrSpace() const {
232     assert(isPointer());
233     return getValueTypeByHwMode().PtrAddrSpace;
234   }
235 
236   bool insert(const ValueTypeByHwMode &VVT);
237   bool constrain(const TypeSetByHwMode &VTS);
238   template <typename Predicate> bool constrain(Predicate P);
239   template <typename Predicate>
240   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
241 
242   void writeToStream(raw_ostream &OS) const;
243   static void writeToStream(const SetType &S, raw_ostream &OS);
244 
245   bool operator==(const TypeSetByHwMode &VTS) const;
246   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
247 
248   void dump() const;
249   bool validate() const;
250 
251 private:
252   unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
253   /// Intersect two sets. Return true if anything has changed.
254   bool intersect(SetType &Out, const SetType &In);
255 };
256 
257 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
258 
259 struct TypeInfer {
TypeInferTypeInfer260   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
261 
isConcreteTypeInfer262   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
263     return VTS.isValueTypeByHwMode(AllowEmpty);
264   }
getConcreteTypeInfer265   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
266                                 bool AllowEmpty) const {
267     assert(VTS.isValueTypeByHwMode(AllowEmpty));
268     return VTS.getValueTypeByHwMode();
269   }
270 
271   /// The protocol in the following functions (Merge*, force*, Enforce*,
272   /// expand*) is to return "true" if a change has been made, "false"
273   /// otherwise.
274 
275   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
MergeInTypeInfoTypeInfer276   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
277     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
278   }
MergeInTypeInfoTypeInfer279   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
280     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
281   }
282 
283   /// Reduce the set \p Out to have at most one element for each mode.
284   bool forceArbitrary(TypeSetByHwMode &Out);
285 
286   /// The following four functions ensure that upon return the set \p Out
287   /// will only contain types of the specified kind: integer, floating-point,
288   /// scalar, or vector.
289   /// If \p Out is empty, all legal types of the specified kind will be added
290   /// to it. Otherwise, all types that are not of the specified kind will be
291   /// removed from \p Out.
292   bool EnforceInteger(TypeSetByHwMode &Out);
293   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
294   bool EnforceScalar(TypeSetByHwMode &Out);
295   bool EnforceVector(TypeSetByHwMode &Out);
296 
297   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
298   /// unchanged.
299   bool EnforceAny(TypeSetByHwMode &Out);
300   /// Make sure that for each type in \p Small, there exists a larger type
301   /// in \p Big.
302   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
303   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
304   ///    for each type U in \p Elem, U is a scalar type.
305   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
306   ///    (vector) type T in \p Vec, such that U is the element type of T.
307   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
308   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
309                               const ValueTypeByHwMode &VVT);
310   /// Ensure that for each type T in \p Sub, T is a vector type, and there
311   /// exists a type U in \p Vec such that U is a vector type with the same
312   /// element type as T and at least as many elements as T.
313   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
314                                     TypeSetByHwMode &Sub);
315   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
316   /// 2. Ensure that for each vector type T in \p V, there exists a vector
317   ///    type U in \p W, such that T and U have the same number of elements.
318   /// 3. Ensure that for each vector type U in \p W, there exists a vector
319   ///    type T in \p V, such that T and U have the same number of elements
320   ///    (reverse of 2).
321   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
322   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
323   ///    such that T and U have equal size in bits.
324   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
325   ///    such that T and U have equal size in bits (reverse of 1).
326   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
327 
328   /// For each overloaded type (i.e. of form *Any), replace it with the
329   /// corresponding subset of legal, specific types.
330   void expandOverloads(TypeSetByHwMode &VTS);
331   void expandOverloads(TypeSetByHwMode::SetType &Out,
332                        const TypeSetByHwMode::SetType &Legal);
333 
334   struct ValidateOnExit {
ValidateOnExitTypeInfer::ValidateOnExit335     ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
336   #ifndef NDEBUG
337     ~ValidateOnExit();
338   #else
~ValidateOnExitTypeInfer::ValidateOnExit339     ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
340   #endif
341     TypeInfer &Infer;
342     TypeSetByHwMode &VTS;
343   };
344 
345   struct SuppressValidation {
SuppressValidationTypeInfer::SuppressValidation346     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
347       Infer.Validate = false;
348     }
~SuppressValidationTypeInfer::SuppressValidation349     ~SuppressValidation() {
350       Infer.Validate = SavedValidate;
351     }
352     TypeInfer &Infer;
353     bool SavedValidate;
354   };
355 
356   TreePattern &TP;
357   unsigned ForceMode;     // Mode to use when set.
358   bool CodeGen = false;   // Set during generation of matcher code.
359   bool Validate = true;   // Indicate whether to validate types.
360 
361 private:
362   const TypeSetByHwMode &getLegalTypes();
363 
364   /// Cached legal types (in default mode).
365   bool LegalTypesCached = false;
366   TypeSetByHwMode LegalCache;
367 };
368 
369 /// Set type used to track multiply used variables in patterns
370 typedef StringSet<> MultipleUseVarSet;
371 
372 /// SDTypeConstraint - This is a discriminated union of constraints,
373 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
374 struct SDTypeConstraint {
375   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
376 
377   unsigned OperandNo;   // The operand # this constraint applies to.
378   enum {
379     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
380     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
381     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
382   } ConstraintType;
383 
384   union {   // The discriminated union.
385     struct {
386       unsigned OtherOperandNum;
387     } SDTCisSameAs_Info;
388     struct {
389       unsigned OtherOperandNum;
390     } SDTCisVTSmallerThanOp_Info;
391     struct {
392       unsigned BigOperandNum;
393     } SDTCisOpSmallerThanOp_Info;
394     struct {
395       unsigned OtherOperandNum;
396     } SDTCisEltOfVec_Info;
397     struct {
398       unsigned OtherOperandNum;
399     } SDTCisSubVecOfVec_Info;
400     struct {
401       unsigned OtherOperandNum;
402     } SDTCisSameNumEltsAs_Info;
403     struct {
404       unsigned OtherOperandNum;
405     } SDTCisSameSizeAs_Info;
406   } x;
407 
408   // The VT for SDTCisVT and SDTCVecEltisVT.
409   // Must not be in the union because it has a non-trivial destructor.
410   ValueTypeByHwMode VVT;
411 
412   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
413   /// constraint to the nodes operands.  This returns true if it makes a
414   /// change, false otherwise.  If a type contradiction is found, an error
415   /// is flagged.
416   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
417                            TreePattern &TP) const;
418 };
419 
420 /// ScopedName - A name of a node associated with a "scope" that indicates
421 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
422 /// used. This enables substitution of pattern fragments while keeping track
423 /// of what name(s) were originally given to various nodes in the tree.
424 class ScopedName {
425   unsigned Scope;
426   std::string Identifier;
427 public:
ScopedName(unsigned Scope,StringRef Identifier)428   ScopedName(unsigned Scope, StringRef Identifier)
429       : Scope(Scope), Identifier(std::string(Identifier)) {
430     assert(Scope != 0 &&
431            "Scope == 0 is used to indicate predicates without arguments");
432   }
433 
getScope()434   unsigned getScope() const { return Scope; }
getIdentifier()435   const std::string &getIdentifier() const { return Identifier; }
436 
437   bool operator==(const ScopedName &o) const;
438   bool operator!=(const ScopedName &o) const;
439 };
440 
441 /// SDNodeInfo - One of these records is created for each SDNode instance in
442 /// the target .td file.  This represents the various dag nodes we will be
443 /// processing.
444 class SDNodeInfo {
445   Record *Def;
446   StringRef EnumName;
447   StringRef SDClassName;
448   unsigned Properties;
449   unsigned NumResults;
450   int NumOperands;
451   std::vector<SDTypeConstraint> TypeConstraints;
452 public:
453   // Parse the specified record.
454   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
455 
getNumResults()456   unsigned getNumResults() const { return NumResults; }
457 
458   /// getNumOperands - This is the number of operands required or -1 if
459   /// variadic.
getNumOperands()460   int getNumOperands() const { return NumOperands; }
getRecord()461   Record *getRecord() const { return Def; }
getEnumName()462   StringRef getEnumName() const { return EnumName; }
getSDClassName()463   StringRef getSDClassName() const { return SDClassName; }
464 
getTypeConstraints()465   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
466     return TypeConstraints;
467   }
468 
469   /// getKnownType - If the type constraints on this node imply a fixed type
470   /// (e.g. all stores return void, etc), then return it as an
471   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
472   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
473 
474   /// hasProperty - Return true if this node has the specified property.
475   ///
hasProperty(enum SDNP Prop)476   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
477 
478   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
479   /// constraints for this node to the operands of the node.  This returns
480   /// true if it makes a change, false otherwise.  If a type contradiction is
481   /// found, an error is flagged.
482   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
483 };
484 
485 /// TreePredicateFn - This is an abstraction that represents the predicates on
486 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
487 /// provide nice accessors.
488 class TreePredicateFn {
489   /// PatFragRec - This is the TreePattern for the PatFrag that we
490   /// originally came from.
491   TreePattern *PatFragRec;
492 public:
493   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
494   TreePredicateFn(TreePattern *N);
495 
496 
getOrigPatFragRecord()497   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
498 
499   /// isAlwaysTrue - Return true if this is a noop predicate.
500   bool isAlwaysTrue() const;
501 
isImmediatePattern()502   bool isImmediatePattern() const { return hasImmCode(); }
503 
504   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
505   /// this is an immediate predicate.  It is an error to call this on a
506   /// non-immediate pattern.
getImmediatePredicateCode()507   std::string getImmediatePredicateCode() const {
508     std::string Result = getImmCode();
509     assert(!Result.empty() && "Isn't an immediate pattern!");
510     return Result;
511   }
512 
513   bool operator==(const TreePredicateFn &RHS) const {
514     return PatFragRec == RHS.PatFragRec;
515   }
516 
517   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
518 
519   /// Return the name to use in the generated code to reference this, this is
520   /// "Predicate_foo" if from a pattern fragment "foo".
521   std::string getFnName() const;
522 
523   /// getCodeToRunOnSDNode - Return the code for the function body that
524   /// evaluates this predicate.  The argument is expected to be in "Node",
525   /// not N.  This handles casting and conversion to a concrete node type as
526   /// appropriate.
527   std::string getCodeToRunOnSDNode() const;
528 
529   /// Get the data type of the argument to getImmediatePredicateCode().
530   StringRef getImmType() const;
531 
532   /// Get a string that describes the type returned by getImmType() but is
533   /// usable as part of an identifier.
534   StringRef getImmTypeIdentifier() const;
535 
536   // Predicate code uses the PatFrag's captured operands.
537   bool usesOperands() const;
538 
539   // Is the desired predefined predicate for a load?
540   bool isLoad() const;
541   // Is the desired predefined predicate for a store?
542   bool isStore() const;
543   // Is the desired predefined predicate for an atomic?
544   bool isAtomic() const;
545 
546   /// Is this predicate the predefined unindexed load predicate?
547   /// Is this predicate the predefined unindexed store predicate?
548   bool isUnindexed() const;
549   /// Is this predicate the predefined non-extending load predicate?
550   bool isNonExtLoad() const;
551   /// Is this predicate the predefined any-extend load predicate?
552   bool isAnyExtLoad() const;
553   /// Is this predicate the predefined sign-extend load predicate?
554   bool isSignExtLoad() const;
555   /// Is this predicate the predefined zero-extend load predicate?
556   bool isZeroExtLoad() const;
557   /// Is this predicate the predefined non-truncating store predicate?
558   bool isNonTruncStore() const;
559   /// Is this predicate the predefined truncating store predicate?
560   bool isTruncStore() const;
561 
562   /// Is this predicate the predefined monotonic atomic predicate?
563   bool isAtomicOrderingMonotonic() const;
564   /// Is this predicate the predefined acquire atomic predicate?
565   bool isAtomicOrderingAcquire() const;
566   /// Is this predicate the predefined release atomic predicate?
567   bool isAtomicOrderingRelease() const;
568   /// Is this predicate the predefined acquire-release atomic predicate?
569   bool isAtomicOrderingAcquireRelease() const;
570   /// Is this predicate the predefined sequentially consistent atomic predicate?
571   bool isAtomicOrderingSequentiallyConsistent() const;
572 
573   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
574   bool isAtomicOrderingAcquireOrStronger() const;
575   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
576   bool isAtomicOrderingWeakerThanAcquire() const;
577 
578   /// Is this predicate the predefined release-or-stronger atomic predicate?
579   bool isAtomicOrderingReleaseOrStronger() const;
580   /// Is this predicate the predefined weaker-than-release atomic predicate?
581   bool isAtomicOrderingWeakerThanRelease() const;
582 
583   /// If non-null, indicates that this predicate is a predefined memory VT
584   /// predicate for a load/store and returns the ValueType record for the memory VT.
585   Record *getMemoryVT() const;
586   /// If non-null, indicates that this predicate is a predefined memory VT
587   /// predicate (checking only the scalar type) for load/store and returns the
588   /// ValueType record for the memory VT.
589   Record *getScalarMemoryVT() const;
590 
591   ListInit *getAddressSpaces() const;
592   int64_t getMinAlignment() const;
593 
594   // If true, indicates that GlobalISel-based C++ code was supplied.
595   bool hasGISelPredicateCode() const;
596   std::string getGISelPredicateCode() const;
597 
598 private:
599   bool hasPredCode() const;
600   bool hasImmCode() const;
601   std::string getPredCode() const;
602   std::string getImmCode() const;
603   bool immCodeUsesAPInt() const;
604   bool immCodeUsesAPFloat() const;
605 
606   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
607 };
608 
609 struct TreePredicateCall {
610   TreePredicateFn Fn;
611 
612   // Scope -- unique identifier for retrieving named arguments. 0 is used when
613   // the predicate does not use named arguments.
614   unsigned Scope;
615 
TreePredicateCallTreePredicateCall616   TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
617     : Fn(Fn), Scope(Scope) {}
618 
619   bool operator==(const TreePredicateCall &o) const {
620     return Fn == o.Fn && Scope == o.Scope;
621   }
622   bool operator!=(const TreePredicateCall &o) const {
623     return !(*this == o);
624   }
625 };
626 
627 class TreePatternNode {
628   /// The type of each node result.  Before and during type inference, each
629   /// result may be a set of possible types.  After (successful) type inference,
630   /// each is a single concrete type.
631   std::vector<TypeSetByHwMode> Types;
632 
633   /// The index of each result in results of the pattern.
634   std::vector<unsigned> ResultPerm;
635 
636   /// Operator - The Record for the operator if this is an interior node (not
637   /// a leaf).
638   Record *Operator;
639 
640   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
641   ///
642   Init *Val;
643 
644   /// Name - The name given to this node with the :$foo notation.
645   ///
646   std::string Name;
647 
648   std::vector<ScopedName> NamesAsPredicateArg;
649 
650   /// PredicateCalls - The predicate functions to execute on this node to check
651   /// for a match.  If this list is empty, no predicate is involved.
652   std::vector<TreePredicateCall> PredicateCalls;
653 
654   /// TransformFn - The transformation function to execute on this node before
655   /// it can be substituted into the resulting instruction on a pattern match.
656   Record *TransformFn;
657 
658   std::vector<TreePatternNodePtr> Children;
659 
660 public:
TreePatternNode(Record * Op,std::vector<TreePatternNodePtr> Ch,unsigned NumResults)661   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
662                   unsigned NumResults)
663       : Operator(Op), Val(nullptr), TransformFn(nullptr),
664         Children(std::move(Ch)) {
665     Types.resize(NumResults);
666     ResultPerm.resize(NumResults);
667     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
668   }
TreePatternNode(Init * val,unsigned NumResults)669   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
670     : Operator(nullptr), Val(val), TransformFn(nullptr) {
671     Types.resize(NumResults);
672     ResultPerm.resize(NumResults);
673     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
674   }
675 
hasName()676   bool hasName() const { return !Name.empty(); }
getName()677   const std::string &getName() const { return Name; }
setName(StringRef N)678   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
679 
getNamesAsPredicateArg()680   const std::vector<ScopedName> &getNamesAsPredicateArg() const {
681     return NamesAsPredicateArg;
682   }
setNamesAsPredicateArg(const std::vector<ScopedName> & Names)683   void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
684     NamesAsPredicateArg = Names;
685   }
addNameAsPredicateArg(const ScopedName & N)686   void addNameAsPredicateArg(const ScopedName &N) {
687     NamesAsPredicateArg.push_back(N);
688   }
689 
isLeaf()690   bool isLeaf() const { return Val != nullptr; }
691 
692   // Type accessors.
getNumTypes()693   unsigned getNumTypes() const { return Types.size(); }
getType(unsigned ResNo)694   ValueTypeByHwMode getType(unsigned ResNo) const {
695     return Types[ResNo].getValueTypeByHwMode();
696   }
getExtTypes()697   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
getExtType(unsigned ResNo)698   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
699     return Types[ResNo];
700   }
getExtType(unsigned ResNo)701   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
setType(unsigned ResNo,const TypeSetByHwMode & T)702   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
getSimpleType(unsigned ResNo)703   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
704     return Types[ResNo].getMachineValueType().SimpleTy;
705   }
706 
hasConcreteType(unsigned ResNo)707   bool hasConcreteType(unsigned ResNo) const {
708     return Types[ResNo].isValueTypeByHwMode(false);
709   }
isTypeCompletelyUnknown(unsigned ResNo,TreePattern & TP)710   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
711     return Types[ResNo].empty();
712   }
713 
getNumResults()714   unsigned getNumResults() const { return ResultPerm.size(); }
getResultIndex(unsigned ResNo)715   unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
setResultIndex(unsigned ResNo,unsigned RI)716   void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
717 
getLeafValue()718   Init *getLeafValue() const { assert(isLeaf()); return Val; }
getOperator()719   Record *getOperator() const { assert(!isLeaf()); return Operator; }
720 
getNumChildren()721   unsigned getNumChildren() const { return Children.size(); }
getChild(unsigned N)722   TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
getChildShared(unsigned N)723   const TreePatternNodePtr &getChildShared(unsigned N) const {
724     return Children[N];
725   }
setChild(unsigned i,TreePatternNodePtr N)726   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
727 
728   /// hasChild - Return true if N is any of our children.
hasChild(const TreePatternNode * N)729   bool hasChild(const TreePatternNode *N) const {
730     for (unsigned i = 0, e = Children.size(); i != e; ++i)
731       if (Children[i].get() == N)
732         return true;
733     return false;
734   }
735 
736   bool hasProperTypeByHwMode() const;
737   bool hasPossibleType() const;
738   bool setDefaultMode(unsigned Mode);
739 
hasAnyPredicate()740   bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
741 
getPredicateCalls()742   const std::vector<TreePredicateCall> &getPredicateCalls() const {
743     return PredicateCalls;
744   }
clearPredicateCalls()745   void clearPredicateCalls() { PredicateCalls.clear(); }
setPredicateCalls(const std::vector<TreePredicateCall> & Calls)746   void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
747     assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
748     PredicateCalls = Calls;
749   }
addPredicateCall(const TreePredicateCall & Call)750   void addPredicateCall(const TreePredicateCall &Call) {
751     assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
752     assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
753     PredicateCalls.push_back(Call);
754   }
addPredicateCall(const TreePredicateFn & Fn,unsigned Scope)755   void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
756     assert((Scope != 0) == Fn.usesOperands());
757     addPredicateCall(TreePredicateCall(Fn, Scope));
758   }
759 
getTransformFn()760   Record *getTransformFn() const { return TransformFn; }
setTransformFn(Record * Fn)761   void setTransformFn(Record *Fn) { TransformFn = Fn; }
762 
763   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
764   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
765   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
766 
767   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
768   /// return the ComplexPattern information, otherwise return null.
769   const ComplexPattern *
770   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
771 
772   /// Returns the number of MachineInstr operands that would be produced by this
773   /// node if it mapped directly to an output Instruction's
774   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
775   /// for Operands; otherwise 1.
776   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
777 
778   /// NodeHasProperty - Return true if this node has the specified property.
779   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
780 
781   /// TreeHasProperty - Return true if any node in this tree has the specified
782   /// property.
783   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
784 
785   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
786   /// marked isCommutative.
787   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
788 
789   void print(raw_ostream &OS) const;
790   void dump() const;
791 
792 public:   // Higher level manipulation routines.
793 
794   /// clone - Return a new copy of this tree.
795   ///
796   TreePatternNodePtr clone() const;
797 
798   /// RemoveAllTypes - Recursively strip all the types of this tree.
799   void RemoveAllTypes();
800 
801   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
802   /// the specified node.  For this comparison, all of the state of the node
803   /// is considered, except for the assigned name.  Nodes with differing names
804   /// that are otherwise identical are considered isomorphic.
805   bool isIsomorphicTo(const TreePatternNode *N,
806                       const MultipleUseVarSet &DepVars) const;
807 
808   /// SubstituteFormalArguments - Replace the formal arguments in this tree
809   /// with actual values specified by ArgMap.
810   void
811   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
812 
813   /// InlinePatternFragments - If this pattern refers to any pattern
814   /// fragments, return the set of inlined versions (this can be more than
815   /// one if a PatFrags record has multiple alternatives).
816   void InlinePatternFragments(TreePatternNodePtr T,
817                               TreePattern &TP,
818                               std::vector<TreePatternNodePtr> &OutAlternatives);
819 
820   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
821   /// this node and its children in the tree.  This returns true if it makes a
822   /// change, false otherwise.  If a type contradiction is found, flag an error.
823   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
824 
825   /// UpdateNodeType - Set the node type of N to VT if VT contains
826   /// information.  If N already contains a conflicting type, then flag an
827   /// error.  This returns true if any information was updated.
828   ///
829   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
830                       TreePattern &TP);
831   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
832                       TreePattern &TP);
833   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
834                       TreePattern &TP);
835 
836   // Update node type with types inferred from an instruction operand or result
837   // def from the ins/outs lists.
838   // Return true if the type changed.
839   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
840 
841   /// ContainsUnresolvedType - Return true if this tree contains any
842   /// unresolved types.
843   bool ContainsUnresolvedType(TreePattern &TP) const;
844 
845   /// canPatternMatch - If it is impossible for this pattern to match on this
846   /// target, fill in Reason and return false.  Otherwise, return true.
847   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
848 };
849 
850 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
851   TPN.print(OS);
852   return OS;
853 }
854 
855 
856 /// TreePattern - Represent a pattern, used for instructions, pattern
857 /// fragments, etc.
858 ///
859 class TreePattern {
860   /// Trees - The list of pattern trees which corresponds to this pattern.
861   /// Note that PatFrag's only have a single tree.
862   ///
863   std::vector<TreePatternNodePtr> Trees;
864 
865   /// NamedNodes - This is all of the nodes that have names in the trees in this
866   /// pattern.
867   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
868 
869   /// TheRecord - The actual TableGen record corresponding to this pattern.
870   ///
871   Record *TheRecord;
872 
873   /// Args - This is a list of all of the arguments to this pattern (for
874   /// PatFrag patterns), which are the 'node' markers in this pattern.
875   std::vector<std::string> Args;
876 
877   /// CDP - the top-level object coordinating this madness.
878   ///
879   CodeGenDAGPatterns &CDP;
880 
881   /// isInputPattern - True if this is an input pattern, something to match.
882   /// False if this is an output pattern, something to emit.
883   bool isInputPattern;
884 
885   /// hasError - True if the currently processed nodes have unresolvable types
886   /// or other non-fatal errors
887   bool HasError;
888 
889   /// It's important that the usage of operands in ComplexPatterns is
890   /// consistent: each named operand can be defined by at most one
891   /// ComplexPattern. This records the ComplexPattern instance and the operand
892   /// number for each operand encountered in a ComplexPattern to aid in that
893   /// check.
894   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
895 
896   TypeInfer Infer;
897 
898 public:
899 
900   /// TreePattern constructor - Parse the specified DagInits into the
901   /// current record.
902   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
903               CodeGenDAGPatterns &ise);
904   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
905               CodeGenDAGPatterns &ise);
906   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
907               CodeGenDAGPatterns &ise);
908 
909   /// getTrees - Return the tree patterns which corresponds to this pattern.
910   ///
getTrees()911   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
getNumTrees()912   unsigned getNumTrees() const { return Trees.size(); }
getTree(unsigned i)913   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
setTree(unsigned i,TreePatternNodePtr Tree)914   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
getOnlyTree()915   const TreePatternNodePtr &getOnlyTree() const {
916     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
917     return Trees[0];
918   }
919 
getNamedNodesMap()920   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
921     if (NamedNodes.empty())
922       ComputeNamedNodes();
923     return NamedNodes;
924   }
925 
926   /// getRecord - Return the actual TableGen record corresponding to this
927   /// pattern.
928   ///
getRecord()929   Record *getRecord() const { return TheRecord; }
930 
getNumArgs()931   unsigned getNumArgs() const { return Args.size(); }
getArgName(unsigned i)932   const std::string &getArgName(unsigned i) const {
933     assert(i < Args.size() && "Argument reference out of range!");
934     return Args[i];
935   }
getArgList()936   std::vector<std::string> &getArgList() { return Args; }
937 
getDAGPatterns()938   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
939 
940   /// InlinePatternFragments - If this pattern refers to any pattern
941   /// fragments, inline them into place, giving us a pattern without any
942   /// PatFrags references.  This may increase the number of trees in the
943   /// pattern if a PatFrags has multiple alternatives.
InlinePatternFragments()944   void InlinePatternFragments() {
945     std::vector<TreePatternNodePtr> Copy = Trees;
946     Trees.clear();
947     for (unsigned i = 0, e = Copy.size(); i != e; ++i)
948       Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
949   }
950 
951   /// InferAllTypes - Infer/propagate as many types throughout the expression
952   /// patterns as possible.  Return true if all types are inferred, false
953   /// otherwise.  Bail out if a type contradiction is found.
954   bool InferAllTypes(
955       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
956 
957   /// error - If this is the first error in the current resolution step,
958   /// print it and set the error flag.  Otherwise, continue silently.
959   void error(const Twine &Msg);
hasError()960   bool hasError() const {
961     return HasError;
962   }
resetError()963   void resetError() {
964     HasError = false;
965   }
966 
getInfer()967   TypeInfer &getInfer() { return Infer; }
968 
969   void print(raw_ostream &OS) const;
970   void dump() const;
971 
972 private:
973   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
974   void ComputeNamedNodes();
975   void ComputeNamedNodes(TreePatternNode *N);
976 };
977 
978 
UpdateNodeType(unsigned ResNo,const TypeSetByHwMode & InTy,TreePattern & TP)979 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
980                                             const TypeSetByHwMode &InTy,
981                                             TreePattern &TP) {
982   TypeSetByHwMode VTS(InTy);
983   TP.getInfer().expandOverloads(VTS);
984   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
985 }
986 
UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)987 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
988                                             MVT::SimpleValueType InTy,
989                                             TreePattern &TP) {
990   TypeSetByHwMode VTS(InTy);
991   TP.getInfer().expandOverloads(VTS);
992   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
993 }
994 
UpdateNodeType(unsigned ResNo,ValueTypeByHwMode InTy,TreePattern & TP)995 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
996                                             ValueTypeByHwMode InTy,
997                                             TreePattern &TP) {
998   TypeSetByHwMode VTS(InTy);
999   TP.getInfer().expandOverloads(VTS);
1000   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1001 }
1002 
1003 
1004 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1005 /// that has a set ExecuteAlways / DefaultOps field.
1006 struct DAGDefaultOperand {
1007   std::vector<TreePatternNodePtr> DefaultOps;
1008 };
1009 
1010 class DAGInstruction {
1011   std::vector<Record*> Results;
1012   std::vector<Record*> Operands;
1013   std::vector<Record*> ImpResults;
1014   TreePatternNodePtr SrcPattern;
1015   TreePatternNodePtr ResultPattern;
1016 
1017 public:
1018   DAGInstruction(const std::vector<Record*> &results,
1019                  const std::vector<Record*> &operands,
1020                  const std::vector<Record*> &impresults,
1021                  TreePatternNodePtr srcpattern = nullptr,
1022                  TreePatternNodePtr resultpattern = nullptr)
Results(results)1023     : Results(results), Operands(operands), ImpResults(impresults),
1024       SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1025 
getNumResults()1026   unsigned getNumResults() const { return Results.size(); }
getNumOperands()1027   unsigned getNumOperands() const { return Operands.size(); }
getNumImpResults()1028   unsigned getNumImpResults() const { return ImpResults.size(); }
getImpResults()1029   const std::vector<Record*>& getImpResults() const { return ImpResults; }
1030 
getResult(unsigned RN)1031   Record *getResult(unsigned RN) const {
1032     assert(RN < Results.size());
1033     return Results[RN];
1034   }
1035 
getOperand(unsigned ON)1036   Record *getOperand(unsigned ON) const {
1037     assert(ON < Operands.size());
1038     return Operands[ON];
1039   }
1040 
getImpResult(unsigned RN)1041   Record *getImpResult(unsigned RN) const {
1042     assert(RN < ImpResults.size());
1043     return ImpResults[RN];
1044   }
1045 
getSrcPattern()1046   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
getResultPattern()1047   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1048 };
1049 
1050 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1051 /// processed to produce isel.
1052 class PatternToMatch {
1053   Record          *SrcRecord;   // Originating Record for the pattern.
1054   ListInit        *Predicates;  // Top level predicate conditions to match.
1055   TreePatternNodePtr SrcPattern;      // Source pattern to match.
1056   TreePatternNodePtr DstPattern;      // Resulting pattern.
1057   std::vector<Record*> Dstregs; // Physical register defs being matched.
1058   std::string      HwModeFeatures;
1059   int              AddedComplexity; // Add to matching pattern complexity.
1060   unsigned         ID;          // Unique ID for the record.
1061   unsigned         ForceMode;   // Force this mode in type inference when set.
1062 
1063 public:
1064   PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src,
1065                  TreePatternNodePtr dst, std::vector<Record *> dstregs,
1066                  int complexity, unsigned uid, unsigned setmode = 0,
1067                  const Twine &hwmodefeatures = "")
SrcRecord(srcrecord)1068       : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
1069         DstPattern(dst), Dstregs(std::move(dstregs)),
1070         HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity),
1071         ID(uid), ForceMode(setmode) {}
1072 
getSrcRecord()1073   Record          *getSrcRecord()  const { return SrcRecord; }
getPredicates()1074   ListInit        *getPredicates() const { return Predicates; }
getSrcPattern()1075   TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
getSrcPatternShared()1076   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
getDstPattern()1077   TreePatternNode *getDstPattern() const { return DstPattern.get(); }
getDstPatternShared()1078   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
getDstRegs()1079   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
getHwModeFeatures()1080   StringRef   getHwModeFeatures() const { return HwModeFeatures; }
getAddedComplexity()1081   int         getAddedComplexity() const { return AddedComplexity; }
getID()1082   unsigned getID() const { return ID; }
getForceMode()1083   unsigned getForceMode() const { return ForceMode; }
1084 
1085   std::string getPredicateCheck() const;
1086   void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const;
1087 
1088   /// Compute the complexity metric for the input pattern.  This roughly
1089   /// corresponds to the number of nodes that are covered.
1090   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1091 };
1092 
1093 class CodeGenDAGPatterns {
1094   RecordKeeper &Records;
1095   CodeGenTarget Target;
1096   CodeGenIntrinsicTable Intrinsics;
1097 
1098   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1099   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1100       SDNodeXForms;
1101   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1102   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1103       PatternFragments;
1104   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1105   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1106 
1107   // Specific SDNode definitions:
1108   Record *intrinsic_void_sdnode;
1109   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1110 
1111   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1112   /// value is the pattern to match, the second pattern is the result to
1113   /// emit.
1114   std::vector<PatternToMatch> PatternsToMatch;
1115 
1116   TypeSetByHwMode LegalVTS;
1117 
1118   using PatternRewriterFn = std::function<void (TreePattern *)>;
1119   PatternRewriterFn PatternRewriter;
1120 
1121   unsigned NumScopes = 0;
1122 
1123 public:
1124   CodeGenDAGPatterns(RecordKeeper &R,
1125                      PatternRewriterFn PatternRewriter = nullptr);
1126 
getTargetInfo()1127   CodeGenTarget &getTargetInfo() { return Target; }
getTargetInfo()1128   const CodeGenTarget &getTargetInfo() const { return Target; }
getLegalTypes()1129   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1130 
1131   Record *getSDNodeNamed(StringRef Name) const;
1132 
getSDNodeInfo(Record * R)1133   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1134     auto F = SDNodes.find(R);
1135     assert(F != SDNodes.end() && "Unknown node!");
1136     return F->second;
1137   }
1138 
1139   // Node transformation lookups.
1140   typedef std::pair<Record*, std::string> NodeXForm;
getSDNodeTransform(Record * R)1141   const NodeXForm &getSDNodeTransform(Record *R) const {
1142     auto F = SDNodeXForms.find(R);
1143     assert(F != SDNodeXForms.end() && "Invalid transform!");
1144     return F->second;
1145   }
1146 
getComplexPattern(Record * R)1147   const ComplexPattern &getComplexPattern(Record *R) const {
1148     auto F = ComplexPatterns.find(R);
1149     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1150     return F->second;
1151   }
1152 
getIntrinsic(Record * R)1153   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1154     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1155       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1156     llvm_unreachable("Unknown intrinsic!");
1157   }
1158 
getIntrinsicInfo(unsigned IID)1159   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1160     if (IID-1 < Intrinsics.size())
1161       return Intrinsics[IID-1];
1162     llvm_unreachable("Bad intrinsic ID!");
1163   }
1164 
getIntrinsicID(Record * R)1165   unsigned getIntrinsicID(Record *R) const {
1166     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1167       if (Intrinsics[i].TheDef == R) return i;
1168     llvm_unreachable("Unknown intrinsic!");
1169   }
1170 
getDefaultOperand(Record * R)1171   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1172     auto F = DefaultOperands.find(R);
1173     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1174     return F->second;
1175   }
1176 
1177   // Pattern Fragment information.
getPatternFragment(Record * R)1178   TreePattern *getPatternFragment(Record *R) const {
1179     auto F = PatternFragments.find(R);
1180     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1181     return F->second.get();
1182   }
getPatternFragmentIfRead(Record * R)1183   TreePattern *getPatternFragmentIfRead(Record *R) const {
1184     auto F = PatternFragments.find(R);
1185     if (F == PatternFragments.end())
1186       return nullptr;
1187     return F->second.get();
1188   }
1189 
1190   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1191                    LessRecordByID>::const_iterator pf_iterator;
pf_begin()1192   pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_end()1193   pf_iterator pf_end() const { return PatternFragments.end(); }
ptfs()1194   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1195 
1196   // Patterns to match information.
1197   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_begin()1198   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_end()1199   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
ptms()1200   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1201 
1202   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1203   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1204   void parseInstructionPattern(
1205       CodeGenInstruction &CGI, ListInit *Pattern,
1206       DAGInstMap &DAGInsts);
1207 
getInstruction(Record * R)1208   const DAGInstruction &getInstruction(Record *R) const {
1209     auto F = Instructions.find(R);
1210     assert(F != Instructions.end() && "Unknown instruction!");
1211     return F->second;
1212   }
1213 
get_intrinsic_void_sdnode()1214   Record *get_intrinsic_void_sdnode() const {
1215     return intrinsic_void_sdnode;
1216   }
get_intrinsic_w_chain_sdnode()1217   Record *get_intrinsic_w_chain_sdnode() const {
1218     return intrinsic_w_chain_sdnode;
1219   }
get_intrinsic_wo_chain_sdnode()1220   Record *get_intrinsic_wo_chain_sdnode() const {
1221     return intrinsic_wo_chain_sdnode;
1222   }
1223 
allocateScope()1224   unsigned allocateScope() { return ++NumScopes; }
1225 
operandHasDefault(Record * Op)1226   bool operandHasDefault(Record *Op) const {
1227     return Op->isSubClassOf("OperandWithDefaultOps") &&
1228       !getDefaultOperand(Op).DefaultOps.empty();
1229   }
1230 
1231 private:
1232   void ParseNodeInfo();
1233   void ParseNodeTransforms();
1234   void ParseComplexPatterns();
1235   void ParsePatternFragments(bool OutFrags = false);
1236   void ParseDefaultOperands();
1237   void ParseInstructions();
1238   void ParsePatterns();
1239   void ExpandHwModeBasedTypes();
1240   void InferInstructionFlags();
1241   void GenerateVariants();
1242   void VerifyInstructionFlags();
1243 
1244   void ParseOnePattern(Record *TheDef,
1245                        TreePattern &Pattern, TreePattern &Result,
1246                        const std::vector<Record *> &InstImpResults);
1247   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1248   void FindPatternInputsAndOutputs(
1249       TreePattern &I, TreePatternNodePtr Pat,
1250       std::map<std::string, TreePatternNodePtr> &InstInputs,
1251       MapVector<std::string, TreePatternNodePtr,
1252                 std::map<std::string, unsigned>> &InstResults,
1253       std::vector<Record *> &InstImpResults);
1254 };
1255 
1256 
ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)1257 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1258                                              TreePattern &TP) const {
1259     bool MadeChange = false;
1260     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1261       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1262     return MadeChange;
1263   }
1264 
1265 } // end namespace llvm
1266 
1267 #endif
1268