1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
create(t *testing.T, parent string)29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
225
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
237
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
247
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
258 linker hash table.
259
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
265
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 Performing the final link
270
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocatable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
283
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
287
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 Information provided by the linker
302
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
305
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
310
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocatable object file.
321
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 Relocating the section contents
326
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocatable link, the
343 relocs themselves must also be modified and written out.
344
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
354
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
359
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 Writing the symbol table
364
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
370
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
377
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
385
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
393
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static bfd_boolean generic_link_add_object_symbols
410 (bfd *, struct bfd_link_info *, bfd_boolean collect);
411 static bfd_boolean generic_link_add_symbols
412 (bfd *, struct bfd_link_info *, bfd_boolean);
413 static bfd_boolean generic_link_check_archive_element_no_collect
414 (bfd *, struct bfd_link_info *, bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element_collect
416 (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element
418 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
419 static bfd_boolean generic_link_add_symbol_list
420 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
421 bfd_boolean);
422 static bfd_boolean generic_add_output_symbol
423 (bfd *, size_t *psymalloc, asymbol *);
424 static bfd_boolean default_data_link_order
425 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
426 static bfd_boolean default_indirect_link_order
427 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
428 bfd_boolean);
429
430 /* The link hash table structure is defined in bfdlink.h. It provides
431 a base hash table which the backend specific hash tables are built
432 upon. */
433
434 /* Routine to create an entry in the link hash table. */
435
436 struct bfd_hash_entry *
437 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
438 struct bfd_hash_table *table,
439 const char *string)
440 {
441 /* Allocate the structure if it has not already been allocated by a
442 subclass. */
443 if (entry == NULL)
444 {
445 entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446 if (entry == NULL)
447 return entry;
448 }
449
450 /* Call the allocation method of the superclass. */
451 entry = bfd_hash_newfunc (entry, table, string);
452 if (entry)
453 {
454 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456 /* Initialize the local fields. */
457 h->type = bfd_link_hash_new;
458 h->und_next = NULL;
459 }
460
461 return entry;
462 }
463
464 /* Initialize a link hash table. The BFD argument is the one
465 responsible for creating this table. */
466
467 bfd_boolean
468 _bfd_link_hash_table_init
469 (struct bfd_link_hash_table *table,
470 bfd *abfd,
471 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 struct bfd_hash_table *,
473 const char *))
474 {
475 table->creator = abfd->xvec;
476 table->undefs = NULL;
477 table->undefs_tail = NULL;
478 table->type = bfd_link_generic_hash_table;
479
480 return bfd_hash_table_init (&table->table, newfunc);
481 }
482
483 /* Look up a symbol in a link hash table. If follow is TRUE, we
484 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
485 the real symbol. */
486
487 struct bfd_link_hash_entry *
488 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
489 const char *string,
490 bfd_boolean create,
491 bfd_boolean copy,
492 bfd_boolean follow)
493 {
494 struct bfd_link_hash_entry *ret;
495
496 ret = ((struct bfd_link_hash_entry *)
497 bfd_hash_lookup (&table->table, string, create, copy));
498
499 if (follow && ret != NULL)
500 {
501 while (ret->type == bfd_link_hash_indirect
502 || ret->type == bfd_link_hash_warning)
503 ret = ret->u.i.link;
504 }
505
506 return ret;
507 }
508
509 /* Look up a symbol in the main linker hash table if the symbol might
510 be wrapped. This should only be used for references to an
511 undefined symbol, not for definitions of a symbol. */
512
513 struct bfd_link_hash_entry *
514 bfd_wrapped_link_hash_lookup (bfd *abfd,
515 struct bfd_link_info *info,
516 const char *string,
517 bfd_boolean create,
518 bfd_boolean copy,
519 bfd_boolean follow)
520 {
521 bfd_size_type amt;
522
523 if (info->wrap_hash != NULL)
524 {
525 const char *l;
526 char prefix = '\0';
527
528 l = string;
529 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
530 {
531 prefix = *l;
532 ++l;
533 }
534
535 #undef WRAP
536 #define WRAP "__wrap_"
537
538 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
539 {
540 char *n;
541 struct bfd_link_hash_entry *h;
542
543 /* This symbol is being wrapped. We want to replace all
544 references to SYM with references to __wrap_SYM. */
545
546 amt = strlen (l) + sizeof WRAP + 1;
547 n = bfd_malloc (amt);
548 if (n == NULL)
549 return NULL;
550
551 n[0] = prefix;
552 n[1] = '\0';
553 strcat (n, WRAP);
554 strcat (n, l);
555 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
556 free (n);
557 return h;
558 }
559
560 #undef WRAP
561
562 #undef REAL
563 #define REAL "__real_"
564
565 if (*l == '_'
566 && strncmp (l, REAL, sizeof REAL - 1) == 0
567 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568 FALSE, FALSE) != NULL)
569 {
570 char *n;
571 struct bfd_link_hash_entry *h;
572
573 /* This is a reference to __real_SYM, where SYM is being
574 wrapped. We want to replace all references to __real_SYM
575 with references to SYM. */
576
577 amt = strlen (l + sizeof REAL - 1) + 2;
578 n = bfd_malloc (amt);
579 if (n == NULL)
580 return NULL;
581
582 n[0] = prefix;
583 n[1] = '\0';
584 strcat (n, l + sizeof REAL - 1);
585 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
586 free (n);
587 return h;
588 }
589
590 #undef REAL
591 }
592
593 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
594 }
595
596 /* Traverse a generic link hash table. The only reason this is not a
597 macro is to do better type checking. This code presumes that an
598 argument passed as a struct bfd_hash_entry * may be caught as a
599 struct bfd_link_hash_entry * with no explicit cast required on the
600 call. */
601
602 void
603 bfd_link_hash_traverse
604 (struct bfd_link_hash_table *table,
605 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
606 void *info)
607 {
608 bfd_hash_traverse (&table->table,
609 (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
610 info);
611 }
612
613 /* Add a symbol to the linker hash table undefs list. */
614
615 void
616 bfd_link_add_undef (struct bfd_link_hash_table *table,
617 struct bfd_link_hash_entry *h)
618 {
619 BFD_ASSERT (h->und_next == NULL);
620 if (table->undefs_tail != NULL)
621 table->undefs_tail->und_next = h;
622 if (table->undefs == NULL)
623 table->undefs = h;
624 table->undefs_tail = h;
625 }
626
627 /* Routine to create an entry in a generic link hash table. */
628
629 struct bfd_hash_entry *
630 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
631 struct bfd_hash_table *table,
632 const char *string)
633 {
634 /* Allocate the structure if it has not already been allocated by a
635 subclass. */
636 if (entry == NULL)
637 {
638 entry =
639 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
640 if (entry == NULL)
641 return entry;
642 }
643
644 /* Call the allocation method of the superclass. */
645 entry = _bfd_link_hash_newfunc (entry, table, string);
646 if (entry)
647 {
648 struct generic_link_hash_entry *ret;
649
650 /* Set local fields. */
651 ret = (struct generic_link_hash_entry *) entry;
652 ret->written = FALSE;
653 ret->sym = NULL;
654 }
655
656 return entry;
657 }
658
659 /* Create a generic link hash table. */
660
661 struct bfd_link_hash_table *
662 _bfd_generic_link_hash_table_create (bfd *abfd)
663 {
664 struct generic_link_hash_table *ret;
665 bfd_size_type amt = sizeof (struct generic_link_hash_table);
666
667 ret = bfd_malloc (amt);
668 if (ret == NULL)
669 return NULL;
670 if (! _bfd_link_hash_table_init (&ret->root, abfd,
671 _bfd_generic_link_hash_newfunc))
672 {
673 free (ret);
674 return NULL;
675 }
676 return &ret->root;
677 }
678
679 void
680 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
681 {
682 struct generic_link_hash_table *ret
683 = (struct generic_link_hash_table *) hash;
684
685 bfd_hash_table_free (&ret->root.table);
686 free (ret);
687 }
688
689 /* Grab the symbols for an object file when doing a generic link. We
690 store the symbols in the outsymbols field. We need to keep them
691 around for the entire link to ensure that we only read them once.
692 If we read them multiple times, we might wind up with relocs and
693 the hash table pointing to different instances of the symbol
694 structure. */
695
696 static bfd_boolean
697 generic_link_read_symbols (bfd *abfd)
698 {
699 if (bfd_get_outsymbols (abfd) == NULL)
700 {
701 long symsize;
702 long symcount;
703
704 symsize = bfd_get_symtab_upper_bound (abfd);
705 if (symsize < 0)
706 return FALSE;
707 bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
708 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
709 return FALSE;
710 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
711 if (symcount < 0)
712 return FALSE;
713 bfd_get_symcount (abfd) = symcount;
714 }
715
716 return TRUE;
717 }
718
719 /* Generic function to add symbols to from an object file to the
720 global hash table. This version does not automatically collect
721 constructors by name. */
722
723 bfd_boolean
724 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
725 {
726 return generic_link_add_symbols (abfd, info, FALSE);
727 }
728
729 /* Generic function to add symbols from an object file to the global
730 hash table. This version automatically collects constructors by
731 name, as the collect2 program does. It should be used for any
732 target which does not provide some other mechanism for setting up
733 constructors and destructors; these are approximately those targets
734 for which gcc uses collect2 and do not support stabs. */
735
736 bfd_boolean
737 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
738 {
739 return generic_link_add_symbols (abfd, info, TRUE);
740 }
741
742 /* Indicate that we are only retrieving symbol values from this
743 section. We want the symbols to act as though the values in the
744 file are absolute. */
745
746 void
747 _bfd_generic_link_just_syms (asection *sec,
748 struct bfd_link_info *info ATTRIBUTE_UNUSED)
749 {
750 sec->output_section = bfd_abs_section_ptr;
751 sec->output_offset = sec->vma;
752 }
753
754 /* Add symbols from an object file to the global hash table. */
755
756 static bfd_boolean
757 generic_link_add_symbols (bfd *abfd,
758 struct bfd_link_info *info,
759 bfd_boolean collect)
760 {
761 bfd_boolean ret;
762
763 switch (bfd_get_format (abfd))
764 {
765 case bfd_object:
766 ret = generic_link_add_object_symbols (abfd, info, collect);
767 break;
768 case bfd_archive:
769 ret = (_bfd_generic_link_add_archive_symbols
770 (abfd, info,
771 (collect
772 ? generic_link_check_archive_element_collect
773 : generic_link_check_archive_element_no_collect)));
774 break;
775 default:
776 bfd_set_error (bfd_error_wrong_format);
777 ret = FALSE;
778 }
779
780 return ret;
781 }
782
783 /* Add symbols from an object file to the global hash table. */
784
785 static bfd_boolean
786 generic_link_add_object_symbols (bfd *abfd,
787 struct bfd_link_info *info,
788 bfd_boolean collect)
789 {
790 bfd_size_type symcount;
791 struct bfd_symbol **outsyms;
792
793 if (! generic_link_read_symbols (abfd))
794 return FALSE;
795 symcount = _bfd_generic_link_get_symcount (abfd);
796 outsyms = _bfd_generic_link_get_symbols (abfd);
797 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
798 }
799
800 /* We build a hash table of all symbols defined in an archive. */
801
802 /* An archive symbol may be defined by multiple archive elements.
803 This linked list is used to hold the elements. */
804
805 struct archive_list
806 {
807 struct archive_list *next;
808 unsigned int indx;
809 };
810
811 /* An entry in an archive hash table. */
812
813 struct archive_hash_entry
814 {
815 struct bfd_hash_entry root;
816 /* Where the symbol is defined. */
817 struct archive_list *defs;
818 };
819
820 /* An archive hash table itself. */
821
822 struct archive_hash_table
823 {
824 struct bfd_hash_table table;
825 };
826
827 /* Create a new entry for an archive hash table. */
828
829 static struct bfd_hash_entry *
830 archive_hash_newfunc (struct bfd_hash_entry *entry,
831 struct bfd_hash_table *table,
832 const char *string)
833 {
834 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
835
836 /* Allocate the structure if it has not already been allocated by a
837 subclass. */
838 if (ret == NULL)
839 ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
840 if (ret == NULL)
841 return NULL;
842
843 /* Call the allocation method of the superclass. */
844 ret = ((struct archive_hash_entry *)
845 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846
847 if (ret)
848 {
849 /* Initialize the local fields. */
850 ret->defs = NULL;
851 }
852
853 return &ret->root;
854 }
855
856 /* Initialize an archive hash table. */
857
858 static bfd_boolean
859 archive_hash_table_init
860 (struct archive_hash_table *table,
861 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
862 struct bfd_hash_table *,
863 const char *))
864 {
865 return bfd_hash_table_init (&table->table, newfunc);
866 }
867
868 /* Look up an entry in an archive hash table. */
869
870 #define archive_hash_lookup(t, string, create, copy) \
871 ((struct archive_hash_entry *) \
872 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873
874 /* Allocate space in an archive hash table. */
875
876 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877
878 /* Free an archive hash table. */
879
880 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881
882 /* Generic function to add symbols from an archive file to the global
883 hash file. This function presumes that the archive symbol table
884 has already been read in (this is normally done by the
885 bfd_check_format entry point). It looks through the undefined and
886 common symbols and searches the archive symbol table for them. If
887 it finds an entry, it includes the associated object file in the
888 link.
889
890 The old linker looked through the archive symbol table for
891 undefined symbols. We do it the other way around, looking through
892 undefined symbols for symbols defined in the archive. The
893 advantage of the newer scheme is that we only have to look through
894 the list of undefined symbols once, whereas the old method had to
895 re-search the symbol table each time a new object file was added.
896
897 The CHECKFN argument is used to see if an object file should be
898 included. CHECKFN should set *PNEEDED to TRUE if the object file
899 should be included, and must also call the bfd_link_info
900 add_archive_element callback function and handle adding the symbols
901 to the global hash table. CHECKFN should only return FALSE if some
902 sort of error occurs.
903
904 For some formats, such as a.out, it is possible to look through an
905 object file but not actually include it in the link. The
906 archive_pass field in a BFD is used to avoid checking the symbols
907 of an object files too many times. When an object is included in
908 the link, archive_pass is set to -1. If an object is scanned but
909 not included, archive_pass is set to the pass number. The pass
910 number is incremented each time a new object file is included. The
911 pass number is used because when a new object file is included it
912 may create new undefined symbols which cause a previously examined
913 object file to be included. */
914
915 bfd_boolean
916 _bfd_generic_link_add_archive_symbols
917 (bfd *abfd,
918 struct bfd_link_info *info,
919 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
920 {
921 carsym *arsyms;
922 carsym *arsym_end;
923 register carsym *arsym;
924 int pass;
925 struct archive_hash_table arsym_hash;
926 unsigned int indx;
927 struct bfd_link_hash_entry **pundef;
928
929 if (! bfd_has_map (abfd))
930 {
931 /* An empty archive is a special case. */
932 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
933 return TRUE;
934 bfd_set_error (bfd_error_no_armap);
935 return FALSE;
936 }
937
938 arsyms = bfd_ardata (abfd)->symdefs;
939 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
940
941 /* In order to quickly determine whether an symbol is defined in
942 this archive, we build a hash table of the symbols. */
943 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
944 return FALSE;
945 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
946 {
947 struct archive_hash_entry *arh;
948 struct archive_list *l, **pp;
949
950 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
951 if (arh == NULL)
952 goto error_return;
953 l = ((struct archive_list *)
954 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
955 if (l == NULL)
956 goto error_return;
957 l->indx = indx;
958 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
959 ;
960 *pp = l;
961 l->next = NULL;
962 }
963
964 /* The archive_pass field in the archive itself is used to
965 initialize PASS, sine we may search the same archive multiple
966 times. */
967 pass = abfd->archive_pass + 1;
968
969 /* New undefined symbols are added to the end of the list, so we
970 only need to look through it once. */
971 pundef = &info->hash->undefs;
972 while (*pundef != NULL)
973 {
974 struct bfd_link_hash_entry *h;
975 struct archive_hash_entry *arh;
976 struct archive_list *l;
977
978 h = *pundef;
979
980 /* When a symbol is defined, it is not necessarily removed from
981 the list. */
982 if (h->type != bfd_link_hash_undefined
983 && h->type != bfd_link_hash_common)
984 {
985 /* Remove this entry from the list, for general cleanliness
986 and because we are going to look through the list again
987 if we search any more libraries. We can't remove the
988 entry if it is the tail, because that would lose any
989 entries we add to the list later on (it would also cause
990 us to lose track of whether the symbol has been
991 referenced). */
992 if (*pundef != info->hash->undefs_tail)
993 *pundef = (*pundef)->und_next;
994 else
995 pundef = &(*pundef)->und_next;
996 continue;
997 }
998
999 /* Look for this symbol in the archive symbol map. */
1000 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1001 if (arh == NULL)
1002 {
1003 /* If we haven't found the exact symbol we're looking for,
1004 let's look for its import thunk */
1005 if (info->pei386_auto_import)
1006 {
1007 bfd_size_type amt = strlen (h->root.string) + 10;
1008 char *buf = bfd_malloc (amt);
1009 if (buf == NULL)
1010 return FALSE;
1011
1012 sprintf (buf, "__imp_%s", h->root.string);
1013 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1014 free(buf);
1015 }
1016 if (arh == NULL)
1017 {
1018 pundef = &(*pundef)->und_next;
1019 continue;
1020 }
1021 }
1022 /* Look at all the objects which define this symbol. */
1023 for (l = arh->defs; l != NULL; l = l->next)
1024 {
1025 bfd *element;
1026 bfd_boolean needed;
1027
1028 /* If the symbol has gotten defined along the way, quit. */
1029 if (h->type != bfd_link_hash_undefined
1030 && h->type != bfd_link_hash_common)
1031 break;
1032
1033 element = bfd_get_elt_at_index (abfd, l->indx);
1034 if (element == NULL)
1035 goto error_return;
1036
1037 /* If we've already included this element, or if we've
1038 already checked it on this pass, continue. */
1039 if (element->archive_pass == -1
1040 || element->archive_pass == pass)
1041 continue;
1042
1043 /* If we can't figure this element out, just ignore it. */
1044 if (! bfd_check_format (element, bfd_object))
1045 {
1046 element->archive_pass = -1;
1047 continue;
1048 }
1049
1050 /* CHECKFN will see if this element should be included, and
1051 go ahead and include it if appropriate. */
1052 if (! (*checkfn) (element, info, &needed))
1053 goto error_return;
1054
1055 if (! needed)
1056 element->archive_pass = pass;
1057 else
1058 {
1059 element->archive_pass = -1;
1060
1061 /* Increment the pass count to show that we may need to
1062 recheck object files which were already checked. */
1063 ++pass;
1064 }
1065 }
1066
1067 pundef = &(*pundef)->und_next;
1068 }
1069
1070 archive_hash_table_free (&arsym_hash);
1071
1072 /* Save PASS in case we are called again. */
1073 abfd->archive_pass = pass;
1074
1075 return TRUE;
1076
1077 error_return:
1078 archive_hash_table_free (&arsym_hash);
1079 return FALSE;
1080 }
1081
1082 /* See if we should include an archive element. This version is used
1083 when we do not want to automatically collect constructors based on
1084 the symbol name, presumably because we have some other mechanism
1085 for finding them. */
1086
1087 static bfd_boolean
1088 generic_link_check_archive_element_no_collect (
1089 bfd *abfd,
1090 struct bfd_link_info *info,
1091 bfd_boolean *pneeded)
1092 {
1093 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1094 }
1095
1096 /* See if we should include an archive element. This version is used
1097 when we want to automatically collect constructors based on the
1098 symbol name, as collect2 does. */
1099
1100 static bfd_boolean
1101 generic_link_check_archive_element_collect (bfd *abfd,
1102 struct bfd_link_info *info,
1103 bfd_boolean *pneeded)
1104 {
1105 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1106 }
1107
1108 /* See if we should include an archive element. Optionally collect
1109 constructors. */
1110
1111 static bfd_boolean
1112 generic_link_check_archive_element (bfd *abfd,
1113 struct bfd_link_info *info,
1114 bfd_boolean *pneeded,
1115 bfd_boolean collect)
1116 {
1117 asymbol **pp, **ppend;
1118
1119 *pneeded = FALSE;
1120
1121 if (! generic_link_read_symbols (abfd))
1122 return FALSE;
1123
1124 pp = _bfd_generic_link_get_symbols (abfd);
1125 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1126 for (; pp < ppend; pp++)
1127 {
1128 asymbol *p;
1129 struct bfd_link_hash_entry *h;
1130
1131 p = *pp;
1132
1133 /* We are only interested in globally visible symbols. */
1134 if (! bfd_is_com_section (p->section)
1135 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1136 continue;
1137
1138 /* We are only interested if we know something about this
1139 symbol, and it is undefined or common. An undefined weak
1140 symbol (type bfd_link_hash_undefweak) is not considered to be
1141 a reference when pulling files out of an archive. See the
1142 SVR4 ABI, p. 4-27. */
1143 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1144 FALSE, TRUE);
1145 if (h == NULL
1146 || (h->type != bfd_link_hash_undefined
1147 && h->type != bfd_link_hash_common))
1148 continue;
1149
1150 /* P is a symbol we are looking for. */
1151
1152 if (! bfd_is_com_section (p->section))
1153 {
1154 bfd_size_type symcount;
1155 asymbol **symbols;
1156
1157 /* This object file defines this symbol, so pull it in. */
1158 if (! (*info->callbacks->add_archive_element) (info, abfd,
1159 bfd_asymbol_name (p)))
1160 return FALSE;
1161 symcount = _bfd_generic_link_get_symcount (abfd);
1162 symbols = _bfd_generic_link_get_symbols (abfd);
1163 if (! generic_link_add_symbol_list (abfd, info, symcount,
1164 symbols, collect))
1165 return FALSE;
1166 *pneeded = TRUE;
1167 return TRUE;
1168 }
1169
1170 /* P is a common symbol. */
1171
1172 if (h->type == bfd_link_hash_undefined)
1173 {
1174 bfd *symbfd;
1175 bfd_vma size;
1176 unsigned int power;
1177
1178 symbfd = h->u.undef.abfd;
1179 if (symbfd == NULL)
1180 {
1181 /* This symbol was created as undefined from outside
1182 BFD. We assume that we should link in the object
1183 file. This is for the -u option in the linker. */
1184 if (! (*info->callbacks->add_archive_element)
1185 (info, abfd, bfd_asymbol_name (p)))
1186 return FALSE;
1187 *pneeded = TRUE;
1188 return TRUE;
1189 }
1190
1191 /* Turn the symbol into a common symbol but do not link in
1192 the object file. This is how a.out works. Object
1193 formats that require different semantics must implement
1194 this function differently. This symbol is already on the
1195 undefs list. We add the section to a common section
1196 attached to symbfd to ensure that it is in a BFD which
1197 will be linked in. */
1198 h->type = bfd_link_hash_common;
1199 h->u.c.p =
1200 bfd_hash_allocate (&info->hash->table,
1201 sizeof (struct bfd_link_hash_common_entry));
1202 if (h->u.c.p == NULL)
1203 return FALSE;
1204
1205 size = bfd_asymbol_value (p);
1206 h->u.c.size = size;
1207
1208 power = bfd_log2 (size);
1209 if (power > 4)
1210 power = 4;
1211 h->u.c.p->alignment_power = power;
1212
1213 if (p->section == bfd_com_section_ptr)
1214 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1215 else
1216 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1217 p->section->name);
1218 h->u.c.p->section->flags = SEC_ALLOC;
1219 }
1220 else
1221 {
1222 /* Adjust the size of the common symbol if necessary. This
1223 is how a.out works. Object formats that require
1224 different semantics must implement this function
1225 differently. */
1226 if (bfd_asymbol_value (p) > h->u.c.size)
1227 h->u.c.size = bfd_asymbol_value (p);
1228 }
1229 }
1230
1231 /* This archive element is not needed. */
1232 return TRUE;
1233 }
1234
1235 /* Add the symbols from an object file to the global hash table. ABFD
1236 is the object file. INFO is the linker information. SYMBOL_COUNT
1237 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1238 is TRUE if constructors should be automatically collected by name
1239 as is done by collect2. */
1240
1241 static bfd_boolean
1242 generic_link_add_symbol_list (bfd *abfd,
1243 struct bfd_link_info *info,
1244 bfd_size_type symbol_count,
1245 asymbol **symbols,
1246 bfd_boolean collect)
1247 {
1248 asymbol **pp, **ppend;
1249
1250 pp = symbols;
1251 ppend = symbols + symbol_count;
1252 for (; pp < ppend; pp++)
1253 {
1254 asymbol *p;
1255
1256 p = *pp;
1257
1258 if ((p->flags & (BSF_INDIRECT
1259 | BSF_WARNING
1260 | BSF_GLOBAL
1261 | BSF_CONSTRUCTOR
1262 | BSF_WEAK)) != 0
1263 || bfd_is_und_section (bfd_get_section (p))
1264 || bfd_is_com_section (bfd_get_section (p))
1265 || bfd_is_ind_section (bfd_get_section (p)))
1266 {
1267 const char *name;
1268 const char *string;
1269 struct generic_link_hash_entry *h;
1270 struct bfd_link_hash_entry *bh;
1271
1272 name = bfd_asymbol_name (p);
1273 if (((p->flags & BSF_INDIRECT) != 0
1274 || bfd_is_ind_section (p->section))
1275 && pp + 1 < ppend)
1276 {
1277 pp++;
1278 string = bfd_asymbol_name (*pp);
1279 }
1280 else if ((p->flags & BSF_WARNING) != 0
1281 && pp + 1 < ppend)
1282 {
1283 /* The name of P is actually the warning string, and the
1284 next symbol is the one to warn about. */
1285 string = name;
1286 pp++;
1287 name = bfd_asymbol_name (*pp);
1288 }
1289 else
1290 string = NULL;
1291
1292 bh = NULL;
1293 if (! (_bfd_generic_link_add_one_symbol
1294 (info, abfd, name, p->flags, bfd_get_section (p),
1295 p->value, string, FALSE, collect, &bh)))
1296 return FALSE;
1297 h = (struct generic_link_hash_entry *) bh;
1298
1299 /* If this is a constructor symbol, and the linker didn't do
1300 anything with it, then we want to just pass the symbol
1301 through to the output file. This will happen when
1302 linking with -r. */
1303 if ((p->flags & BSF_CONSTRUCTOR) != 0
1304 && (h == NULL || h->root.type == bfd_link_hash_new))
1305 {
1306 p->udata.p = NULL;
1307 continue;
1308 }
1309
1310 /* Save the BFD symbol so that we don't lose any backend
1311 specific information that may be attached to it. We only
1312 want this one if it gives more information than the
1313 existing one; we don't want to replace a defined symbol
1314 with an undefined one. This routine may be called with a
1315 hash table other than the generic hash table, so we only
1316 do this if we are certain that the hash table is a
1317 generic one. */
1318 if (info->hash->creator == abfd->xvec)
1319 {
1320 if (h->sym == NULL
1321 || (! bfd_is_und_section (bfd_get_section (p))
1322 && (! bfd_is_com_section (bfd_get_section (p))
1323 || bfd_is_und_section (bfd_get_section (h->sym)))))
1324 {
1325 h->sym = p;
1326 /* BSF_OLD_COMMON is a hack to support COFF reloc
1327 reading, and it should go away when the COFF
1328 linker is switched to the new version. */
1329 if (bfd_is_com_section (bfd_get_section (p)))
1330 p->flags |= BSF_OLD_COMMON;
1331 }
1332 }
1333
1334 /* Store a back pointer from the symbol to the hash
1335 table entry for the benefit of relaxation code until
1336 it gets rewritten to not use asymbol structures.
1337 Setting this is also used to check whether these
1338 symbols were set up by the generic linker. */
1339 p->udata.p = h;
1340 }
1341 }
1342
1343 return TRUE;
1344 }
1345
1346 /* We use a state table to deal with adding symbols from an object
1347 file. The first index into the state table describes the symbol
1348 from the object file. The second index into the state table is the
1349 type of the symbol in the hash table. */
1350
1351 /* The symbol from the object file is turned into one of these row
1352 values. */
1353
1354 enum link_row
1355 {
1356 UNDEF_ROW, /* Undefined. */
1357 UNDEFW_ROW, /* Weak undefined. */
1358 DEF_ROW, /* Defined. */
1359 DEFW_ROW, /* Weak defined. */
1360 COMMON_ROW, /* Common. */
1361 INDR_ROW, /* Indirect. */
1362 WARN_ROW, /* Warning. */
1363 SET_ROW /* Member of set. */
1364 };
1365
1366 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1367 #undef FAIL
1368
1369 /* The actions to take in the state table. */
1370
1371 enum link_action
1372 {
1373 FAIL, /* Abort. */
1374 UND, /* Mark symbol undefined. */
1375 WEAK, /* Mark symbol weak undefined. */
1376 DEF, /* Mark symbol defined. */
1377 DEFW, /* Mark symbol weak defined. */
1378 COM, /* Mark symbol common. */
1379 REF, /* Mark defined symbol referenced. */
1380 CREF, /* Possibly warn about common reference to defined symbol. */
1381 CDEF, /* Define existing common symbol. */
1382 NOACT, /* No action. */
1383 BIG, /* Mark symbol common using largest size. */
1384 MDEF, /* Multiple definition error. */
1385 MIND, /* Multiple indirect symbols. */
1386 IND, /* Make indirect symbol. */
1387 CIND, /* Make indirect symbol from existing common symbol. */
1388 SET, /* Add value to set. */
1389 MWARN, /* Make warning symbol. */
1390 WARN, /* Issue warning. */
1391 CWARN, /* Warn if referenced, else MWARN. */
1392 CYCLE, /* Repeat with symbol pointed to. */
1393 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1394 WARNC /* Issue warning and then CYCLE. */
1395 };
1396
1397 /* The state table itself. The first index is a link_row and the
1398 second index is a bfd_link_hash_type. */
1399
1400 static const enum link_action link_action[8][8] =
1401 {
1402 /* current\prev new undef undefw def defw com indr warn */
1403 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1404 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1405 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1406 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1407 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1408 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1409 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1410 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1411 };
1412
1413 /* Most of the entries in the LINK_ACTION table are straightforward,
1414 but a few are somewhat subtle.
1415
1416 A reference to an indirect symbol (UNDEF_ROW/indr or
1417 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1418 symbol and to the symbol the indirect symbol points to.
1419
1420 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1421 causes the warning to be issued.
1422
1423 A common definition of an indirect symbol (COMMON_ROW/indr) is
1424 treated as a multiple definition error. Likewise for an indirect
1425 definition of a common symbol (INDR_ROW/com).
1426
1427 An indirect definition of a warning (INDR_ROW/warn) does not cause
1428 the warning to be issued.
1429
1430 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1431 warning is created for the symbol the indirect symbol points to.
1432
1433 Adding an entry to a set does not count as a reference to a set,
1434 and no warning is issued (SET_ROW/warn). */
1435
1436 /* Return the BFD in which a hash entry has been defined, if known. */
1437
1438 static bfd *
1439 hash_entry_bfd (struct bfd_link_hash_entry *h)
1440 {
1441 while (h->type == bfd_link_hash_warning)
1442 h = h->u.i.link;
1443 switch (h->type)
1444 {
1445 default:
1446 return NULL;
1447 case bfd_link_hash_undefined:
1448 case bfd_link_hash_undefweak:
1449 return h->u.undef.abfd;
1450 case bfd_link_hash_defined:
1451 case bfd_link_hash_defweak:
1452 return h->u.def.section->owner;
1453 case bfd_link_hash_common:
1454 return h->u.c.p->section->owner;
1455 }
1456 /*NOTREACHED*/
1457 }
1458
1459 /* Add a symbol to the global hash table.
1460 ABFD is the BFD the symbol comes from.
1461 NAME is the name of the symbol.
1462 FLAGS is the BSF_* bits associated with the symbol.
1463 SECTION is the section in which the symbol is defined; this may be
1464 bfd_und_section_ptr or bfd_com_section_ptr.
1465 VALUE is the value of the symbol, relative to the section.
1466 STRING is used for either an indirect symbol, in which case it is
1467 the name of the symbol to indirect to, or a warning symbol, in
1468 which case it is the warning string.
1469 COPY is TRUE if NAME or STRING must be copied into locally
1470 allocated memory if they need to be saved.
1471 COLLECT is TRUE if we should automatically collect gcc constructor
1472 or destructor names as collect2 does.
1473 HASHP, if not NULL, is a place to store the created hash table
1474 entry; if *HASHP is not NULL, the caller has already looked up
1475 the hash table entry, and stored it in *HASHP. */
1476
1477 bfd_boolean
1478 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1479 bfd *abfd,
1480 const char *name,
1481 flagword flags,
1482 asection *section,
1483 bfd_vma value,
1484 const char *string,
1485 bfd_boolean copy,
1486 bfd_boolean collect,
1487 struct bfd_link_hash_entry **hashp)
1488 {
1489 enum link_row row;
1490 struct bfd_link_hash_entry *h;
1491 bfd_boolean cycle;
1492
1493 if (bfd_is_ind_section (section)
1494 || (flags & BSF_INDIRECT) != 0)
1495 row = INDR_ROW;
1496 else if ((flags & BSF_WARNING) != 0)
1497 row = WARN_ROW;
1498 else if ((flags & BSF_CONSTRUCTOR) != 0)
1499 row = SET_ROW;
1500 else if (bfd_is_und_section (section))
1501 {
1502 if ((flags & BSF_WEAK) != 0)
1503 row = UNDEFW_ROW;
1504 else
1505 row = UNDEF_ROW;
1506 }
1507 else if ((flags & BSF_WEAK) != 0)
1508 row = DEFW_ROW;
1509 else if (bfd_is_com_section (section))
1510 row = COMMON_ROW;
1511 else
1512 row = DEF_ROW;
1513
1514 if (hashp != NULL && *hashp != NULL)
1515 h = *hashp;
1516 else
1517 {
1518 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1519 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1520 else
1521 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1522 if (h == NULL)
1523 {
1524 if (hashp != NULL)
1525 *hashp = NULL;
1526 return FALSE;
1527 }
1528 }
1529
1530 if (info->notice_all
1531 || (info->notice_hash != NULL
1532 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1533 {
1534 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1535 value))
1536 return FALSE;
1537 }
1538
1539 if (hashp != NULL)
1540 *hashp = h;
1541
1542 do
1543 {
1544 enum link_action action;
1545
1546 cycle = FALSE;
1547 action = link_action[(int) row][(int) h->type];
1548 switch (action)
1549 {
1550 case FAIL:
1551 abort ();
1552
1553 case NOACT:
1554 /* Do nothing. */
1555 break;
1556
1557 case UND:
1558 /* Make a new undefined symbol. */
1559 h->type = bfd_link_hash_undefined;
1560 h->u.undef.abfd = abfd;
1561 bfd_link_add_undef (info->hash, h);
1562 break;
1563
1564 case WEAK:
1565 /* Make a new weak undefined symbol. */
1566 h->type = bfd_link_hash_undefweak;
1567 h->u.undef.abfd = abfd;
1568 break;
1569
1570 case CDEF:
1571 /* We have found a definition for a symbol which was
1572 previously common. */
1573 BFD_ASSERT (h->type == bfd_link_hash_common);
1574 if (! ((*info->callbacks->multiple_common)
1575 (info, h->root.string,
1576 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1577 abfd, bfd_link_hash_defined, 0)))
1578 return FALSE;
1579 /* Fall through. */
1580 case DEF:
1581 case DEFW:
1582 {
1583 enum bfd_link_hash_type oldtype;
1584
1585 /* Define a symbol. */
1586 oldtype = h->type;
1587 if (action == DEFW)
1588 h->type = bfd_link_hash_defweak;
1589 else
1590 h->type = bfd_link_hash_defined;
1591 h->u.def.section = section;
1592 h->u.def.value = value;
1593
1594 /* If we have been asked to, we act like collect2 and
1595 identify all functions that might be global
1596 constructors and destructors and pass them up in a
1597 callback. We only do this for certain object file
1598 types, since many object file types can handle this
1599 automatically. */
1600 if (collect && name[0] == '_')
1601 {
1602 const char *s;
1603
1604 /* A constructor or destructor name starts like this:
1605 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1606 the second are the same character (we accept any
1607 character there, in case a new object file format
1608 comes along with even worse naming restrictions). */
1609
1610 #define CONS_PREFIX "GLOBAL_"
1611 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1612
1613 s = name + 1;
1614 while (*s == '_')
1615 ++s;
1616 if (s[0] == 'G'
1617 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1618 {
1619 char c;
1620
1621 c = s[CONS_PREFIX_LEN + 1];
1622 if ((c == 'I' || c == 'D')
1623 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1624 {
1625 /* If this is a definition of a symbol which
1626 was previously weakly defined, we are in
1627 trouble. We have already added a
1628 constructor entry for the weak defined
1629 symbol, and now we are trying to add one
1630 for the new symbol. Fortunately, this case
1631 should never arise in practice. */
1632 if (oldtype == bfd_link_hash_defweak)
1633 abort ();
1634
1635 if (! ((*info->callbacks->constructor)
1636 (info, c == 'I',
1637 h->root.string, abfd, section, value)))
1638 return FALSE;
1639 }
1640 }
1641 }
1642 }
1643
1644 break;
1645
1646 case COM:
1647 /* We have found a common definition for a symbol. */
1648 if (h->type == bfd_link_hash_new)
1649 bfd_link_add_undef (info->hash, h);
1650 h->type = bfd_link_hash_common;
1651 h->u.c.p =
1652 bfd_hash_allocate (&info->hash->table,
1653 sizeof (struct bfd_link_hash_common_entry));
1654 if (h->u.c.p == NULL)
1655 return FALSE;
1656
1657 h->u.c.size = value;
1658
1659 /* Select a default alignment based on the size. This may
1660 be overridden by the caller. */
1661 {
1662 unsigned int power;
1663
1664 power = bfd_log2 (value);
1665 if (power > 4)
1666 power = 4;
1667 h->u.c.p->alignment_power = power;
1668 }
1669
1670 /* The section of a common symbol is only used if the common
1671 symbol is actually allocated. It basically provides a
1672 hook for the linker script to decide which output section
1673 the common symbols should be put in. In most cases, the
1674 section of a common symbol will be bfd_com_section_ptr,
1675 the code here will choose a common symbol section named
1676 "COMMON", and the linker script will contain *(COMMON) in
1677 the appropriate place. A few targets use separate common
1678 sections for small symbols, and they require special
1679 handling. */
1680 if (section == bfd_com_section_ptr)
1681 {
1682 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1683 h->u.c.p->section->flags = SEC_ALLOC;
1684 }
1685 else if (section->owner != abfd)
1686 {
1687 h->u.c.p->section = bfd_make_section_old_way (abfd,
1688 section->name);
1689 h->u.c.p->section->flags = SEC_ALLOC;
1690 }
1691 else
1692 h->u.c.p->section = section;
1693 break;
1694
1695 case REF:
1696 /* A reference to a defined symbol. */
1697 if (h->und_next == NULL && info->hash->undefs_tail != h)
1698 h->und_next = h;
1699 break;
1700
1701 case BIG:
1702 /* We have found a common definition for a symbol which
1703 already had a common definition. Use the maximum of the
1704 two sizes, and use the section required by the larger symbol. */
1705 BFD_ASSERT (h->type == bfd_link_hash_common);
1706 if (! ((*info->callbacks->multiple_common)
1707 (info, h->root.string,
1708 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1709 abfd, bfd_link_hash_common, value)))
1710 return FALSE;
1711 if (value > h->u.c.size)
1712 {
1713 unsigned int power;
1714
1715 h->u.c.size = value;
1716
1717 /* Select a default alignment based on the size. This may
1718 be overridden by the caller. */
1719 power = bfd_log2 (value);
1720 if (power > 4)
1721 power = 4;
1722 h->u.c.p->alignment_power = power;
1723
1724 /* Some systems have special treatment for small commons,
1725 hence we want to select the section used by the larger
1726 symbol. This makes sure the symbol does not go in a
1727 small common section if it is now too large. */
1728 if (section == bfd_com_section_ptr)
1729 {
1730 h->u.c.p->section
1731 = bfd_make_section_old_way (abfd, "COMMON");
1732 h->u.c.p->section->flags = SEC_ALLOC;
1733 }
1734 else if (section->owner != abfd)
1735 {
1736 h->u.c.p->section
1737 = bfd_make_section_old_way (abfd, section->name);
1738 h->u.c.p->section->flags = SEC_ALLOC;
1739 }
1740 else
1741 h->u.c.p->section = section;
1742 }
1743 break;
1744
1745 case CREF:
1746 {
1747 bfd *obfd;
1748
1749 /* We have found a common definition for a symbol which
1750 was already defined. FIXME: It would nice if we could
1751 report the BFD which defined an indirect symbol, but we
1752 don't have anywhere to store the information. */
1753 if (h->type == bfd_link_hash_defined
1754 || h->type == bfd_link_hash_defweak)
1755 obfd = h->u.def.section->owner;
1756 else
1757 obfd = NULL;
1758 if (! ((*info->callbacks->multiple_common)
1759 (info, h->root.string, obfd, h->type, 0,
1760 abfd, bfd_link_hash_common, value)))
1761 return FALSE;
1762 }
1763 break;
1764
1765 case MIND:
1766 /* Multiple indirect symbols. This is OK if they both point
1767 to the same symbol. */
1768 if (strcmp (h->u.i.link->root.string, string) == 0)
1769 break;
1770 /* Fall through. */
1771 case MDEF:
1772 /* Handle a multiple definition. */
1773 if (!info->allow_multiple_definition)
1774 {
1775 asection *msec = NULL;
1776 bfd_vma mval = 0;
1777
1778 switch (h->type)
1779 {
1780 case bfd_link_hash_defined:
1781 msec = h->u.def.section;
1782 mval = h->u.def.value;
1783 break;
1784 case bfd_link_hash_indirect:
1785 msec = bfd_ind_section_ptr;
1786 mval = 0;
1787 break;
1788 default:
1789 abort ();
1790 }
1791
1792 /* Ignore a redefinition of an absolute symbol to the
1793 same value; it's harmless. */
1794 if (h->type == bfd_link_hash_defined
1795 && bfd_is_abs_section (msec)
1796 && bfd_is_abs_section (section)
1797 && value == mval)
1798 break;
1799
1800 if (! ((*info->callbacks->multiple_definition)
1801 (info, h->root.string, msec->owner, msec, mval,
1802 abfd, section, value)))
1803 return FALSE;
1804 }
1805 break;
1806
1807 case CIND:
1808 /* Create an indirect symbol from an existing common symbol. */
1809 BFD_ASSERT (h->type == bfd_link_hash_common);
1810 if (! ((*info->callbacks->multiple_common)
1811 (info, h->root.string,
1812 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1813 abfd, bfd_link_hash_indirect, 0)))
1814 return FALSE;
1815 /* Fall through. */
1816 case IND:
1817 /* Create an indirect symbol. */
1818 {
1819 struct bfd_link_hash_entry *inh;
1820
1821 /* STRING is the name of the symbol we want to indirect
1822 to. */
1823 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1824 copy, FALSE);
1825 if (inh == NULL)
1826 return FALSE;
1827 if (inh->type == bfd_link_hash_indirect
1828 && inh->u.i.link == h)
1829 {
1830 (*_bfd_error_handler)
1831 (_("%s: indirect symbol `%s' to `%s' is a loop"),
1832 bfd_archive_filename (abfd), name, string);
1833 bfd_set_error (bfd_error_invalid_operation);
1834 return FALSE;
1835 }
1836 if (inh->type == bfd_link_hash_new)
1837 {
1838 inh->type = bfd_link_hash_undefined;
1839 inh->u.undef.abfd = abfd;
1840 bfd_link_add_undef (info->hash, inh);
1841 }
1842
1843 /* If the indirect symbol has been referenced, we need to
1844 push the reference down to the symbol we are
1845 referencing. */
1846 if (h->type != bfd_link_hash_new)
1847 {
1848 row = UNDEF_ROW;
1849 cycle = TRUE;
1850 }
1851
1852 h->type = bfd_link_hash_indirect;
1853 h->u.i.link = inh;
1854 }
1855 break;
1856
1857 case SET:
1858 /* Add an entry to a set. */
1859 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1860 abfd, section, value))
1861 return FALSE;
1862 break;
1863
1864 case WARNC:
1865 /* Issue a warning and cycle. */
1866 if (h->u.i.warning != NULL)
1867 {
1868 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1869 h->root.string, abfd,
1870 NULL, 0))
1871 return FALSE;
1872 /* Only issue a warning once. */
1873 h->u.i.warning = NULL;
1874 }
1875 /* Fall through. */
1876 case CYCLE:
1877 /* Try again with the referenced symbol. */
1878 h = h->u.i.link;
1879 cycle = TRUE;
1880 break;
1881
1882 case REFC:
1883 /* A reference to an indirect symbol. */
1884 if (h->und_next == NULL && info->hash->undefs_tail != h)
1885 h->und_next = h;
1886 h = h->u.i.link;
1887 cycle = TRUE;
1888 break;
1889
1890 case WARN:
1891 /* Issue a warning. */
1892 if (! (*info->callbacks->warning) (info, string, h->root.string,
1893 hash_entry_bfd (h), NULL, 0))
1894 return FALSE;
1895 break;
1896
1897 case CWARN:
1898 /* Warn if this symbol has been referenced already,
1899 otherwise add a warning. A symbol has been referenced if
1900 the und_next field is not NULL, or it is the tail of the
1901 undefined symbol list. The REF case above helps to
1902 ensure this. */
1903 if (h->und_next != NULL || info->hash->undefs_tail == h)
1904 {
1905 if (! (*info->callbacks->warning) (info, string, h->root.string,
1906 hash_entry_bfd (h), NULL, 0))
1907 return FALSE;
1908 break;
1909 }
1910 /* Fall through. */
1911 case MWARN:
1912 /* Make a warning symbol. */
1913 {
1914 struct bfd_link_hash_entry *sub;
1915
1916 /* STRING is the warning to give. */
1917 sub = ((struct bfd_link_hash_entry *)
1918 ((*info->hash->table.newfunc)
1919 (NULL, &info->hash->table, h->root.string)));
1920 if (sub == NULL)
1921 return FALSE;
1922 *sub = *h;
1923 sub->type = bfd_link_hash_warning;
1924 sub->u.i.link = h;
1925 if (! copy)
1926 sub->u.i.warning = string;
1927 else
1928 {
1929 char *w;
1930 size_t len = strlen (string) + 1;
1931
1932 w = bfd_hash_allocate (&info->hash->table, len);
1933 if (w == NULL)
1934 return FALSE;
1935 memcpy (w, string, len);
1936 sub->u.i.warning = w;
1937 }
1938
1939 bfd_hash_replace (&info->hash->table,
1940 (struct bfd_hash_entry *) h,
1941 (struct bfd_hash_entry *) sub);
1942 if (hashp != NULL)
1943 *hashp = sub;
1944 }
1945 break;
1946 }
1947 }
1948 while (cycle);
1949
1950 return TRUE;
1951 }
1952
1953 /* Generic final link routine. */
1954
1955 bfd_boolean
1956 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1957 {
1958 bfd *sub;
1959 asection *o;
1960 struct bfd_link_order *p;
1961 size_t outsymalloc;
1962 struct generic_write_global_symbol_info wginfo;
1963
1964 bfd_get_outsymbols (abfd) = NULL;
1965 bfd_get_symcount (abfd) = 0;
1966 outsymalloc = 0;
1967
1968 /* Mark all sections which will be included in the output file. */
1969 for (o = abfd->sections; o != NULL; o = o->next)
1970 for (p = o->link_order_head; p != NULL; p = p->next)
1971 if (p->type == bfd_indirect_link_order)
1972 p->u.indirect.section->linker_mark = TRUE;
1973
1974 /* Build the output symbol table. */
1975 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1976 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1977 return FALSE;
1978
1979 /* Accumulate the global symbols. */
1980 wginfo.info = info;
1981 wginfo.output_bfd = abfd;
1982 wginfo.psymalloc = &outsymalloc;
1983 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1984 _bfd_generic_link_write_global_symbol,
1985 &wginfo);
1986
1987 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1988 shouldn't really need one, since we have SYMCOUNT, but some old
1989 code still expects one. */
1990 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1991 return FALSE;
1992
1993 if (info->relocatable)
1994 {
1995 /* Allocate space for the output relocs for each section. */
1996 for (o = abfd->sections; o != NULL; o = o->next)
1997 {
1998 o->reloc_count = 0;
1999 for (p = o->link_order_head; p != NULL; p = p->next)
2000 {
2001 if (p->type == bfd_section_reloc_link_order
2002 || p->type == bfd_symbol_reloc_link_order)
2003 ++o->reloc_count;
2004 else if (p->type == bfd_indirect_link_order)
2005 {
2006 asection *input_section;
2007 bfd *input_bfd;
2008 long relsize;
2009 arelent **relocs;
2010 asymbol **symbols;
2011 long reloc_count;
2012
2013 input_section = p->u.indirect.section;
2014 input_bfd = input_section->owner;
2015 relsize = bfd_get_reloc_upper_bound (input_bfd,
2016 input_section);
2017 if (relsize < 0)
2018 return FALSE;
2019 relocs = bfd_malloc (relsize);
2020 if (!relocs && relsize != 0)
2021 return FALSE;
2022 symbols = _bfd_generic_link_get_symbols (input_bfd);
2023 reloc_count = bfd_canonicalize_reloc (input_bfd,
2024 input_section,
2025 relocs,
2026 symbols);
2027 free (relocs);
2028 if (reloc_count < 0)
2029 return FALSE;
2030 BFD_ASSERT ((unsigned long) reloc_count
2031 == input_section->reloc_count);
2032 o->reloc_count += reloc_count;
2033 }
2034 }
2035 if (o->reloc_count > 0)
2036 {
2037 bfd_size_type amt;
2038
2039 amt = o->reloc_count;
2040 amt *= sizeof (arelent *);
2041 o->orelocation = bfd_alloc (abfd, amt);
2042 if (!o->orelocation)
2043 return FALSE;
2044 o->flags |= SEC_RELOC;
2045 /* Reset the count so that it can be used as an index
2046 when putting in the output relocs. */
2047 o->reloc_count = 0;
2048 }
2049 }
2050 }
2051
2052 /* Handle all the link order information for the sections. */
2053 for (o = abfd->sections; o != NULL; o = o->next)
2054 {
2055 for (p = o->link_order_head; p != NULL; p = p->next)
2056 {
2057 switch (p->type)
2058 {
2059 case bfd_section_reloc_link_order:
2060 case bfd_symbol_reloc_link_order:
2061 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2062 return FALSE;
2063 break;
2064 case bfd_indirect_link_order:
2065 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2066 return FALSE;
2067 break;
2068 default:
2069 if (! _bfd_default_link_order (abfd, info, o, p))
2070 return FALSE;
2071 break;
2072 }
2073 }
2074 }
2075
2076 return TRUE;
2077 }
2078
2079 /* Add an output symbol to the output BFD. */
2080
2081 static bfd_boolean
2082 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2083 {
2084 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2085 {
2086 asymbol **newsyms;
2087 bfd_size_type amt;
2088
2089 if (*psymalloc == 0)
2090 *psymalloc = 124;
2091 else
2092 *psymalloc *= 2;
2093 amt = *psymalloc;
2094 amt *= sizeof (asymbol *);
2095 newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2096 if (newsyms == NULL)
2097 return FALSE;
2098 bfd_get_outsymbols (output_bfd) = newsyms;
2099 }
2100
2101 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2102 if (sym != NULL)
2103 ++ bfd_get_symcount (output_bfd);
2104
2105 return TRUE;
2106 }
2107
2108 /* Handle the symbols for an input BFD. */
2109
2110 bfd_boolean
2111 _bfd_generic_link_output_symbols (bfd *output_bfd,
2112 bfd *input_bfd,
2113 struct bfd_link_info *info,
2114 size_t *psymalloc)
2115 {
2116 asymbol **sym_ptr;
2117 asymbol **sym_end;
2118
2119 if (! generic_link_read_symbols (input_bfd))
2120 return FALSE;
2121
2122 /* Create a filename symbol if we are supposed to. */
2123 if (info->create_object_symbols_section != NULL)
2124 {
2125 asection *sec;
2126
2127 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2128 {
2129 if (sec->output_section == info->create_object_symbols_section)
2130 {
2131 asymbol *newsym;
2132
2133 newsym = bfd_make_empty_symbol (input_bfd);
2134 if (!newsym)
2135 return FALSE;
2136 newsym->name = input_bfd->filename;
2137 newsym->value = 0;
2138 newsym->flags = BSF_LOCAL | BSF_FILE;
2139 newsym->section = sec;
2140
2141 if (! generic_add_output_symbol (output_bfd, psymalloc,
2142 newsym))
2143 return FALSE;
2144
2145 break;
2146 }
2147 }
2148 }
2149
2150 /* Adjust the values of the globally visible symbols, and write out
2151 local symbols. */
2152 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2153 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2154 for (; sym_ptr < sym_end; sym_ptr++)
2155 {
2156 asymbol *sym;
2157 struct generic_link_hash_entry *h;
2158 bfd_boolean output;
2159
2160 h = NULL;
2161 sym = *sym_ptr;
2162 if ((sym->flags & (BSF_INDIRECT
2163 | BSF_WARNING
2164 | BSF_GLOBAL
2165 | BSF_CONSTRUCTOR
2166 | BSF_WEAK)) != 0
2167 || bfd_is_und_section (bfd_get_section (sym))
2168 || bfd_is_com_section (bfd_get_section (sym))
2169 || bfd_is_ind_section (bfd_get_section (sym)))
2170 {
2171 if (sym->udata.p != NULL)
2172 h = sym->udata.p;
2173 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2174 {
2175 /* This case normally means that the main linker code
2176 deliberately ignored this constructor symbol. We
2177 should just pass it through. This will screw up if
2178 the constructor symbol is from a different,
2179 non-generic, object file format, but the case will
2180 only arise when linking with -r, which will probably
2181 fail anyhow, since there will be no way to represent
2182 the relocs in the output format being used. */
2183 h = NULL;
2184 }
2185 else if (bfd_is_und_section (bfd_get_section (sym)))
2186 h = ((struct generic_link_hash_entry *)
2187 bfd_wrapped_link_hash_lookup (output_bfd, info,
2188 bfd_asymbol_name (sym),
2189 FALSE, FALSE, TRUE));
2190 else
2191 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2192 bfd_asymbol_name (sym),
2193 FALSE, FALSE, TRUE);
2194
2195 if (h != NULL)
2196 {
2197 /* Force all references to this symbol to point to
2198 the same area in memory. It is possible that
2199 this routine will be called with a hash table
2200 other than a generic hash table, so we double
2201 check that. */
2202 if (info->hash->creator == input_bfd->xvec)
2203 {
2204 if (h->sym != NULL)
2205 *sym_ptr = sym = h->sym;
2206 }
2207
2208 switch (h->root.type)
2209 {
2210 default:
2211 case bfd_link_hash_new:
2212 abort ();
2213 case bfd_link_hash_undefined:
2214 break;
2215 case bfd_link_hash_undefweak:
2216 sym->flags |= BSF_WEAK;
2217 break;
2218 case bfd_link_hash_indirect:
2219 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2220 /* fall through */
2221 case bfd_link_hash_defined:
2222 sym->flags |= BSF_GLOBAL;
2223 sym->flags &=~ BSF_CONSTRUCTOR;
2224 sym->value = h->root.u.def.value;
2225 sym->section = h->root.u.def.section;
2226 break;
2227 case bfd_link_hash_defweak:
2228 sym->flags |= BSF_WEAK;
2229 sym->flags &=~ BSF_CONSTRUCTOR;
2230 sym->value = h->root.u.def.value;
2231 sym->section = h->root.u.def.section;
2232 break;
2233 case bfd_link_hash_common:
2234 sym->value = h->root.u.c.size;
2235 sym->flags |= BSF_GLOBAL;
2236 if (! bfd_is_com_section (sym->section))
2237 {
2238 BFD_ASSERT (bfd_is_und_section (sym->section));
2239 sym->section = bfd_com_section_ptr;
2240 }
2241 /* We do not set the section of the symbol to
2242 h->root.u.c.p->section. That value was saved so
2243 that we would know where to allocate the symbol
2244 if it was defined. In this case the type is
2245 still bfd_link_hash_common, so we did not define
2246 it, so we do not want to use that section. */
2247 break;
2248 }
2249 }
2250 }
2251
2252 /* This switch is straight from the old code in
2253 write_file_locals in ldsym.c. */
2254 if (info->strip == strip_all
2255 || (info->strip == strip_some
2256 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2257 FALSE, FALSE) == NULL))
2258 output = FALSE;
2259 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2260 {
2261 /* If this symbol is marked as occurring now, rather
2262 than at the end, output it now. This is used for
2263 COFF C_EXT FCN symbols. FIXME: There must be a
2264 better way. */
2265 if (bfd_asymbol_bfd (sym) == input_bfd
2266 && (sym->flags & BSF_NOT_AT_END) != 0)
2267 output = TRUE;
2268 else
2269 output = FALSE;
2270 }
2271 else if (bfd_is_ind_section (sym->section))
2272 output = FALSE;
2273 else if ((sym->flags & BSF_DEBUGGING) != 0)
2274 {
2275 if (info->strip == strip_none)
2276 output = TRUE;
2277 else
2278 output = FALSE;
2279 }
2280 else if (bfd_is_und_section (sym->section)
2281 || bfd_is_com_section (sym->section))
2282 output = FALSE;
2283 else if ((sym->flags & BSF_LOCAL) != 0)
2284 {
2285 if ((sym->flags & BSF_WARNING) != 0)
2286 output = FALSE;
2287 else
2288 {
2289 switch (info->discard)
2290 {
2291 default:
2292 case discard_all:
2293 output = FALSE;
2294 break;
2295 case discard_sec_merge:
2296 output = TRUE;
2297 if (info->relocatable
2298 || ! (sym->section->flags & SEC_MERGE))
2299 break;
2300 /* FALLTHROUGH */
2301 case discard_l:
2302 if (bfd_is_local_label (input_bfd, sym))
2303 output = FALSE;
2304 else
2305 output = TRUE;
2306 break;
2307 case discard_none:
2308 output = TRUE;
2309 break;
2310 }
2311 }
2312 }
2313 else if ((sym->flags & BSF_CONSTRUCTOR))
2314 {
2315 if (info->strip != strip_all)
2316 output = TRUE;
2317 else
2318 output = FALSE;
2319 }
2320 else
2321 abort ();
2322
2323 /* If this symbol is in a section which is not being included
2324 in the output file, then we don't want to output the symbol.
2325
2326 Gross. .bss and similar sections won't have the linker_mark
2327 field set. */
2328 if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2329 && ! sym->section->linker_mark)
2330 output = FALSE;
2331
2332 if (output)
2333 {
2334 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2335 return FALSE;
2336 if (h != NULL)
2337 h->written = TRUE;
2338 }
2339 }
2340
2341 return TRUE;
2342 }
2343
2344 /* Set the section and value of a generic BFD symbol based on a linker
2345 hash table entry. */
2346
2347 static void
2348 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2349 {
2350 switch (h->type)
2351 {
2352 default:
2353 abort ();
2354 break;
2355 case bfd_link_hash_new:
2356 /* This can happen when a constructor symbol is seen but we are
2357 not building constructors. */
2358 if (sym->section != NULL)
2359 {
2360 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2361 }
2362 else
2363 {
2364 sym->flags |= BSF_CONSTRUCTOR;
2365 sym->section = bfd_abs_section_ptr;
2366 sym->value = 0;
2367 }
2368 break;
2369 case bfd_link_hash_undefined:
2370 sym->section = bfd_und_section_ptr;
2371 sym->value = 0;
2372 break;
2373 case bfd_link_hash_undefweak:
2374 sym->section = bfd_und_section_ptr;
2375 sym->value = 0;
2376 sym->flags |= BSF_WEAK;
2377 break;
2378 case bfd_link_hash_defined:
2379 sym->section = h->u.def.section;
2380 sym->value = h->u.def.value;
2381 break;
2382 case bfd_link_hash_defweak:
2383 sym->flags |= BSF_WEAK;
2384 sym->section = h->u.def.section;
2385 sym->value = h->u.def.value;
2386 break;
2387 case bfd_link_hash_common:
2388 sym->value = h->u.c.size;
2389 if (sym->section == NULL)
2390 sym->section = bfd_com_section_ptr;
2391 else if (! bfd_is_com_section (sym->section))
2392 {
2393 BFD_ASSERT (bfd_is_und_section (sym->section));
2394 sym->section = bfd_com_section_ptr;
2395 }
2396 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2397 break;
2398 case bfd_link_hash_indirect:
2399 case bfd_link_hash_warning:
2400 /* FIXME: What should we do here? */
2401 break;
2402 }
2403 }
2404
2405 /* Write out a global symbol, if it hasn't already been written out.
2406 This is called for each symbol in the hash table. */
2407
2408 bfd_boolean
2409 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2410 void *data)
2411 {
2412 struct generic_write_global_symbol_info *wginfo = data;
2413 asymbol *sym;
2414
2415 if (h->root.type == bfd_link_hash_warning)
2416 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2417
2418 if (h->written)
2419 return TRUE;
2420
2421 h->written = TRUE;
2422
2423 if (wginfo->info->strip == strip_all
2424 || (wginfo->info->strip == strip_some
2425 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2426 FALSE, FALSE) == NULL))
2427 return TRUE;
2428
2429 if (h->sym != NULL)
2430 sym = h->sym;
2431 else
2432 {
2433 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2434 if (!sym)
2435 return FALSE;
2436 sym->name = h->root.root.string;
2437 sym->flags = 0;
2438 }
2439
2440 set_symbol_from_hash (sym, &h->root);
2441
2442 sym->flags |= BSF_GLOBAL;
2443
2444 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2445 sym))
2446 {
2447 /* FIXME: No way to return failure. */
2448 abort ();
2449 }
2450
2451 return TRUE;
2452 }
2453
2454 /* Create a relocation. */
2455
2456 bfd_boolean
2457 _bfd_generic_reloc_link_order (bfd *abfd,
2458 struct bfd_link_info *info,
2459 asection *sec,
2460 struct bfd_link_order *link_order)
2461 {
2462 arelent *r;
2463
2464 if (! info->relocatable)
2465 abort ();
2466 if (sec->orelocation == NULL)
2467 abort ();
2468
2469 r = bfd_alloc (abfd, sizeof (arelent));
2470 if (r == NULL)
2471 return FALSE;
2472
2473 r->address = link_order->offset;
2474 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2475 if (r->howto == 0)
2476 {
2477 bfd_set_error (bfd_error_bad_value);
2478 return FALSE;
2479 }
2480
2481 /* Get the symbol to use for the relocation. */
2482 if (link_order->type == bfd_section_reloc_link_order)
2483 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2484 else
2485 {
2486 struct generic_link_hash_entry *h;
2487
2488 h = ((struct generic_link_hash_entry *)
2489 bfd_wrapped_link_hash_lookup (abfd, info,
2490 link_order->u.reloc.p->u.name,
2491 FALSE, FALSE, TRUE));
2492 if (h == NULL
2493 || ! h->written)
2494 {
2495 if (! ((*info->callbacks->unattached_reloc)
2496 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2497 return FALSE;
2498 bfd_set_error (bfd_error_bad_value);
2499 return FALSE;
2500 }
2501 r->sym_ptr_ptr = &h->sym;
2502 }
2503
2504 /* If this is an inplace reloc, write the addend to the object file.
2505 Otherwise, store it in the reloc addend. */
2506 if (! r->howto->partial_inplace)
2507 r->addend = link_order->u.reloc.p->addend;
2508 else
2509 {
2510 bfd_size_type size;
2511 bfd_reloc_status_type rstat;
2512 bfd_byte *buf;
2513 bfd_boolean ok;
2514 file_ptr loc;
2515
2516 size = bfd_get_reloc_size (r->howto);
2517 buf = bfd_zmalloc (size);
2518 if (buf == NULL)
2519 return FALSE;
2520 rstat = _bfd_relocate_contents (r->howto, abfd,
2521 (bfd_vma) link_order->u.reloc.p->addend,
2522 buf);
2523 switch (rstat)
2524 {
2525 case bfd_reloc_ok:
2526 break;
2527 default:
2528 case bfd_reloc_outofrange:
2529 abort ();
2530 case bfd_reloc_overflow:
2531 if (! ((*info->callbacks->reloc_overflow)
2532 (info,
2533 (link_order->type == bfd_section_reloc_link_order
2534 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2535 : link_order->u.reloc.p->u.name),
2536 r->howto->name, link_order->u.reloc.p->addend,
2537 NULL, NULL, 0)))
2538 {
2539 free (buf);
2540 return FALSE;
2541 }
2542 break;
2543 }
2544 loc = link_order->offset * bfd_octets_per_byte (abfd);
2545 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2546 free (buf);
2547 if (! ok)
2548 return FALSE;
2549
2550 r->addend = 0;
2551 }
2552
2553 sec->orelocation[sec->reloc_count] = r;
2554 ++sec->reloc_count;
2555
2556 return TRUE;
2557 }
2558
2559 /* Allocate a new link_order for a section. */
2560
2561 struct bfd_link_order *
2562 bfd_new_link_order (bfd *abfd, asection *section)
2563 {
2564 bfd_size_type amt = sizeof (struct bfd_link_order);
2565 struct bfd_link_order *new;
2566
2567 new = bfd_zalloc (abfd, amt);
2568 if (!new)
2569 return NULL;
2570
2571 new->type = bfd_undefined_link_order;
2572
2573 if (section->link_order_tail != NULL)
2574 section->link_order_tail->next = new;
2575 else
2576 section->link_order_head = new;
2577 section->link_order_tail = new;
2578
2579 return new;
2580 }
2581
2582 /* Default link order processing routine. Note that we can not handle
2583 the reloc_link_order types here, since they depend upon the details
2584 of how the particular backends generates relocs. */
2585
2586 bfd_boolean
2587 _bfd_default_link_order (bfd *abfd,
2588 struct bfd_link_info *info,
2589 asection *sec,
2590 struct bfd_link_order *link_order)
2591 {
2592 switch (link_order->type)
2593 {
2594 case bfd_undefined_link_order:
2595 case bfd_section_reloc_link_order:
2596 case bfd_symbol_reloc_link_order:
2597 default:
2598 abort ();
2599 case bfd_indirect_link_order:
2600 return default_indirect_link_order (abfd, info, sec, link_order,
2601 FALSE);
2602 case bfd_data_link_order:
2603 return default_data_link_order (abfd, info, sec, link_order);
2604 }
2605 }
2606
2607 /* Default routine to handle a bfd_data_link_order. */
2608
2609 static bfd_boolean
2610 default_data_link_order (bfd *abfd,
2611 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2612 asection *sec,
2613 struct bfd_link_order *link_order)
2614 {
2615 bfd_size_type size;
2616 size_t fill_size;
2617 bfd_byte *fill;
2618 file_ptr loc;
2619 bfd_boolean result;
2620
2621 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2622
2623 size = link_order->size;
2624 if (size == 0)
2625 return TRUE;
2626
2627 fill = link_order->u.data.contents;
2628 fill_size = link_order->u.data.size;
2629 if (fill_size != 0 && fill_size < size)
2630 {
2631 bfd_byte *p;
2632 fill = bfd_malloc (size);
2633 if (fill == NULL)
2634 return FALSE;
2635 p = fill;
2636 if (fill_size == 1)
2637 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2638 else
2639 {
2640 do
2641 {
2642 memcpy (p, link_order->u.data.contents, fill_size);
2643 p += fill_size;
2644 size -= fill_size;
2645 }
2646 while (size >= fill_size);
2647 if (size != 0)
2648 memcpy (p, link_order->u.data.contents, (size_t) size);
2649 size = link_order->size;
2650 }
2651 }
2652
2653 loc = link_order->offset * bfd_octets_per_byte (abfd);
2654 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2655
2656 if (fill != link_order->u.data.contents)
2657 free (fill);
2658 return result;
2659 }
2660
2661 /* Default routine to handle a bfd_indirect_link_order. */
2662
2663 static bfd_boolean
2664 default_indirect_link_order (bfd *output_bfd,
2665 struct bfd_link_info *info,
2666 asection *output_section,
2667 struct bfd_link_order *link_order,
2668 bfd_boolean generic_linker)
2669 {
2670 asection *input_section;
2671 bfd *input_bfd;
2672 bfd_byte *contents = NULL;
2673 bfd_byte *new_contents;
2674 bfd_size_type sec_size;
2675 file_ptr loc;
2676
2677 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2678
2679 if (link_order->size == 0)
2680 return TRUE;
2681
2682 input_section = link_order->u.indirect.section;
2683 input_bfd = input_section->owner;
2684
2685 BFD_ASSERT (input_section->output_section == output_section);
2686 BFD_ASSERT (input_section->output_offset == link_order->offset);
2687 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2688
2689 if (info->relocatable
2690 && input_section->reloc_count > 0
2691 && output_section->orelocation == NULL)
2692 {
2693 /* Space has not been allocated for the output relocations.
2694 This can happen when we are called by a specific backend
2695 because somebody is attempting to link together different
2696 types of object files. Handling this case correctly is
2697 difficult, and sometimes impossible. */
2698 (*_bfd_error_handler)
2699 (_("Attempt to do relocatable link with %s input and %s output"),
2700 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2701 bfd_set_error (bfd_error_wrong_format);
2702 return FALSE;
2703 }
2704
2705 if (! generic_linker)
2706 {
2707 asymbol **sympp;
2708 asymbol **symppend;
2709
2710 /* Get the canonical symbols. The generic linker will always
2711 have retrieved them by this point, but we are being called by
2712 a specific linker, presumably because we are linking
2713 different types of object files together. */
2714 if (! generic_link_read_symbols (input_bfd))
2715 return FALSE;
2716
2717 /* Since we have been called by a specific linker, rather than
2718 the generic linker, the values of the symbols will not be
2719 right. They will be the values as seen in the input file,
2720 not the values of the final link. We need to fix them up
2721 before we can relocate the section. */
2722 sympp = _bfd_generic_link_get_symbols (input_bfd);
2723 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2724 for (; sympp < symppend; sympp++)
2725 {
2726 asymbol *sym;
2727 struct bfd_link_hash_entry *h;
2728
2729 sym = *sympp;
2730
2731 if ((sym->flags & (BSF_INDIRECT
2732 | BSF_WARNING
2733 | BSF_GLOBAL
2734 | BSF_CONSTRUCTOR
2735 | BSF_WEAK)) != 0
2736 || bfd_is_und_section (bfd_get_section (sym))
2737 || bfd_is_com_section (bfd_get_section (sym))
2738 || bfd_is_ind_section (bfd_get_section (sym)))
2739 {
2740 /* sym->udata may have been set by
2741 generic_link_add_symbol_list. */
2742 if (sym->udata.p != NULL)
2743 h = sym->udata.p;
2744 else if (bfd_is_und_section (bfd_get_section (sym)))
2745 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2746 bfd_asymbol_name (sym),
2747 FALSE, FALSE, TRUE);
2748 else
2749 h = bfd_link_hash_lookup (info->hash,
2750 bfd_asymbol_name (sym),
2751 FALSE, FALSE, TRUE);
2752 if (h != NULL)
2753 set_symbol_from_hash (sym, h);
2754 }
2755 }
2756 }
2757
2758 /* Get and relocate the section contents. */
2759 sec_size = bfd_section_size (input_bfd, input_section);
2760 contents = bfd_malloc (sec_size);
2761 if (contents == NULL && sec_size != 0)
2762 goto error_return;
2763 new_contents = (bfd_get_relocated_section_contents
2764 (output_bfd, info, link_order, contents, info->relocatable,
2765 _bfd_generic_link_get_symbols (input_bfd)));
2766 if (!new_contents)
2767 goto error_return;
2768
2769 /* Output the section contents. */
2770 loc = link_order->offset * bfd_octets_per_byte (output_bfd);
2771 if (! bfd_set_section_contents (output_bfd, output_section,
2772 new_contents, loc, link_order->size))
2773 goto error_return;
2774
2775 if (contents != NULL)
2776 free (contents);
2777 return TRUE;
2778
2779 error_return:
2780 if (contents != NULL)
2781 free (contents);
2782 return FALSE;
2783 }
2784
2785 /* A little routine to count the number of relocs in a link_order
2786 list. */
2787
2788 unsigned int
2789 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2790 {
2791 register unsigned int c;
2792 register struct bfd_link_order *l;
2793
2794 c = 0;
2795 for (l = link_order; l != NULL; l = l->next)
2796 {
2797 if (l->type == bfd_section_reloc_link_order
2798 || l->type == bfd_symbol_reloc_link_order)
2799 ++c;
2800 }
2801
2802 return c;
2803 }
2804
2805 /*
2806 FUNCTION
2807 bfd_link_split_section
2808
2809 SYNOPSIS
2810 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2811
2812 DESCRIPTION
2813 Return nonzero if @var{sec} should be split during a
2814 reloceatable or final link.
2815
2816 .#define bfd_link_split_section(abfd, sec) \
2817 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2818 .
2819
2820 */
2821
2822 bfd_boolean
2823 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2824 asection *sec ATTRIBUTE_UNUSED)
2825 {
2826 return FALSE;
2827 }
2828