1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUNTIME COMPONENTS                          --
4--                                                                          --
5--                 A D A . T E X T _ I O . F I X E D _ I O                  --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2003 Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
19-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
20-- MA 02111-1307, USA.                                                      --
21--                                                                          --
22-- As a special exception,  if other files  instantiate  generics from this --
23-- unit, or you link  this unit with other files  to produce an executable, --
24-- this  unit  does not  by itself cause  the resulting  executable  to  be --
25-- covered  by the  GNU  General  Public  License.  This exception does not --
26-- however invalidate  any other reasons why  the executable file  might be --
27-- covered by the  GNU Public License.                                      --
28--                                                                          --
29-- GNAT was originally developed  by the GNAT team at  New York University. --
30-- Extensive contributions were provided by Ada Core Technologies Inc.      --
31--                                                                          --
32------------------------------------------------------------------------------
33
34--  Fixed point I/O
35--  ---------------
36
37--  The following documents implementation details of the fixed point
38--  input/output routines in the GNAT run time. The first part describes
39--  general properties of fixed point types as defined by the Ada 95 standard,
40--  including the Information Systems Annex.
41
42--  Subsequently these are reduced to implementation constraints and the impact
43--  of these constraints on a few possible approaches to I/O are given.
44--  Based on this analysis, a specific implementation is selected for use in
45--  the GNAT run time. Finally, the chosen algorithm is analyzed numerically in
46--  order to provide user-level documentation on limits for range and precision
47--  of fixed point types as well as accuracy of input/output conversions.
48
49--  -------------------------------------------
50--  - General Properties of Fixed Point Types -
51--  -------------------------------------------
52
53--  Operations on fixed point values, other than input and output, are not
54--  important for the purposes of this document. Only the set of values that a
55--  fixed point type can represent and the input and output operations are
56--  significant.
57
58--  Values
59--  ------
60
61--  Set set of values of a fixed point type comprise the integral
62--  multiples of a number called the small of the type. The small can
63--  either be a power of ten, a power of two or (if the implementation
64--  allows) an arbitrary strictly positive real value.
65
66--  Implementations need to support fixed-point types with a precision
67--  of at least 24 bits, and (in order to comply with the Information
68--  Systems Annex) decimal types need to support at least digits 18.
69--  For the rest, however, no requirements exist for the minimal small
70--  and range that need to be supported.
71
72--  Operations
73--  ----------
74
75--  'Image and 'Wide_Image (see RM 3.5(34))
76
77--          These attributes return a decimal real literal best approximating
78--          the value (rounded away from zero if halfway between) with a
79--          single leading character that is either a minus sign or a space,
80--          one or more digits before the decimal point (with no redundant
81--          leading zeros), a decimal point, and N digits after the decimal
82--          point. For a subtype S, the value of N is S'Aft, the smallest
83--          positive integer such that (10**N)*S'Delta is greater or equal to
84--          one, see RM 3.5.10(5).
85
86--          For an arbitrary small, this means large number arithmetic needs
87--          to be performed.
88
89--  Put (see RM A.10.9(22-26))
90
91--          The requirements for Put add no extra constraints over the image
92--          attributes, although it would be nice to be able to output more
93--          than S'Aft digits after the decimal point for values of subtype S.
94
95--  'Value and 'Wide_Value attribute (RM 3.5(40-55))
96
97--          Since the input can be given in any base in the range 2..16,
98--          accurate conversion to a fixed point number may require
99--          arbitrary precision arithmetic if there is no limit on the
100--          magnitude of the small of the fixed point type.
101
102--  Get (see RM A.10.9(12-21))
103
104--          The requirements for Get are identical to those of the Value
105--          attribute.
106
107--  ------------------------------
108--  - Implementation Constraints -
109--  ------------------------------
110
111--  The requirements listed above for the input/output operations lead to
112--  significant complexity, if no constraints are put on supported smalls.
113
114--  Implementation Strategies
115--  -------------------------
116
117--  * Float arithmetic
118--  * Arbitrary-precision integer arithmetic
119--  * Fixed-precision integer arithmetic
120
121--  Although it seems convenient to convert fixed point numbers to floating-
122--  point and then print them, this leads to a number of restrictions.
123--  The first one is precision. The widest floating-point type generally
124--  available has 53 bits of mantissa. This means that Fine_Delta cannot
125--  be less than 2.0**(-53).
126
127--  In GNAT, Fine_Delta is 2.0**(-63), and Duration for example is a
128--  64-bit type. It would still be possible to use multi-precision
129--  floating-point to perform calculations using longer mantissas,
130--  but this is a much harder approach.
131
132--  The base conversions needed for input and output of (non-decimal)
133--  fixed point types can be seen as pairs of integer multiplications
134--  and divisions.
135
136--  Arbitrary-precision integer arithmetic would be suitable for the job
137--  at hand, but has the draw-back that it is very heavy implementation-wise.
138--  Especially in embedded systems, where fixed point types are often used,
139--  it may not be desirable to require large amounts of storage and time
140--  for fixed I/O operations.
141
142--  Fixed-precision integer arithmetic has the advantage of simplicity and
143--  speed. For the most common fixed point types this would be a perfect
144--  solution. The downside however may be a too limited set of acceptable
145--  fixed point types.
146
147--  Extra Precision
148--  ---------------
149
150--  Using a scaled divide which truncates and returns a remainder R,
151--  another E trailing digits can be calculated by computing the value
152--  (R * (10.0**E)) / Z using another scaled divide. This procedure
153--  can be repeated to compute an arbitrary number of digits in linear
154--  time and storage. The last scaled divide should be rounded, with
155--  a possible carry propagating to the more significant digits, to
156--  ensure correct rounding of the unit in the last place.
157
158--  An extension of this technique is to limit the value of Q to 9 decimal
159--  digits, since 32-bit integers can be much more efficient than 64-bit
160--  integers to output.
161
162with Interfaces;                        use Interfaces;
163with System.Arith_64;                   use System.Arith_64;
164with System.Img_Real;                   use System.Img_Real;
165with Ada.Text_IO;                       use Ada.Text_IO;
166with Ada.Text_IO.Float_Aux;
167with Ada.Text_IO.Generic_Aux;
168
169package body Ada.Text_IO.Fixed_IO is
170
171   --  Note: we still use the floating-point I/O routines for input of
172   --  ordinary fixed-point and output using exponent format. This will
173   --  result in inaccuracies for fixed point types with a small that is
174   --  not a power of two, and for types that require more precision than
175   --  is available in Long_Long_Float.
176
177   package Aux renames Ada.Text_IO.Float_Aux;
178
179   Extra_Layout_Space : constant Field := 5 + Num'Fore;
180   --  Extra space that may be needed for output of sign, decimal point,
181   --  exponent indication and mandatory decimals after and before the
182   --  decimal point. A string with length
183
184   --    Fore + Aft + Exp + Extra_Layout_Space
185
186   --  is always long enough for formatting any fixed point number.
187
188   --  Implementation of Put routines
189
190   --  The following section describes a specific implementation choice for
191   --  performing base conversions needed for output of values of a fixed
192   --  point type T with small T'Small. The goal is to be able to output
193   --  all values of types with a precision of 64 bits and a delta of at
194   --  least 2.0**(-63), as these are current GNAT limitations already.
195
196   --  The chosen algorithm uses fixed precision integer arithmetic for
197   --  reasons of simplicity and efficiency. It is important to understand
198   --  in what ways the most simple and accurate approach to fixed point I/O
199   --  is limiting, before considering more complicated schemes.
200
201   --  Without loss of generality assume T has a range (-2.0**63) * T'Small
202   --  .. (2.0**63 - 1) * T'Small, and is output with Aft digits after the
203   --  decimal point and T'Fore - 1 before. If T'Small is integer, or
204   --  1.0 / T'Small is integer, let S = T'Small and E = 0. For other T'Small,
205   --  let S and E be integers such that S / 10**E best approximates T'Small
206   --  and S is in the range 10**17 .. 10**18 - 1. The extra decimal scaling
207   --  factor 10**E can be trivially handled during final output, by adjusting
208   --  the decimal point or exponent.
209
210   --  Convert a value X * S of type T to a 64-bit integer value Q equal
211   --  to 10.0**D * (X * S) rounded to the nearest integer.
212   --  This conversion is a scaled integer divide of the form
213
214   --     Q := (X * Y) / Z,
215
216   --  where all variables are 64-bit signed integers using 2's complement,
217   --  and both the multiplication and division are done using full
218   --  intermediate precision. The final decimal value to be output is
219
220   --     Q * 10**(E-D)
221
222   --  This value can be written to the output file or to the result string
223   --  according to the format described in RM A.3.10. The details of this
224   --  operation are omitted here.
225
226   --  A 64-bit value can contain all integers with 18 decimal digits, but
227   --  not all with 19 decimal digits. If the total number of requested output
228   --  digits (Fore - 1) + Aft is greater than 18, for purposes of the
229   --  conversion Aft is adjusted to 18 - (Fore - 1). In that case, or
230   --  when Fore > 19, trailing zeros can complete the output after writing
231   --  the first 18 significant digits, or the technique described in the
232   --  next section can be used.
233
234   --  The final expression for D is
235
236   --     D :=  Integer'Max (-18, Integer'Min (Aft, 18 - (Fore - 1)));
237
238   --  For Y and Z the following expressions can be derived:
239
240   --     Q / (10.0**D) = X * S
241
242   --     Q = X * S * (10.0**D) = (X * Y) / Z
243
244   --     S * 10.0**D = Y / Z;
245
246   --  If S is an integer greater than or equal to one, then Fore must be at
247   --  least 20 in order to print T'First, which is at most -2.0**63.
248   --  This means D < 0, so use
249
250   --    (1)   Y = -S and Z = -10**(-D).
251
252   --  If 1.0 / S is an integer greater than one, use
253
254   --    (2)   Y = -10**D and Z = -(1.0 / S), for D >= 0
255
256   --  or
257
258   --    (3)   Y = 1 and Z = (1.0 / S) * 10**(-D), for D < 0
259
260   --  Negative values are used for nominator Y and denominator Z, so that S
261   --  can have a maximum value of 2.0**63 and a minimum of 2.0**(-63).
262   --  For Z in -1 .. -9, Fore will still be 20, and D will be negative, as
263   --  (-2.0**63) / -9 is greater than 10**18. In these cases there is room
264   --  in the denominator for the extra decimal scaling required, so case (3)
265   --  will not overflow.
266
267   pragma Assert (System.Fine_Delta >= 2.0**(-63));
268   pragma Assert (Num'Small in 2.0**(-63) .. 2.0**63);
269   pragma Assert (Num'Fore <= 37);
270   --  These assertions need to be relaxed to allow for a Small of
271   --  2.0**(-64) at least, since there is an ACATS test for this ???
272
273   Max_Digits : constant := 18;
274   --  Maximum number of decimal digits that can be represented in a
275   --  64-bit signed number, see above
276
277   --  The constants E0 .. E5 implement a binary search for the appropriate
278   --  power of ten to scale the small so that it has one digit before the
279   --  decimal point.
280
281   subtype Int is Integer;
282   E0 : constant Int := -20 * Boolean'Pos (Num'Small >= 1.0E1);
283   E1 : constant Int := E0 + 10 * Boolean'Pos (Num'Small * 10.0**E0 < 1.0E-10);
284   E2 : constant Int := E1 +  5 * Boolean'Pos (Num'Small * 10.0**E1 < 1.0E-5);
285   E3 : constant Int := E2 +  3 * Boolean'Pos (Num'Small * 10.0**E2 < 1.0E-3);
286   E4 : constant Int := E3 +  2 * Boolean'Pos (Num'Small * 10.0**E3 < 1.0E-1);
287   E5 : constant Int := E4 +  1 * Boolean'Pos (Num'Small * 10.0**E4 < 1.0E-0);
288
289   Scale : constant Integer := E5;
290
291   pragma Assert (Num'Small * 10.0**Scale >= 1.0
292                   and then Num'Small * 10.0**Scale < 10.0);
293
294   Exact : constant Boolean :=
295                Float'Floor (Num'Small) = Float'Ceiling (Num'Small)
296            or Float'Floor (1.0 / Num'Small) = Float'Ceiling (1.0 / Num'Small)
297            or Num'Small >= 10.0**Max_Digits;
298   --  True iff a numerator and denominator can be calculated such that
299   --  their ratio exactly represents the small of Num
300
301   --  Local Subprograms
302
303   procedure Put
304     (To   : out String;
305      Last : out Natural;
306      Item : Num;
307      Fore : Field;
308      Aft  : Field;
309      Exp  : Field);
310   --  Actual output function, used internally by all other Put routines
311
312   ---------
313   -- Get --
314   ---------
315
316   procedure Get
317     (File  : in File_Type;
318      Item  : out Num;
319      Width : in Field := 0)
320   is
321      pragma Unsuppress (Range_Check);
322
323   begin
324      Aux.Get (File, Long_Long_Float (Item), Width);
325
326   exception
327      when Constraint_Error => raise Data_Error;
328   end Get;
329
330   procedure Get
331     (Item  : out Num;
332      Width : in Field := 0)
333   is
334      pragma Unsuppress (Range_Check);
335
336   begin
337      Aux.Get (Current_In, Long_Long_Float (Item), Width);
338
339   exception
340      when Constraint_Error => raise Data_Error;
341   end Get;
342
343   procedure Get
344     (From : in String;
345      Item : out Num;
346      Last : out Positive)
347   is
348      pragma Unsuppress (Range_Check);
349
350   begin
351      Aux.Gets (From, Long_Long_Float (Item), Last);
352
353   exception
354      when Constraint_Error => raise Data_Error;
355   end Get;
356
357   ---------
358   -- Put --
359   ---------
360
361   procedure Put
362     (File : in File_Type;
363      Item : in Num;
364      Fore : in Field := Default_Fore;
365      Aft  : in Field := Default_Aft;
366      Exp  : in Field := Default_Exp)
367   is
368      S    : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
369      Last : Natural;
370   begin
371      Put (S, Last, Item, Fore, Aft, Exp);
372      Generic_Aux.Put_Item (File, S (1 .. Last));
373   end Put;
374
375   procedure Put
376     (Item : in Num;
377      Fore : in Field := Default_Fore;
378      Aft  : in Field := Default_Aft;
379      Exp  : in Field := Default_Exp)
380   is
381      S    : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
382      Last : Natural;
383   begin
384      Put (S, Last, Item, Fore, Aft, Exp);
385      Generic_Aux.Put_Item (Text_IO.Current_Out, S (1 .. Last));
386   end Put;
387
388   procedure Put
389     (To   : out String;
390      Item : in Num;
391      Aft  : in Field := Default_Aft;
392      Exp  : in Field := Default_Exp)
393   is
394      Fore : constant Integer := To'Length
395                                - 1                      -- Decimal point
396                                - Field'Max (1, Aft)     -- Decimal part
397                                - Boolean'Pos (Exp /= 0) -- Exponent indicator
398                                - Exp;                   -- Exponent
399      Last : Natural;
400
401   begin
402      if Fore not in Field'Range then
403         raise Layout_Error;
404      end if;
405
406      Put (To, Last, Item, Fore, Aft, Exp);
407
408      if Last /= To'Last then
409         raise Layout_Error;
410      end if;
411   end Put;
412
413   procedure Put
414     (To   : out String;
415      Last : out Natural;
416      Item : Num;
417      Fore : Field;
418      Aft  : Field;
419      Exp  : Field)
420   is
421      subtype Digit is Int64 range 0 .. 9;
422      X     : constant Int64   := Int64'Integer_Value (Item);
423      A     : constant Field   := Field'Max (Aft, 1);
424      Neg   : constant Boolean := (Item < 0.0);
425      Pos   : Integer;  -- Next digit X has value X * 10.0**Pos;
426
427      Y, Z : Int64;
428      E : constant Integer := Boolean'Pos (not Exact)
429                                *  (Max_Digits - 1 + Scale);
430      D : constant Integer := Boolean'Pos (Exact)
431                                * Integer'Min (A, Max_Digits - (Num'Fore - 1))
432                            + Boolean'Pos (not Exact)
433                                * (Scale - 1);
434
435
436      procedure Put_Character (C : Character);
437      pragma Inline (Put_Character);
438      --  Add C to the output string To, updating Last
439
440      procedure Put_Digit (X : Digit);
441      --  Add digit X to the output string (going from left to right),
442      --  updating Last and Pos, and inserting the sign, leading zeroes
443      --  or a decimal point when necessary. After outputting the first
444      --  digit, Pos must not be changed outside Put_Digit anymore
445
446      procedure Put_Int64 (X : Int64; Scale : Integer);
447      --  Output the decimal number X * 10**Scale
448
449      procedure Put_Scaled
450        (X, Y, Z : Int64;
451         A       : Field;
452         E       : Integer);
453      --  Output the decimal number (X * Y / Z) * 10**E, producing A digits
454      --  after the decimal point and rounding the final digit. The value
455      --  X * Y / Z is computed with full precision, but must be in the
456      --  range of Int64.
457
458      -------------------
459      -- Put_Character --
460      -------------------
461
462      procedure Put_Character (C : Character) is
463      begin
464         Last := Last + 1;
465         To (Last) := C;
466      end Put_Character;
467
468      ---------------
469      -- Put_Digit --
470      ---------------
471
472      procedure Put_Digit (X : Digit) is
473         Digs : constant array (Digit) of Character := "0123456789";
474      begin
475         if Last = 0 then
476            if X /= 0 or Pos <= 0 then
477               --  Before outputting first digit, include leading space,
478               --  posible minus sign and, if the first digit is fractional,
479               --  decimal seperator and leading zeros.
480
481               --  The Fore part has Pos + 1 + Boolean'Pos (Neg) characters,
482               --  if Pos >= 0 and otherwise has a single zero digit plus minus
483               --  sign if negative. Add leading space if necessary.
484
485               for J in Integer'Max (0, Pos) + 2 + Boolean'Pos (Neg) .. Fore
486               loop
487                  Put_Character (' ');
488               end loop;
489
490               --  Output minus sign, if number is negative
491
492               if Neg then
493                  Put_Character ('-');
494               end if;
495
496               --  If starting with fractional digit, output leading zeros
497
498               if Pos < 0 then
499                  Put_Character ('0');
500                  Put_Character ('.');
501
502                  for J in Pos .. -2 loop
503                     Put_Character ('0');
504                  end loop;
505               end if;
506
507               Put_Character (Digs (X));
508            end if;
509
510         else
511            --  This is not the first digit to be output, so the only
512            --  special handling is that for the decimal point
513
514            if Pos = -1 then
515               Put_Character ('.');
516            end if;
517
518            Put_Character (Digs (X));
519         end if;
520
521         Pos := Pos - 1;
522      end Put_Digit;
523
524      ---------------
525      -- Put_Int64 --
526      ---------------
527
528      procedure Put_Int64 (X : Int64; Scale : Integer) is
529      begin
530         if X = 0 then
531            return;
532         end if;
533
534         Pos := Scale;
535
536         if X not in -9 .. 9 then
537            Put_Int64 (X / 10, Scale + 1);
538         end if;
539
540         Put_Digit (abs (X rem 10));
541      end Put_Int64;
542
543      ----------------
544      -- Put_Scaled --
545      ----------------
546
547      procedure Put_Scaled
548        (X, Y, Z : Int64;
549         A       : Field;
550         E       : Integer)
551      is
552         N  : constant Natural := (A + Max_Digits - 1) / Max_Digits + 1;
553         pragma Debug (Put_Line ("N =" & N'Img));
554         Q  : array (1 .. N) of Int64 := (others => 0);
555
556         XX : Int64 := X;
557         YY : Int64 := Y;
558         AA : Field := A;
559
560      begin
561         for J in Q'Range loop
562            exit when XX = 0;
563
564            Scaled_Divide (XX, YY, Z, Q (J), XX, Round => AA = 0);
565
566            --  As the last block of digits is rounded, a carry may have to
567            --  be propagated to the more significant digits. Since the last
568            --  block may have less than Max_Digits, the test for this block
569            --  is specialized.
570
571            --  The absolute value of the left-most digit block may equal
572            --  10*Max_Digits, as no carry can be propagated from there.
573            --  The final output routines need to be prepared to handle
574            --  this specific case.
575
576            if (Q (J) = YY or -Q (J) = YY) and then J > Q'First then
577               if Q (J) < 0 then
578                  Q (J - 1) := Q (J - 1) + 1;
579               else
580                  Q (J - 1) := Q (J - 1) - 1;
581               end if;
582
583               Q (J) := 0;
584
585               Propagate_Carry :
586               for J in reverse Q'First + 1 .. Q'Last loop
587                  if Q (J) >= 10**Max_Digits then
588                     Q (J - 1) := Q (J - 1) + 1;
589                     Q (J) := Q (J) - 10**Max_Digits;
590
591                  elsif Q (J) <= -10**Max_Digits then
592                     Q (J - 1) := Q (J - 1) - 1;
593                     Q (J) := Q (J) + 10**Max_Digits;
594                  end if;
595               end loop Propagate_Carry;
596            end if;
597
598            YY := -10**Integer'Min (Max_Digits, AA);
599            AA := AA - Integer'Min (Max_Digits, AA);
600         end loop;
601
602         for J in Q'First .. Q'Last - 1 loop
603            Put_Int64 (Q (J), E - (J - Q'First) * Max_Digits);
604         end loop;
605
606         Put_Int64 (Q (Q'Last), E - A);
607      end Put_Scaled;
608
609   --  Start of processing for Put
610
611   begin
612      Last := To'First - 1;
613
614      if Exp /= 0 then
615
616         --  With the Exp format, it is not known how many output digits to
617         --  generate, as leading zeros must be ignored. Computing too many
618         --  digits and then truncating the output will not give the closest
619         --  output, it is necessary to round at the correct digit.
620
621         --  The general approach is as follows: as long as no digits have
622         --  been generated, compute the Aft next digits (without rounding).
623         --  Once a non-zero digit is generated, determine the exact number
624         --  of digits remaining and compute them with rounding.
625         --  Since a large number of iterations might be necessary in case
626         --  of Aft = 1, the following optimization would be desirable.
627         --  Count the number Z of leading zero bits in the integer
628         --  representation of X, and start with producing
629         --  Aft + Z * 1000 / 3322 digits in the first scaled division.
630
631         --  However, the floating-point routines are still used now ???
632
633         System.Img_Real.Set_Image_Real (Long_Long_Float (Item), To, Last,
634            Fore, Aft, Exp);
635         return;
636      end if;
637
638      if Exact then
639         Y := Int64'Min (Int64 (-Num'Small), -1) * 10**Integer'Max (0, D);
640         Z := Int64'Min (Int64 (-1.0 / Num'Small), -1)
641                                                 * 10**Integer'Max (0, -D);
642      else
643         Y := Int64 (-Num'Small * 10.0**E);
644         Z := -10**Max_Digits;
645      end if;
646
647      Put_Scaled (X, Y, Z, A - D, -D);
648
649      --  If only zero digits encountered, unit digit has not been output yet
650
651      if Last < To'First then
652         Pos := 0;
653      end if;
654
655      --  Always output digits up to the first one after the decimal point
656
657      while Pos >= -A loop
658         Put_Digit (0);
659      end loop;
660   end Put;
661
662end Ada.Text_IO.Fixed_IO;
663