1 /* Try to unroll loops, and split induction variables.
2    Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001,
3    2002, 2003
4    Free Software Foundation, Inc.
5    Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING.  If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA.  */
23 
24 /* Try to unroll a loop, and split induction variables.
25 
26    Loops for which the number of iterations can be calculated exactly are
27    handled specially.  If the number of iterations times the insn_count is
28    less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
29    Otherwise, we try to unroll the loop a number of times modulo the number
30    of iterations, so that only one exit test will be needed.  It is unrolled
31    a number of times approximately equal to MAX_UNROLLED_INSNS divided by
32    the insn count.
33 
34    Otherwise, if the number of iterations can be calculated exactly at
35    run time, and the loop is always entered at the top, then we try to
36    precondition the loop.  That is, at run time, calculate how many times
37    the loop will execute, and then execute the loop body a few times so
38    that the remaining iterations will be some multiple of 4 (or 2 if the
39    loop is large).  Then fall through to a loop unrolled 4 (or 2) times,
40    with only one exit test needed at the end of the loop.
41 
42    Otherwise, if the number of iterations can not be calculated exactly,
43    not even at run time, then we still unroll the loop a number of times
44    approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
45    but there must be an exit test after each copy of the loop body.
46 
47    For each induction variable, which is dead outside the loop (replaceable)
48    or for which we can easily calculate the final value, if we can easily
49    calculate its value at each place where it is set as a function of the
50    current loop unroll count and the variable's value at loop entry, then
51    the induction variable is split into `N' different variables, one for
52    each copy of the loop body.  One variable is live across the backward
53    branch, and the others are all calculated as a function of this variable.
54    This helps eliminate data dependencies, and leads to further opportunities
55    for cse.  */
56 
57 /* Possible improvements follow:  */
58 
59 /* ??? Add an extra pass somewhere to determine whether unrolling will
60    give any benefit.  E.g. after generating all unrolled insns, compute the
61    cost of all insns and compare against cost of insns in rolled loop.
62 
63    - On traditional architectures, unrolling a non-constant bound loop
64      is a win if there is a giv whose only use is in memory addresses, the
65      memory addresses can be split, and hence giv increments can be
66      eliminated.
67    - It is also a win if the loop is executed many times, and preconditioning
68      can be performed for the loop.
69    Add code to check for these and similar cases.  */
70 
71 /* ??? Improve control of which loops get unrolled.  Could use profiling
72    info to only unroll the most commonly executed loops.  Perhaps have
73    a user specifiable option to control the amount of code expansion,
74    or the percent of loops to consider for unrolling.  Etc.  */
75 
76 /* ??? Look at the register copies inside the loop to see if they form a
77    simple permutation.  If so, iterate the permutation until it gets back to
78    the start state.  This is how many times we should unroll the loop, for
79    best results, because then all register copies can be eliminated.
80    For example, the lisp nreverse function should be unrolled 3 times
81    while (this)
82      {
83        next = this->cdr;
84        this->cdr = prev;
85        prev = this;
86        this = next;
87      }
88 
89    ??? The number of times to unroll the loop may also be based on data
90    references in the loop.  For example, if we have a loop that references
91    x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times.  */
92 
93 /* ??? Add some simple linear equation solving capability so that we can
94    determine the number of loop iterations for more complex loops.
95    For example, consider this loop from gdb
96    #define SWAP_TARGET_AND_HOST(buffer,len)
97      {
98        char tmp;
99        char *p = (char *) buffer;
100        char *q = ((char *) buffer) + len - 1;
101        int iterations = (len + 1) >> 1;
102        int i;
103        for (p; p < q; p++, q--;)
104 	 {
105 	   tmp = *q;
106 	   *q = *p;
107 	   *p = tmp;
108 	 }
109      }
110    Note that:
111      start value = p = &buffer + current_iteration
112      end value   = q = &buffer + len - 1 - current_iteration
113    Given the loop exit test of "p < q", then there must be "q - p" iterations,
114    set equal to zero and solve for number of iterations:
115      q - p = len - 1 - 2*current_iteration = 0
116      current_iteration = (len - 1) / 2
117    Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
118    iterations of this loop.  */
119 
120 /* ??? Currently, no labels are marked as loop invariant when doing loop
121    unrolling.  This is because an insn inside the loop, that loads the address
122    of a label inside the loop into a register, could be moved outside the loop
123    by the invariant code motion pass if labels were invariant.  If the loop
124    is subsequently unrolled, the code will be wrong because each unrolled
125    body of the loop will use the same address, whereas each actually needs a
126    different address.  A case where this happens is when a loop containing
127    a switch statement is unrolled.
128 
129    It would be better to let labels be considered invariant.  When we
130    unroll loops here, check to see if any insns using a label local to the
131    loop were moved before the loop.  If so, then correct the problem, by
132    moving the insn back into the loop, or perhaps replicate the insn before
133    the loop, one copy for each time the loop is unrolled.  */
134 
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "rtl.h"
140 #include "tm_p.h"
141 #include "insn-config.h"
142 #include "integrate.h"
143 #include "regs.h"
144 #include "recog.h"
145 #include "flags.h"
146 #include "function.h"
147 #include "expr.h"
148 #include "loop.h"
149 #include "toplev.h"
150 #include "hard-reg-set.h"
151 #include "basic-block.h"
152 #include "predict.h"
153 #include "params.h"
154 #include "cfgloop.h"
155 
156 /* The prime factors looked for when trying to unroll a loop by some
157    number which is modulo the total number of iterations.  Just checking
158    for these 4 prime factors will find at least one factor for 75% of
159    all numbers theoretically.  Practically speaking, this will succeed
160    almost all of the time since loops are generally a multiple of 2
161    and/or 5.  */
162 
163 #define NUM_FACTORS 4
164 
165 static struct _factor { const int factor; int count; }
166 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
167 
168 /* Describes the different types of loop unrolling performed.  */
169 
170 enum unroll_types
171 {
172   UNROLL_COMPLETELY,
173   UNROLL_MODULO,
174   UNROLL_NAIVE
175 };
176 
177 /* Indexed by register number, if nonzero, then it contains a pointer
178    to a struct induction for a DEST_REG giv which has been combined with
179    one of more address givs.  This is needed because whenever such a DEST_REG
180    giv is modified, we must modify the value of all split address givs
181    that were combined with this DEST_REG giv.  */
182 
183 static struct induction **addr_combined_regs;
184 
185 /* Indexed by register number, if this is a splittable induction variable,
186    then this will hold the current value of the register, which depends on the
187    iteration number.  */
188 
189 static rtx *splittable_regs;
190 
191 /* Indexed by register number, if this is a splittable induction variable,
192    then this will hold the number of instructions in the loop that modify
193    the induction variable.  Used to ensure that only the last insn modifying
194    a split iv will update the original iv of the dest.  */
195 
196 static int *splittable_regs_updates;
197 
198 /* Forward declarations.  */
199 
200 static rtx simplify_cmp_and_jump_insns (enum rtx_code, enum machine_mode,
201 					rtx, rtx, rtx);
202 static void init_reg_map (struct inline_remap *, int);
203 static rtx calculate_giv_inc (rtx, rtx, unsigned int);
204 static rtx initial_reg_note_copy (rtx, struct inline_remap *);
205 static void final_reg_note_copy (rtx *, struct inline_remap *);
206 static void copy_loop_body (struct loop *, rtx, rtx,
207 			    struct inline_remap *, rtx, int,
208 			    enum unroll_types, rtx, rtx, rtx, rtx);
209 static int find_splittable_regs (const struct loop *, enum unroll_types,
210 				 int);
211 static int find_splittable_givs (const struct loop *, struct iv_class *,
212 				 enum unroll_types, rtx, int);
213 static int reg_dead_after_loop (const struct loop *, rtx);
214 static rtx fold_rtx_mult_add (rtx, rtx, rtx, enum machine_mode);
215 static rtx remap_split_bivs (struct loop *, rtx);
216 static rtx find_common_reg_term (rtx, rtx);
217 static rtx subtract_reg_term (rtx, rtx);
218 static rtx loop_find_equiv_value (const struct loop *, rtx);
219 static rtx ujump_to_loop_cont (rtx, rtx);
220 
221 /* Try to unroll one loop and split induction variables in the loop.
222 
223    The loop is described by the arguments LOOP and INSN_COUNT.
224    STRENGTH_REDUCTION_P indicates whether information generated in the
225    strength reduction pass is available.
226 
227    This function is intended to be called from within `strength_reduce'
228    in loop.c.  */
229 
230 void
unroll_loop(struct loop * loop,int insn_count,int strength_reduce_p)231 unroll_loop (struct loop *loop, int insn_count, int strength_reduce_p)
232 {
233   struct loop_info *loop_info = LOOP_INFO (loop);
234   struct loop_ivs *ivs = LOOP_IVS (loop);
235   int i, j;
236   unsigned int r;
237   unsigned HOST_WIDE_INT temp;
238   int unroll_number = 1;
239   rtx copy_start, copy_end;
240   rtx insn, sequence, pattern, tem;
241   int max_labelno, max_insnno;
242   rtx insert_before;
243   struct inline_remap *map;
244   char *local_label = NULL;
245   char *local_regno;
246   unsigned int max_local_regnum;
247   unsigned int maxregnum;
248   rtx exit_label = 0;
249   rtx start_label;
250   struct iv_class *bl;
251   int splitting_not_safe = 0;
252   enum unroll_types unroll_type = UNROLL_NAIVE;
253   int loop_preconditioned = 0;
254   rtx safety_label;
255   /* This points to the last real insn in the loop, which should be either
256      a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
257      jumps).  */
258   rtx last_loop_insn;
259   rtx loop_start = loop->start;
260   rtx loop_end = loop->end;
261 
262   /* Don't bother unrolling huge loops.  Since the minimum factor is
263      two, loops greater than one half of MAX_UNROLLED_INSNS will never
264      be unrolled.  */
265   if (insn_count > MAX_UNROLLED_INSNS / 2)
266     {
267       if (loop_dump_stream)
268 	fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
269       return;
270     }
271 
272   /* Determine type of unroll to perform.  Depends on the number of iterations
273      and the size of the loop.  */
274 
275   /* If there is no strength reduce info, then set
276      loop_info->n_iterations to zero.  This can happen if
277      strength_reduce can't find any bivs in the loop.  A value of zero
278      indicates that the number of iterations could not be calculated.  */
279 
280   if (! strength_reduce_p)
281     loop_info->n_iterations = 0;
282 
283   if (loop_dump_stream && loop_info->n_iterations > 0)
284     fprintf (loop_dump_stream, "Loop unrolling: " HOST_WIDE_INT_PRINT_DEC
285 	     " iterations.\n", loop_info->n_iterations);
286 
287   /* Find and save a pointer to the last nonnote insn in the loop.  */
288 
289   last_loop_insn = prev_nonnote_insn (loop_end);
290 
291   /* Calculate how many times to unroll the loop.  Indicate whether or
292      not the loop is being completely unrolled.  */
293 
294   if (loop_info->n_iterations == 1)
295     {
296       /* Handle the case where the loop begins with an unconditional
297 	 jump to the loop condition.  Make sure to delete the jump
298 	 insn, otherwise the loop body will never execute.  */
299 
300       /* FIXME this actually checks for a jump to the continue point, which
301 	 is not the same as the condition in a for loop.  As a result, this
302 	 optimization fails for most for loops.  We should really use flow
303 	 information rather than instruction pattern matching.  */
304       rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
305 
306       /* If number of iterations is exactly 1, then eliminate the compare and
307 	 branch at the end of the loop since they will never be taken.
308 	 Then return, since no other action is needed here.  */
309 
310       /* If the last instruction is not a BARRIER or a JUMP_INSN, then
311 	 don't do anything.  */
312 
313       if (GET_CODE (last_loop_insn) == BARRIER)
314 	{
315 	  /* Delete the jump insn.  This will delete the barrier also.  */
316 	  last_loop_insn = PREV_INSN (last_loop_insn);
317 	}
318 
319       if (ujump && GET_CODE (last_loop_insn) == JUMP_INSN)
320 	{
321 #ifdef HAVE_cc0
322 	  rtx prev = PREV_INSN (last_loop_insn);
323 #endif
324 	  delete_related_insns (last_loop_insn);
325 #ifdef HAVE_cc0
326 	  /* The immediately preceding insn may be a compare which must be
327 	     deleted.  */
328 	  if (only_sets_cc0_p (prev))
329 	    delete_related_insns (prev);
330 #endif
331 
332 	  delete_related_insns (ujump);
333 
334 	  /* Remove the loop notes since this is no longer a loop.  */
335 	  if (loop->vtop)
336 	    delete_related_insns (loop->vtop);
337 	  if (loop->cont)
338 	    delete_related_insns (loop->cont);
339 	  if (loop_start)
340 	    delete_related_insns (loop_start);
341 	  if (loop_end)
342 	    delete_related_insns (loop_end);
343 
344 	  return;
345 	}
346     }
347 
348   if (loop_info->n_iterations > 0
349       /* Avoid overflow in the next expression.  */
350       && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
351       && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
352     {
353       unroll_number = loop_info->n_iterations;
354       unroll_type = UNROLL_COMPLETELY;
355     }
356   else if (loop_info->n_iterations > 0)
357     {
358       /* Try to factor the number of iterations.  Don't bother with the
359 	 general case, only using 2, 3, 5, and 7 will get 75% of all
360 	 numbers theoretically, and almost all in practice.  */
361 
362       for (i = 0; i < NUM_FACTORS; i++)
363 	factors[i].count = 0;
364 
365       temp = loop_info->n_iterations;
366       for (i = NUM_FACTORS - 1; i >= 0; i--)
367 	while (temp % factors[i].factor == 0)
368 	  {
369 	    factors[i].count++;
370 	    temp = temp / factors[i].factor;
371 	  }
372 
373       /* Start with the larger factors first so that we generally
374 	 get lots of unrolling.  */
375 
376       unroll_number = 1;
377       temp = insn_count;
378       for (i = 3; i >= 0; i--)
379 	while (factors[i].count--)
380 	  {
381 	    if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
382 	      {
383 		unroll_number *= factors[i].factor;
384 		temp *= factors[i].factor;
385 	      }
386 	    else
387 	      break;
388 	  }
389 
390       /* If we couldn't find any factors, then unroll as in the normal
391 	 case.  */
392       if (unroll_number == 1)
393 	{
394 	  if (loop_dump_stream)
395 	    fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
396 	}
397       else
398 	unroll_type = UNROLL_MODULO;
399     }
400 
401   /* Default case, calculate number of times to unroll loop based on its
402      size.  */
403   if (unroll_type == UNROLL_NAIVE)
404     {
405       if (8 * insn_count < MAX_UNROLLED_INSNS)
406 	unroll_number = 8;
407       else if (4 * insn_count < MAX_UNROLLED_INSNS)
408 	unroll_number = 4;
409       else
410 	unroll_number = 2;
411     }
412 
413   /* Now we know how many times to unroll the loop.  */
414 
415   if (loop_dump_stream)
416     fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
417 
418   if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
419     {
420       /* Loops of these types can start with jump down to the exit condition
421 	 in rare circumstances.
422 
423 	 Consider a pair of nested loops where the inner loop is part
424 	 of the exit code for the outer loop.
425 
426 	 In this case jump.c will not duplicate the exit test for the outer
427 	 loop, so it will start with a jump to the exit code.
428 
429 	 Then consider if the inner loop turns out to iterate once and
430 	 only once.  We will end up deleting the jumps associated with
431 	 the inner loop.  However, the loop notes are not removed from
432 	 the instruction stream.
433 
434 	 And finally assume that we can compute the number of iterations
435 	 for the outer loop.
436 
437 	 In this case unroll may want to unroll the outer loop even though
438 	 it starts with a jump to the outer loop's exit code.
439 
440 	 We could try to optimize this case, but it hardly seems worth it.
441 	 Just return without unrolling the loop in such cases.  */
442 
443       insn = loop_start;
444       while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
445 	insn = NEXT_INSN (insn);
446       if (GET_CODE (insn) == JUMP_INSN)
447 	return;
448     }
449 
450   if (unroll_type == UNROLL_COMPLETELY)
451     {
452       /* Completely unrolling the loop:  Delete the compare and branch at
453 	 the end (the last two instructions).   This delete must done at the
454 	 very end of loop unrolling, to avoid problems with calls to
455 	 back_branch_in_range_p, which is called by find_splittable_regs.
456 	 All increments of splittable bivs/givs are changed to load constant
457 	 instructions.  */
458 
459       copy_start = loop_start;
460 
461       /* Set insert_before to the instruction immediately after the JUMP_INSN
462 	 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
463 	 the loop will be correctly handled by copy_loop_body.  */
464       insert_before = NEXT_INSN (last_loop_insn);
465 
466       /* Set copy_end to the insn before the jump at the end of the loop.  */
467       if (GET_CODE (last_loop_insn) == BARRIER)
468 	copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
469       else if (GET_CODE (last_loop_insn) == JUMP_INSN)
470 	{
471 	  copy_end = PREV_INSN (last_loop_insn);
472 #ifdef HAVE_cc0
473 	  /* The instruction immediately before the JUMP_INSN may be a compare
474 	     instruction which we do not want to copy.  */
475 	  if (sets_cc0_p (PREV_INSN (copy_end)))
476 	    copy_end = PREV_INSN (copy_end);
477 #endif
478 	}
479       else
480 	{
481 	  /* We currently can't unroll a loop if it doesn't end with a
482 	     JUMP_INSN.  There would need to be a mechanism that recognizes
483 	     this case, and then inserts a jump after each loop body, which
484 	     jumps to after the last loop body.  */
485 	  if (loop_dump_stream)
486 	    fprintf (loop_dump_stream,
487 		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
488 	  return;
489 	}
490     }
491   else if (unroll_type == UNROLL_MODULO)
492     {
493       /* Partially unrolling the loop:  The compare and branch at the end
494 	 (the last two instructions) must remain.  Don't copy the compare
495 	 and branch instructions at the end of the loop.  Insert the unrolled
496 	 code immediately before the compare/branch at the end so that the
497 	 code will fall through to them as before.  */
498 
499       copy_start = loop_start;
500 
501       /* Set insert_before to the jump insn at the end of the loop.
502 	 Set copy_end to before the jump insn at the end of the loop.  */
503       if (GET_CODE (last_loop_insn) == BARRIER)
504 	{
505 	  insert_before = PREV_INSN (last_loop_insn);
506 	  copy_end = PREV_INSN (insert_before);
507 	}
508       else if (GET_CODE (last_loop_insn) == JUMP_INSN)
509 	{
510 	  insert_before = last_loop_insn;
511 #ifdef HAVE_cc0
512 	  /* The instruction immediately before the JUMP_INSN may be a compare
513 	     instruction which we do not want to copy or delete.  */
514 	  if (sets_cc0_p (PREV_INSN (insert_before)))
515 	    insert_before = PREV_INSN (insert_before);
516 #endif
517 	  copy_end = PREV_INSN (insert_before);
518 	}
519       else
520 	{
521 	  /* We currently can't unroll a loop if it doesn't end with a
522 	     JUMP_INSN.  There would need to be a mechanism that recognizes
523 	     this case, and then inserts a jump after each loop body, which
524 	     jumps to after the last loop body.  */
525 	  if (loop_dump_stream)
526 	    fprintf (loop_dump_stream,
527 		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
528 	  return;
529 	}
530     }
531   else
532     {
533       /* Normal case: Must copy the compare and branch instructions at the
534 	 end of the loop.  */
535 
536       if (GET_CODE (last_loop_insn) == BARRIER)
537 	{
538 	  /* Loop ends with an unconditional jump and a barrier.
539 	     Handle this like above, don't copy jump and barrier.
540 	     This is not strictly necessary, but doing so prevents generating
541 	     unconditional jumps to an immediately following label.
542 
543 	     This will be corrected below if the target of this jump is
544 	     not the start_label.  */
545 
546 	  insert_before = PREV_INSN (last_loop_insn);
547 	  copy_end = PREV_INSN (insert_before);
548 	}
549       else if (GET_CODE (last_loop_insn) == JUMP_INSN)
550 	{
551 	  /* Set insert_before to immediately after the JUMP_INSN, so that
552 	     NOTEs at the end of the loop will be correctly handled by
553 	     copy_loop_body.  */
554 	  insert_before = NEXT_INSN (last_loop_insn);
555 	  copy_end = last_loop_insn;
556 	}
557       else
558 	{
559 	  /* We currently can't unroll a loop if it doesn't end with a
560 	     JUMP_INSN.  There would need to be a mechanism that recognizes
561 	     this case, and then inserts a jump after each loop body, which
562 	     jumps to after the last loop body.  */
563 	  if (loop_dump_stream)
564 	    fprintf (loop_dump_stream,
565 		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
566 	  return;
567 	}
568 
569       /* If copying exit test branches because they can not be eliminated,
570 	 then must convert the fall through case of the branch to a jump past
571 	 the end of the loop.  Create a label to emit after the loop and save
572 	 it for later use.  Do not use the label after the loop, if any, since
573 	 it might be used by insns outside the loop, or there might be insns
574 	 added before it later by final_[bg]iv_value which must be after
575 	 the real exit label.  */
576       exit_label = gen_label_rtx ();
577 
578       insn = loop_start;
579       while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
580 	insn = NEXT_INSN (insn);
581 
582       if (GET_CODE (insn) == JUMP_INSN)
583 	{
584 	  /* The loop starts with a jump down to the exit condition test.
585 	     Start copying the loop after the barrier following this
586 	     jump insn.  */
587 	  copy_start = NEXT_INSN (insn);
588 
589 	  /* Splitting induction variables doesn't work when the loop is
590 	     entered via a jump to the bottom, because then we end up doing
591 	     a comparison against a new register for a split variable, but
592 	     we did not execute the set insn for the new register because
593 	     it was skipped over.  */
594 	  splitting_not_safe = 1;
595 	  if (loop_dump_stream)
596 	    fprintf (loop_dump_stream,
597 		     "Splitting not safe, because loop not entered at top.\n");
598 	}
599       else
600 	copy_start = loop_start;
601     }
602 
603   /* This should always be the first label in the loop.  */
604   start_label = NEXT_INSN (copy_start);
605   /* There may be a line number note and/or a loop continue note here.  */
606   while (GET_CODE (start_label) == NOTE)
607     start_label = NEXT_INSN (start_label);
608   if (GET_CODE (start_label) != CODE_LABEL)
609     {
610       /* This can happen as a result of jump threading.  If the first insns in
611 	 the loop test the same condition as the loop's backward jump, or the
612 	 opposite condition, then the backward jump will be modified to point
613 	 to elsewhere, and the loop's start label is deleted.
614 
615 	 This case currently can not be handled by the loop unrolling code.  */
616 
617       if (loop_dump_stream)
618 	fprintf (loop_dump_stream,
619 		 "Unrolling failure: unknown insns between BEG note and loop label.\n");
620       return;
621     }
622   if (LABEL_NAME (start_label))
623     {
624       /* The jump optimization pass must have combined the original start label
625 	 with a named label for a goto.  We can't unroll this case because
626 	 jumps which go to the named label must be handled differently than
627 	 jumps to the loop start, and it is impossible to differentiate them
628 	 in this case.  */
629       if (loop_dump_stream)
630 	fprintf (loop_dump_stream,
631 		 "Unrolling failure: loop start label is gone\n");
632       return;
633     }
634 
635   if (unroll_type == UNROLL_NAIVE
636       && GET_CODE (last_loop_insn) == BARRIER
637       && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
638       && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
639     {
640       /* In this case, we must copy the jump and barrier, because they will
641 	 not be converted to jumps to an immediately following label.  */
642 
643       insert_before = NEXT_INSN (last_loop_insn);
644       copy_end = last_loop_insn;
645     }
646 
647   if (unroll_type == UNROLL_NAIVE
648       && GET_CODE (last_loop_insn) == JUMP_INSN
649       && start_label != JUMP_LABEL (last_loop_insn))
650     {
651       /* ??? The loop ends with a conditional branch that does not branch back
652 	 to the loop start label.  In this case, we must emit an unconditional
653 	 branch to the loop exit after emitting the final branch.
654 	 copy_loop_body does not have support for this currently, so we
655 	 give up.  It doesn't seem worthwhile to unroll anyways since
656 	 unrolling would increase the number of branch instructions
657 	 executed.  */
658       if (loop_dump_stream)
659 	fprintf (loop_dump_stream,
660 		 "Unrolling failure: final conditional branch not to loop start\n");
661       return;
662     }
663 
664   /* Allocate a translation table for the labels and insn numbers.
665      They will be filled in as we copy the insns in the loop.  */
666 
667   max_labelno = max_label_num ();
668   max_insnno = get_max_uid ();
669 
670   /* Various paths through the unroll code may reach the "egress" label
671      without initializing fields within the map structure.
672 
673      To be safe, we use xcalloc to zero the memory.  */
674   map = xcalloc (1, sizeof (struct inline_remap));
675 
676   /* Allocate the label map.  */
677 
678   if (max_labelno > 0)
679     {
680       map->label_map = xcalloc (max_labelno, sizeof (rtx));
681       local_label = xcalloc (max_labelno, sizeof (char));
682     }
683 
684   /* Search the loop and mark all local labels, i.e. the ones which have to
685      be distinct labels when copied.  For all labels which might be
686      non-local, set their label_map entries to point to themselves.
687      If they happen to be local their label_map entries will be overwritten
688      before the loop body is copied.  The label_map entries for local labels
689      will be set to a different value each time the loop body is copied.  */
690 
691   for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
692     {
693       rtx note;
694 
695       if (GET_CODE (insn) == CODE_LABEL)
696 	local_label[CODE_LABEL_NUMBER (insn)] = 1;
697       else if (GET_CODE (insn) == JUMP_INSN)
698 	{
699 	  if (JUMP_LABEL (insn))
700 	    set_label_in_map (map,
701 			      CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
702 			      JUMP_LABEL (insn));
703 	  else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
704 		   || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
705 	    {
706 	      rtx pat = PATTERN (insn);
707 	      int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
708 	      int len = XVECLEN (pat, diff_vec_p);
709 	      rtx label;
710 
711 	      for (i = 0; i < len; i++)
712 		{
713 		  label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
714 		  set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
715 		}
716 	    }
717 	}
718       if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
719 	set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
720 			  XEXP (note, 0));
721     }
722 
723   /* Allocate space for the insn map.  */
724 
725   map->insn_map = xmalloc (max_insnno * sizeof (rtx));
726 
727   /* Set this to zero, to indicate that we are doing loop unrolling,
728      not function inlining.  */
729   map->inline_target = 0;
730 
731   /* The register and constant maps depend on the number of registers
732      present, so the final maps can't be created until after
733      find_splittable_regs is called.  However, they are needed for
734      preconditioning, so we create temporary maps when preconditioning
735      is performed.  */
736 
737   /* The preconditioning code may allocate two new pseudo registers.  */
738   maxregnum = max_reg_num ();
739 
740   /* local_regno is only valid for regnos < max_local_regnum.  */
741   max_local_regnum = maxregnum;
742 
743   /* Allocate and zero out the splittable_regs and addr_combined_regs
744      arrays.  These must be zeroed here because they will be used if
745      loop preconditioning is performed, and must be zero for that case.
746 
747      It is safe to do this here, since the extra registers created by the
748      preconditioning code and find_splittable_regs will never be used
749      to access the splittable_regs[] and addr_combined_regs[] arrays.  */
750 
751   splittable_regs = xcalloc (maxregnum, sizeof (rtx));
752   splittable_regs_updates = xcalloc (maxregnum, sizeof (int));
753   addr_combined_regs = xcalloc (maxregnum, sizeof (struct induction *));
754   local_regno = xcalloc (maxregnum, sizeof (char));
755 
756   /* Mark all local registers, i.e. the ones which are referenced only
757      inside the loop.  */
758   if (INSN_UID (copy_end) < max_uid_for_loop)
759     {
760       int copy_start_luid = INSN_LUID (copy_start);
761       int copy_end_luid = INSN_LUID (copy_end);
762 
763       /* If a register is used in the jump insn, we must not duplicate it
764 	 since it will also be used outside the loop.  */
765       if (GET_CODE (copy_end) == JUMP_INSN)
766 	copy_end_luid--;
767 
768       /* If we have a target that uses cc0, then we also must not duplicate
769 	 the insn that sets cc0 before the jump insn, if one is present.  */
770 #ifdef HAVE_cc0
771       if (GET_CODE (copy_end) == JUMP_INSN
772 	  && sets_cc0_p (PREV_INSN (copy_end)))
773 	copy_end_luid--;
774 #endif
775 
776       /* If copy_start points to the NOTE that starts the loop, then we must
777 	 use the next luid, because invariant pseudo-regs moved out of the loop
778 	 have their lifetimes modified to start here, but they are not safe
779 	 to duplicate.  */
780       if (copy_start == loop_start)
781 	copy_start_luid++;
782 
783       /* If a pseudo's lifetime is entirely contained within this loop, then we
784 	 can use a different pseudo in each unrolled copy of the loop.  This
785 	 results in better code.  */
786       /* We must limit the generic test to max_reg_before_loop, because only
787 	 these pseudo registers have valid regno_first_uid info.  */
788       for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
789 	if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
790 	    && REGNO_FIRST_LUID (r) >= copy_start_luid
791 	    && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) < max_uid_for_loop
792 	    && REGNO_LAST_LUID (r) <= copy_end_luid)
793 	  {
794 	    /* However, we must also check for loop-carried dependencies.
795 	       If the value the pseudo has at the end of iteration X is
796 	       used by iteration X+1, then we can not use a different pseudo
797 	       for each unrolled copy of the loop.  */
798 	    /* A pseudo is safe if regno_first_uid is a set, and this
799 	       set dominates all instructions from regno_first_uid to
800 	       regno_last_uid.  */
801 	    /* ??? This check is simplistic.  We would get better code if
802 	       this check was more sophisticated.  */
803 	    if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
804 				   copy_start, copy_end))
805 	      local_regno[r] = 1;
806 
807 	    if (loop_dump_stream)
808 	      {
809 		if (local_regno[r])
810 		  fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
811 		else
812 		  fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
813 			   r);
814 	      }
815 	  }
816     }
817 
818   /* If this loop requires exit tests when unrolled, check to see if we
819      can precondition the loop so as to make the exit tests unnecessary.
820      Just like variable splitting, this is not safe if the loop is entered
821      via a jump to the bottom.  Also, can not do this if no strength
822      reduce info, because precondition_loop_p uses this info.  */
823 
824   /* Must copy the loop body for preconditioning before the following
825      find_splittable_regs call since that will emit insns which need to
826      be after the preconditioned loop copies, but immediately before the
827      unrolled loop copies.  */
828 
829   /* Also, it is not safe to split induction variables for the preconditioned
830      copies of the loop body.  If we split induction variables, then the code
831      assumes that each induction variable can be represented as a function
832      of its initial value and the loop iteration number.  This is not true
833      in this case, because the last preconditioned copy of the loop body
834      could be any iteration from the first up to the `unroll_number-1'th,
835      depending on the initial value of the iteration variable.  Therefore
836      we can not split induction variables here, because we can not calculate
837      their value.  Hence, this code must occur before find_splittable_regs
838      is called.  */
839 
840   if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
841     {
842       rtx initial_value, final_value, increment;
843       enum machine_mode mode;
844 
845       if (precondition_loop_p (loop,
846 			       &initial_value, &final_value, &increment,
847 			       &mode))
848 	{
849 	  rtx diff, insn;
850 	  rtx *labels;
851 	  int abs_inc, neg_inc;
852 	  enum rtx_code cc = loop_info->comparison_code;
853 	  int less_p     = (cc == LE  || cc == LEU || cc == LT  || cc == LTU);
854 	  int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
855 
856 	  map->reg_map = xmalloc (maxregnum * sizeof (rtx));
857 
858 	  VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
859 				   "unroll_loop_precondition");
860 	  global_const_equiv_varray = map->const_equiv_varray;
861 
862 	  init_reg_map (map, maxregnum);
863 
864 	  /* Limit loop unrolling to 4, since this will make 7 copies of
865 	     the loop body.  */
866 	  if (unroll_number > 4)
867 	    unroll_number = 4;
868 
869 	  /* Save the absolute value of the increment, and also whether or
870 	     not it is negative.  */
871 	  neg_inc = 0;
872 	  abs_inc = INTVAL (increment);
873 	  if (abs_inc < 0)
874 	    {
875 	      abs_inc = -abs_inc;
876 	      neg_inc = 1;
877 	    }
878 
879 	  start_sequence ();
880 
881 	  /* We must copy the final and initial values here to avoid
882 	     improperly shared rtl.  */
883 	  final_value = copy_rtx (final_value);
884 	  initial_value = copy_rtx (initial_value);
885 
886 	  /* Final value may have form of (PLUS val1 const1_rtx).  We need
887 	     to convert it into general operand, so compute the real value.  */
888 
889 	  final_value = force_operand (final_value, NULL_RTX);
890 	  if (!nonmemory_operand (final_value, VOIDmode))
891 	    final_value = force_reg (mode, final_value);
892 
893 	  /* Calculate the difference between the final and initial values.
894 	     Final value may be a (plus (reg x) (const_int 1)) rtx.
895 
896 	     We have to deal with for (i = 0; --i < 6;) type loops.
897 	     For such loops the real final value is the first time the
898 	     loop variable overflows, so the diff we calculate is the
899 	     distance from the overflow value.  This is 0 or ~0 for
900 	     unsigned loops depending on the direction, or INT_MAX,
901 	     INT_MAX+1 for signed loops.  We really do not need the
902 	     exact value, since we are only interested in the diff
903 	     modulo the increment, and the increment is a power of 2,
904 	     so we can pretend that the overflow value is 0/~0.  */
905 
906 	  if (cc == NE || less_p != neg_inc)
907 	    diff = simplify_gen_binary (MINUS, mode, final_value,
908 					initial_value);
909 	  else
910 	    diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
911 				       initial_value, mode);
912 	  diff = force_operand (diff, NULL_RTX);
913 
914 	  /* Now calculate (diff % (unroll * abs (increment))) by using an
915 	     and instruction.  */
916 	  diff = simplify_gen_binary (AND, mode, diff,
917 				      GEN_INT (unroll_number*abs_inc - 1));
918 	  diff = force_operand (diff, NULL_RTX);
919 
920 	  /* Now emit a sequence of branches to jump to the proper precond
921 	     loop entry point.  */
922 
923 	  labels = xmalloc (sizeof (rtx) * unroll_number);
924 	  for (i = 0; i < unroll_number; i++)
925 	    labels[i] = gen_label_rtx ();
926 
927 	  /* Check for the case where the initial value is greater than or
928 	     equal to the final value.  In that case, we want to execute
929 	     exactly one loop iteration.  The code below will fail for this
930 	     case.  This check does not apply if the loop has a NE
931 	     comparison at the end.  */
932 
933 	  if (cc != NE)
934 	    {
935 	      rtx incremented_initval;
936 	      enum rtx_code cmp_code;
937 
938 	      incremented_initval
939 		= simplify_gen_binary (PLUS, mode, initial_value, increment);
940 	      incremented_initval
941 		= force_operand (incremented_initval, NULL_RTX);
942 
943 	      cmp_code = (less_p
944 			  ? (unsigned_p ? GEU : GE)
945 			  : (unsigned_p ? LEU : LE));
946 
947 	      insn = simplify_cmp_and_jump_insns (cmp_code, mode,
948 						  incremented_initval,
949 						  final_value, labels[1]);
950 	      if (insn)
951 	        predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
952 	    }
953 
954 	  /* Assuming the unroll_number is 4, and the increment is 2, then
955 	     for a negative increment:	for a positive increment:
956 	     diff = 0,1   precond 0	diff = 0,7   precond 0
957 	     diff = 2,3   precond 3     diff = 1,2   precond 1
958 	     diff = 4,5   precond 2     diff = 3,4   precond 2
959 	     diff = 6,7   precond 1     diff = 5,6   precond 3  */
960 
961 	  /* We only need to emit (unroll_number - 1) branches here, the
962 	     last case just falls through to the following code.  */
963 
964 	  /* ??? This would give better code if we emitted a tree of branches
965 	     instead of the current linear list of branches.  */
966 
967 	  for (i = 0; i < unroll_number - 1; i++)
968 	    {
969 	      int cmp_const;
970 	      enum rtx_code cmp_code;
971 
972 	      /* For negative increments, must invert the constant compared
973 		 against, except when comparing against zero.  */
974 	      if (i == 0)
975 		{
976 		  cmp_const = 0;
977 		  cmp_code = EQ;
978 		}
979 	      else if (neg_inc)
980 		{
981 		  cmp_const = unroll_number - i;
982 		  cmp_code = GE;
983 		}
984 	      else
985 		{
986 		  cmp_const = i;
987 		  cmp_code = LE;
988 		}
989 
990 	      insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
991 						  GEN_INT (abs_inc*cmp_const),
992 						  labels[i]);
993 	      if (insn)
994 	        predict_insn (insn, PRED_LOOP_PRECONDITIONING,
995 			      REG_BR_PROB_BASE / (unroll_number - i));
996 	    }
997 
998 	  /* If the increment is greater than one, then we need another branch,
999 	     to handle other cases equivalent to 0.  */
1000 
1001 	  /* ??? This should be merged into the code above somehow to help
1002 	     simplify the code here, and reduce the number of branches emitted.
1003 	     For the negative increment case, the branch here could easily
1004 	     be merged with the `0' case branch above.  For the positive
1005 	     increment case, it is not clear how this can be simplified.  */
1006 
1007 	  if (abs_inc != 1)
1008 	    {
1009 	      int cmp_const;
1010 	      enum rtx_code cmp_code;
1011 
1012 	      if (neg_inc)
1013 		{
1014 		  cmp_const = abs_inc - 1;
1015 		  cmp_code = LE;
1016 		}
1017 	      else
1018 		{
1019 		  cmp_const = abs_inc * (unroll_number - 1) + 1;
1020 		  cmp_code = GE;
1021 		}
1022 
1023 	      simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1024 					   GEN_INT (cmp_const), labels[0]);
1025 	    }
1026 
1027 	  sequence = get_insns ();
1028 	  end_sequence ();
1029 	  loop_insn_hoist (loop, sequence);
1030 
1031 	  /* Only the last copy of the loop body here needs the exit
1032 	     test, so set copy_end to exclude the compare/branch here,
1033 	     and then reset it inside the loop when get to the last
1034 	     copy.  */
1035 
1036 	  if (GET_CODE (last_loop_insn) == BARRIER)
1037 	    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1038 	  else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1039 	    {
1040 	      copy_end = PREV_INSN (last_loop_insn);
1041 #ifdef HAVE_cc0
1042 	      /* The immediately preceding insn may be a compare which
1043 		 we do not want to copy.  */
1044 	      if (sets_cc0_p (PREV_INSN (copy_end)))
1045 		copy_end = PREV_INSN (copy_end);
1046 #endif
1047 	    }
1048 	  else
1049 	    abort ();
1050 
1051 	  for (i = 1; i < unroll_number; i++)
1052 	    {
1053 	      emit_label_after (labels[unroll_number - i],
1054 				PREV_INSN (loop_start));
1055 
1056 	      memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1057 	      memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1058 		      0, (VARRAY_SIZE (map->const_equiv_varray)
1059 			  * sizeof (struct const_equiv_data)));
1060 	      map->const_age = 0;
1061 
1062 	      for (j = 0; j < max_labelno; j++)
1063 		if (local_label[j])
1064 		  set_label_in_map (map, j, gen_label_rtx ());
1065 
1066 	      for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1067 		if (local_regno[r])
1068 		  {
1069 		    map->reg_map[r]
1070 		      = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1071 		    record_base_value (REGNO (map->reg_map[r]),
1072 				       regno_reg_rtx[r], 0);
1073 		  }
1074 	      /* The last copy needs the compare/branch insns at the end,
1075 		 so reset copy_end here if the loop ends with a conditional
1076 		 branch.  */
1077 
1078 	      if (i == unroll_number - 1)
1079 		{
1080 		  if (GET_CODE (last_loop_insn) == BARRIER)
1081 		    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1082 		  else
1083 		    copy_end = last_loop_insn;
1084 		}
1085 
1086 	      /* None of the copies are the `last_iteration', so just
1087 		 pass zero for that parameter.  */
1088 	      copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1089 			      unroll_type, start_label, loop_end,
1090 			      loop_start, copy_end);
1091 	    }
1092 	  emit_label_after (labels[0], PREV_INSN (loop_start));
1093 
1094 	  if (GET_CODE (last_loop_insn) == BARRIER)
1095 	    {
1096 	      insert_before = PREV_INSN (last_loop_insn);
1097 	      copy_end = PREV_INSN (insert_before);
1098 	    }
1099 	  else
1100 	    {
1101 	      insert_before = last_loop_insn;
1102 #ifdef HAVE_cc0
1103 	      /* The instruction immediately before the JUMP_INSN may
1104 		 be a compare instruction which we do not want to copy
1105 		 or delete.  */
1106 	      if (sets_cc0_p (PREV_INSN (insert_before)))
1107 		insert_before = PREV_INSN (insert_before);
1108 #endif
1109 	      copy_end = PREV_INSN (insert_before);
1110 	    }
1111 
1112 	  /* Set unroll type to MODULO now.  */
1113 	  unroll_type = UNROLL_MODULO;
1114 	  loop_preconditioned = 1;
1115 
1116 	  /* Clean up.  */
1117 	  free (labels);
1118 	}
1119     }
1120 
1121   /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1122      the loop unless all loops are being unrolled.  */
1123   if (unroll_type == UNROLL_NAIVE && ! flag_old_unroll_all_loops)
1124     {
1125       if (loop_dump_stream)
1126 	fprintf (loop_dump_stream,
1127 		 "Unrolling failure: Naive unrolling not being done.\n");
1128       goto egress;
1129     }
1130 
1131   /* At this point, we are guaranteed to unroll the loop.  */
1132 
1133   /* Keep track of the unroll factor for the loop.  */
1134   loop_info->unroll_number = unroll_number;
1135 
1136   /* And whether the loop has been preconditioned.  */
1137   loop_info->preconditioned = loop_preconditioned;
1138 
1139   /* Remember whether it was preconditioned for the second loop pass.  */
1140   NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1141 
1142   /* For each biv and giv, determine whether it can be safely split into
1143      a different variable for each unrolled copy of the loop body.
1144      We precalculate and save this info here, since computing it is
1145      expensive.
1146 
1147      Do this before deleting any instructions from the loop, so that
1148      back_branch_in_range_p will work correctly.  */
1149 
1150   if (splitting_not_safe)
1151     temp = 0;
1152   else
1153     temp = find_splittable_regs (loop, unroll_type, unroll_number);
1154 
1155   /* find_splittable_regs may have created some new registers, so must
1156      reallocate the reg_map with the new larger size, and must realloc
1157      the constant maps also.  */
1158 
1159   maxregnum = max_reg_num ();
1160   map->reg_map = xmalloc (maxregnum * sizeof (rtx));
1161 
1162   init_reg_map (map, maxregnum);
1163 
1164   if (map->const_equiv_varray == 0)
1165     VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1166 			     maxregnum + temp * unroll_number * 2,
1167 			     "unroll_loop");
1168   global_const_equiv_varray = map->const_equiv_varray;
1169 
1170   /* Search the list of bivs and givs to find ones which need to be remapped
1171      when split, and set their reg_map entry appropriately.  */
1172 
1173   for (bl = ivs->list; bl; bl = bl->next)
1174     {
1175       if (REGNO (bl->biv->src_reg) != bl->regno)
1176 	map->reg_map[bl->regno] = bl->biv->src_reg;
1177 #if 0
1178       /* Currently, non-reduced/final-value givs are never split.  */
1179       for (v = bl->giv; v; v = v->next_iv)
1180 	if (REGNO (v->src_reg) != bl->regno)
1181 	  map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1182 #endif
1183     }
1184 
1185   /* Use our current register alignment and pointer flags.  */
1186   map->regno_pointer_align = cfun->emit->regno_pointer_align;
1187   map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1188 
1189   /* If the loop is being partially unrolled, and the iteration variables
1190      are being split, and are being renamed for the split, then must fix up
1191      the compare/jump instruction at the end of the loop to refer to the new
1192      registers.  This compare isn't copied, so the registers used in it
1193      will never be replaced if it isn't done here.  */
1194 
1195   if (unroll_type == UNROLL_MODULO)
1196     {
1197       insn = NEXT_INSN (copy_end);
1198       if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1199 	PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1200     }
1201 
1202   /* For unroll_number times, make a copy of each instruction
1203      between copy_start and copy_end, and insert these new instructions
1204      before the end of the loop.  */
1205 
1206   for (i = 0; i < unroll_number; i++)
1207     {
1208       memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1209       memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1210 	      VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1211       map->const_age = 0;
1212 
1213       for (j = 0; j < max_labelno; j++)
1214 	if (local_label[j])
1215 	  set_label_in_map (map, j, gen_label_rtx ());
1216 
1217       for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1218 	if (local_regno[r])
1219 	  {
1220 	    map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1221 	    record_base_value (REGNO (map->reg_map[r]),
1222 			       regno_reg_rtx[r], 0);
1223 	  }
1224 
1225       /* If loop starts with a branch to the test, then fix it so that
1226 	 it points to the test of the first unrolled copy of the loop.  */
1227       if (i == 0 && loop_start != copy_start)
1228 	{
1229 	  insn = PREV_INSN (copy_start);
1230 	  pattern = PATTERN (insn);
1231 
1232 	  tem = get_label_from_map (map,
1233 				    CODE_LABEL_NUMBER
1234 				    (XEXP (SET_SRC (pattern), 0)));
1235 	  SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1236 
1237 	  /* Set the jump label so that it can be used by later loop unrolling
1238 	     passes.  */
1239 	  JUMP_LABEL (insn) = tem;
1240 	  LABEL_NUSES (tem)++;
1241 	}
1242 
1243       copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1244 		      i == unroll_number - 1, unroll_type, start_label,
1245 		      loop_end, insert_before, insert_before);
1246     }
1247 
1248   /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1249      insn to be deleted.  This prevents any runaway delete_insn call from
1250      more insns that it should, as it always stops at a CODE_LABEL.  */
1251 
1252   /* Delete the compare and branch at the end of the loop if completely
1253      unrolling the loop.  Deleting the backward branch at the end also
1254      deletes the code label at the start of the loop.  This is done at
1255      the very end to avoid problems with back_branch_in_range_p.  */
1256 
1257   if (unroll_type == UNROLL_COMPLETELY)
1258     safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1259   else
1260     safety_label = emit_label_after (gen_label_rtx (), copy_end);
1261 
1262   /* Delete all of the original loop instructions.  Don't delete the
1263      LOOP_BEG note, or the first code label in the loop.  */
1264 
1265   insn = NEXT_INSN (copy_start);
1266   while (insn != safety_label)
1267     {
1268       /* ??? Don't delete named code labels.  They will be deleted when the
1269 	 jump that references them is deleted.  Otherwise, we end up deleting
1270 	 them twice, which causes them to completely disappear instead of turn
1271 	 into NOTE_INSN_DELETED_LABEL notes.  This in turn causes aborts in
1272 	 dwarfout.c/dwarf2out.c.  We could perhaps fix the dwarf*out.c files
1273 	 to handle deleted labels instead.  Or perhaps fix DECL_RTL of the
1274 	 associated LABEL_DECL to point to one of the new label instances.  */
1275       /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note.  */
1276       if (insn != start_label
1277 	  && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1278 	  && ! (GET_CODE (insn) == NOTE
1279 		&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1280 	insn = delete_related_insns (insn);
1281       else
1282 	insn = NEXT_INSN (insn);
1283     }
1284 
1285   /* Can now delete the 'safety' label emitted to protect us from runaway
1286      delete_related_insns calls.  */
1287   if (INSN_DELETED_P (safety_label))
1288     abort ();
1289   delete_related_insns (safety_label);
1290 
1291   /* If exit_label exists, emit it after the loop.  Doing the emit here
1292      forces it to have a higher INSN_UID than any insn in the unrolled loop.
1293      This is needed so that mostly_true_jump in reorg.c will treat jumps
1294      to this loop end label correctly, i.e. predict that they are usually
1295      not taken.  */
1296   if (exit_label)
1297     emit_label_after (exit_label, loop_end);
1298 
1299  egress:
1300   if (unroll_type == UNROLL_COMPLETELY)
1301     {
1302       /* Remove the loop notes since this is no longer a loop.  */
1303       if (loop->vtop)
1304 	delete_related_insns (loop->vtop);
1305       if (loop->cont)
1306 	delete_related_insns (loop->cont);
1307       if (loop_start)
1308 	delete_related_insns (loop_start);
1309       if (loop_end)
1310 	delete_related_insns (loop_end);
1311     }
1312 
1313   if (map->const_equiv_varray)
1314     VARRAY_FREE (map->const_equiv_varray);
1315   if (map->label_map)
1316     {
1317       free (map->label_map);
1318       free (local_label);
1319     }
1320   free (map->insn_map);
1321   free (splittable_regs);
1322   free (splittable_regs_updates);
1323   free (addr_combined_regs);
1324   free (local_regno);
1325   if (map->reg_map)
1326     free (map->reg_map);
1327   free (map);
1328 }
1329 
1330 /* A helper function for unroll_loop.  Emit a compare and branch to
1331    satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1332    If the branch turned out to be conditional, return it, otherwise
1333    return NULL.  */
1334 
1335 static rtx
simplify_cmp_and_jump_insns(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1,rtx label)1336 simplify_cmp_and_jump_insns (enum rtx_code code, enum machine_mode mode,
1337 			     rtx op0, rtx op1, rtx label)
1338 {
1339   rtx t, insn;
1340 
1341   t = simplify_relational_operation (code, mode, op0, op1);
1342   if (!t)
1343     {
1344       enum rtx_code scode = signed_condition (code);
1345       emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1346 			       code != scode, label);
1347       insn = get_last_insn ();
1348 
1349       JUMP_LABEL (insn) = label;
1350       LABEL_NUSES (label) += 1;
1351 
1352       return insn;
1353     }
1354   else if (t == const_true_rtx)
1355     {
1356       insn = emit_jump_insn (gen_jump (label));
1357       emit_barrier ();
1358       JUMP_LABEL (insn) = label;
1359       LABEL_NUSES (label) += 1;
1360     }
1361 
1362   return NULL_RTX;
1363 }
1364 
1365 /* Return true if the loop can be safely, and profitably, preconditioned
1366    so that the unrolled copies of the loop body don't need exit tests.
1367 
1368    This only works if final_value, initial_value and increment can be
1369    determined, and if increment is a constant power of 2.
1370    If increment is not a power of 2, then the preconditioning modulo
1371    operation would require a real modulo instead of a boolean AND, and this
1372    is not considered `profitable'.  */
1373 
1374 /* ??? If the loop is known to be executed very many times, or the machine
1375    has a very cheap divide instruction, then preconditioning is a win even
1376    when the increment is not a power of 2.  Use RTX_COST to compute
1377    whether divide is cheap.
1378    ??? A divide by constant doesn't actually need a divide, look at
1379    expand_divmod.  The reduced cost of this optimized modulo is not
1380    reflected in RTX_COST.  */
1381 
1382 int
precondition_loop_p(const struct loop * loop,rtx * initial_value,rtx * final_value,rtx * increment,enum machine_mode * mode)1383 precondition_loop_p (const struct loop *loop, rtx *initial_value,
1384 		     rtx *final_value, rtx *increment,
1385 		     enum machine_mode *mode)
1386 {
1387   rtx loop_start = loop->start;
1388   struct loop_info *loop_info = LOOP_INFO (loop);
1389 
1390   if (loop_info->n_iterations > 0)
1391     {
1392       if (INTVAL (loop_info->increment) > 0)
1393 	{
1394 	  *initial_value = const0_rtx;
1395 	  *increment = const1_rtx;
1396 	  *final_value = GEN_INT (loop_info->n_iterations);
1397 	}
1398       else
1399 	{
1400 	  *initial_value = GEN_INT (loop_info->n_iterations);
1401 	  *increment = constm1_rtx;
1402 	  *final_value = const0_rtx;
1403 	}
1404       *mode = word_mode;
1405 
1406       if (loop_dump_stream)
1407 	fprintf (loop_dump_stream,
1408 		 "Preconditioning: Success, number of iterations known, "
1409 		 HOST_WIDE_INT_PRINT_DEC ".\n",
1410 		 loop_info->n_iterations);
1411       return 1;
1412     }
1413 
1414   if (loop_info->iteration_var == 0)
1415     {
1416       if (loop_dump_stream)
1417 	fprintf (loop_dump_stream,
1418 		 "Preconditioning: Could not find iteration variable.\n");
1419       return 0;
1420     }
1421   else if (loop_info->initial_value == 0)
1422     {
1423       if (loop_dump_stream)
1424 	fprintf (loop_dump_stream,
1425 		 "Preconditioning: Could not find initial value.\n");
1426       return 0;
1427     }
1428   else if (loop_info->increment == 0)
1429     {
1430       if (loop_dump_stream)
1431 	fprintf (loop_dump_stream,
1432 		 "Preconditioning: Could not find increment value.\n");
1433       return 0;
1434     }
1435   else if (GET_CODE (loop_info->increment) != CONST_INT)
1436     {
1437       if (loop_dump_stream)
1438 	fprintf (loop_dump_stream,
1439 		 "Preconditioning: Increment not a constant.\n");
1440       return 0;
1441     }
1442   else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1443 	   && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1444     {
1445       if (loop_dump_stream)
1446 	fprintf (loop_dump_stream,
1447 		 "Preconditioning: Increment not a constant power of 2.\n");
1448       return 0;
1449     }
1450 
1451   /* Unsigned_compare and compare_dir can be ignored here, since they do
1452      not matter for preconditioning.  */
1453 
1454   if (loop_info->final_value == 0)
1455     {
1456       if (loop_dump_stream)
1457 	fprintf (loop_dump_stream,
1458 		 "Preconditioning: EQ comparison loop.\n");
1459       return 0;
1460     }
1461 
1462   /* Must ensure that final_value is invariant, so call
1463      loop_invariant_p to check.  Before doing so, must check regno
1464      against max_reg_before_loop to make sure that the register is in
1465      the range covered by loop_invariant_p.  If it isn't, then it is
1466      most likely a biv/giv which by definition are not invariant.  */
1467   if ((GET_CODE (loop_info->final_value) == REG
1468        && REGNO (loop_info->final_value) >= max_reg_before_loop)
1469       || (GET_CODE (loop_info->final_value) == PLUS
1470 	  && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1471       || ! loop_invariant_p (loop, loop_info->final_value))
1472     {
1473       if (loop_dump_stream)
1474 	fprintf (loop_dump_stream,
1475 		 "Preconditioning: Final value not invariant.\n");
1476       return 0;
1477     }
1478 
1479   /* Fail for floating point values, since the caller of this function
1480      does not have code to deal with them.  */
1481   if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1482       || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1483     {
1484       if (loop_dump_stream)
1485 	fprintf (loop_dump_stream,
1486 		 "Preconditioning: Floating point final or initial value.\n");
1487       return 0;
1488     }
1489 
1490   /* Fail if loop_info->iteration_var is not live before loop_start,
1491      since we need to test its value in the preconditioning code.  */
1492 
1493   if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1494       > INSN_LUID (loop_start))
1495     {
1496       if (loop_dump_stream)
1497 	fprintf (loop_dump_stream,
1498 		 "Preconditioning: Iteration var not live before loop start.\n");
1499       return 0;
1500     }
1501 
1502   /* Note that loop_iterations biases the initial value for GIV iterators
1503      such as "while (i-- > 0)" so that we can calculate the number of
1504      iterations just like for BIV iterators.
1505 
1506      Also note that the absolute values of initial_value and
1507      final_value are unimportant as only their difference is used for
1508      calculating the number of loop iterations.  */
1509   *initial_value = loop_info->initial_value;
1510   *increment = loop_info->increment;
1511   *final_value = loop_info->final_value;
1512 
1513   /* Decide what mode to do these calculations in.  Choose the larger
1514      of final_value's mode and initial_value's mode, or a full-word if
1515      both are constants.  */
1516   *mode = GET_MODE (*final_value);
1517   if (*mode == VOIDmode)
1518     {
1519       *mode = GET_MODE (*initial_value);
1520       if (*mode == VOIDmode)
1521 	*mode = word_mode;
1522     }
1523   else if (*mode != GET_MODE (*initial_value)
1524 	   && (GET_MODE_SIZE (*mode)
1525 	       < GET_MODE_SIZE (GET_MODE (*initial_value))))
1526     *mode = GET_MODE (*initial_value);
1527 
1528   /* Success!  */
1529   if (loop_dump_stream)
1530     fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1531   return 1;
1532 }
1533 
1534 /* All pseudo-registers must be mapped to themselves.  Two hard registers
1535    must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1536    REGNUM, to avoid function-inlining specific conversions of these
1537    registers.  All other hard regs can not be mapped because they may be
1538    used with different
1539    modes.  */
1540 
1541 static void
init_reg_map(struct inline_remap * map,int maxregnum)1542 init_reg_map (struct inline_remap *map, int maxregnum)
1543 {
1544   int i;
1545 
1546   for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1547     map->reg_map[i] = regno_reg_rtx[i];
1548   /* Just clear the rest of the entries.  */
1549   for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1550     map->reg_map[i] = 0;
1551 
1552   map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1553     = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1554   map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1555     = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1556 }
1557 
1558 /* Strength-reduction will often emit code for optimized biv/givs which
1559    calculates their value in a temporary register, and then copies the result
1560    to the iv.  This procedure reconstructs the pattern computing the iv;
1561    verifying that all operands are of the proper form.
1562 
1563    PATTERN must be the result of single_set.
1564    The return value is the amount that the giv is incremented by.  */
1565 
1566 static rtx
calculate_giv_inc(rtx pattern,rtx src_insn,unsigned int regno)1567 calculate_giv_inc (rtx pattern, rtx src_insn, unsigned int regno)
1568 {
1569   rtx increment;
1570   rtx increment_total = 0;
1571   int tries = 0;
1572 
1573  retry:
1574   /* Verify that we have an increment insn here.  First check for a plus
1575      as the set source.  */
1576   if (GET_CODE (SET_SRC (pattern)) != PLUS)
1577     {
1578       /* SR sometimes computes the new giv value in a temp, then copies it
1579 	 to the new_reg.  */
1580       src_insn = PREV_INSN (src_insn);
1581       pattern = single_set (src_insn);
1582       if (GET_CODE (SET_SRC (pattern)) != PLUS)
1583 	abort ();
1584 
1585       /* The last insn emitted is not needed, so delete it to avoid confusing
1586 	 the second cse pass.  This insn sets the giv unnecessarily.  */
1587       delete_related_insns (get_last_insn ());
1588     }
1589 
1590   /* Verify that we have a constant as the second operand of the plus.  */
1591   increment = XEXP (SET_SRC (pattern), 1);
1592   if (GET_CODE (increment) != CONST_INT)
1593     {
1594       /* SR sometimes puts the constant in a register, especially if it is
1595 	 too big to be an add immed operand.  */
1596       increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1597 
1598       /* SR may have used LO_SUM to compute the constant if it is too large
1599 	 for a load immed operand.  In this case, the constant is in operand
1600 	 one of the LO_SUM rtx.  */
1601       if (GET_CODE (increment) == LO_SUM)
1602 	increment = XEXP (increment, 1);
1603 
1604       /* Some ports store large constants in memory and add a REG_EQUAL
1605 	 note to the store insn.  */
1606       else if (GET_CODE (increment) == MEM)
1607 	{
1608 	  rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1609 	  if (note)
1610 	    increment = XEXP (note, 0);
1611 	}
1612 
1613       else if (GET_CODE (increment) == IOR
1614 	       || GET_CODE (increment) == PLUS
1615 	       || GET_CODE (increment) == ASHIFT
1616 	       || GET_CODE (increment) == LSHIFTRT)
1617 	{
1618 	  /* The rs6000 port loads some constants with IOR.
1619 	     The alpha port loads some constants with ASHIFT and PLUS.
1620 	     The sparc64 port loads some constants with LSHIFTRT.  */
1621 	  rtx second_part = XEXP (increment, 1);
1622 	  enum rtx_code code = GET_CODE (increment);
1623 
1624 	  increment = find_last_value (XEXP (increment, 0),
1625 				       &src_insn, NULL_RTX, 0);
1626 	  /* Don't need the last insn anymore.  */
1627 	  delete_related_insns (get_last_insn ());
1628 
1629 	  if (GET_CODE (second_part) != CONST_INT
1630 	      || GET_CODE (increment) != CONST_INT)
1631 	    abort ();
1632 
1633 	  if (code == IOR)
1634 	    increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1635 	  else if (code == PLUS)
1636 	    increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1637 	  else if (code == ASHIFT)
1638 	    increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1639 	  else
1640 	    increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
1641 	}
1642 
1643       if (GET_CODE (increment) != CONST_INT)
1644 	abort ();
1645 
1646       /* The insn loading the constant into a register is no longer needed,
1647 	 so delete it.  */
1648       delete_related_insns (get_last_insn ());
1649     }
1650 
1651   if (increment_total)
1652     increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1653   else
1654     increment_total = increment;
1655 
1656   /* Check that the source register is the same as the register we expected
1657      to see as the source.  If not, something is seriously wrong.  */
1658   if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1659       || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1660     {
1661       /* Some machines (e.g. the romp), may emit two add instructions for
1662 	 certain constants, so lets try looking for another add immediately
1663 	 before this one if we have only seen one add insn so far.  */
1664 
1665       if (tries == 0)
1666 	{
1667 	  tries++;
1668 
1669 	  src_insn = PREV_INSN (src_insn);
1670 	  pattern = single_set (src_insn);
1671 
1672 	  delete_related_insns (get_last_insn ());
1673 
1674 	  goto retry;
1675 	}
1676 
1677       abort ();
1678     }
1679 
1680   return increment_total;
1681 }
1682 
1683 /* Copy REG_NOTES, except for insn references, because not all insn_map
1684    entries are valid yet.  We do need to copy registers now though, because
1685    the reg_map entries can change during copying.  */
1686 
1687 static rtx
initial_reg_note_copy(rtx notes,struct inline_remap * map)1688 initial_reg_note_copy (rtx notes, struct inline_remap *map)
1689 {
1690   rtx copy;
1691 
1692   if (notes == 0)
1693     return 0;
1694 
1695   copy = rtx_alloc (GET_CODE (notes));
1696   PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1697 
1698   if (GET_CODE (notes) == EXPR_LIST)
1699     XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1700   else if (GET_CODE (notes) == INSN_LIST)
1701     /* Don't substitute for these yet.  */
1702     XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1703   else
1704     abort ();
1705 
1706   XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1707 
1708   return copy;
1709 }
1710 
1711 /* Fixup insn references in copied REG_NOTES.  */
1712 
1713 static void
final_reg_note_copy(rtx * notesp,struct inline_remap * map)1714 final_reg_note_copy (rtx *notesp, struct inline_remap *map)
1715 {
1716   while (*notesp)
1717     {
1718       rtx note = *notesp;
1719 
1720       if (GET_CODE (note) == INSN_LIST)
1721 	{
1722 	  rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1723 
1724 	  /* If we failed to remap the note, something is awry.
1725 	     Allow REG_LABEL as it may reference label outside
1726 	     the unrolled loop.  */
1727 	  if (!insn)
1728 	    {
1729 	      if (REG_NOTE_KIND (note) != REG_LABEL)
1730 		abort ();
1731 	    }
1732 	  else
1733 	    XEXP (note, 0) = insn;
1734 	}
1735 
1736       notesp = &XEXP (note, 1);
1737     }
1738 }
1739 
1740 /* Copy each instruction in the loop, substituting from map as appropriate.
1741    This is very similar to a loop in expand_inline_function.  */
1742 
1743 static void
copy_loop_body(struct loop * loop,rtx copy_start,rtx copy_end,struct inline_remap * map,rtx exit_label,int last_iteration,enum unroll_types unroll_type,rtx start_label,rtx loop_end,rtx insert_before,rtx copy_notes_from)1744 copy_loop_body (struct loop *loop, rtx copy_start, rtx copy_end,
1745 		struct inline_remap *map, rtx exit_label,
1746 		int last_iteration, enum unroll_types unroll_type,
1747 		rtx start_label, rtx loop_end, rtx insert_before,
1748 		rtx copy_notes_from)
1749 {
1750   struct loop_ivs *ivs = LOOP_IVS (loop);
1751   rtx insn, pattern;
1752   rtx set, tem, copy = NULL_RTX;
1753   int dest_reg_was_split, i;
1754 #ifdef HAVE_cc0
1755   rtx cc0_insn = 0;
1756 #endif
1757   rtx final_label = 0;
1758   rtx giv_inc, giv_dest_reg, giv_src_reg;
1759 
1760   /* If this isn't the last iteration, then map any references to the
1761      start_label to final_label.  Final label will then be emitted immediately
1762      after the end of this loop body if it was ever used.
1763 
1764      If this is the last iteration, then map references to the start_label
1765      to itself.  */
1766   if (! last_iteration)
1767     {
1768       final_label = gen_label_rtx ();
1769       set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1770     }
1771   else
1772     set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1773 
1774   start_sequence ();
1775 
1776   insn = copy_start;
1777   do
1778     {
1779       insn = NEXT_INSN (insn);
1780 
1781       map->orig_asm_operands_vector = 0;
1782 
1783       switch (GET_CODE (insn))
1784 	{
1785 	case INSN:
1786 	  pattern = PATTERN (insn);
1787 	  copy = 0;
1788 	  giv_inc = 0;
1789 
1790 	  /* Check to see if this is a giv that has been combined with
1791 	     some split address givs.  (Combined in the sense that
1792 	     `combine_givs' in loop.c has put two givs in the same register.)
1793 	     In this case, we must search all givs based on the same biv to
1794 	     find the address givs.  Then split the address givs.
1795 	     Do this before splitting the giv, since that may map the
1796 	     SET_DEST to a new register.  */
1797 
1798 	  if ((set = single_set (insn))
1799 	      && GET_CODE (SET_DEST (set)) == REG
1800 	      && addr_combined_regs[REGNO (SET_DEST (set))])
1801 	    {
1802 	      struct iv_class *bl;
1803 	      struct induction *v, *tv;
1804 	      unsigned int regno = REGNO (SET_DEST (set));
1805 
1806 	      v = addr_combined_regs[REGNO (SET_DEST (set))];
1807 	      bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1808 
1809 	      /* Although the giv_inc amount is not needed here, we must call
1810 		 calculate_giv_inc here since it might try to delete the
1811 		 last insn emitted.  If we wait until later to call it,
1812 		 we might accidentally delete insns generated immediately
1813 		 below by emit_unrolled_add.  */
1814 
1815 	      giv_inc = calculate_giv_inc (set, insn, regno);
1816 
1817 	      /* Now find all address giv's that were combined with this
1818 		 giv 'v'.  */
1819 	      for (tv = bl->giv; tv; tv = tv->next_iv)
1820 		if (tv->giv_type == DEST_ADDR && tv->same == v)
1821 		  {
1822 		    int this_giv_inc;
1823 
1824 		    /* If this DEST_ADDR giv was not split, then ignore it.  */
1825 		    if (*tv->location != tv->dest_reg)
1826 		      continue;
1827 
1828 		    /* Scale this_giv_inc if the multiplicative factors of
1829 		       the two givs are different.  */
1830 		    this_giv_inc = INTVAL (giv_inc);
1831 		    if (tv->mult_val != v->mult_val)
1832 		      this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1833 				      * INTVAL (tv->mult_val));
1834 
1835 		    tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1836 		    *tv->location = tv->dest_reg;
1837 
1838 		    if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1839 		      {
1840 			/* Must emit an insn to increment the split address
1841 			   giv.  Add in the const_adjust field in case there
1842 			   was a constant eliminated from the address.  */
1843 			rtx value, dest_reg;
1844 
1845 			/* tv->dest_reg will be either a bare register,
1846 			   or else a register plus a constant.  */
1847 			if (GET_CODE (tv->dest_reg) == REG)
1848 			  dest_reg = tv->dest_reg;
1849 			else
1850 			  dest_reg = XEXP (tv->dest_reg, 0);
1851 
1852 			/* Check for shared address givs, and avoid
1853 			   incrementing the shared pseudo reg more than
1854 			   once.  */
1855 			if (! tv->same_insn && ! tv->shared)
1856 			  {
1857 			    /* tv->dest_reg may actually be a (PLUS (REG)
1858 			       (CONST)) here, so we must call plus_constant
1859 			       to add the const_adjust amount before calling
1860 			       emit_unrolled_add below.  */
1861 			    value = plus_constant (tv->dest_reg,
1862 						   tv->const_adjust);
1863 
1864 			    if (GET_CODE (value) == PLUS)
1865 			      {
1866 				/* The constant could be too large for an add
1867 				   immediate, so can't directly emit an insn
1868 				   here.  */
1869 				emit_unrolled_add (dest_reg, XEXP (value, 0),
1870 						   XEXP (value, 1));
1871 			      }
1872 			  }
1873 
1874 			/* Reset the giv to be just the register again, in case
1875 			   it is used after the set we have just emitted.
1876 			   We must subtract the const_adjust factor added in
1877 			   above.  */
1878 			tv->dest_reg = plus_constant (dest_reg,
1879 						      -tv->const_adjust);
1880 			*tv->location = tv->dest_reg;
1881 		      }
1882 		  }
1883 	    }
1884 
1885 	  /* If this is a setting of a splittable variable, then determine
1886 	     how to split the variable, create a new set based on this split,
1887 	     and set up the reg_map so that later uses of the variable will
1888 	     use the new split variable.  */
1889 
1890 	  dest_reg_was_split = 0;
1891 
1892 	  if ((set = single_set (insn))
1893 	      && GET_CODE (SET_DEST (set)) == REG
1894 	      && splittable_regs[REGNO (SET_DEST (set))])
1895 	    {
1896 	      unsigned int regno = REGNO (SET_DEST (set));
1897 	      unsigned int src_regno;
1898 
1899 	      dest_reg_was_split = 1;
1900 
1901 	      giv_dest_reg = SET_DEST (set);
1902 	      giv_src_reg = giv_dest_reg;
1903 	      /* Compute the increment value for the giv, if it wasn't
1904 		 already computed above.  */
1905 	      if (giv_inc == 0)
1906 		giv_inc = calculate_giv_inc (set, insn, regno);
1907 
1908 	      src_regno = REGNO (giv_src_reg);
1909 
1910 	      if (unroll_type == UNROLL_COMPLETELY)
1911 		{
1912 		  /* Completely unrolling the loop.  Set the induction
1913 		     variable to a known constant value.  */
1914 
1915 		  /* The value in splittable_regs may be an invariant
1916 		     value, so we must use plus_constant here.  */
1917 		  splittable_regs[regno]
1918 		    = plus_constant (splittable_regs[src_regno],
1919 				     INTVAL (giv_inc));
1920 
1921 		  if (GET_CODE (splittable_regs[regno]) == PLUS)
1922 		    {
1923 		      giv_src_reg = XEXP (splittable_regs[regno], 0);
1924 		      giv_inc = XEXP (splittable_regs[regno], 1);
1925 		    }
1926 		  else
1927 		    {
1928 		      /* The splittable_regs value must be a REG or a
1929 			 CONST_INT, so put the entire value in the giv_src_reg
1930 			 variable.  */
1931 		      giv_src_reg = splittable_regs[regno];
1932 		      giv_inc = const0_rtx;
1933 		    }
1934 		}
1935 	      else
1936 		{
1937 		  /* Partially unrolling loop.  Create a new pseudo
1938 		     register for the iteration variable, and set it to
1939 		     be a constant plus the original register.  Except
1940 		     on the last iteration, when the result has to
1941 		     go back into the original iteration var register.  */
1942 
1943 		  /* Handle bivs which must be mapped to a new register
1944 		     when split.  This happens for bivs which need their
1945 		     final value set before loop entry.  The new register
1946 		     for the biv was stored in the biv's first struct
1947 		     induction entry by find_splittable_regs.  */
1948 
1949 		  if (regno < ivs->n_regs
1950 		      && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1951 		    {
1952 		      giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1953 		      giv_dest_reg = giv_src_reg;
1954 		    }
1955 
1956 #if 0
1957 		  /* If non-reduced/final-value givs were split, then
1958 		     this would have to remap those givs also.  See
1959 		     find_splittable_regs.  */
1960 #endif
1961 
1962 		  splittable_regs[regno]
1963 		    = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1964 					   giv_inc,
1965 					   splittable_regs[src_regno]);
1966 		  giv_inc = splittable_regs[regno];
1967 
1968 		  /* Now split the induction variable by changing the dest
1969 		     of this insn to a new register, and setting its
1970 		     reg_map entry to point to this new register.
1971 
1972 		     If this is the last iteration, and this is the last insn
1973 		     that will update the iv, then reuse the original dest,
1974 		     to ensure that the iv will have the proper value when
1975 		     the loop exits or repeats.
1976 
1977 		     Using splittable_regs_updates here like this is safe,
1978 		     because it can only be greater than one if all
1979 		     instructions modifying the iv are always executed in
1980 		     order.  */
1981 
1982 		  if (! last_iteration
1983 		      || (splittable_regs_updates[regno]-- != 1))
1984 		    {
1985 		      tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1986 		      giv_dest_reg = tem;
1987 		      map->reg_map[regno] = tem;
1988 		      record_base_value (REGNO (tem),
1989 					 giv_inc == const0_rtx
1990 					 ? giv_src_reg
1991 					 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1992 							 giv_src_reg, giv_inc),
1993 					 1);
1994 		    }
1995 		  else
1996 		    map->reg_map[regno] = giv_src_reg;
1997 		}
1998 
1999 	      /* The constant being added could be too large for an add
2000 		 immediate, so can't directly emit an insn here.  */
2001 	      emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2002 	      copy = get_last_insn ();
2003 	      pattern = PATTERN (copy);
2004 	    }
2005 	  else
2006 	    {
2007 	      pattern = copy_rtx_and_substitute (pattern, map, 0);
2008 	      copy = emit_insn (pattern);
2009 	    }
2010 	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2011 	  INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2012 
2013 	  /* If there is a REG_EQUAL note present whose value
2014 	     is not loop invariant, then delete it, since it
2015 	     may cause problems with later optimization passes.  */
2016 	  if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2017 	      && !loop_invariant_p (loop, XEXP (tem, 0)))
2018 	    remove_note (copy, tem);
2019 
2020 #ifdef HAVE_cc0
2021 	  /* If this insn is setting CC0, it may need to look at
2022 	     the insn that uses CC0 to see what type of insn it is.
2023 	     In that case, the call to recog via validate_change will
2024 	     fail.  So don't substitute constants here.  Instead,
2025 	     do it when we emit the following insn.
2026 
2027 	     For example, see the pyr.md file.  That machine has signed and
2028 	     unsigned compares.  The compare patterns must check the
2029 	     following branch insn to see which what kind of compare to
2030 	     emit.
2031 
2032 	     If the previous insn set CC0, substitute constants on it as
2033 	     well.  */
2034 	  if (sets_cc0_p (PATTERN (copy)) != 0)
2035 	    cc0_insn = copy;
2036 	  else
2037 	    {
2038 	      if (cc0_insn)
2039 		try_constants (cc0_insn, map);
2040 	      cc0_insn = 0;
2041 	      try_constants (copy, map);
2042 	    }
2043 #else
2044 	  try_constants (copy, map);
2045 #endif
2046 
2047 	  /* Make split induction variable constants `permanent' since we
2048 	     know there are no backward branches across iteration variable
2049 	     settings which would invalidate this.  */
2050 	  if (dest_reg_was_split)
2051 	    {
2052 	      int regno = REGNO (SET_DEST (set));
2053 
2054 	      if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2055 		  && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2056 		      == map->const_age))
2057 		VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2058 	    }
2059 	  break;
2060 
2061 	case JUMP_INSN:
2062 	  pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2063 	  copy = emit_jump_insn (pattern);
2064 	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2065 	  INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2066 
2067 	  if (JUMP_LABEL (insn))
2068 	    {
2069 	      JUMP_LABEL (copy) = get_label_from_map (map,
2070 						      CODE_LABEL_NUMBER
2071 						      (JUMP_LABEL (insn)));
2072 	      LABEL_NUSES (JUMP_LABEL (copy))++;
2073 	    }
2074 	  if (JUMP_LABEL (insn) == start_label && insn == copy_end
2075 	      && ! last_iteration)
2076 	    {
2077 
2078 	      /* This is a branch to the beginning of the loop; this is the
2079 		 last insn being copied; and this is not the last iteration.
2080 		 In this case, we want to change the original fall through
2081 		 case to be a branch past the end of the loop, and the
2082 		 original jump label case to fall_through.  */
2083 
2084 	      if (!invert_jump (copy, exit_label, 0))
2085 		{
2086 		  rtx jmp;
2087 		  rtx lab = gen_label_rtx ();
2088 		  /* Can't do it by reversing the jump (probably because we
2089 		     couldn't reverse the conditions), so emit a new
2090 		     jump_insn after COPY, and redirect the jump around
2091 		     that.  */
2092 		  jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2093 		  JUMP_LABEL (jmp) = exit_label;
2094 		  LABEL_NUSES (exit_label)++;
2095 		  jmp = emit_barrier_after (jmp);
2096 		  emit_label_after (lab, jmp);
2097 		  LABEL_NUSES (lab) = 0;
2098 		  if (!redirect_jump (copy, lab, 0))
2099 		    abort ();
2100 		}
2101 	    }
2102 
2103 #ifdef HAVE_cc0
2104 	  if (cc0_insn)
2105 	    try_constants (cc0_insn, map);
2106 	  cc0_insn = 0;
2107 #endif
2108 	  try_constants (copy, map);
2109 
2110 	  /* Set the jump label of COPY correctly to avoid problems with
2111 	     later passes of unroll_loop, if INSN had jump label set.  */
2112 	  if (JUMP_LABEL (insn))
2113 	    {
2114 	      rtx label = 0;
2115 
2116 	      /* Can't use the label_map for every insn, since this may be
2117 		 the backward branch, and hence the label was not mapped.  */
2118 	      if ((set = single_set (copy)))
2119 		{
2120 		  tem = SET_SRC (set);
2121 		  if (GET_CODE (tem) == LABEL_REF)
2122 		    label = XEXP (tem, 0);
2123 		  else if (GET_CODE (tem) == IF_THEN_ELSE)
2124 		    {
2125 		      if (XEXP (tem, 1) != pc_rtx)
2126 			label = XEXP (XEXP (tem, 1), 0);
2127 		      else
2128 			label = XEXP (XEXP (tem, 2), 0);
2129 		    }
2130 		}
2131 
2132 	      if (label && GET_CODE (label) == CODE_LABEL)
2133 		JUMP_LABEL (copy) = label;
2134 	      else
2135 		{
2136 		  /* An unrecognizable jump insn, probably the entry jump
2137 		     for a switch statement.  This label must have been mapped,
2138 		     so just use the label_map to get the new jump label.  */
2139 		  JUMP_LABEL (copy)
2140 		    = get_label_from_map (map,
2141 					  CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2142 		}
2143 
2144 	      /* If this is a non-local jump, then must increase the label
2145 		 use count so that the label will not be deleted when the
2146 		 original jump is deleted.  */
2147 	      LABEL_NUSES (JUMP_LABEL (copy))++;
2148 	    }
2149 	  else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2150 		   || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2151 	    {
2152 	      rtx pat = PATTERN (copy);
2153 	      int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2154 	      int len = XVECLEN (pat, diff_vec_p);
2155 	      int i;
2156 
2157 	      for (i = 0; i < len; i++)
2158 		LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2159 	    }
2160 
2161 	  /* If this used to be a conditional jump insn but whose branch
2162 	     direction is now known, we must do something special.  */
2163 	  if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2164 	    {
2165 #ifdef HAVE_cc0
2166 	      /* If the previous insn set cc0 for us, delete it.  */
2167 	      if (only_sets_cc0_p (PREV_INSN (copy)))
2168 		delete_related_insns (PREV_INSN (copy));
2169 #endif
2170 
2171 	      /* If this is now a no-op, delete it.  */
2172 	      if (map->last_pc_value == pc_rtx)
2173 		{
2174 		  delete_insn (copy);
2175 		  copy = 0;
2176 		}
2177 	      else
2178 		/* Otherwise, this is unconditional jump so we must put a
2179 		   BARRIER after it.  We could do some dead code elimination
2180 		   here, but jump.c will do it just as well.  */
2181 		emit_barrier ();
2182 	    }
2183 	  break;
2184 
2185 	case CALL_INSN:
2186 	  pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2187 	  copy = emit_call_insn (pattern);
2188 	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2189 	  INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2190 	  SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2191 	  CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2192 
2193 	  /* Because the USAGE information potentially contains objects other
2194 	     than hard registers, we need to copy it.  */
2195 	  CALL_INSN_FUNCTION_USAGE (copy)
2196 	    = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2197 				       map, 0);
2198 
2199 #ifdef HAVE_cc0
2200 	  if (cc0_insn)
2201 	    try_constants (cc0_insn, map);
2202 	  cc0_insn = 0;
2203 #endif
2204 	  try_constants (copy, map);
2205 
2206 	  /* Be lazy and assume CALL_INSNs clobber all hard registers.  */
2207 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2208 	    VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2209 	  break;
2210 
2211 	case CODE_LABEL:
2212 	  /* If this is the loop start label, then we don't need to emit a
2213 	     copy of this label since no one will use it.  */
2214 
2215 	  if (insn != start_label)
2216 	    {
2217 	      copy = emit_label (get_label_from_map (map,
2218 						     CODE_LABEL_NUMBER (insn)));
2219 	      map->const_age++;
2220 	    }
2221 	  break;
2222 
2223 	case BARRIER:
2224 	  copy = emit_barrier ();
2225 	  break;
2226 
2227 	case NOTE:
2228 	  /* VTOP and CONT notes are valid only before the loop exit test.
2229 	     If placed anywhere else, loop may generate bad code.  */
2230 	  /* BASIC_BLOCK notes exist to stabilize basic block structures with
2231 	     the associated rtl.  We do not want to share the structure in
2232 	     this new block.  */
2233 
2234 	  if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2235 		   && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2236 		   && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2237 		   && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2238 			&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2239 		       || (last_iteration
2240 			   && unroll_type != UNROLL_COMPLETELY)))
2241 	    copy = emit_note_copy (insn);
2242 	  else
2243 	    copy = 0;
2244 	  break;
2245 
2246 	default:
2247 	  abort ();
2248 	}
2249 
2250       map->insn_map[INSN_UID (insn)] = copy;
2251     }
2252   while (insn != copy_end);
2253 
2254   /* Now finish coping the REG_NOTES.  */
2255   insn = copy_start;
2256   do
2257     {
2258       insn = NEXT_INSN (insn);
2259       if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2260 	   || GET_CODE (insn) == CALL_INSN)
2261 	  && map->insn_map[INSN_UID (insn)])
2262 	final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2263     }
2264   while (insn != copy_end);
2265 
2266   /* There may be notes between copy_notes_from and loop_end.  Emit a copy of
2267      each of these notes here, since there may be some important ones, such as
2268      NOTE_INSN_BLOCK_END notes, in this group.  We don't do this on the last
2269      iteration, because the original notes won't be deleted.
2270 
2271      We can't use insert_before here, because when from preconditioning,
2272      insert_before points before the loop.  We can't use copy_end, because
2273      there may be insns already inserted after it (which we don't want to
2274      copy) when not from preconditioning code.  */
2275 
2276   if (! last_iteration)
2277     {
2278       for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2279 	{
2280 	  /* VTOP notes are valid only before the loop exit test.
2281 	     If placed anywhere else, loop may generate bad code.
2282 	     Although COPY_NOTES_FROM will be at most one or two (for cc0)
2283 	     instructions before the last insn in the loop, COPY_NOTES_FROM
2284 	     can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2285 	     as in a do .. while loop.  */
2286 	  if (GET_CODE (insn) == NOTE
2287 	      && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2288 		   && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2289 		   && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2290 		   && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)))
2291 	    emit_note_copy (insn);
2292 	}
2293     }
2294 
2295   if (final_label && LABEL_NUSES (final_label) > 0)
2296     emit_label (final_label);
2297 
2298   tem = get_insns ();
2299   end_sequence ();
2300   loop_insn_emit_before (loop, 0, insert_before, tem);
2301 }
2302 
2303 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2304    emitted.  This will correctly handle the case where the increment value
2305    won't fit in the immediate field of a PLUS insns.  */
2306 
2307 void
emit_unrolled_add(rtx dest_reg,rtx src_reg,rtx increment)2308 emit_unrolled_add (rtx dest_reg, rtx src_reg, rtx increment)
2309 {
2310   rtx result;
2311 
2312   result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2313 				dest_reg, 0, OPTAB_LIB_WIDEN);
2314 
2315   if (dest_reg != result)
2316     emit_move_insn (dest_reg, result);
2317 }
2318 
2319 /* Searches the insns between INSN and LOOP->END.  Returns 1 if there
2320    is a backward branch in that range that branches to somewhere between
2321    LOOP->START and INSN.  Returns 0 otherwise.  */
2322 
2323 /* ??? This is quadratic algorithm.  Could be rewritten to be linear.
2324    In practice, this is not a problem, because this function is seldom called,
2325    and uses a negligible amount of CPU time on average.  */
2326 
2327 int
back_branch_in_range_p(const struct loop * loop,rtx insn)2328 back_branch_in_range_p (const struct loop *loop, rtx insn)
2329 {
2330   rtx p, q, target_insn;
2331   rtx loop_start = loop->start;
2332   rtx loop_end = loop->end;
2333   rtx orig_loop_end = loop->end;
2334 
2335   /* Stop before we get to the backward branch at the end of the loop.  */
2336   loop_end = prev_nonnote_insn (loop_end);
2337   if (GET_CODE (loop_end) == BARRIER)
2338     loop_end = PREV_INSN (loop_end);
2339 
2340   /* Check in case insn has been deleted, search forward for first non
2341      deleted insn following it.  */
2342   while (INSN_DELETED_P (insn))
2343     insn = NEXT_INSN (insn);
2344 
2345   /* Check for the case where insn is the last insn in the loop.  Deal
2346      with the case where INSN was a deleted loop test insn, in which case
2347      it will now be the NOTE_LOOP_END.  */
2348   if (insn == loop_end || insn == orig_loop_end)
2349     return 0;
2350 
2351   for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2352     {
2353       if (GET_CODE (p) == JUMP_INSN)
2354 	{
2355 	  target_insn = JUMP_LABEL (p);
2356 
2357 	  /* Search from loop_start to insn, to see if one of them is
2358 	     the target_insn.  We can't use INSN_LUID comparisons here,
2359 	     since insn may not have an LUID entry.  */
2360 	  for (q = loop_start; q != insn; q = NEXT_INSN (q))
2361 	    if (q == target_insn)
2362 	      return 1;
2363 	}
2364     }
2365 
2366   return 0;
2367 }
2368 
2369 /* Try to generate the simplest rtx for the expression
2370    (PLUS (MULT mult1 mult2) add1).  This is used to calculate the initial
2371    value of giv's.  */
2372 
2373 static rtx
fold_rtx_mult_add(rtx mult1,rtx mult2,rtx add1,enum machine_mode mode)2374 fold_rtx_mult_add (rtx mult1, rtx mult2, rtx add1, enum machine_mode mode)
2375 {
2376   rtx temp, mult_res;
2377   rtx result;
2378 
2379   /* The modes must all be the same.  This should always be true.  For now,
2380      check to make sure.  */
2381   if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2382       || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2383       || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2384     abort ();
2385 
2386   /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2387      will be a constant.  */
2388   if (GET_CODE (mult1) == CONST_INT)
2389     {
2390       temp = mult2;
2391       mult2 = mult1;
2392       mult1 = temp;
2393     }
2394 
2395   mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2396   if (! mult_res)
2397     mult_res = gen_rtx_MULT (mode, mult1, mult2);
2398 
2399   /* Again, put the constant second.  */
2400   if (GET_CODE (add1) == CONST_INT)
2401     {
2402       temp = add1;
2403       add1 = mult_res;
2404       mult_res = temp;
2405     }
2406 
2407   result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2408   if (! result)
2409     result = gen_rtx_PLUS (mode, add1, mult_res);
2410 
2411   return result;
2412 }
2413 
2414 /* Searches the list of induction struct's for the biv BL, to try to calculate
2415    the total increment value for one iteration of the loop as a constant.
2416 
2417    Returns the increment value as an rtx, simplified as much as possible,
2418    if it can be calculated.  Otherwise, returns 0.  */
2419 
2420 rtx
biv_total_increment(const struct iv_class * bl)2421 biv_total_increment (const struct iv_class *bl)
2422 {
2423   struct induction *v;
2424   rtx result;
2425 
2426   /* For increment, must check every instruction that sets it.  Each
2427      instruction must be executed only once each time through the loop.
2428      To verify this, we check that the insn is always executed, and that
2429      there are no backward branches after the insn that branch to before it.
2430      Also, the insn must have a mult_val of one (to make sure it really is
2431      an increment).  */
2432 
2433   result = const0_rtx;
2434   for (v = bl->biv; v; v = v->next_iv)
2435     {
2436       if (v->always_computable && v->mult_val == const1_rtx
2437 	  && ! v->maybe_multiple
2438 	  && SCALAR_INT_MODE_P (v->mode))
2439 	{
2440 	  /* If we have already counted it, skip it.  */
2441 	  if (v->same)
2442 	    continue;
2443 
2444 	  result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2445 	}
2446       else
2447 	return 0;
2448     }
2449 
2450   return result;
2451 }
2452 
2453 /* For each biv and giv, determine whether it can be safely split into
2454    a different variable for each unrolled copy of the loop body.  If it
2455    is safe to split, then indicate that by saving some useful info
2456    in the splittable_regs array.
2457 
2458    If the loop is being completely unrolled, then splittable_regs will hold
2459    the current value of the induction variable while the loop is unrolled.
2460    It must be set to the initial value of the induction variable here.
2461    Otherwise, splittable_regs will hold the difference between the current
2462    value of the induction variable and the value the induction variable had
2463    at the top of the loop.  It must be set to the value 0 here.
2464 
2465    Returns the total number of instructions that set registers that are
2466    splittable.  */
2467 
2468 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2469    constant values are unnecessary, since we can easily calculate increment
2470    values in this case even if nothing is constant.  The increment value
2471    should not involve a multiply however.  */
2472 
2473 /* ?? Even if the biv/giv increment values aren't constant, it may still
2474    be beneficial to split the variable if the loop is only unrolled a few
2475    times, since multiplies by small integers (1,2,3,4) are very cheap.  */
2476 
2477 static int
find_splittable_regs(const struct loop * loop,enum unroll_types unroll_type,int unroll_number)2478 find_splittable_regs (const struct loop *loop,
2479 		      enum unroll_types unroll_type, int unroll_number)
2480 {
2481   struct loop_ivs *ivs = LOOP_IVS (loop);
2482   struct iv_class *bl;
2483   struct induction *v;
2484   rtx increment, tem;
2485   rtx biv_final_value;
2486   int biv_splittable;
2487   int result = 0;
2488 
2489   for (bl = ivs->list; bl; bl = bl->next)
2490     {
2491       /* Biv_total_increment must return a constant value,
2492 	 otherwise we can not calculate the split values.  */
2493 
2494       increment = biv_total_increment (bl);
2495       if (! increment || GET_CODE (increment) != CONST_INT)
2496 	continue;
2497 
2498       /* The loop must be unrolled completely, or else have a known number
2499 	 of iterations and only one exit, or else the biv must be dead
2500 	 outside the loop, or else the final value must be known.  Otherwise,
2501 	 it is unsafe to split the biv since it may not have the proper
2502 	 value on loop exit.  */
2503 
2504       /* loop_number_exit_count is nonzero if the loop has an exit other than
2505 	 a fall through at the end.  */
2506 
2507       biv_splittable = 1;
2508       biv_final_value = 0;
2509       if (unroll_type != UNROLL_COMPLETELY
2510 	  && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2511 	  && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2512 	      || ! bl->init_insn
2513 	      || INSN_UID (bl->init_insn) >= max_uid_for_loop
2514 	      || (REGNO_FIRST_LUID (bl->regno)
2515 		  < INSN_LUID (bl->init_insn))
2516 	      || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2517 	  && ! (biv_final_value = final_biv_value (loop, bl)))
2518 	biv_splittable = 0;
2519 
2520       /* If any of the insns setting the BIV don't do so with a simple
2521 	 PLUS, we don't know how to split it.  */
2522       for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2523 	if ((tem = single_set (v->insn)) == 0
2524 	    || GET_CODE (SET_DEST (tem)) != REG
2525 	    || REGNO (SET_DEST (tem)) != bl->regno
2526 	    || GET_CODE (SET_SRC (tem)) != PLUS)
2527 	  biv_splittable = 0;
2528 
2529       /* If final value is nonzero, then must emit an instruction which sets
2530 	 the value of the biv to the proper value.  This is done after
2531 	 handling all of the givs, since some of them may need to use the
2532 	 biv's value in their initialization code.  */
2533 
2534       /* This biv is splittable.  If completely unrolling the loop, save
2535 	 the biv's initial value.  Otherwise, save the constant zero.  */
2536 
2537       if (biv_splittable == 1)
2538 	{
2539 	  if (unroll_type == UNROLL_COMPLETELY)
2540 	    {
2541 	      /* If the initial value of the biv is itself (i.e. it is too
2542 		 complicated for strength_reduce to compute), or is a hard
2543 		 register, or it isn't invariant, then we must create a new
2544 		 pseudo reg to hold the initial value of the biv.  */
2545 
2546 	      if (GET_CODE (bl->initial_value) == REG
2547 		  && (REGNO (bl->initial_value) == bl->regno
2548 		      || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2549 		      || ! loop_invariant_p (loop, bl->initial_value)))
2550 		{
2551 		  rtx tem = gen_reg_rtx (bl->biv->mode);
2552 
2553 		  record_base_value (REGNO (tem), bl->biv->add_val, 0);
2554 		  loop_insn_hoist (loop,
2555 				   gen_move_insn (tem, bl->biv->src_reg));
2556 
2557 		  if (loop_dump_stream)
2558 		    fprintf (loop_dump_stream,
2559 			     "Biv %d initial value remapped to %d.\n",
2560 			     bl->regno, REGNO (tem));
2561 
2562 		  splittable_regs[bl->regno] = tem;
2563 		}
2564 	      else
2565 		splittable_regs[bl->regno] = bl->initial_value;
2566 	    }
2567 	  else
2568 	    splittable_regs[bl->regno] = const0_rtx;
2569 
2570 	  /* Save the number of instructions that modify the biv, so that
2571 	     we can treat the last one specially.  */
2572 
2573 	  splittable_regs_updates[bl->regno] = bl->biv_count;
2574 	  result += bl->biv_count;
2575 
2576 	  if (loop_dump_stream)
2577 	    fprintf (loop_dump_stream,
2578 		     "Biv %d safe to split.\n", bl->regno);
2579 	}
2580 
2581       /* Check every giv that depends on this biv to see whether it is
2582 	 splittable also.  Even if the biv isn't splittable, givs which
2583 	 depend on it may be splittable if the biv is live outside the
2584 	 loop, and the givs aren't.  */
2585 
2586       result += find_splittable_givs (loop, bl, unroll_type, increment,
2587 				      unroll_number);
2588 
2589       /* If final value is nonzero, then must emit an instruction which sets
2590 	 the value of the biv to the proper value.  This is done after
2591 	 handling all of the givs, since some of them may need to use the
2592 	 biv's value in their initialization code.  */
2593       if (biv_final_value)
2594 	{
2595 	  /* If the loop has multiple exits, emit the insns before the
2596 	     loop to ensure that it will always be executed no matter
2597 	     how the loop exits.  Otherwise emit the insn after the loop,
2598 	     since this is slightly more efficient.  */
2599 	  if (! loop->exit_count)
2600 	    loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2601 						 biv_final_value));
2602 	  else
2603 	    {
2604 	      /* Create a new register to hold the value of the biv, and then
2605 		 set the biv to its final value before the loop start.  The biv
2606 		 is set to its final value before loop start to ensure that
2607 		 this insn will always be executed, no matter how the loop
2608 		 exits.  */
2609 	      rtx tem = gen_reg_rtx (bl->biv->mode);
2610 	      record_base_value (REGNO (tem), bl->biv->add_val, 0);
2611 
2612 	      loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2613 	      loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2614 						    biv_final_value));
2615 
2616 	      if (loop_dump_stream)
2617 		fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2618 			 REGNO (bl->biv->src_reg), REGNO (tem));
2619 
2620 	      /* Set up the mapping from the original biv register to the new
2621 		 register.  */
2622 	      bl->biv->src_reg = tem;
2623 	    }
2624 	}
2625     }
2626   return result;
2627 }
2628 
2629 /* For every giv based on the biv BL, check to determine whether it is
2630    splittable.  This is a subroutine to find_splittable_regs ().
2631 
2632    Return the number of instructions that set splittable registers.  */
2633 
2634 static int
find_splittable_givs(const struct loop * loop,struct iv_class * bl,enum unroll_types unroll_type,rtx increment,int unroll_number ATTRIBUTE_UNUSED)2635 find_splittable_givs (const struct loop *loop, struct iv_class *bl,
2636 		      enum unroll_types unroll_type, rtx increment,
2637 		      int unroll_number ATTRIBUTE_UNUSED)
2638 {
2639   struct loop_ivs *ivs = LOOP_IVS (loop);
2640   struct induction *v, *v2;
2641   rtx final_value;
2642   rtx tem;
2643   int result = 0;
2644 
2645   /* Scan the list of givs, and set the same_insn field when there are
2646      multiple identical givs in the same insn.  */
2647   for (v = bl->giv; v; v = v->next_iv)
2648     for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2649       if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2650 	  && ! v2->same_insn)
2651 	v2->same_insn = v;
2652 
2653   for (v = bl->giv; v; v = v->next_iv)
2654     {
2655       rtx giv_inc, value;
2656 
2657       /* Only split the giv if it has already been reduced, or if the loop is
2658 	 being completely unrolled.  */
2659       if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2660 	continue;
2661 
2662       /* The giv can be split if the insn that sets the giv is executed once
2663 	 and only once on every iteration of the loop.  */
2664       /* An address giv can always be split.  v->insn is just a use not a set,
2665 	 and hence it does not matter whether it is always executed.  All that
2666 	 matters is that all the biv increments are always executed, and we
2667 	 won't reach here if they aren't.  */
2668       if (v->giv_type != DEST_ADDR
2669 	  && (! v->always_computable
2670 	      || back_branch_in_range_p (loop, v->insn)))
2671 	continue;
2672 
2673       /* The giv increment value must be a constant.  */
2674       giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2675 				   v->mode);
2676       if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2677 	continue;
2678 
2679       /* The loop must be unrolled completely, or else have a known number of
2680 	 iterations and only one exit, or else the giv must be dead outside
2681 	 the loop, or else the final value of the giv must be known.
2682 	 Otherwise, it is not safe to split the giv since it may not have the
2683 	 proper value on loop exit.  */
2684 
2685       /* The used outside loop test will fail for DEST_ADDR givs.  They are
2686 	 never used outside the loop anyways, so it is always safe to split a
2687 	 DEST_ADDR giv.  */
2688 
2689       final_value = 0;
2690       if (unroll_type != UNROLL_COMPLETELY
2691 	  && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2692 	  && v->giv_type != DEST_ADDR
2693 	  /* The next part is true if the pseudo is used outside the loop.
2694 	     We assume that this is true for any pseudo created after loop
2695 	     starts, because we don't have a reg_n_info entry for them.  */
2696 	  && (REGNO (v->dest_reg) >= max_reg_before_loop
2697 	      || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2698 		  /* Check for the case where the pseudo is set by a shift/add
2699 		     sequence, in which case the first insn setting the pseudo
2700 		     is the first insn of the shift/add sequence.  */
2701 		  && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2702 		      || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2703 			  != INSN_UID (XEXP (tem, 0)))))
2704 	      /* Line above always fails if INSN was moved by loop opt.  */
2705 	      || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2706 		  >= INSN_LUID (loop->end)))
2707 	  && ! (final_value = v->final_value))
2708 	continue;
2709 
2710 #if 0
2711       /* Currently, non-reduced/final-value givs are never split.  */
2712       /* Should emit insns after the loop if possible, as the biv final value
2713 	 code below does.  */
2714 
2715       /* If the final value is nonzero, and the giv has not been reduced,
2716 	 then must emit an instruction to set the final value.  */
2717       if (final_value && !v->new_reg)
2718 	{
2719 	  /* Create a new register to hold the value of the giv, and then set
2720 	     the giv to its final value before the loop start.  The giv is set
2721 	     to its final value before loop start to ensure that this insn
2722 	     will always be executed, no matter how we exit.  */
2723 	  tem = gen_reg_rtx (v->mode);
2724 	  loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2725 	  loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2726 
2727 	  if (loop_dump_stream)
2728 	    fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2729 		     REGNO (v->dest_reg), REGNO (tem));
2730 
2731 	  v->src_reg = tem;
2732 	}
2733 #endif
2734 
2735       /* This giv is splittable.  If completely unrolling the loop, save the
2736 	 giv's initial value.  Otherwise, save the constant zero for it.  */
2737 
2738       if (unroll_type == UNROLL_COMPLETELY)
2739 	{
2740 	  /* It is not safe to use bl->initial_value here, because it may not
2741 	     be invariant.  It is safe to use the initial value stored in
2742 	     the splittable_regs array if it is set.  In rare cases, it won't
2743 	     be set, so then we do exactly the same thing as
2744 	     find_splittable_regs does to get a safe value.  */
2745 	  rtx biv_initial_value;
2746 
2747 	  if (splittable_regs[bl->regno])
2748 	    biv_initial_value = splittable_regs[bl->regno];
2749 	  else if (GET_CODE (bl->initial_value) != REG
2750 		   || (REGNO (bl->initial_value) != bl->regno
2751 		       && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2752 	    biv_initial_value = bl->initial_value;
2753 	  else
2754 	    {
2755 	      rtx tem = gen_reg_rtx (bl->biv->mode);
2756 
2757 	      record_base_value (REGNO (tem), bl->biv->add_val, 0);
2758 	      loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2759 	      biv_initial_value = tem;
2760 	    }
2761 	  biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2762 	  value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2763 				     v->add_val, v->mode);
2764 	}
2765       else
2766 	value = const0_rtx;
2767 
2768       if (v->new_reg)
2769 	{
2770 	  /* If a giv was combined with another giv, then we can only split
2771 	     this giv if the giv it was combined with was reduced.  This
2772 	     is because the value of v->new_reg is meaningless in this
2773 	     case.  */
2774 	  if (v->same && ! v->same->new_reg)
2775 	    {
2776 	      if (loop_dump_stream)
2777 		fprintf (loop_dump_stream,
2778 			 "giv combined with unreduced giv not split.\n");
2779 	      continue;
2780 	    }
2781 	  /* If the giv is an address destination, it could be something other
2782 	     than a simple register, these have to be treated differently.  */
2783 	  else if (v->giv_type == DEST_REG)
2784 	    {
2785 	      /* If value is not a constant, register, or register plus
2786 		 constant, then compute its value into a register before
2787 		 loop start.  This prevents invalid rtx sharing, and should
2788 		 generate better code.  We can use bl->initial_value here
2789 		 instead of splittable_regs[bl->regno] because this code
2790 		 is going before the loop start.  */
2791 	      if (unroll_type == UNROLL_COMPLETELY
2792 		  && GET_CODE (value) != CONST_INT
2793 		  && GET_CODE (value) != REG
2794 		  && (GET_CODE (value) != PLUS
2795 		      || GET_CODE (XEXP (value, 0)) != REG
2796 		      || GET_CODE (XEXP (value, 1)) != CONST_INT))
2797 		{
2798 		  rtx tem = gen_reg_rtx (v->mode);
2799 		  record_base_value (REGNO (tem), v->add_val, 0);
2800 		  loop_iv_add_mult_hoist (loop,
2801 				extend_value_for_giv (v, bl->initial_value),
2802 				v->mult_val, v->add_val, tem);
2803 		  value = tem;
2804 		}
2805 
2806 	      splittable_regs[reg_or_subregno (v->new_reg)] = value;
2807 	    }
2808 	  else
2809 	    continue;
2810 	}
2811       else
2812 	{
2813 #if 0
2814 	  /* Currently, unreduced giv's can't be split.  This is not too much
2815 	     of a problem since unreduced giv's are not live across loop
2816 	     iterations anyways.  When unrolling a loop completely though,
2817 	     it makes sense to reduce&split givs when possible, as this will
2818 	     result in simpler instructions, and will not require that a reg
2819 	     be live across loop iterations.  */
2820 
2821 	  splittable_regs[REGNO (v->dest_reg)] = value;
2822 	  fprintf (stderr, "Giv %d at insn %d not reduced\n",
2823 		   REGNO (v->dest_reg), INSN_UID (v->insn));
2824 #else
2825 	  continue;
2826 #endif
2827 	}
2828 
2829       /* Unreduced givs are only updated once by definition.  Reduced givs
2830 	 are updated as many times as their biv is.  Mark it so if this is
2831 	 a splittable register.  Don't need to do anything for address givs
2832 	 where this may not be a register.  */
2833 
2834       if (GET_CODE (v->new_reg) == REG)
2835 	{
2836 	  int count = 1;
2837 	  if (! v->ignore)
2838 	    count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2839 
2840 	  splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2841 	}
2842 
2843       result++;
2844 
2845       if (loop_dump_stream)
2846 	{
2847 	  int regnum;
2848 
2849 	  if (GET_CODE (v->dest_reg) == CONST_INT)
2850 	    regnum = -1;
2851 	  else if (GET_CODE (v->dest_reg) != REG)
2852 	    regnum = REGNO (XEXP (v->dest_reg, 0));
2853 	  else
2854 	    regnum = REGNO (v->dest_reg);
2855 	  fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2856 		   regnum, INSN_UID (v->insn));
2857 	}
2858     }
2859 
2860   return result;
2861 }
2862 
2863 /* Try to prove that the register is dead after the loop exits.  Trace every
2864    loop exit looking for an insn that will always be executed, which sets
2865    the register to some value, and appears before the first use of the register
2866    is found.  If successful, then return 1, otherwise return 0.  */
2867 
2868 /* ?? Could be made more intelligent in the handling of jumps, so that
2869    it can search past if statements and other similar structures.  */
2870 
2871 static int
reg_dead_after_loop(const struct loop * loop,rtx reg)2872 reg_dead_after_loop (const struct loop *loop, rtx reg)
2873 {
2874   rtx insn, label;
2875   enum rtx_code code;
2876   int jump_count = 0;
2877   int label_count = 0;
2878 
2879   /* In addition to checking all exits of this loop, we must also check
2880      all exits of inner nested loops that would exit this loop.  We don't
2881      have any way to identify those, so we just give up if there are any
2882      such inner loop exits.  */
2883 
2884   for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2885     label_count++;
2886 
2887   if (label_count != loop->exit_count)
2888     return 0;
2889 
2890   /* HACK: Must also search the loop fall through exit, create a label_ref
2891      here which points to the loop->end, and append the loop_number_exit_labels
2892      list to it.  */
2893   label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2894   LABEL_NEXTREF (label) = loop->exit_labels;
2895 
2896   for (; label; label = LABEL_NEXTREF (label))
2897     {
2898       /* Succeed if find an insn which sets the biv or if reach end of
2899 	 function.  Fail if find an insn that uses the biv, or if come to
2900 	 a conditional jump.  */
2901 
2902       insn = NEXT_INSN (XEXP (label, 0));
2903       while (insn)
2904 	{
2905 	  code = GET_CODE (insn);
2906 	  if (GET_RTX_CLASS (code) == 'i')
2907 	    {
2908 	      rtx set, note;
2909 
2910 	      if (reg_referenced_p (reg, PATTERN (insn)))
2911 		return 0;
2912 
2913 	      note = find_reg_equal_equiv_note (insn);
2914 	      if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2915 		return 0;
2916 
2917 	      set = single_set (insn);
2918 	      if (set && rtx_equal_p (SET_DEST (set), reg))
2919 		break;
2920 	    }
2921 
2922 	  if (code == JUMP_INSN)
2923 	    {
2924 	      if (GET_CODE (PATTERN (insn)) == RETURN)
2925 		break;
2926 	      else if (!any_uncondjump_p (insn)
2927 		       /* Prevent infinite loop following infinite loops.  */
2928 		       || jump_count++ > 20)
2929 		return 0;
2930 	      else
2931 		insn = JUMP_LABEL (insn);
2932 	    }
2933 
2934 	  insn = NEXT_INSN (insn);
2935 	}
2936     }
2937 
2938   /* Success, the register is dead on all loop exits.  */
2939   return 1;
2940 }
2941 
2942 /* Try to calculate the final value of the biv, the value it will have at
2943    the end of the loop.  If we can do it, return that value.  */
2944 
2945 rtx
final_biv_value(const struct loop * loop,struct iv_class * bl)2946 final_biv_value (const struct loop *loop, struct iv_class *bl)
2947 {
2948   unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2949   rtx increment, tem;
2950 
2951   /* ??? This only works for MODE_INT biv's.  Reject all others for now.  */
2952 
2953   if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2954     return 0;
2955 
2956   /* The final value for reversed bivs must be calculated differently than
2957      for ordinary bivs.  In this case, there is already an insn after the
2958      loop which sets this biv's final value (if necessary), and there are
2959      no other loop exits, so we can return any value.  */
2960   if (bl->reversed)
2961     {
2962       if (loop_dump_stream)
2963 	fprintf (loop_dump_stream,
2964 		 "Final biv value for %d, reversed biv.\n", bl->regno);
2965 
2966       return const0_rtx;
2967     }
2968 
2969   /* Try to calculate the final value as initial value + (number of iterations
2970      * increment).  For this to work, increment must be invariant, the only
2971      exit from the loop must be the fall through at the bottom (otherwise
2972      it may not have its final value when the loop exits), and the initial
2973      value of the biv must be invariant.  */
2974 
2975   if (n_iterations != 0
2976       && ! loop->exit_count
2977       && loop_invariant_p (loop, bl->initial_value))
2978     {
2979       increment = biv_total_increment (bl);
2980 
2981       if (increment && loop_invariant_p (loop, increment))
2982 	{
2983 	  /* Can calculate the loop exit value, emit insns after loop
2984 	     end to calculate this value into a temporary register in
2985 	     case it is needed later.  */
2986 
2987 	  tem = gen_reg_rtx (bl->biv->mode);
2988 	  record_base_value (REGNO (tem), bl->biv->add_val, 0);
2989 	  loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
2990 				 bl->initial_value, tem);
2991 
2992 	  if (loop_dump_stream)
2993 	    fprintf (loop_dump_stream,
2994 		     "Final biv value for %d, calculated.\n", bl->regno);
2995 
2996 	  return tem;
2997 	}
2998     }
2999 
3000   /* Check to see if the biv is dead at all loop exits.  */
3001   if (reg_dead_after_loop (loop, bl->biv->src_reg))
3002     {
3003       if (loop_dump_stream)
3004 	fprintf (loop_dump_stream,
3005 		 "Final biv value for %d, biv dead after loop exit.\n",
3006 		 bl->regno);
3007 
3008       return const0_rtx;
3009     }
3010 
3011   return 0;
3012 }
3013 
3014 /* Try to calculate the final value of the giv, the value it will have at
3015    the end of the loop.  If we can do it, return that value.  */
3016 
3017 rtx
final_giv_value(const struct loop * loop,struct induction * v)3018 final_giv_value (const struct loop *loop, struct induction *v)
3019 {
3020   struct loop_ivs *ivs = LOOP_IVS (loop);
3021   struct iv_class *bl;
3022   rtx insn;
3023   rtx increment, tem;
3024   rtx seq;
3025   rtx loop_end = loop->end;
3026   unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3027 
3028   bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3029 
3030   /* The final value for givs which depend on reversed bivs must be calculated
3031      differently than for ordinary givs.  In this case, there is already an
3032      insn after the loop which sets this giv's final value (if necessary),
3033      and there are no other loop exits, so we can return any value.  */
3034   if (bl->reversed)
3035     {
3036       if (loop_dump_stream)
3037 	fprintf (loop_dump_stream,
3038 		 "Final giv value for %d, depends on reversed biv\n",
3039 		 REGNO (v->dest_reg));
3040       return const0_rtx;
3041     }
3042 
3043   /* Try to calculate the final value as a function of the biv it depends
3044      upon.  The only exit from the loop must be the fall through at the bottom
3045      and the insn that sets the giv must be executed on every iteration
3046      (otherwise the giv may not have its final value when the loop exits).  */
3047 
3048   /* ??? Can calculate the final giv value by subtracting off the
3049      extra biv increments times the giv's mult_val.  The loop must have
3050      only one exit for this to work, but the loop iterations does not need
3051      to be known.  */
3052 
3053   if (n_iterations != 0
3054       && ! loop->exit_count
3055       && v->always_executed)
3056     {
3057       /* ?? It is tempting to use the biv's value here since these insns will
3058 	 be put after the loop, and hence the biv will have its final value
3059 	 then.  However, this fails if the biv is subsequently eliminated.
3060 	 Perhaps determine whether biv's are eliminable before trying to
3061 	 determine whether giv's are replaceable so that we can use the
3062 	 biv value here if it is not eliminable.  */
3063 
3064       /* We are emitting code after the end of the loop, so we must make
3065 	 sure that bl->initial_value is still valid then.  It will still
3066 	 be valid if it is invariant.  */
3067 
3068       increment = biv_total_increment (bl);
3069 
3070       if (increment && loop_invariant_p (loop, increment)
3071 	  && loop_invariant_p (loop, bl->initial_value))
3072 	{
3073 	  /* Can calculate the loop exit value of its biv as
3074 	     (n_iterations * increment) + initial_value */
3075 
3076 	  /* The loop exit value of the giv is then
3077 	     (final_biv_value - extra increments) * mult_val + add_val.
3078 	     The extra increments are any increments to the biv which
3079 	     occur in the loop after the giv's value is calculated.
3080 	     We must search from the insn that sets the giv to the end
3081 	     of the loop to calculate this value.  */
3082 
3083 	  /* Put the final biv value in tem.  */
3084 	  tem = gen_reg_rtx (v->mode);
3085 	  record_base_value (REGNO (tem), bl->biv->add_val, 0);
3086 	  loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3087 				 GEN_INT (n_iterations),
3088 				 extend_value_for_giv (v, bl->initial_value),
3089 				 tem);
3090 
3091 	  /* Subtract off extra increments as we find them.  */
3092 	  for (insn = NEXT_INSN (v->insn); insn != loop_end;
3093 	       insn = NEXT_INSN (insn))
3094 	    {
3095 	      struct induction *biv;
3096 
3097 	      for (biv = bl->biv; biv; biv = biv->next_iv)
3098 		if (biv->insn == insn)
3099 		  {
3100 		    start_sequence ();
3101 		    tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3102 					       biv->add_val, NULL_RTX, 0,
3103 					       OPTAB_LIB_WIDEN);
3104 		    seq = get_insns ();
3105 		    end_sequence ();
3106 		    loop_insn_sink (loop, seq);
3107 		  }
3108 	    }
3109 
3110 	  /* Now calculate the giv's final value.  */
3111 	  loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3112 
3113 	  if (loop_dump_stream)
3114 	    fprintf (loop_dump_stream,
3115 		     "Final giv value for %d, calc from biv's value.\n",
3116 		     REGNO (v->dest_reg));
3117 
3118 	  return tem;
3119 	}
3120     }
3121 
3122   /* Replaceable giv's should never reach here.  */
3123   if (v->replaceable)
3124     abort ();
3125 
3126   /* Check to see if the biv is dead at all loop exits.  */
3127   if (reg_dead_after_loop (loop, v->dest_reg))
3128     {
3129       if (loop_dump_stream)
3130 	fprintf (loop_dump_stream,
3131 		 "Final giv value for %d, giv dead after loop exit.\n",
3132 		 REGNO (v->dest_reg));
3133 
3134       return const0_rtx;
3135     }
3136 
3137   return 0;
3138 }
3139 
3140 /* Look back before LOOP->START for the insn that sets REG and return
3141    the equivalent constant if there is a REG_EQUAL note otherwise just
3142    the SET_SRC of REG.  */
3143 
3144 static rtx
loop_find_equiv_value(const struct loop * loop,rtx reg)3145 loop_find_equiv_value (const struct loop *loop, rtx reg)
3146 {
3147   rtx loop_start = loop->start;
3148   rtx insn, set;
3149   rtx ret;
3150 
3151   ret = reg;
3152   for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3153     {
3154       if (GET_CODE (insn) == CODE_LABEL)
3155 	break;
3156 
3157       else if (INSN_P (insn) && reg_set_p (reg, insn))
3158 	{
3159 	  /* We found the last insn before the loop that sets the register.
3160 	     If it sets the entire register, and has a REG_EQUAL note,
3161 	     then use the value of the REG_EQUAL note.  */
3162 	  if ((set = single_set (insn))
3163 	      && (SET_DEST (set) == reg))
3164 	    {
3165 	      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3166 
3167 	      /* Only use the REG_EQUAL note if it is a constant.
3168 		 Other things, divide in particular, will cause
3169 		 problems later if we use them.  */
3170 	      if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3171 		  && CONSTANT_P (XEXP (note, 0)))
3172 		ret = XEXP (note, 0);
3173 	      else
3174 		ret = SET_SRC (set);
3175 
3176 	      /* We cannot do this if it changes between the
3177 		 assignment and loop start though.  */
3178 	      if (modified_between_p (ret, insn, loop_start))
3179 		ret = reg;
3180 	    }
3181 	  break;
3182 	}
3183     }
3184   return ret;
3185 }
3186 
3187 /* Return a simplified rtx for the expression OP - REG.
3188 
3189    REG must appear in OP, and OP must be a register or the sum of a register
3190    and a second term.
3191 
3192    Thus, the return value must be const0_rtx or the second term.
3193 
3194    The caller is responsible for verifying that REG appears in OP and OP has
3195    the proper form.  */
3196 
3197 static rtx
subtract_reg_term(rtx op,rtx reg)3198 subtract_reg_term (rtx op, rtx reg)
3199 {
3200   if (op == reg)
3201     return const0_rtx;
3202   if (GET_CODE (op) == PLUS)
3203     {
3204       if (XEXP (op, 0) == reg)
3205 	return XEXP (op, 1);
3206       else if (XEXP (op, 1) == reg)
3207 	return XEXP (op, 0);
3208     }
3209   /* OP does not contain REG as a term.  */
3210   abort ();
3211 }
3212 
3213 /* Find and return register term common to both expressions OP0 and
3214    OP1 or NULL_RTX if no such term exists.  Each expression must be a
3215    REG or a PLUS of a REG.  */
3216 
3217 static rtx
find_common_reg_term(rtx op0,rtx op1)3218 find_common_reg_term (rtx op0, rtx op1)
3219 {
3220   if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3221       && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3222     {
3223       rtx op00;
3224       rtx op01;
3225       rtx op10;
3226       rtx op11;
3227 
3228       if (GET_CODE (op0) == PLUS)
3229 	op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3230       else
3231 	op01 = const0_rtx, op00 = op0;
3232 
3233       if (GET_CODE (op1) == PLUS)
3234 	op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3235       else
3236 	op11 = const0_rtx, op10 = op1;
3237 
3238       /* Find and return common register term if present.  */
3239       if (REG_P (op00) && (op00 == op10 || op00 == op11))
3240 	return op00;
3241       else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3242 	return op01;
3243     }
3244 
3245   /* No common register term found.  */
3246   return NULL_RTX;
3247 }
3248 
3249 /* Determine the loop iterator and calculate the number of loop
3250    iterations.  Returns the exact number of loop iterations if it can
3251    be calculated, otherwise returns zero.  */
3252 
3253 unsigned HOST_WIDE_INT
loop_iterations(struct loop * loop)3254 loop_iterations (struct loop *loop)
3255 {
3256   struct loop_info *loop_info = LOOP_INFO (loop);
3257   struct loop_ivs *ivs = LOOP_IVS (loop);
3258   rtx comparison, comparison_value;
3259   rtx iteration_var, initial_value, increment, final_value;
3260   enum rtx_code comparison_code;
3261   HOST_WIDE_INT inc;
3262   unsigned HOST_WIDE_INT abs_inc;
3263   unsigned HOST_WIDE_INT abs_diff;
3264   int off_by_one;
3265   int increment_dir;
3266   int unsigned_p, compare_dir, final_larger;
3267   rtx last_loop_insn;
3268   rtx reg_term;
3269   struct iv_class *bl;
3270 
3271   loop_info->n_iterations = 0;
3272   loop_info->initial_value = 0;
3273   loop_info->initial_equiv_value = 0;
3274   loop_info->comparison_value = 0;
3275   loop_info->final_value = 0;
3276   loop_info->final_equiv_value = 0;
3277   loop_info->increment = 0;
3278   loop_info->iteration_var = 0;
3279   loop_info->unroll_number = 1;
3280   loop_info->iv = 0;
3281 
3282   /* We used to use prev_nonnote_insn here, but that fails because it might
3283      accidentally get the branch for a contained loop if the branch for this
3284      loop was deleted.  We can only trust branches immediately before the
3285      loop_end.  */
3286   last_loop_insn = PREV_INSN (loop->end);
3287 
3288   /* ??? We should probably try harder to find the jump insn
3289      at the end of the loop.  The following code assumes that
3290      the last loop insn is a jump to the top of the loop.  */
3291   if (GET_CODE (last_loop_insn) != JUMP_INSN)
3292     {
3293       if (loop_dump_stream)
3294 	fprintf (loop_dump_stream,
3295 		 "Loop iterations: No final conditional branch found.\n");
3296       return 0;
3297     }
3298 
3299   /* If there is a more than a single jump to the top of the loop
3300      we cannot (easily) determine the iteration count.  */
3301   if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3302     {
3303       if (loop_dump_stream)
3304 	fprintf (loop_dump_stream,
3305 		 "Loop iterations: Loop has multiple back edges.\n");
3306       return 0;
3307     }
3308 
3309   /* If there are multiple conditionalized loop exit tests, they may jump
3310      back to differing CODE_LABELs.  */
3311   if (loop->top && loop->cont)
3312     {
3313       rtx temp = PREV_INSN (last_loop_insn);
3314 
3315       do
3316 	{
3317 	  if (GET_CODE (temp) == JUMP_INSN)
3318 	    {
3319 	      /* There are some kinds of jumps we can't deal with easily.  */
3320 	      if (JUMP_LABEL (temp) == 0)
3321 		{
3322 		  if (loop_dump_stream)
3323 		    fprintf
3324 		      (loop_dump_stream,
3325 		       "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3326 		  return 0;
3327 		}
3328 
3329 	      if (/* Previous unrolling may have generated new insns not
3330 		     covered by the uid_luid array.  */
3331 		  INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3332 		  /* Check if we jump back into the loop body.  */
3333 		  && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3334 		  && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3335 		{
3336 		  if (loop_dump_stream)
3337 		    fprintf
3338 		      (loop_dump_stream,
3339 		       "Loop iterations: Loop has multiple back edges.\n");
3340 		  return 0;
3341 		}
3342 	    }
3343 	}
3344       while ((temp = PREV_INSN (temp)) != loop->cont);
3345     }
3346 
3347   /* Find the iteration variable.  If the last insn is a conditional
3348      branch, and the insn before tests a register value, make that the
3349      iteration variable.  */
3350 
3351   comparison = get_condition_for_loop (loop, last_loop_insn);
3352   if (comparison == 0)
3353     {
3354       if (loop_dump_stream)
3355 	fprintf (loop_dump_stream,
3356 		 "Loop iterations: No final comparison found.\n");
3357       return 0;
3358     }
3359 
3360   /* ??? Get_condition may switch position of induction variable and
3361      invariant register when it canonicalizes the comparison.  */
3362 
3363   comparison_code = GET_CODE (comparison);
3364   iteration_var = XEXP (comparison, 0);
3365   comparison_value = XEXP (comparison, 1);
3366 
3367   if (GET_CODE (iteration_var) != REG)
3368     {
3369       if (loop_dump_stream)
3370 	fprintf (loop_dump_stream,
3371 		 "Loop iterations: Comparison not against register.\n");
3372       return 0;
3373     }
3374 
3375   /* The only new registers that are created before loop iterations
3376      are givs made from biv increments or registers created by
3377      load_mems.  In the latter case, it is possible that try_copy_prop
3378      will propagate a new pseudo into the old iteration register but
3379      this will be marked by having the REG_USERVAR_P bit set.  */
3380 
3381   if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3382       && ! REG_USERVAR_P (iteration_var))
3383     abort ();
3384 
3385   /* Determine the initial value of the iteration variable, and the amount
3386      that it is incremented each loop.  Use the tables constructed by
3387      the strength reduction pass to calculate these values.  */
3388 
3389   /* Clear the result values, in case no answer can be found.  */
3390   initial_value = 0;
3391   increment = 0;
3392 
3393   /* The iteration variable can be either a giv or a biv.  Check to see
3394      which it is, and compute the variable's initial value, and increment
3395      value if possible.  */
3396 
3397   /* If this is a new register, can't handle it since we don't have any
3398      reg_iv_type entry for it.  */
3399   if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3400     {
3401       if (loop_dump_stream)
3402 	fprintf (loop_dump_stream,
3403 		 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3404       return 0;
3405     }
3406 
3407   /* Reject iteration variables larger than the host wide int size, since they
3408      could result in a number of iterations greater than the range of our
3409      `unsigned HOST_WIDE_INT' variable loop_info->n_iterations.  */
3410   else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3411 	    > HOST_BITS_PER_WIDE_INT))
3412     {
3413       if (loop_dump_stream)
3414 	fprintf (loop_dump_stream,
3415 		 "Loop iterations: Iteration var rejected because mode too large.\n");
3416       return 0;
3417     }
3418   else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3419     {
3420       if (loop_dump_stream)
3421 	fprintf (loop_dump_stream,
3422 		 "Loop iterations: Iteration var not an integer.\n");
3423       return 0;
3424     }
3425 
3426   /* Try swapping the comparison to identify a suitable iv.  */
3427   if (REG_IV_TYPE (ivs, REGNO (iteration_var)) != BASIC_INDUCT
3428       && REG_IV_TYPE (ivs, REGNO (iteration_var)) != GENERAL_INDUCT
3429       && GET_CODE (comparison_value) == REG
3430       && REGNO (comparison_value) < ivs->n_regs)
3431     {
3432       rtx temp = comparison_value;
3433       comparison_code = swap_condition (comparison_code);
3434       comparison_value = iteration_var;
3435       iteration_var = temp;
3436     }
3437 
3438   if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3439     {
3440       if (REGNO (iteration_var) >= ivs->n_regs)
3441 	abort ();
3442 
3443       /* Grab initial value, only useful if it is a constant.  */
3444       bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3445       initial_value = bl->initial_value;
3446       if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3447 	{
3448 	  if (loop_dump_stream)
3449 	    fprintf (loop_dump_stream,
3450 		     "Loop iterations: Basic induction var not set once in each iteration.\n");
3451 	  return 0;
3452 	}
3453 
3454       increment = biv_total_increment (bl);
3455     }
3456   else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3457     {
3458       HOST_WIDE_INT offset = 0;
3459       struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3460       rtx biv_initial_value;
3461 
3462       if (REGNO (v->src_reg) >= ivs->n_regs)
3463 	abort ();
3464 
3465       if (!v->always_executed || v->maybe_multiple)
3466 	{
3467 	  if (loop_dump_stream)
3468 	    fprintf (loop_dump_stream,
3469 		     "Loop iterations: General induction var not set once in each iteration.\n");
3470 	  return 0;
3471 	}
3472 
3473       bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3474 
3475       /* Increment value is mult_val times the increment value of the biv.  */
3476 
3477       increment = biv_total_increment (bl);
3478       if (increment)
3479 	{
3480 	  struct induction *biv_inc;
3481 
3482 	  increment = fold_rtx_mult_add (v->mult_val,
3483 					 extend_value_for_giv (v, increment),
3484 					 const0_rtx, v->mode);
3485 	  /* The caller assumes that one full increment has occurred at the
3486 	     first loop test.  But that's not true when the biv is incremented
3487 	     after the giv is set (which is the usual case), e.g.:
3488 	     i = 6; do {;} while (i++ < 9) .
3489 	     Therefore, we bias the initial value by subtracting the amount of
3490 	     the increment that occurs between the giv set and the giv test.  */
3491 	  for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3492 	    {
3493 	      if (loop_insn_first_p (v->insn, biv_inc->insn))
3494 		{
3495 		  if (REG_P (biv_inc->add_val))
3496 		    {
3497 		      if (loop_dump_stream)
3498 			fprintf (loop_dump_stream,
3499 				 "Loop iterations: Basic induction var add_val is REG %d.\n",
3500 				 REGNO (biv_inc->add_val));
3501 			return 0;
3502 		    }
3503 
3504 		  /* If we have already counted it, skip it.  */
3505 		  if (biv_inc->same)
3506 		    continue;
3507 
3508 		  offset -= INTVAL (biv_inc->add_val);
3509 		}
3510 	    }
3511 	}
3512       if (loop_dump_stream)
3513 	fprintf (loop_dump_stream,
3514 		 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3515 		 (long) offset);
3516 
3517       /* Initial value is mult_val times the biv's initial value plus
3518 	 add_val.  Only useful if it is a constant.  */
3519       biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3520       initial_value
3521 	= fold_rtx_mult_add (v->mult_val,
3522 			     plus_constant (biv_initial_value, offset),
3523 			     v->add_val, v->mode);
3524     }
3525   else
3526     {
3527       if (loop_dump_stream)
3528 	fprintf (loop_dump_stream,
3529 		 "Loop iterations: Not basic or general induction var.\n");
3530       return 0;
3531     }
3532 
3533   if (initial_value == 0)
3534     return 0;
3535 
3536   unsigned_p = 0;
3537   off_by_one = 0;
3538   switch (comparison_code)
3539     {
3540     case LEU:
3541       unsigned_p = 1;
3542     case LE:
3543       compare_dir = 1;
3544       off_by_one = 1;
3545       break;
3546     case GEU:
3547       unsigned_p = 1;
3548     case GE:
3549       compare_dir = -1;
3550       off_by_one = -1;
3551       break;
3552     case EQ:
3553       /* Cannot determine loop iterations with this case.  */
3554       compare_dir = 0;
3555       break;
3556     case LTU:
3557       unsigned_p = 1;
3558     case LT:
3559       compare_dir = 1;
3560       break;
3561     case GTU:
3562       unsigned_p = 1;
3563     case GT:
3564       compare_dir = -1;
3565       break;
3566     case NE:
3567       compare_dir = 0;
3568       break;
3569     default:
3570       abort ();
3571     }
3572 
3573   /* If the comparison value is an invariant register, then try to find
3574      its value from the insns before the start of the loop.  */
3575 
3576   final_value = comparison_value;
3577   if (GET_CODE (comparison_value) == REG
3578       && loop_invariant_p (loop, comparison_value))
3579     {
3580       final_value = loop_find_equiv_value (loop, comparison_value);
3581 
3582       /* If we don't get an invariant final value, we are better
3583 	 off with the original register.  */
3584       if (! loop_invariant_p (loop, final_value))
3585 	final_value = comparison_value;
3586     }
3587 
3588   /* Calculate the approximate final value of the induction variable
3589      (on the last successful iteration).  The exact final value
3590      depends on the branch operator, and increment sign.  It will be
3591      wrong if the iteration variable is not incremented by one each
3592      time through the loop and (comparison_value + off_by_one -
3593      initial_value) % increment != 0.
3594      ??? Note that the final_value may overflow and thus final_larger
3595      will be bogus.  A potentially infinite loop will be classified
3596      as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++)  */
3597   if (off_by_one)
3598     final_value = plus_constant (final_value, off_by_one);
3599 
3600   /* Save the calculated values describing this loop's bounds, in case
3601      precondition_loop_p will need them later.  These values can not be
3602      recalculated inside precondition_loop_p because strength reduction
3603      optimizations may obscure the loop's structure.
3604 
3605      These values are only required by precondition_loop_p and insert_bct
3606      whenever the number of iterations cannot be computed at compile time.
3607      Only the difference between final_value and initial_value is
3608      important.  Note that final_value is only approximate.  */
3609   loop_info->initial_value = initial_value;
3610   loop_info->comparison_value = comparison_value;
3611   loop_info->final_value = plus_constant (comparison_value, off_by_one);
3612   loop_info->increment = increment;
3613   loop_info->iteration_var = iteration_var;
3614   loop_info->comparison_code = comparison_code;
3615   loop_info->iv = bl;
3616 
3617   /* Try to determine the iteration count for loops such
3618      as (for i = init; i < init + const; i++).  When running the
3619      loop optimization twice, the first pass often converts simple
3620      loops into this form.  */
3621 
3622   if (REG_P (initial_value))
3623     {
3624       rtx reg1;
3625       rtx reg2;
3626       rtx const2;
3627 
3628       reg1 = initial_value;
3629       if (GET_CODE (final_value) == PLUS)
3630 	reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3631       else
3632 	reg2 = final_value, const2 = const0_rtx;
3633 
3634       /* Check for initial_value = reg1, final_value = reg2 + const2,
3635 	 where reg1 != reg2.  */
3636       if (REG_P (reg2) && reg2 != reg1)
3637 	{
3638 	  rtx temp;
3639 
3640 	  /* Find what reg1 is equivalent to.  Hopefully it will
3641 	     either be reg2 or reg2 plus a constant.  */
3642 	  temp = loop_find_equiv_value (loop, reg1);
3643 
3644 	  if (find_common_reg_term (temp, reg2))
3645 	    initial_value = temp;
3646 	  else if (loop_invariant_p (loop, reg2))
3647 	    {
3648 	      /* Find what reg2 is equivalent to.  Hopefully it will
3649 		 either be reg1 or reg1 plus a constant.  Let's ignore
3650 		 the latter case for now since it is not so common.  */
3651 	      temp = loop_find_equiv_value (loop, reg2);
3652 
3653 	      if (temp == loop_info->iteration_var)
3654 		temp = initial_value;
3655 	      if (temp == reg1)
3656 		final_value = (const2 == const0_rtx)
3657 		  ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3658 	    }
3659 	}
3660       else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3661 	{
3662 	  rtx temp;
3663 
3664 	  /* When running the loop optimizer twice, check_dbra_loop
3665 	     further obfuscates reversible loops of the form:
3666 	     for (i = init; i < init + const; i++).  We often end up with
3667 	     final_value = 0, initial_value = temp, temp = temp2 - init,
3668 	     where temp2 = init + const.  If the loop has a vtop we
3669 	     can replace initial_value with const.  */
3670 
3671 	  temp = loop_find_equiv_value (loop, reg1);
3672 
3673 	  if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3674 	    {
3675 	      rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3676 
3677 	      if (GET_CODE (temp2) == PLUS
3678 		  && XEXP (temp2, 0) == XEXP (temp, 1))
3679 		initial_value = XEXP (temp2, 1);
3680 	    }
3681 	}
3682     }
3683 
3684   /* If have initial_value = reg + const1 and final_value = reg +
3685      const2, then replace initial_value with const1 and final_value
3686      with const2.  This should be safe since we are protected by the
3687      initial comparison before entering the loop if we have a vtop.
3688      For example, a + b < a + c is not equivalent to b < c for all a
3689      when using modulo arithmetic.
3690 
3691      ??? Without a vtop we could still perform the optimization if we check
3692      the initial and final values carefully.  */
3693   if (loop->vtop
3694       && (reg_term = find_common_reg_term (initial_value, final_value)))
3695     {
3696       initial_value = subtract_reg_term (initial_value, reg_term);
3697       final_value = subtract_reg_term (final_value, reg_term);
3698     }
3699 
3700   loop_info->initial_equiv_value = initial_value;
3701   loop_info->final_equiv_value = final_value;
3702 
3703   /* For EQ comparison loops, we don't have a valid final value.
3704      Check this now so that we won't leave an invalid value if we
3705      return early for any other reason.  */
3706   if (comparison_code == EQ)
3707     loop_info->final_equiv_value = loop_info->final_value = 0;
3708 
3709   if (increment == 0)
3710     {
3711       if (loop_dump_stream)
3712 	fprintf (loop_dump_stream,
3713 		 "Loop iterations: Increment value can't be calculated.\n");
3714       return 0;
3715     }
3716 
3717   if (GET_CODE (increment) != CONST_INT)
3718     {
3719       /* If we have a REG, check to see if REG holds a constant value.  */
3720       /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3721 	 clear if it is worthwhile to try to handle such RTL.  */
3722       if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3723 	increment = loop_find_equiv_value (loop, increment);
3724 
3725       if (GET_CODE (increment) != CONST_INT)
3726 	{
3727 	  if (loop_dump_stream)
3728 	    {
3729 	      fprintf (loop_dump_stream,
3730 		       "Loop iterations: Increment value not constant ");
3731 	      print_simple_rtl (loop_dump_stream, increment);
3732 	      fprintf (loop_dump_stream, ".\n");
3733 	    }
3734 	  return 0;
3735 	}
3736       loop_info->increment = increment;
3737     }
3738 
3739   if (GET_CODE (initial_value) != CONST_INT)
3740     {
3741       if (loop_dump_stream)
3742 	{
3743 	  fprintf (loop_dump_stream,
3744 		   "Loop iterations: Initial value not constant ");
3745 	  print_simple_rtl (loop_dump_stream, initial_value);
3746 	  fprintf (loop_dump_stream, ".\n");
3747 	}
3748       return 0;
3749     }
3750   else if (GET_CODE (final_value) != CONST_INT)
3751     {
3752       if (loop_dump_stream)
3753 	{
3754 	  fprintf (loop_dump_stream,
3755 		   "Loop iterations: Final value not constant ");
3756 	  print_simple_rtl (loop_dump_stream, final_value);
3757 	  fprintf (loop_dump_stream, ".\n");
3758 	}
3759       return 0;
3760     }
3761   else if (comparison_code == EQ)
3762     {
3763       rtx inc_once;
3764 
3765       if (loop_dump_stream)
3766 	fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3767 
3768       inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3769 			       GET_MODE (iteration_var));
3770 
3771       if (inc_once == final_value)
3772 	{
3773 	  /* The iterator value once through the loop is equal to the
3774 	     comparison value.  Either we have an infinite loop, or
3775 	     we'll loop twice.  */
3776 	  if (increment == const0_rtx)
3777 	    return 0;
3778 	  loop_info->n_iterations = 2;
3779 	}
3780       else
3781 	loop_info->n_iterations = 1;
3782 
3783       if (GET_CODE (loop_info->initial_value) == CONST_INT)
3784 	loop_info->final_value
3785 	  = gen_int_mode ((INTVAL (loop_info->initial_value)
3786 			   + loop_info->n_iterations * INTVAL (increment)),
3787 			  GET_MODE (iteration_var));
3788       else
3789 	loop_info->final_value
3790 	  = plus_constant (loop_info->initial_value,
3791 			   loop_info->n_iterations * INTVAL (increment));
3792       loop_info->final_equiv_value
3793 	= gen_int_mode ((INTVAL (initial_value)
3794 			 + loop_info->n_iterations * INTVAL (increment)),
3795 			GET_MODE (iteration_var));
3796       return loop_info->n_iterations;
3797     }
3798 
3799   /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1.  */
3800   if (unsigned_p)
3801     final_larger
3802       = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3803 	 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3804 	- ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3805 	   < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3806   else
3807     final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3808       - (INTVAL (final_value) < INTVAL (initial_value));
3809 
3810   if (INTVAL (increment) > 0)
3811     increment_dir = 1;
3812   else if (INTVAL (increment) == 0)
3813     increment_dir = 0;
3814   else
3815     increment_dir = -1;
3816 
3817   /* There are 27 different cases: compare_dir = -1, 0, 1;
3818      final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3819      There are 4 normal cases, 4 reverse cases (where the iteration variable
3820      will overflow before the loop exits), 4 infinite loop cases, and 15
3821      immediate exit (0 or 1 iteration depending on loop type) cases.
3822      Only try to optimize the normal cases.  */
3823 
3824   /* (compare_dir/final_larger/increment_dir)
3825      Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3826      Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3827      Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3828      Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3829 
3830   /* ?? If the meaning of reverse loops (where the iteration variable
3831      will overflow before the loop exits) is undefined, then could
3832      eliminate all of these special checks, and just always assume
3833      the loops are normal/immediate/infinite.  Note that this means
3834      the sign of increment_dir does not have to be known.  Also,
3835      since it does not really hurt if immediate exit loops or infinite loops
3836      are optimized, then that case could be ignored also, and hence all
3837      loops can be optimized.
3838 
3839      According to ANSI Spec, the reverse loop case result is undefined,
3840      because the action on overflow is undefined.
3841 
3842      See also the special test for NE loops below.  */
3843 
3844   if (final_larger == increment_dir && final_larger != 0
3845       && (final_larger == compare_dir || compare_dir == 0))
3846     /* Normal case.  */
3847     ;
3848   else
3849     {
3850       if (loop_dump_stream)
3851 	fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3852       return 0;
3853     }
3854 
3855   /* Calculate the number of iterations, final_value is only an approximation,
3856      so correct for that.  Note that abs_diff and n_iterations are
3857      unsigned, because they can be as large as 2^n - 1.  */
3858 
3859   inc = INTVAL (increment);
3860   if (inc > 0)
3861     {
3862       abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3863       abs_inc = inc;
3864     }
3865   else if (inc < 0)
3866     {
3867       abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3868       abs_inc = -inc;
3869     }
3870   else
3871     abort ();
3872 
3873   /* Given that iteration_var is going to iterate over its own mode,
3874      not HOST_WIDE_INT, disregard higher bits that might have come
3875      into the picture due to sign extension of initial and final
3876      values.  */
3877   abs_diff &= ((unsigned HOST_WIDE_INT) 1
3878 	       << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3879 	       << 1) - 1;
3880 
3881   /* For NE tests, make sure that the iteration variable won't miss
3882      the final value.  If abs_diff mod abs_incr is not zero, then the
3883      iteration variable will overflow before the loop exits, and we
3884      can not calculate the number of iterations.  */
3885   if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3886     return 0;
3887 
3888   /* Note that the number of iterations could be calculated using
3889      (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3890      handle potential overflow of the summation.  */
3891   loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3892   return loop_info->n_iterations;
3893 }
3894 
3895 /* Replace uses of split bivs with their split pseudo register.  This is
3896    for original instructions which remain after loop unrolling without
3897    copying.  */
3898 
3899 static rtx
remap_split_bivs(struct loop * loop,rtx x)3900 remap_split_bivs (struct loop *loop, rtx x)
3901 {
3902   struct loop_ivs *ivs = LOOP_IVS (loop);
3903   enum rtx_code code;
3904   int i;
3905   const char *fmt;
3906 
3907   if (x == 0)
3908     return x;
3909 
3910   code = GET_CODE (x);
3911   switch (code)
3912     {
3913     case SCRATCH:
3914     case PC:
3915     case CC0:
3916     case CONST_INT:
3917     case CONST_DOUBLE:
3918     case CONST:
3919     case SYMBOL_REF:
3920     case LABEL_REF:
3921       return x;
3922 
3923     case REG:
3924 #if 0
3925       /* If non-reduced/final-value givs were split, then this would also
3926 	 have to remap those givs also.  */
3927 #endif
3928       if (REGNO (x) < ivs->n_regs
3929 	  && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3930 	return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3931       break;
3932 
3933     default:
3934       break;
3935     }
3936 
3937   fmt = GET_RTX_FORMAT (code);
3938   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3939     {
3940       if (fmt[i] == 'e')
3941 	XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3942       else if (fmt[i] == 'E')
3943 	{
3944 	  int j;
3945 	  for (j = 0; j < XVECLEN (x, i); j++)
3946 	    XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3947 	}
3948     }
3949   return x;
3950 }
3951 
3952 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3953    FIST_UID is always executed if LAST_UID is), then return 1.  Otherwise
3954    return 0.  COPY_START is where we can start looking for the insns
3955    FIRST_UID and LAST_UID.  COPY_END is where we stop looking for these
3956    insns.
3957 
3958    If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3959    must dominate LAST_UID.
3960 
3961    If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3962    may not dominate LAST_UID.
3963 
3964    If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3965    must dominate LAST_UID.  */
3966 
3967 int
set_dominates_use(int regno,int first_uid,int last_uid,rtx copy_start,rtx copy_end)3968 set_dominates_use (int regno, int first_uid, int last_uid, rtx copy_start,
3969 		   rtx copy_end)
3970 {
3971   int passed_jump = 0;
3972   rtx p = NEXT_INSN (copy_start);
3973 
3974   while (INSN_UID (p) != first_uid)
3975     {
3976       if (GET_CODE (p) == JUMP_INSN)
3977 	passed_jump = 1;
3978       /* Could not find FIRST_UID.  */
3979       if (p == copy_end)
3980 	return 0;
3981       p = NEXT_INSN (p);
3982     }
3983 
3984   /* Verify that FIRST_UID is an insn that entirely sets REGNO.  */
3985   if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
3986     return 0;
3987 
3988   /* FIRST_UID is always executed.  */
3989   if (passed_jump == 0)
3990     return 1;
3991 
3992   while (INSN_UID (p) != last_uid)
3993     {
3994       /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3995 	 can not be sure that FIRST_UID dominates LAST_UID.  */
3996       if (GET_CODE (p) == CODE_LABEL)
3997 	return 0;
3998       /* Could not find LAST_UID, but we reached the end of the loop, so
3999 	 it must be safe.  */
4000       else if (p == copy_end)
4001 	return 1;
4002       p = NEXT_INSN (p);
4003     }
4004 
4005   /* FIRST_UID is always executed if LAST_UID is executed.  */
4006   return 1;
4007 }
4008 
4009 /* This routine is called when the number of iterations for the unrolled
4010    loop is one.   The goal is to identify a loop that begins with an
4011    unconditional branch to the loop continuation note (or a label just after).
4012    In this case, the unconditional branch that starts the loop needs to be
4013    deleted so that we execute the single iteration.  */
4014 
4015 static rtx
ujump_to_loop_cont(rtx loop_start,rtx loop_cont)4016 ujump_to_loop_cont (rtx loop_start, rtx loop_cont)
4017 {
4018   rtx x, label, label_ref;
4019 
4020   /* See if loop start, or the next insn is an unconditional jump.  */
4021   loop_start = next_nonnote_insn (loop_start);
4022 
4023   x = pc_set (loop_start);
4024   if (!x)
4025     return NULL_RTX;
4026 
4027   label_ref = SET_SRC (x);
4028   if (!label_ref)
4029     return NULL_RTX;
4030 
4031   /* Examine insn after loop continuation note.  Return if not a label.  */
4032   label = next_nonnote_insn (loop_cont);
4033   if (label == 0 || GET_CODE (label) != CODE_LABEL)
4034     return NULL_RTX;
4035 
4036   /* Return the loop start if the branch label matches the code label.  */
4037   if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4038     return loop_start;
4039   else
4040     return NULL_RTX;
4041 }
4042