1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 /* Try to unroll a loop, and split induction variables.
25
26 Loops for which the number of iterations can be calculated exactly are
27 handled specially. If the number of iterations times the insn_count is
28 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
29 Otherwise, we try to unroll the loop a number of times modulo the number
30 of iterations, so that only one exit test will be needed. It is unrolled
31 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
32 the insn count.
33
34 Otherwise, if the number of iterations can be calculated exactly at
35 run time, and the loop is always entered at the top, then we try to
36 precondition the loop. That is, at run time, calculate how many times
37 the loop will execute, and then execute the loop body a few times so
38 that the remaining iterations will be some multiple of 4 (or 2 if the
39 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
40 with only one exit test needed at the end of the loop.
41
42 Otherwise, if the number of iterations can not be calculated exactly,
43 not even at run time, then we still unroll the loop a number of times
44 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
45 but there must be an exit test after each copy of the loop body.
46
47 For each induction variable, which is dead outside the loop (replaceable)
48 or for which we can easily calculate the final value, if we can easily
49 calculate its value at each place where it is set as a function of the
50 current loop unroll count and the variable's value at loop entry, then
51 the induction variable is split into `N' different variables, one for
52 each copy of the loop body. One variable is live across the backward
53 branch, and the others are all calculated as a function of this variable.
54 This helps eliminate data dependencies, and leads to further opportunities
55 for cse. */
56
57 /* Possible improvements follow: */
58
59 /* ??? Add an extra pass somewhere to determine whether unrolling will
60 give any benefit. E.g. after generating all unrolled insns, compute the
61 cost of all insns and compare against cost of insns in rolled loop.
62
63 - On traditional architectures, unrolling a non-constant bound loop
64 is a win if there is a giv whose only use is in memory addresses, the
65 memory addresses can be split, and hence giv increments can be
66 eliminated.
67 - It is also a win if the loop is executed many times, and preconditioning
68 can be performed for the loop.
69 Add code to check for these and similar cases. */
70
71 /* ??? Improve control of which loops get unrolled. Could use profiling
72 info to only unroll the most commonly executed loops. Perhaps have
73 a user specifiable option to control the amount of code expansion,
74 or the percent of loops to consider for unrolling. Etc. */
75
76 /* ??? Look at the register copies inside the loop to see if they form a
77 simple permutation. If so, iterate the permutation until it gets back to
78 the start state. This is how many times we should unroll the loop, for
79 best results, because then all register copies can be eliminated.
80 For example, the lisp nreverse function should be unrolled 3 times
81 while (this)
82 {
83 next = this->cdr;
84 this->cdr = prev;
85 prev = this;
86 this = next;
87 }
88
89 ??? The number of times to unroll the loop may also be based on data
90 references in the loop. For example, if we have a loop that references
91 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92
93 /* ??? Add some simple linear equation solving capability so that we can
94 determine the number of loop iterations for more complex loops.
95 For example, consider this loop from gdb
96 #define SWAP_TARGET_AND_HOST(buffer,len)
97 {
98 char tmp;
99 char *p = (char *) buffer;
100 char *q = ((char *) buffer) + len - 1;
101 int iterations = (len + 1) >> 1;
102 int i;
103 for (p; p < q; p++, q--;)
104 {
105 tmp = *q;
106 *q = *p;
107 *p = tmp;
108 }
109 }
110 Note that:
111 start value = p = &buffer + current_iteration
112 end value = q = &buffer + len - 1 - current_iteration
113 Given the loop exit test of "p < q", then there must be "q - p" iterations,
114 set equal to zero and solve for number of iterations:
115 q - p = len - 1 - 2*current_iteration = 0
116 current_iteration = (len - 1) / 2
117 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
118 iterations of this loop. */
119
120 /* ??? Currently, no labels are marked as loop invariant when doing loop
121 unrolling. This is because an insn inside the loop, that loads the address
122 of a label inside the loop into a register, could be moved outside the loop
123 by the invariant code motion pass if labels were invariant. If the loop
124 is subsequently unrolled, the code will be wrong because each unrolled
125 body of the loop will use the same address, whereas each actually needs a
126 different address. A case where this happens is when a loop containing
127 a switch statement is unrolled.
128
129 It would be better to let labels be considered invariant. When we
130 unroll loops here, check to see if any insns using a label local to the
131 loop were moved before the loop. If so, then correct the problem, by
132 moving the insn back into the loop, or perhaps replicate the insn before
133 the loop, one copy for each time the loop is unrolled. */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "rtl.h"
140 #include "tm_p.h"
141 #include "insn-config.h"
142 #include "integrate.h"
143 #include "regs.h"
144 #include "recog.h"
145 #include "flags.h"
146 #include "function.h"
147 #include "expr.h"
148 #include "loop.h"
149 #include "toplev.h"
150 #include "hard-reg-set.h"
151 #include "basic-block.h"
152 #include "predict.h"
153 #include "params.h"
154 #include "cfgloop.h"
155
156 /* The prime factors looked for when trying to unroll a loop by some
157 number which is modulo the total number of iterations. Just checking
158 for these 4 prime factors will find at least one factor for 75% of
159 all numbers theoretically. Practically speaking, this will succeed
160 almost all of the time since loops are generally a multiple of 2
161 and/or 5. */
162
163 #define NUM_FACTORS 4
164
165 static struct _factor { const int factor; int count; }
166 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
167
168 /* Describes the different types of loop unrolling performed. */
169
170 enum unroll_types
171 {
172 UNROLL_COMPLETELY,
173 UNROLL_MODULO,
174 UNROLL_NAIVE
175 };
176
177 /* Indexed by register number, if nonzero, then it contains a pointer
178 to a struct induction for a DEST_REG giv which has been combined with
179 one of more address givs. This is needed because whenever such a DEST_REG
180 giv is modified, we must modify the value of all split address givs
181 that were combined with this DEST_REG giv. */
182
183 static struct induction **addr_combined_regs;
184
185 /* Indexed by register number, if this is a splittable induction variable,
186 then this will hold the current value of the register, which depends on the
187 iteration number. */
188
189 static rtx *splittable_regs;
190
191 /* Indexed by register number, if this is a splittable induction variable,
192 then this will hold the number of instructions in the loop that modify
193 the induction variable. Used to ensure that only the last insn modifying
194 a split iv will update the original iv of the dest. */
195
196 static int *splittable_regs_updates;
197
198 /* Forward declarations. */
199
200 static rtx simplify_cmp_and_jump_insns (enum rtx_code, enum machine_mode,
201 rtx, rtx, rtx);
202 static void init_reg_map (struct inline_remap *, int);
203 static rtx calculate_giv_inc (rtx, rtx, unsigned int);
204 static rtx initial_reg_note_copy (rtx, struct inline_remap *);
205 static void final_reg_note_copy (rtx *, struct inline_remap *);
206 static void copy_loop_body (struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx);
209 static int find_splittable_regs (const struct loop *, enum unroll_types,
210 int);
211 static int find_splittable_givs (const struct loop *, struct iv_class *,
212 enum unroll_types, rtx, int);
213 static int reg_dead_after_loop (const struct loop *, rtx);
214 static rtx fold_rtx_mult_add (rtx, rtx, rtx, enum machine_mode);
215 static rtx remap_split_bivs (struct loop *, rtx);
216 static rtx find_common_reg_term (rtx, rtx);
217 static rtx subtract_reg_term (rtx, rtx);
218 static rtx loop_find_equiv_value (const struct loop *, rtx);
219 static rtx ujump_to_loop_cont (rtx, rtx);
220
221 /* Try to unroll one loop and split induction variables in the loop.
222
223 The loop is described by the arguments LOOP and INSN_COUNT.
224 STRENGTH_REDUCTION_P indicates whether information generated in the
225 strength reduction pass is available.
226
227 This function is intended to be called from within `strength_reduce'
228 in loop.c. */
229
230 void
unroll_loop(struct loop * loop,int insn_count,int strength_reduce_p)231 unroll_loop (struct loop *loop, int insn_count, int strength_reduce_p)
232 {
233 struct loop_info *loop_info = LOOP_INFO (loop);
234 struct loop_ivs *ivs = LOOP_IVS (loop);
235 int i, j;
236 unsigned int r;
237 unsigned HOST_WIDE_INT temp;
238 int unroll_number = 1;
239 rtx copy_start, copy_end;
240 rtx insn, sequence, pattern, tem;
241 int max_labelno, max_insnno;
242 rtx insert_before;
243 struct inline_remap *map;
244 char *local_label = NULL;
245 char *local_regno;
246 unsigned int max_local_regnum;
247 unsigned int maxregnum;
248 rtx exit_label = 0;
249 rtx start_label;
250 struct iv_class *bl;
251 int splitting_not_safe = 0;
252 enum unroll_types unroll_type = UNROLL_NAIVE;
253 int loop_preconditioned = 0;
254 rtx safety_label;
255 /* This points to the last real insn in the loop, which should be either
256 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
257 jumps). */
258 rtx last_loop_insn;
259 rtx loop_start = loop->start;
260 rtx loop_end = loop->end;
261
262 /* Don't bother unrolling huge loops. Since the minimum factor is
263 two, loops greater than one half of MAX_UNROLLED_INSNS will never
264 be unrolled. */
265 if (insn_count > MAX_UNROLLED_INSNS / 2)
266 {
267 if (loop_dump_stream)
268 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
269 return;
270 }
271
272 /* Determine type of unroll to perform. Depends on the number of iterations
273 and the size of the loop. */
274
275 /* If there is no strength reduce info, then set
276 loop_info->n_iterations to zero. This can happen if
277 strength_reduce can't find any bivs in the loop. A value of zero
278 indicates that the number of iterations could not be calculated. */
279
280 if (! strength_reduce_p)
281 loop_info->n_iterations = 0;
282
283 if (loop_dump_stream && loop_info->n_iterations > 0)
284 fprintf (loop_dump_stream, "Loop unrolling: " HOST_WIDE_INT_PRINT_DEC
285 " iterations.\n", loop_info->n_iterations);
286
287 /* Find and save a pointer to the last nonnote insn in the loop. */
288
289 last_loop_insn = prev_nonnote_insn (loop_end);
290
291 /* Calculate how many times to unroll the loop. Indicate whether or
292 not the loop is being completely unrolled. */
293
294 if (loop_info->n_iterations == 1)
295 {
296 /* Handle the case where the loop begins with an unconditional
297 jump to the loop condition. Make sure to delete the jump
298 insn, otherwise the loop body will never execute. */
299
300 /* FIXME this actually checks for a jump to the continue point, which
301 is not the same as the condition in a for loop. As a result, this
302 optimization fails for most for loops. We should really use flow
303 information rather than instruction pattern matching. */
304 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
305
306 /* If number of iterations is exactly 1, then eliminate the compare and
307 branch at the end of the loop since they will never be taken.
308 Then return, since no other action is needed here. */
309
310 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
311 don't do anything. */
312
313 if (GET_CODE (last_loop_insn) == BARRIER)
314 {
315 /* Delete the jump insn. This will delete the barrier also. */
316 last_loop_insn = PREV_INSN (last_loop_insn);
317 }
318
319 if (ujump && GET_CODE (last_loop_insn) == JUMP_INSN)
320 {
321 #ifdef HAVE_cc0
322 rtx prev = PREV_INSN (last_loop_insn);
323 #endif
324 delete_related_insns (last_loop_insn);
325 #ifdef HAVE_cc0
326 /* The immediately preceding insn may be a compare which must be
327 deleted. */
328 if (only_sets_cc0_p (prev))
329 delete_related_insns (prev);
330 #endif
331
332 delete_related_insns (ujump);
333
334 /* Remove the loop notes since this is no longer a loop. */
335 if (loop->vtop)
336 delete_related_insns (loop->vtop);
337 if (loop->cont)
338 delete_related_insns (loop->cont);
339 if (loop_start)
340 delete_related_insns (loop_start);
341 if (loop_end)
342 delete_related_insns (loop_end);
343
344 return;
345 }
346 }
347
348 if (loop_info->n_iterations > 0
349 /* Avoid overflow in the next expression. */
350 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
351 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
352 {
353 unroll_number = loop_info->n_iterations;
354 unroll_type = UNROLL_COMPLETELY;
355 }
356 else if (loop_info->n_iterations > 0)
357 {
358 /* Try to factor the number of iterations. Don't bother with the
359 general case, only using 2, 3, 5, and 7 will get 75% of all
360 numbers theoretically, and almost all in practice. */
361
362 for (i = 0; i < NUM_FACTORS; i++)
363 factors[i].count = 0;
364
365 temp = loop_info->n_iterations;
366 for (i = NUM_FACTORS - 1; i >= 0; i--)
367 while (temp % factors[i].factor == 0)
368 {
369 factors[i].count++;
370 temp = temp / factors[i].factor;
371 }
372
373 /* Start with the larger factors first so that we generally
374 get lots of unrolling. */
375
376 unroll_number = 1;
377 temp = insn_count;
378 for (i = 3; i >= 0; i--)
379 while (factors[i].count--)
380 {
381 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
382 {
383 unroll_number *= factors[i].factor;
384 temp *= factors[i].factor;
385 }
386 else
387 break;
388 }
389
390 /* If we couldn't find any factors, then unroll as in the normal
391 case. */
392 if (unroll_number == 1)
393 {
394 if (loop_dump_stream)
395 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
396 }
397 else
398 unroll_type = UNROLL_MODULO;
399 }
400
401 /* Default case, calculate number of times to unroll loop based on its
402 size. */
403 if (unroll_type == UNROLL_NAIVE)
404 {
405 if (8 * insn_count < MAX_UNROLLED_INSNS)
406 unroll_number = 8;
407 else if (4 * insn_count < MAX_UNROLLED_INSNS)
408 unroll_number = 4;
409 else
410 unroll_number = 2;
411 }
412
413 /* Now we know how many times to unroll the loop. */
414
415 if (loop_dump_stream)
416 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
417
418 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
419 {
420 /* Loops of these types can start with jump down to the exit condition
421 in rare circumstances.
422
423 Consider a pair of nested loops where the inner loop is part
424 of the exit code for the outer loop.
425
426 In this case jump.c will not duplicate the exit test for the outer
427 loop, so it will start with a jump to the exit code.
428
429 Then consider if the inner loop turns out to iterate once and
430 only once. We will end up deleting the jumps associated with
431 the inner loop. However, the loop notes are not removed from
432 the instruction stream.
433
434 And finally assume that we can compute the number of iterations
435 for the outer loop.
436
437 In this case unroll may want to unroll the outer loop even though
438 it starts with a jump to the outer loop's exit code.
439
440 We could try to optimize this case, but it hardly seems worth it.
441 Just return without unrolling the loop in such cases. */
442
443 insn = loop_start;
444 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
445 insn = NEXT_INSN (insn);
446 if (GET_CODE (insn) == JUMP_INSN)
447 return;
448 }
449
450 if (unroll_type == UNROLL_COMPLETELY)
451 {
452 /* Completely unrolling the loop: Delete the compare and branch at
453 the end (the last two instructions). This delete must done at the
454 very end of loop unrolling, to avoid problems with calls to
455 back_branch_in_range_p, which is called by find_splittable_regs.
456 All increments of splittable bivs/givs are changed to load constant
457 instructions. */
458
459 copy_start = loop_start;
460
461 /* Set insert_before to the instruction immediately after the JUMP_INSN
462 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
463 the loop will be correctly handled by copy_loop_body. */
464 insert_before = NEXT_INSN (last_loop_insn);
465
466 /* Set copy_end to the insn before the jump at the end of the loop. */
467 if (GET_CODE (last_loop_insn) == BARRIER)
468 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
469 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
470 {
471 copy_end = PREV_INSN (last_loop_insn);
472 #ifdef HAVE_cc0
473 /* The instruction immediately before the JUMP_INSN may be a compare
474 instruction which we do not want to copy. */
475 if (sets_cc0_p (PREV_INSN (copy_end)))
476 copy_end = PREV_INSN (copy_end);
477 #endif
478 }
479 else
480 {
481 /* We currently can't unroll a loop if it doesn't end with a
482 JUMP_INSN. There would need to be a mechanism that recognizes
483 this case, and then inserts a jump after each loop body, which
484 jumps to after the last loop body. */
485 if (loop_dump_stream)
486 fprintf (loop_dump_stream,
487 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
488 return;
489 }
490 }
491 else if (unroll_type == UNROLL_MODULO)
492 {
493 /* Partially unrolling the loop: The compare and branch at the end
494 (the last two instructions) must remain. Don't copy the compare
495 and branch instructions at the end of the loop. Insert the unrolled
496 code immediately before the compare/branch at the end so that the
497 code will fall through to them as before. */
498
499 copy_start = loop_start;
500
501 /* Set insert_before to the jump insn at the end of the loop.
502 Set copy_end to before the jump insn at the end of the loop. */
503 if (GET_CODE (last_loop_insn) == BARRIER)
504 {
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507 }
508 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
509 {
510 insert_before = last_loop_insn;
511 #ifdef HAVE_cc0
512 /* The instruction immediately before the JUMP_INSN may be a compare
513 instruction which we do not want to copy or delete. */
514 if (sets_cc0_p (PREV_INSN (insert_before)))
515 insert_before = PREV_INSN (insert_before);
516 #endif
517 copy_end = PREV_INSN (insert_before);
518 }
519 else
520 {
521 /* We currently can't unroll a loop if it doesn't end with a
522 JUMP_INSN. There would need to be a mechanism that recognizes
523 this case, and then inserts a jump after each loop body, which
524 jumps to after the last loop body. */
525 if (loop_dump_stream)
526 fprintf (loop_dump_stream,
527 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
528 return;
529 }
530 }
531 else
532 {
533 /* Normal case: Must copy the compare and branch instructions at the
534 end of the loop. */
535
536 if (GET_CODE (last_loop_insn) == BARRIER)
537 {
538 /* Loop ends with an unconditional jump and a barrier.
539 Handle this like above, don't copy jump and barrier.
540 This is not strictly necessary, but doing so prevents generating
541 unconditional jumps to an immediately following label.
542
543 This will be corrected below if the target of this jump is
544 not the start_label. */
545
546 insert_before = PREV_INSN (last_loop_insn);
547 copy_end = PREV_INSN (insert_before);
548 }
549 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
550 {
551 /* Set insert_before to immediately after the JUMP_INSN, so that
552 NOTEs at the end of the loop will be correctly handled by
553 copy_loop_body. */
554 insert_before = NEXT_INSN (last_loop_insn);
555 copy_end = last_loop_insn;
556 }
557 else
558 {
559 /* We currently can't unroll a loop if it doesn't end with a
560 JUMP_INSN. There would need to be a mechanism that recognizes
561 this case, and then inserts a jump after each loop body, which
562 jumps to after the last loop body. */
563 if (loop_dump_stream)
564 fprintf (loop_dump_stream,
565 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
566 return;
567 }
568
569 /* If copying exit test branches because they can not be eliminated,
570 then must convert the fall through case of the branch to a jump past
571 the end of the loop. Create a label to emit after the loop and save
572 it for later use. Do not use the label after the loop, if any, since
573 it might be used by insns outside the loop, or there might be insns
574 added before it later by final_[bg]iv_value which must be after
575 the real exit label. */
576 exit_label = gen_label_rtx ();
577
578 insn = loop_start;
579 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
580 insn = NEXT_INSN (insn);
581
582 if (GET_CODE (insn) == JUMP_INSN)
583 {
584 /* The loop starts with a jump down to the exit condition test.
585 Start copying the loop after the barrier following this
586 jump insn. */
587 copy_start = NEXT_INSN (insn);
588
589 /* Splitting induction variables doesn't work when the loop is
590 entered via a jump to the bottom, because then we end up doing
591 a comparison against a new register for a split variable, but
592 we did not execute the set insn for the new register because
593 it was skipped over. */
594 splitting_not_safe = 1;
595 if (loop_dump_stream)
596 fprintf (loop_dump_stream,
597 "Splitting not safe, because loop not entered at top.\n");
598 }
599 else
600 copy_start = loop_start;
601 }
602
603 /* This should always be the first label in the loop. */
604 start_label = NEXT_INSN (copy_start);
605 /* There may be a line number note and/or a loop continue note here. */
606 while (GET_CODE (start_label) == NOTE)
607 start_label = NEXT_INSN (start_label);
608 if (GET_CODE (start_label) != CODE_LABEL)
609 {
610 /* This can happen as a result of jump threading. If the first insns in
611 the loop test the same condition as the loop's backward jump, or the
612 opposite condition, then the backward jump will be modified to point
613 to elsewhere, and the loop's start label is deleted.
614
615 This case currently can not be handled by the loop unrolling code. */
616
617 if (loop_dump_stream)
618 fprintf (loop_dump_stream,
619 "Unrolling failure: unknown insns between BEG note and loop label.\n");
620 return;
621 }
622 if (LABEL_NAME (start_label))
623 {
624 /* The jump optimization pass must have combined the original start label
625 with a named label for a goto. We can't unroll this case because
626 jumps which go to the named label must be handled differently than
627 jumps to the loop start, and it is impossible to differentiate them
628 in this case. */
629 if (loop_dump_stream)
630 fprintf (loop_dump_stream,
631 "Unrolling failure: loop start label is gone\n");
632 return;
633 }
634
635 if (unroll_type == UNROLL_NAIVE
636 && GET_CODE (last_loop_insn) == BARRIER
637 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
638 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
639 {
640 /* In this case, we must copy the jump and barrier, because they will
641 not be converted to jumps to an immediately following label. */
642
643 insert_before = NEXT_INSN (last_loop_insn);
644 copy_end = last_loop_insn;
645 }
646
647 if (unroll_type == UNROLL_NAIVE
648 && GET_CODE (last_loop_insn) == JUMP_INSN
649 && start_label != JUMP_LABEL (last_loop_insn))
650 {
651 /* ??? The loop ends with a conditional branch that does not branch back
652 to the loop start label. In this case, we must emit an unconditional
653 branch to the loop exit after emitting the final branch.
654 copy_loop_body does not have support for this currently, so we
655 give up. It doesn't seem worthwhile to unroll anyways since
656 unrolling would increase the number of branch instructions
657 executed. */
658 if (loop_dump_stream)
659 fprintf (loop_dump_stream,
660 "Unrolling failure: final conditional branch not to loop start\n");
661 return;
662 }
663
664 /* Allocate a translation table for the labels and insn numbers.
665 They will be filled in as we copy the insns in the loop. */
666
667 max_labelno = max_label_num ();
668 max_insnno = get_max_uid ();
669
670 /* Various paths through the unroll code may reach the "egress" label
671 without initializing fields within the map structure.
672
673 To be safe, we use xcalloc to zero the memory. */
674 map = xcalloc (1, sizeof (struct inline_remap));
675
676 /* Allocate the label map. */
677
678 if (max_labelno > 0)
679 {
680 map->label_map = xcalloc (max_labelno, sizeof (rtx));
681 local_label = xcalloc (max_labelno, sizeof (char));
682 }
683
684 /* Search the loop and mark all local labels, i.e. the ones which have to
685 be distinct labels when copied. For all labels which might be
686 non-local, set their label_map entries to point to themselves.
687 If they happen to be local their label_map entries will be overwritten
688 before the loop body is copied. The label_map entries for local labels
689 will be set to a different value each time the loop body is copied. */
690
691 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
692 {
693 rtx note;
694
695 if (GET_CODE (insn) == CODE_LABEL)
696 local_label[CODE_LABEL_NUMBER (insn)] = 1;
697 else if (GET_CODE (insn) == JUMP_INSN)
698 {
699 if (JUMP_LABEL (insn))
700 set_label_in_map (map,
701 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
702 JUMP_LABEL (insn));
703 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
704 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
705 {
706 rtx pat = PATTERN (insn);
707 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
708 int len = XVECLEN (pat, diff_vec_p);
709 rtx label;
710
711 for (i = 0; i < len; i++)
712 {
713 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
714 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
715 }
716 }
717 }
718 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
719 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
720 XEXP (note, 0));
721 }
722
723 /* Allocate space for the insn map. */
724
725 map->insn_map = xmalloc (max_insnno * sizeof (rtx));
726
727 /* Set this to zero, to indicate that we are doing loop unrolling,
728 not function inlining. */
729 map->inline_target = 0;
730
731 /* The register and constant maps depend on the number of registers
732 present, so the final maps can't be created until after
733 find_splittable_regs is called. However, they are needed for
734 preconditioning, so we create temporary maps when preconditioning
735 is performed. */
736
737 /* The preconditioning code may allocate two new pseudo registers. */
738 maxregnum = max_reg_num ();
739
740 /* local_regno is only valid for regnos < max_local_regnum. */
741 max_local_regnum = maxregnum;
742
743 /* Allocate and zero out the splittable_regs and addr_combined_regs
744 arrays. These must be zeroed here because they will be used if
745 loop preconditioning is performed, and must be zero for that case.
746
747 It is safe to do this here, since the extra registers created by the
748 preconditioning code and find_splittable_regs will never be used
749 to access the splittable_regs[] and addr_combined_regs[] arrays. */
750
751 splittable_regs = xcalloc (maxregnum, sizeof (rtx));
752 splittable_regs_updates = xcalloc (maxregnum, sizeof (int));
753 addr_combined_regs = xcalloc (maxregnum, sizeof (struct induction *));
754 local_regno = xcalloc (maxregnum, sizeof (char));
755
756 /* Mark all local registers, i.e. the ones which are referenced only
757 inside the loop. */
758 if (INSN_UID (copy_end) < max_uid_for_loop)
759 {
760 int copy_start_luid = INSN_LUID (copy_start);
761 int copy_end_luid = INSN_LUID (copy_end);
762
763 /* If a register is used in the jump insn, we must not duplicate it
764 since it will also be used outside the loop. */
765 if (GET_CODE (copy_end) == JUMP_INSN)
766 copy_end_luid--;
767
768 /* If we have a target that uses cc0, then we also must not duplicate
769 the insn that sets cc0 before the jump insn, if one is present. */
770 #ifdef HAVE_cc0
771 if (GET_CODE (copy_end) == JUMP_INSN
772 && sets_cc0_p (PREV_INSN (copy_end)))
773 copy_end_luid--;
774 #endif
775
776 /* If copy_start points to the NOTE that starts the loop, then we must
777 use the next luid, because invariant pseudo-regs moved out of the loop
778 have their lifetimes modified to start here, but they are not safe
779 to duplicate. */
780 if (copy_start == loop_start)
781 copy_start_luid++;
782
783 /* If a pseudo's lifetime is entirely contained within this loop, then we
784 can use a different pseudo in each unrolled copy of the loop. This
785 results in better code. */
786 /* We must limit the generic test to max_reg_before_loop, because only
787 these pseudo registers have valid regno_first_uid info. */
788 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
789 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
790 && REGNO_FIRST_LUID (r) >= copy_start_luid
791 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) < max_uid_for_loop
792 && REGNO_LAST_LUID (r) <= copy_end_luid)
793 {
794 /* However, we must also check for loop-carried dependencies.
795 If the value the pseudo has at the end of iteration X is
796 used by iteration X+1, then we can not use a different pseudo
797 for each unrolled copy of the loop. */
798 /* A pseudo is safe if regno_first_uid is a set, and this
799 set dominates all instructions from regno_first_uid to
800 regno_last_uid. */
801 /* ??? This check is simplistic. We would get better code if
802 this check was more sophisticated. */
803 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
804 copy_start, copy_end))
805 local_regno[r] = 1;
806
807 if (loop_dump_stream)
808 {
809 if (local_regno[r])
810 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
811 else
812 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
813 r);
814 }
815 }
816 }
817
818 /* If this loop requires exit tests when unrolled, check to see if we
819 can precondition the loop so as to make the exit tests unnecessary.
820 Just like variable splitting, this is not safe if the loop is entered
821 via a jump to the bottom. Also, can not do this if no strength
822 reduce info, because precondition_loop_p uses this info. */
823
824 /* Must copy the loop body for preconditioning before the following
825 find_splittable_regs call since that will emit insns which need to
826 be after the preconditioned loop copies, but immediately before the
827 unrolled loop copies. */
828
829 /* Also, it is not safe to split induction variables for the preconditioned
830 copies of the loop body. If we split induction variables, then the code
831 assumes that each induction variable can be represented as a function
832 of its initial value and the loop iteration number. This is not true
833 in this case, because the last preconditioned copy of the loop body
834 could be any iteration from the first up to the `unroll_number-1'th,
835 depending on the initial value of the iteration variable. Therefore
836 we can not split induction variables here, because we can not calculate
837 their value. Hence, this code must occur before find_splittable_regs
838 is called. */
839
840 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
841 {
842 rtx initial_value, final_value, increment;
843 enum machine_mode mode;
844
845 if (precondition_loop_p (loop,
846 &initial_value, &final_value, &increment,
847 &mode))
848 {
849 rtx diff, insn;
850 rtx *labels;
851 int abs_inc, neg_inc;
852 enum rtx_code cc = loop_info->comparison_code;
853 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
854 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
855
856 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
857
858 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
859 "unroll_loop_precondition");
860 global_const_equiv_varray = map->const_equiv_varray;
861
862 init_reg_map (map, maxregnum);
863
864 /* Limit loop unrolling to 4, since this will make 7 copies of
865 the loop body. */
866 if (unroll_number > 4)
867 unroll_number = 4;
868
869 /* Save the absolute value of the increment, and also whether or
870 not it is negative. */
871 neg_inc = 0;
872 abs_inc = INTVAL (increment);
873 if (abs_inc < 0)
874 {
875 abs_inc = -abs_inc;
876 neg_inc = 1;
877 }
878
879 start_sequence ();
880
881 /* We must copy the final and initial values here to avoid
882 improperly shared rtl. */
883 final_value = copy_rtx (final_value);
884 initial_value = copy_rtx (initial_value);
885
886 /* Final value may have form of (PLUS val1 const1_rtx). We need
887 to convert it into general operand, so compute the real value. */
888
889 final_value = force_operand (final_value, NULL_RTX);
890 if (!nonmemory_operand (final_value, VOIDmode))
891 final_value = force_reg (mode, final_value);
892
893 /* Calculate the difference between the final and initial values.
894 Final value may be a (plus (reg x) (const_int 1)) rtx.
895
896 We have to deal with for (i = 0; --i < 6;) type loops.
897 For such loops the real final value is the first time the
898 loop variable overflows, so the diff we calculate is the
899 distance from the overflow value. This is 0 or ~0 for
900 unsigned loops depending on the direction, or INT_MAX,
901 INT_MAX+1 for signed loops. We really do not need the
902 exact value, since we are only interested in the diff
903 modulo the increment, and the increment is a power of 2,
904 so we can pretend that the overflow value is 0/~0. */
905
906 if (cc == NE || less_p != neg_inc)
907 diff = simplify_gen_binary (MINUS, mode, final_value,
908 initial_value);
909 else
910 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
911 initial_value, mode);
912 diff = force_operand (diff, NULL_RTX);
913
914 /* Now calculate (diff % (unroll * abs (increment))) by using an
915 and instruction. */
916 diff = simplify_gen_binary (AND, mode, diff,
917 GEN_INT (unroll_number*abs_inc - 1));
918 diff = force_operand (diff, NULL_RTX);
919
920 /* Now emit a sequence of branches to jump to the proper precond
921 loop entry point. */
922
923 labels = xmalloc (sizeof (rtx) * unroll_number);
924 for (i = 0; i < unroll_number; i++)
925 labels[i] = gen_label_rtx ();
926
927 /* Check for the case where the initial value is greater than or
928 equal to the final value. In that case, we want to execute
929 exactly one loop iteration. The code below will fail for this
930 case. This check does not apply if the loop has a NE
931 comparison at the end. */
932
933 if (cc != NE)
934 {
935 rtx incremented_initval;
936 enum rtx_code cmp_code;
937
938 incremented_initval
939 = simplify_gen_binary (PLUS, mode, initial_value, increment);
940 incremented_initval
941 = force_operand (incremented_initval, NULL_RTX);
942
943 cmp_code = (less_p
944 ? (unsigned_p ? GEU : GE)
945 : (unsigned_p ? LEU : LE));
946
947 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
948 incremented_initval,
949 final_value, labels[1]);
950 if (insn)
951 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
952 }
953
954 /* Assuming the unroll_number is 4, and the increment is 2, then
955 for a negative increment: for a positive increment:
956 diff = 0,1 precond 0 diff = 0,7 precond 0
957 diff = 2,3 precond 3 diff = 1,2 precond 1
958 diff = 4,5 precond 2 diff = 3,4 precond 2
959 diff = 6,7 precond 1 diff = 5,6 precond 3 */
960
961 /* We only need to emit (unroll_number - 1) branches here, the
962 last case just falls through to the following code. */
963
964 /* ??? This would give better code if we emitted a tree of branches
965 instead of the current linear list of branches. */
966
967 for (i = 0; i < unroll_number - 1; i++)
968 {
969 int cmp_const;
970 enum rtx_code cmp_code;
971
972 /* For negative increments, must invert the constant compared
973 against, except when comparing against zero. */
974 if (i == 0)
975 {
976 cmp_const = 0;
977 cmp_code = EQ;
978 }
979 else if (neg_inc)
980 {
981 cmp_const = unroll_number - i;
982 cmp_code = GE;
983 }
984 else
985 {
986 cmp_const = i;
987 cmp_code = LE;
988 }
989
990 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
991 GEN_INT (abs_inc*cmp_const),
992 labels[i]);
993 if (insn)
994 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
995 REG_BR_PROB_BASE / (unroll_number - i));
996 }
997
998 /* If the increment is greater than one, then we need another branch,
999 to handle other cases equivalent to 0. */
1000
1001 /* ??? This should be merged into the code above somehow to help
1002 simplify the code here, and reduce the number of branches emitted.
1003 For the negative increment case, the branch here could easily
1004 be merged with the `0' case branch above. For the positive
1005 increment case, it is not clear how this can be simplified. */
1006
1007 if (abs_inc != 1)
1008 {
1009 int cmp_const;
1010 enum rtx_code cmp_code;
1011
1012 if (neg_inc)
1013 {
1014 cmp_const = abs_inc - 1;
1015 cmp_code = LE;
1016 }
1017 else
1018 {
1019 cmp_const = abs_inc * (unroll_number - 1) + 1;
1020 cmp_code = GE;
1021 }
1022
1023 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1024 GEN_INT (cmp_const), labels[0]);
1025 }
1026
1027 sequence = get_insns ();
1028 end_sequence ();
1029 loop_insn_hoist (loop, sequence);
1030
1031 /* Only the last copy of the loop body here needs the exit
1032 test, so set copy_end to exclude the compare/branch here,
1033 and then reset it inside the loop when get to the last
1034 copy. */
1035
1036 if (GET_CODE (last_loop_insn) == BARRIER)
1037 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1038 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1039 {
1040 copy_end = PREV_INSN (last_loop_insn);
1041 #ifdef HAVE_cc0
1042 /* The immediately preceding insn may be a compare which
1043 we do not want to copy. */
1044 if (sets_cc0_p (PREV_INSN (copy_end)))
1045 copy_end = PREV_INSN (copy_end);
1046 #endif
1047 }
1048 else
1049 abort ();
1050
1051 for (i = 1; i < unroll_number; i++)
1052 {
1053 emit_label_after (labels[unroll_number - i],
1054 PREV_INSN (loop_start));
1055
1056 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1057 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1058 0, (VARRAY_SIZE (map->const_equiv_varray)
1059 * sizeof (struct const_equiv_data)));
1060 map->const_age = 0;
1061
1062 for (j = 0; j < max_labelno; j++)
1063 if (local_label[j])
1064 set_label_in_map (map, j, gen_label_rtx ());
1065
1066 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1067 if (local_regno[r])
1068 {
1069 map->reg_map[r]
1070 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1071 record_base_value (REGNO (map->reg_map[r]),
1072 regno_reg_rtx[r], 0);
1073 }
1074 /* The last copy needs the compare/branch insns at the end,
1075 so reset copy_end here if the loop ends with a conditional
1076 branch. */
1077
1078 if (i == unroll_number - 1)
1079 {
1080 if (GET_CODE (last_loop_insn) == BARRIER)
1081 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1082 else
1083 copy_end = last_loop_insn;
1084 }
1085
1086 /* None of the copies are the `last_iteration', so just
1087 pass zero for that parameter. */
1088 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1089 unroll_type, start_label, loop_end,
1090 loop_start, copy_end);
1091 }
1092 emit_label_after (labels[0], PREV_INSN (loop_start));
1093
1094 if (GET_CODE (last_loop_insn) == BARRIER)
1095 {
1096 insert_before = PREV_INSN (last_loop_insn);
1097 copy_end = PREV_INSN (insert_before);
1098 }
1099 else
1100 {
1101 insert_before = last_loop_insn;
1102 #ifdef HAVE_cc0
1103 /* The instruction immediately before the JUMP_INSN may
1104 be a compare instruction which we do not want to copy
1105 or delete. */
1106 if (sets_cc0_p (PREV_INSN (insert_before)))
1107 insert_before = PREV_INSN (insert_before);
1108 #endif
1109 copy_end = PREV_INSN (insert_before);
1110 }
1111
1112 /* Set unroll type to MODULO now. */
1113 unroll_type = UNROLL_MODULO;
1114 loop_preconditioned = 1;
1115
1116 /* Clean up. */
1117 free (labels);
1118 }
1119 }
1120
1121 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1122 the loop unless all loops are being unrolled. */
1123 if (unroll_type == UNROLL_NAIVE && ! flag_old_unroll_all_loops)
1124 {
1125 if (loop_dump_stream)
1126 fprintf (loop_dump_stream,
1127 "Unrolling failure: Naive unrolling not being done.\n");
1128 goto egress;
1129 }
1130
1131 /* At this point, we are guaranteed to unroll the loop. */
1132
1133 /* Keep track of the unroll factor for the loop. */
1134 loop_info->unroll_number = unroll_number;
1135
1136 /* And whether the loop has been preconditioned. */
1137 loop_info->preconditioned = loop_preconditioned;
1138
1139 /* Remember whether it was preconditioned for the second loop pass. */
1140 NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1141
1142 /* For each biv and giv, determine whether it can be safely split into
1143 a different variable for each unrolled copy of the loop body.
1144 We precalculate and save this info here, since computing it is
1145 expensive.
1146
1147 Do this before deleting any instructions from the loop, so that
1148 back_branch_in_range_p will work correctly. */
1149
1150 if (splitting_not_safe)
1151 temp = 0;
1152 else
1153 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1154
1155 /* find_splittable_regs may have created some new registers, so must
1156 reallocate the reg_map with the new larger size, and must realloc
1157 the constant maps also. */
1158
1159 maxregnum = max_reg_num ();
1160 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
1161
1162 init_reg_map (map, maxregnum);
1163
1164 if (map->const_equiv_varray == 0)
1165 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1166 maxregnum + temp * unroll_number * 2,
1167 "unroll_loop");
1168 global_const_equiv_varray = map->const_equiv_varray;
1169
1170 /* Search the list of bivs and givs to find ones which need to be remapped
1171 when split, and set their reg_map entry appropriately. */
1172
1173 for (bl = ivs->list; bl; bl = bl->next)
1174 {
1175 if (REGNO (bl->biv->src_reg) != bl->regno)
1176 map->reg_map[bl->regno] = bl->biv->src_reg;
1177 #if 0
1178 /* Currently, non-reduced/final-value givs are never split. */
1179 for (v = bl->giv; v; v = v->next_iv)
1180 if (REGNO (v->src_reg) != bl->regno)
1181 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1182 #endif
1183 }
1184
1185 /* Use our current register alignment and pointer flags. */
1186 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1187 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1188
1189 /* If the loop is being partially unrolled, and the iteration variables
1190 are being split, and are being renamed for the split, then must fix up
1191 the compare/jump instruction at the end of the loop to refer to the new
1192 registers. This compare isn't copied, so the registers used in it
1193 will never be replaced if it isn't done here. */
1194
1195 if (unroll_type == UNROLL_MODULO)
1196 {
1197 insn = NEXT_INSN (copy_end);
1198 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1199 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1200 }
1201
1202 /* For unroll_number times, make a copy of each instruction
1203 between copy_start and copy_end, and insert these new instructions
1204 before the end of the loop. */
1205
1206 for (i = 0; i < unroll_number; i++)
1207 {
1208 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1209 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1210 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1211 map->const_age = 0;
1212
1213 for (j = 0; j < max_labelno; j++)
1214 if (local_label[j])
1215 set_label_in_map (map, j, gen_label_rtx ());
1216
1217 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1218 if (local_regno[r])
1219 {
1220 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1221 record_base_value (REGNO (map->reg_map[r]),
1222 regno_reg_rtx[r], 0);
1223 }
1224
1225 /* If loop starts with a branch to the test, then fix it so that
1226 it points to the test of the first unrolled copy of the loop. */
1227 if (i == 0 && loop_start != copy_start)
1228 {
1229 insn = PREV_INSN (copy_start);
1230 pattern = PATTERN (insn);
1231
1232 tem = get_label_from_map (map,
1233 CODE_LABEL_NUMBER
1234 (XEXP (SET_SRC (pattern), 0)));
1235 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1236
1237 /* Set the jump label so that it can be used by later loop unrolling
1238 passes. */
1239 JUMP_LABEL (insn) = tem;
1240 LABEL_NUSES (tem)++;
1241 }
1242
1243 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1244 i == unroll_number - 1, unroll_type, start_label,
1245 loop_end, insert_before, insert_before);
1246 }
1247
1248 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1249 insn to be deleted. This prevents any runaway delete_insn call from
1250 more insns that it should, as it always stops at a CODE_LABEL. */
1251
1252 /* Delete the compare and branch at the end of the loop if completely
1253 unrolling the loop. Deleting the backward branch at the end also
1254 deletes the code label at the start of the loop. This is done at
1255 the very end to avoid problems with back_branch_in_range_p. */
1256
1257 if (unroll_type == UNROLL_COMPLETELY)
1258 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1259 else
1260 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1261
1262 /* Delete all of the original loop instructions. Don't delete the
1263 LOOP_BEG note, or the first code label in the loop. */
1264
1265 insn = NEXT_INSN (copy_start);
1266 while (insn != safety_label)
1267 {
1268 /* ??? Don't delete named code labels. They will be deleted when the
1269 jump that references them is deleted. Otherwise, we end up deleting
1270 them twice, which causes them to completely disappear instead of turn
1271 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1272 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1273 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1274 associated LABEL_DECL to point to one of the new label instances. */
1275 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1276 if (insn != start_label
1277 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1278 && ! (GET_CODE (insn) == NOTE
1279 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1280 insn = delete_related_insns (insn);
1281 else
1282 insn = NEXT_INSN (insn);
1283 }
1284
1285 /* Can now delete the 'safety' label emitted to protect us from runaway
1286 delete_related_insns calls. */
1287 if (INSN_DELETED_P (safety_label))
1288 abort ();
1289 delete_related_insns (safety_label);
1290
1291 /* If exit_label exists, emit it after the loop. Doing the emit here
1292 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1293 This is needed so that mostly_true_jump in reorg.c will treat jumps
1294 to this loop end label correctly, i.e. predict that they are usually
1295 not taken. */
1296 if (exit_label)
1297 emit_label_after (exit_label, loop_end);
1298
1299 egress:
1300 if (unroll_type == UNROLL_COMPLETELY)
1301 {
1302 /* Remove the loop notes since this is no longer a loop. */
1303 if (loop->vtop)
1304 delete_related_insns (loop->vtop);
1305 if (loop->cont)
1306 delete_related_insns (loop->cont);
1307 if (loop_start)
1308 delete_related_insns (loop_start);
1309 if (loop_end)
1310 delete_related_insns (loop_end);
1311 }
1312
1313 if (map->const_equiv_varray)
1314 VARRAY_FREE (map->const_equiv_varray);
1315 if (map->label_map)
1316 {
1317 free (map->label_map);
1318 free (local_label);
1319 }
1320 free (map->insn_map);
1321 free (splittable_regs);
1322 free (splittable_regs_updates);
1323 free (addr_combined_regs);
1324 free (local_regno);
1325 if (map->reg_map)
1326 free (map->reg_map);
1327 free (map);
1328 }
1329
1330 /* A helper function for unroll_loop. Emit a compare and branch to
1331 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1332 If the branch turned out to be conditional, return it, otherwise
1333 return NULL. */
1334
1335 static rtx
simplify_cmp_and_jump_insns(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1,rtx label)1336 simplify_cmp_and_jump_insns (enum rtx_code code, enum machine_mode mode,
1337 rtx op0, rtx op1, rtx label)
1338 {
1339 rtx t, insn;
1340
1341 t = simplify_relational_operation (code, mode, op0, op1);
1342 if (!t)
1343 {
1344 enum rtx_code scode = signed_condition (code);
1345 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1346 code != scode, label);
1347 insn = get_last_insn ();
1348
1349 JUMP_LABEL (insn) = label;
1350 LABEL_NUSES (label) += 1;
1351
1352 return insn;
1353 }
1354 else if (t == const_true_rtx)
1355 {
1356 insn = emit_jump_insn (gen_jump (label));
1357 emit_barrier ();
1358 JUMP_LABEL (insn) = label;
1359 LABEL_NUSES (label) += 1;
1360 }
1361
1362 return NULL_RTX;
1363 }
1364
1365 /* Return true if the loop can be safely, and profitably, preconditioned
1366 so that the unrolled copies of the loop body don't need exit tests.
1367
1368 This only works if final_value, initial_value and increment can be
1369 determined, and if increment is a constant power of 2.
1370 If increment is not a power of 2, then the preconditioning modulo
1371 operation would require a real modulo instead of a boolean AND, and this
1372 is not considered `profitable'. */
1373
1374 /* ??? If the loop is known to be executed very many times, or the machine
1375 has a very cheap divide instruction, then preconditioning is a win even
1376 when the increment is not a power of 2. Use RTX_COST to compute
1377 whether divide is cheap.
1378 ??? A divide by constant doesn't actually need a divide, look at
1379 expand_divmod. The reduced cost of this optimized modulo is not
1380 reflected in RTX_COST. */
1381
1382 int
precondition_loop_p(const struct loop * loop,rtx * initial_value,rtx * final_value,rtx * increment,enum machine_mode * mode)1383 precondition_loop_p (const struct loop *loop, rtx *initial_value,
1384 rtx *final_value, rtx *increment,
1385 enum machine_mode *mode)
1386 {
1387 rtx loop_start = loop->start;
1388 struct loop_info *loop_info = LOOP_INFO (loop);
1389
1390 if (loop_info->n_iterations > 0)
1391 {
1392 if (INTVAL (loop_info->increment) > 0)
1393 {
1394 *initial_value = const0_rtx;
1395 *increment = const1_rtx;
1396 *final_value = GEN_INT (loop_info->n_iterations);
1397 }
1398 else
1399 {
1400 *initial_value = GEN_INT (loop_info->n_iterations);
1401 *increment = constm1_rtx;
1402 *final_value = const0_rtx;
1403 }
1404 *mode = word_mode;
1405
1406 if (loop_dump_stream)
1407 fprintf (loop_dump_stream,
1408 "Preconditioning: Success, number of iterations known, "
1409 HOST_WIDE_INT_PRINT_DEC ".\n",
1410 loop_info->n_iterations);
1411 return 1;
1412 }
1413
1414 if (loop_info->iteration_var == 0)
1415 {
1416 if (loop_dump_stream)
1417 fprintf (loop_dump_stream,
1418 "Preconditioning: Could not find iteration variable.\n");
1419 return 0;
1420 }
1421 else if (loop_info->initial_value == 0)
1422 {
1423 if (loop_dump_stream)
1424 fprintf (loop_dump_stream,
1425 "Preconditioning: Could not find initial value.\n");
1426 return 0;
1427 }
1428 else if (loop_info->increment == 0)
1429 {
1430 if (loop_dump_stream)
1431 fprintf (loop_dump_stream,
1432 "Preconditioning: Could not find increment value.\n");
1433 return 0;
1434 }
1435 else if (GET_CODE (loop_info->increment) != CONST_INT)
1436 {
1437 if (loop_dump_stream)
1438 fprintf (loop_dump_stream,
1439 "Preconditioning: Increment not a constant.\n");
1440 return 0;
1441 }
1442 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1443 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1444 {
1445 if (loop_dump_stream)
1446 fprintf (loop_dump_stream,
1447 "Preconditioning: Increment not a constant power of 2.\n");
1448 return 0;
1449 }
1450
1451 /* Unsigned_compare and compare_dir can be ignored here, since they do
1452 not matter for preconditioning. */
1453
1454 if (loop_info->final_value == 0)
1455 {
1456 if (loop_dump_stream)
1457 fprintf (loop_dump_stream,
1458 "Preconditioning: EQ comparison loop.\n");
1459 return 0;
1460 }
1461
1462 /* Must ensure that final_value is invariant, so call
1463 loop_invariant_p to check. Before doing so, must check regno
1464 against max_reg_before_loop to make sure that the register is in
1465 the range covered by loop_invariant_p. If it isn't, then it is
1466 most likely a biv/giv which by definition are not invariant. */
1467 if ((GET_CODE (loop_info->final_value) == REG
1468 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1469 || (GET_CODE (loop_info->final_value) == PLUS
1470 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1471 || ! loop_invariant_p (loop, loop_info->final_value))
1472 {
1473 if (loop_dump_stream)
1474 fprintf (loop_dump_stream,
1475 "Preconditioning: Final value not invariant.\n");
1476 return 0;
1477 }
1478
1479 /* Fail for floating point values, since the caller of this function
1480 does not have code to deal with them. */
1481 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1482 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1483 {
1484 if (loop_dump_stream)
1485 fprintf (loop_dump_stream,
1486 "Preconditioning: Floating point final or initial value.\n");
1487 return 0;
1488 }
1489
1490 /* Fail if loop_info->iteration_var is not live before loop_start,
1491 since we need to test its value in the preconditioning code. */
1492
1493 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1494 > INSN_LUID (loop_start))
1495 {
1496 if (loop_dump_stream)
1497 fprintf (loop_dump_stream,
1498 "Preconditioning: Iteration var not live before loop start.\n");
1499 return 0;
1500 }
1501
1502 /* Note that loop_iterations biases the initial value for GIV iterators
1503 such as "while (i-- > 0)" so that we can calculate the number of
1504 iterations just like for BIV iterators.
1505
1506 Also note that the absolute values of initial_value and
1507 final_value are unimportant as only their difference is used for
1508 calculating the number of loop iterations. */
1509 *initial_value = loop_info->initial_value;
1510 *increment = loop_info->increment;
1511 *final_value = loop_info->final_value;
1512
1513 /* Decide what mode to do these calculations in. Choose the larger
1514 of final_value's mode and initial_value's mode, or a full-word if
1515 both are constants. */
1516 *mode = GET_MODE (*final_value);
1517 if (*mode == VOIDmode)
1518 {
1519 *mode = GET_MODE (*initial_value);
1520 if (*mode == VOIDmode)
1521 *mode = word_mode;
1522 }
1523 else if (*mode != GET_MODE (*initial_value)
1524 && (GET_MODE_SIZE (*mode)
1525 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1526 *mode = GET_MODE (*initial_value);
1527
1528 /* Success! */
1529 if (loop_dump_stream)
1530 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1531 return 1;
1532 }
1533
1534 /* All pseudo-registers must be mapped to themselves. Two hard registers
1535 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1536 REGNUM, to avoid function-inlining specific conversions of these
1537 registers. All other hard regs can not be mapped because they may be
1538 used with different
1539 modes. */
1540
1541 static void
init_reg_map(struct inline_remap * map,int maxregnum)1542 init_reg_map (struct inline_remap *map, int maxregnum)
1543 {
1544 int i;
1545
1546 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1547 map->reg_map[i] = regno_reg_rtx[i];
1548 /* Just clear the rest of the entries. */
1549 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1550 map->reg_map[i] = 0;
1551
1552 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1553 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1554 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1555 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1556 }
1557
1558 /* Strength-reduction will often emit code for optimized biv/givs which
1559 calculates their value in a temporary register, and then copies the result
1560 to the iv. This procedure reconstructs the pattern computing the iv;
1561 verifying that all operands are of the proper form.
1562
1563 PATTERN must be the result of single_set.
1564 The return value is the amount that the giv is incremented by. */
1565
1566 static rtx
calculate_giv_inc(rtx pattern,rtx src_insn,unsigned int regno)1567 calculate_giv_inc (rtx pattern, rtx src_insn, unsigned int regno)
1568 {
1569 rtx increment;
1570 rtx increment_total = 0;
1571 int tries = 0;
1572
1573 retry:
1574 /* Verify that we have an increment insn here. First check for a plus
1575 as the set source. */
1576 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1577 {
1578 /* SR sometimes computes the new giv value in a temp, then copies it
1579 to the new_reg. */
1580 src_insn = PREV_INSN (src_insn);
1581 pattern = single_set (src_insn);
1582 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1583 abort ();
1584
1585 /* The last insn emitted is not needed, so delete it to avoid confusing
1586 the second cse pass. This insn sets the giv unnecessarily. */
1587 delete_related_insns (get_last_insn ());
1588 }
1589
1590 /* Verify that we have a constant as the second operand of the plus. */
1591 increment = XEXP (SET_SRC (pattern), 1);
1592 if (GET_CODE (increment) != CONST_INT)
1593 {
1594 /* SR sometimes puts the constant in a register, especially if it is
1595 too big to be an add immed operand. */
1596 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1597
1598 /* SR may have used LO_SUM to compute the constant if it is too large
1599 for a load immed operand. In this case, the constant is in operand
1600 one of the LO_SUM rtx. */
1601 if (GET_CODE (increment) == LO_SUM)
1602 increment = XEXP (increment, 1);
1603
1604 /* Some ports store large constants in memory and add a REG_EQUAL
1605 note to the store insn. */
1606 else if (GET_CODE (increment) == MEM)
1607 {
1608 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1609 if (note)
1610 increment = XEXP (note, 0);
1611 }
1612
1613 else if (GET_CODE (increment) == IOR
1614 || GET_CODE (increment) == PLUS
1615 || GET_CODE (increment) == ASHIFT
1616 || GET_CODE (increment) == LSHIFTRT)
1617 {
1618 /* The rs6000 port loads some constants with IOR.
1619 The alpha port loads some constants with ASHIFT and PLUS.
1620 The sparc64 port loads some constants with LSHIFTRT. */
1621 rtx second_part = XEXP (increment, 1);
1622 enum rtx_code code = GET_CODE (increment);
1623
1624 increment = find_last_value (XEXP (increment, 0),
1625 &src_insn, NULL_RTX, 0);
1626 /* Don't need the last insn anymore. */
1627 delete_related_insns (get_last_insn ());
1628
1629 if (GET_CODE (second_part) != CONST_INT
1630 || GET_CODE (increment) != CONST_INT)
1631 abort ();
1632
1633 if (code == IOR)
1634 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1635 else if (code == PLUS)
1636 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1637 else if (code == ASHIFT)
1638 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1639 else
1640 increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
1641 }
1642
1643 if (GET_CODE (increment) != CONST_INT)
1644 abort ();
1645
1646 /* The insn loading the constant into a register is no longer needed,
1647 so delete it. */
1648 delete_related_insns (get_last_insn ());
1649 }
1650
1651 if (increment_total)
1652 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1653 else
1654 increment_total = increment;
1655
1656 /* Check that the source register is the same as the register we expected
1657 to see as the source. If not, something is seriously wrong. */
1658 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1659 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1660 {
1661 /* Some machines (e.g. the romp), may emit two add instructions for
1662 certain constants, so lets try looking for another add immediately
1663 before this one if we have only seen one add insn so far. */
1664
1665 if (tries == 0)
1666 {
1667 tries++;
1668
1669 src_insn = PREV_INSN (src_insn);
1670 pattern = single_set (src_insn);
1671
1672 delete_related_insns (get_last_insn ());
1673
1674 goto retry;
1675 }
1676
1677 abort ();
1678 }
1679
1680 return increment_total;
1681 }
1682
1683 /* Copy REG_NOTES, except for insn references, because not all insn_map
1684 entries are valid yet. We do need to copy registers now though, because
1685 the reg_map entries can change during copying. */
1686
1687 static rtx
initial_reg_note_copy(rtx notes,struct inline_remap * map)1688 initial_reg_note_copy (rtx notes, struct inline_remap *map)
1689 {
1690 rtx copy;
1691
1692 if (notes == 0)
1693 return 0;
1694
1695 copy = rtx_alloc (GET_CODE (notes));
1696 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1697
1698 if (GET_CODE (notes) == EXPR_LIST)
1699 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1700 else if (GET_CODE (notes) == INSN_LIST)
1701 /* Don't substitute for these yet. */
1702 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1703 else
1704 abort ();
1705
1706 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1707
1708 return copy;
1709 }
1710
1711 /* Fixup insn references in copied REG_NOTES. */
1712
1713 static void
final_reg_note_copy(rtx * notesp,struct inline_remap * map)1714 final_reg_note_copy (rtx *notesp, struct inline_remap *map)
1715 {
1716 while (*notesp)
1717 {
1718 rtx note = *notesp;
1719
1720 if (GET_CODE (note) == INSN_LIST)
1721 {
1722 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1723
1724 /* If we failed to remap the note, something is awry.
1725 Allow REG_LABEL as it may reference label outside
1726 the unrolled loop. */
1727 if (!insn)
1728 {
1729 if (REG_NOTE_KIND (note) != REG_LABEL)
1730 abort ();
1731 }
1732 else
1733 XEXP (note, 0) = insn;
1734 }
1735
1736 notesp = &XEXP (note, 1);
1737 }
1738 }
1739
1740 /* Copy each instruction in the loop, substituting from map as appropriate.
1741 This is very similar to a loop in expand_inline_function. */
1742
1743 static void
copy_loop_body(struct loop * loop,rtx copy_start,rtx copy_end,struct inline_remap * map,rtx exit_label,int last_iteration,enum unroll_types unroll_type,rtx start_label,rtx loop_end,rtx insert_before,rtx copy_notes_from)1744 copy_loop_body (struct loop *loop, rtx copy_start, rtx copy_end,
1745 struct inline_remap *map, rtx exit_label,
1746 int last_iteration, enum unroll_types unroll_type,
1747 rtx start_label, rtx loop_end, rtx insert_before,
1748 rtx copy_notes_from)
1749 {
1750 struct loop_ivs *ivs = LOOP_IVS (loop);
1751 rtx insn, pattern;
1752 rtx set, tem, copy = NULL_RTX;
1753 int dest_reg_was_split, i;
1754 #ifdef HAVE_cc0
1755 rtx cc0_insn = 0;
1756 #endif
1757 rtx final_label = 0;
1758 rtx giv_inc, giv_dest_reg, giv_src_reg;
1759
1760 /* If this isn't the last iteration, then map any references to the
1761 start_label to final_label. Final label will then be emitted immediately
1762 after the end of this loop body if it was ever used.
1763
1764 If this is the last iteration, then map references to the start_label
1765 to itself. */
1766 if (! last_iteration)
1767 {
1768 final_label = gen_label_rtx ();
1769 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1770 }
1771 else
1772 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1773
1774 start_sequence ();
1775
1776 insn = copy_start;
1777 do
1778 {
1779 insn = NEXT_INSN (insn);
1780
1781 map->orig_asm_operands_vector = 0;
1782
1783 switch (GET_CODE (insn))
1784 {
1785 case INSN:
1786 pattern = PATTERN (insn);
1787 copy = 0;
1788 giv_inc = 0;
1789
1790 /* Check to see if this is a giv that has been combined with
1791 some split address givs. (Combined in the sense that
1792 `combine_givs' in loop.c has put two givs in the same register.)
1793 In this case, we must search all givs based on the same biv to
1794 find the address givs. Then split the address givs.
1795 Do this before splitting the giv, since that may map the
1796 SET_DEST to a new register. */
1797
1798 if ((set = single_set (insn))
1799 && GET_CODE (SET_DEST (set)) == REG
1800 && addr_combined_regs[REGNO (SET_DEST (set))])
1801 {
1802 struct iv_class *bl;
1803 struct induction *v, *tv;
1804 unsigned int regno = REGNO (SET_DEST (set));
1805
1806 v = addr_combined_regs[REGNO (SET_DEST (set))];
1807 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1808
1809 /* Although the giv_inc amount is not needed here, we must call
1810 calculate_giv_inc here since it might try to delete the
1811 last insn emitted. If we wait until later to call it,
1812 we might accidentally delete insns generated immediately
1813 below by emit_unrolled_add. */
1814
1815 giv_inc = calculate_giv_inc (set, insn, regno);
1816
1817 /* Now find all address giv's that were combined with this
1818 giv 'v'. */
1819 for (tv = bl->giv; tv; tv = tv->next_iv)
1820 if (tv->giv_type == DEST_ADDR && tv->same == v)
1821 {
1822 int this_giv_inc;
1823
1824 /* If this DEST_ADDR giv was not split, then ignore it. */
1825 if (*tv->location != tv->dest_reg)
1826 continue;
1827
1828 /* Scale this_giv_inc if the multiplicative factors of
1829 the two givs are different. */
1830 this_giv_inc = INTVAL (giv_inc);
1831 if (tv->mult_val != v->mult_val)
1832 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1833 * INTVAL (tv->mult_val));
1834
1835 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1836 *tv->location = tv->dest_reg;
1837
1838 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1839 {
1840 /* Must emit an insn to increment the split address
1841 giv. Add in the const_adjust field in case there
1842 was a constant eliminated from the address. */
1843 rtx value, dest_reg;
1844
1845 /* tv->dest_reg will be either a bare register,
1846 or else a register plus a constant. */
1847 if (GET_CODE (tv->dest_reg) == REG)
1848 dest_reg = tv->dest_reg;
1849 else
1850 dest_reg = XEXP (tv->dest_reg, 0);
1851
1852 /* Check for shared address givs, and avoid
1853 incrementing the shared pseudo reg more than
1854 once. */
1855 if (! tv->same_insn && ! tv->shared)
1856 {
1857 /* tv->dest_reg may actually be a (PLUS (REG)
1858 (CONST)) here, so we must call plus_constant
1859 to add the const_adjust amount before calling
1860 emit_unrolled_add below. */
1861 value = plus_constant (tv->dest_reg,
1862 tv->const_adjust);
1863
1864 if (GET_CODE (value) == PLUS)
1865 {
1866 /* The constant could be too large for an add
1867 immediate, so can't directly emit an insn
1868 here. */
1869 emit_unrolled_add (dest_reg, XEXP (value, 0),
1870 XEXP (value, 1));
1871 }
1872 }
1873
1874 /* Reset the giv to be just the register again, in case
1875 it is used after the set we have just emitted.
1876 We must subtract the const_adjust factor added in
1877 above. */
1878 tv->dest_reg = plus_constant (dest_reg,
1879 -tv->const_adjust);
1880 *tv->location = tv->dest_reg;
1881 }
1882 }
1883 }
1884
1885 /* If this is a setting of a splittable variable, then determine
1886 how to split the variable, create a new set based on this split,
1887 and set up the reg_map so that later uses of the variable will
1888 use the new split variable. */
1889
1890 dest_reg_was_split = 0;
1891
1892 if ((set = single_set (insn))
1893 && GET_CODE (SET_DEST (set)) == REG
1894 && splittable_regs[REGNO (SET_DEST (set))])
1895 {
1896 unsigned int regno = REGNO (SET_DEST (set));
1897 unsigned int src_regno;
1898
1899 dest_reg_was_split = 1;
1900
1901 giv_dest_reg = SET_DEST (set);
1902 giv_src_reg = giv_dest_reg;
1903 /* Compute the increment value for the giv, if it wasn't
1904 already computed above. */
1905 if (giv_inc == 0)
1906 giv_inc = calculate_giv_inc (set, insn, regno);
1907
1908 src_regno = REGNO (giv_src_reg);
1909
1910 if (unroll_type == UNROLL_COMPLETELY)
1911 {
1912 /* Completely unrolling the loop. Set the induction
1913 variable to a known constant value. */
1914
1915 /* The value in splittable_regs may be an invariant
1916 value, so we must use plus_constant here. */
1917 splittable_regs[regno]
1918 = plus_constant (splittable_regs[src_regno],
1919 INTVAL (giv_inc));
1920
1921 if (GET_CODE (splittable_regs[regno]) == PLUS)
1922 {
1923 giv_src_reg = XEXP (splittable_regs[regno], 0);
1924 giv_inc = XEXP (splittable_regs[regno], 1);
1925 }
1926 else
1927 {
1928 /* The splittable_regs value must be a REG or a
1929 CONST_INT, so put the entire value in the giv_src_reg
1930 variable. */
1931 giv_src_reg = splittable_regs[regno];
1932 giv_inc = const0_rtx;
1933 }
1934 }
1935 else
1936 {
1937 /* Partially unrolling loop. Create a new pseudo
1938 register for the iteration variable, and set it to
1939 be a constant plus the original register. Except
1940 on the last iteration, when the result has to
1941 go back into the original iteration var register. */
1942
1943 /* Handle bivs which must be mapped to a new register
1944 when split. This happens for bivs which need their
1945 final value set before loop entry. The new register
1946 for the biv was stored in the biv's first struct
1947 induction entry by find_splittable_regs. */
1948
1949 if (regno < ivs->n_regs
1950 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1951 {
1952 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1953 giv_dest_reg = giv_src_reg;
1954 }
1955
1956 #if 0
1957 /* If non-reduced/final-value givs were split, then
1958 this would have to remap those givs also. See
1959 find_splittable_regs. */
1960 #endif
1961
1962 splittable_regs[regno]
1963 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1964 giv_inc,
1965 splittable_regs[src_regno]);
1966 giv_inc = splittable_regs[regno];
1967
1968 /* Now split the induction variable by changing the dest
1969 of this insn to a new register, and setting its
1970 reg_map entry to point to this new register.
1971
1972 If this is the last iteration, and this is the last insn
1973 that will update the iv, then reuse the original dest,
1974 to ensure that the iv will have the proper value when
1975 the loop exits or repeats.
1976
1977 Using splittable_regs_updates here like this is safe,
1978 because it can only be greater than one if all
1979 instructions modifying the iv are always executed in
1980 order. */
1981
1982 if (! last_iteration
1983 || (splittable_regs_updates[regno]-- != 1))
1984 {
1985 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1986 giv_dest_reg = tem;
1987 map->reg_map[regno] = tem;
1988 record_base_value (REGNO (tem),
1989 giv_inc == const0_rtx
1990 ? giv_src_reg
1991 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1992 giv_src_reg, giv_inc),
1993 1);
1994 }
1995 else
1996 map->reg_map[regno] = giv_src_reg;
1997 }
1998
1999 /* The constant being added could be too large for an add
2000 immediate, so can't directly emit an insn here. */
2001 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2002 copy = get_last_insn ();
2003 pattern = PATTERN (copy);
2004 }
2005 else
2006 {
2007 pattern = copy_rtx_and_substitute (pattern, map, 0);
2008 copy = emit_insn (pattern);
2009 }
2010 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2011 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2012
2013 /* If there is a REG_EQUAL note present whose value
2014 is not loop invariant, then delete it, since it
2015 may cause problems with later optimization passes. */
2016 if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2017 && !loop_invariant_p (loop, XEXP (tem, 0)))
2018 remove_note (copy, tem);
2019
2020 #ifdef HAVE_cc0
2021 /* If this insn is setting CC0, it may need to look at
2022 the insn that uses CC0 to see what type of insn it is.
2023 In that case, the call to recog via validate_change will
2024 fail. So don't substitute constants here. Instead,
2025 do it when we emit the following insn.
2026
2027 For example, see the pyr.md file. That machine has signed and
2028 unsigned compares. The compare patterns must check the
2029 following branch insn to see which what kind of compare to
2030 emit.
2031
2032 If the previous insn set CC0, substitute constants on it as
2033 well. */
2034 if (sets_cc0_p (PATTERN (copy)) != 0)
2035 cc0_insn = copy;
2036 else
2037 {
2038 if (cc0_insn)
2039 try_constants (cc0_insn, map);
2040 cc0_insn = 0;
2041 try_constants (copy, map);
2042 }
2043 #else
2044 try_constants (copy, map);
2045 #endif
2046
2047 /* Make split induction variable constants `permanent' since we
2048 know there are no backward branches across iteration variable
2049 settings which would invalidate this. */
2050 if (dest_reg_was_split)
2051 {
2052 int regno = REGNO (SET_DEST (set));
2053
2054 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2055 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2056 == map->const_age))
2057 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2058 }
2059 break;
2060
2061 case JUMP_INSN:
2062 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2063 copy = emit_jump_insn (pattern);
2064 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2065 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2066
2067 if (JUMP_LABEL (insn))
2068 {
2069 JUMP_LABEL (copy) = get_label_from_map (map,
2070 CODE_LABEL_NUMBER
2071 (JUMP_LABEL (insn)));
2072 LABEL_NUSES (JUMP_LABEL (copy))++;
2073 }
2074 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2075 && ! last_iteration)
2076 {
2077
2078 /* This is a branch to the beginning of the loop; this is the
2079 last insn being copied; and this is not the last iteration.
2080 In this case, we want to change the original fall through
2081 case to be a branch past the end of the loop, and the
2082 original jump label case to fall_through. */
2083
2084 if (!invert_jump (copy, exit_label, 0))
2085 {
2086 rtx jmp;
2087 rtx lab = gen_label_rtx ();
2088 /* Can't do it by reversing the jump (probably because we
2089 couldn't reverse the conditions), so emit a new
2090 jump_insn after COPY, and redirect the jump around
2091 that. */
2092 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2093 JUMP_LABEL (jmp) = exit_label;
2094 LABEL_NUSES (exit_label)++;
2095 jmp = emit_barrier_after (jmp);
2096 emit_label_after (lab, jmp);
2097 LABEL_NUSES (lab) = 0;
2098 if (!redirect_jump (copy, lab, 0))
2099 abort ();
2100 }
2101 }
2102
2103 #ifdef HAVE_cc0
2104 if (cc0_insn)
2105 try_constants (cc0_insn, map);
2106 cc0_insn = 0;
2107 #endif
2108 try_constants (copy, map);
2109
2110 /* Set the jump label of COPY correctly to avoid problems with
2111 later passes of unroll_loop, if INSN had jump label set. */
2112 if (JUMP_LABEL (insn))
2113 {
2114 rtx label = 0;
2115
2116 /* Can't use the label_map for every insn, since this may be
2117 the backward branch, and hence the label was not mapped. */
2118 if ((set = single_set (copy)))
2119 {
2120 tem = SET_SRC (set);
2121 if (GET_CODE (tem) == LABEL_REF)
2122 label = XEXP (tem, 0);
2123 else if (GET_CODE (tem) == IF_THEN_ELSE)
2124 {
2125 if (XEXP (tem, 1) != pc_rtx)
2126 label = XEXP (XEXP (tem, 1), 0);
2127 else
2128 label = XEXP (XEXP (tem, 2), 0);
2129 }
2130 }
2131
2132 if (label && GET_CODE (label) == CODE_LABEL)
2133 JUMP_LABEL (copy) = label;
2134 else
2135 {
2136 /* An unrecognizable jump insn, probably the entry jump
2137 for a switch statement. This label must have been mapped,
2138 so just use the label_map to get the new jump label. */
2139 JUMP_LABEL (copy)
2140 = get_label_from_map (map,
2141 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2142 }
2143
2144 /* If this is a non-local jump, then must increase the label
2145 use count so that the label will not be deleted when the
2146 original jump is deleted. */
2147 LABEL_NUSES (JUMP_LABEL (copy))++;
2148 }
2149 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2150 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2151 {
2152 rtx pat = PATTERN (copy);
2153 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2154 int len = XVECLEN (pat, diff_vec_p);
2155 int i;
2156
2157 for (i = 0; i < len; i++)
2158 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2159 }
2160
2161 /* If this used to be a conditional jump insn but whose branch
2162 direction is now known, we must do something special. */
2163 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2164 {
2165 #ifdef HAVE_cc0
2166 /* If the previous insn set cc0 for us, delete it. */
2167 if (only_sets_cc0_p (PREV_INSN (copy)))
2168 delete_related_insns (PREV_INSN (copy));
2169 #endif
2170
2171 /* If this is now a no-op, delete it. */
2172 if (map->last_pc_value == pc_rtx)
2173 {
2174 delete_insn (copy);
2175 copy = 0;
2176 }
2177 else
2178 /* Otherwise, this is unconditional jump so we must put a
2179 BARRIER after it. We could do some dead code elimination
2180 here, but jump.c will do it just as well. */
2181 emit_barrier ();
2182 }
2183 break;
2184
2185 case CALL_INSN:
2186 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2187 copy = emit_call_insn (pattern);
2188 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2189 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2190 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2191 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2192
2193 /* Because the USAGE information potentially contains objects other
2194 than hard registers, we need to copy it. */
2195 CALL_INSN_FUNCTION_USAGE (copy)
2196 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2197 map, 0);
2198
2199 #ifdef HAVE_cc0
2200 if (cc0_insn)
2201 try_constants (cc0_insn, map);
2202 cc0_insn = 0;
2203 #endif
2204 try_constants (copy, map);
2205
2206 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2208 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2209 break;
2210
2211 case CODE_LABEL:
2212 /* If this is the loop start label, then we don't need to emit a
2213 copy of this label since no one will use it. */
2214
2215 if (insn != start_label)
2216 {
2217 copy = emit_label (get_label_from_map (map,
2218 CODE_LABEL_NUMBER (insn)));
2219 map->const_age++;
2220 }
2221 break;
2222
2223 case BARRIER:
2224 copy = emit_barrier ();
2225 break;
2226
2227 case NOTE:
2228 /* VTOP and CONT notes are valid only before the loop exit test.
2229 If placed anywhere else, loop may generate bad code. */
2230 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2231 the associated rtl. We do not want to share the structure in
2232 this new block. */
2233
2234 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2235 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2236 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2237 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2238 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2239 || (last_iteration
2240 && unroll_type != UNROLL_COMPLETELY)))
2241 copy = emit_note_copy (insn);
2242 else
2243 copy = 0;
2244 break;
2245
2246 default:
2247 abort ();
2248 }
2249
2250 map->insn_map[INSN_UID (insn)] = copy;
2251 }
2252 while (insn != copy_end);
2253
2254 /* Now finish coping the REG_NOTES. */
2255 insn = copy_start;
2256 do
2257 {
2258 insn = NEXT_INSN (insn);
2259 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2260 || GET_CODE (insn) == CALL_INSN)
2261 && map->insn_map[INSN_UID (insn)])
2262 final_reg_note_copy (®_NOTES (map->insn_map[INSN_UID (insn)]), map);
2263 }
2264 while (insn != copy_end);
2265
2266 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2267 each of these notes here, since there may be some important ones, such as
2268 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2269 iteration, because the original notes won't be deleted.
2270
2271 We can't use insert_before here, because when from preconditioning,
2272 insert_before points before the loop. We can't use copy_end, because
2273 there may be insns already inserted after it (which we don't want to
2274 copy) when not from preconditioning code. */
2275
2276 if (! last_iteration)
2277 {
2278 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2279 {
2280 /* VTOP notes are valid only before the loop exit test.
2281 If placed anywhere else, loop may generate bad code.
2282 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2283 instructions before the last insn in the loop, COPY_NOTES_FROM
2284 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2285 as in a do .. while loop. */
2286 if (GET_CODE (insn) == NOTE
2287 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2288 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2289 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2290 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)))
2291 emit_note_copy (insn);
2292 }
2293 }
2294
2295 if (final_label && LABEL_NUSES (final_label) > 0)
2296 emit_label (final_label);
2297
2298 tem = get_insns ();
2299 end_sequence ();
2300 loop_insn_emit_before (loop, 0, insert_before, tem);
2301 }
2302
2303 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2304 emitted. This will correctly handle the case where the increment value
2305 won't fit in the immediate field of a PLUS insns. */
2306
2307 void
emit_unrolled_add(rtx dest_reg,rtx src_reg,rtx increment)2308 emit_unrolled_add (rtx dest_reg, rtx src_reg, rtx increment)
2309 {
2310 rtx result;
2311
2312 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2313 dest_reg, 0, OPTAB_LIB_WIDEN);
2314
2315 if (dest_reg != result)
2316 emit_move_insn (dest_reg, result);
2317 }
2318
2319 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2320 is a backward branch in that range that branches to somewhere between
2321 LOOP->START and INSN. Returns 0 otherwise. */
2322
2323 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2324 In practice, this is not a problem, because this function is seldom called,
2325 and uses a negligible amount of CPU time on average. */
2326
2327 int
back_branch_in_range_p(const struct loop * loop,rtx insn)2328 back_branch_in_range_p (const struct loop *loop, rtx insn)
2329 {
2330 rtx p, q, target_insn;
2331 rtx loop_start = loop->start;
2332 rtx loop_end = loop->end;
2333 rtx orig_loop_end = loop->end;
2334
2335 /* Stop before we get to the backward branch at the end of the loop. */
2336 loop_end = prev_nonnote_insn (loop_end);
2337 if (GET_CODE (loop_end) == BARRIER)
2338 loop_end = PREV_INSN (loop_end);
2339
2340 /* Check in case insn has been deleted, search forward for first non
2341 deleted insn following it. */
2342 while (INSN_DELETED_P (insn))
2343 insn = NEXT_INSN (insn);
2344
2345 /* Check for the case where insn is the last insn in the loop. Deal
2346 with the case where INSN was a deleted loop test insn, in which case
2347 it will now be the NOTE_LOOP_END. */
2348 if (insn == loop_end || insn == orig_loop_end)
2349 return 0;
2350
2351 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2352 {
2353 if (GET_CODE (p) == JUMP_INSN)
2354 {
2355 target_insn = JUMP_LABEL (p);
2356
2357 /* Search from loop_start to insn, to see if one of them is
2358 the target_insn. We can't use INSN_LUID comparisons here,
2359 since insn may not have an LUID entry. */
2360 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2361 if (q == target_insn)
2362 return 1;
2363 }
2364 }
2365
2366 return 0;
2367 }
2368
2369 /* Try to generate the simplest rtx for the expression
2370 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2371 value of giv's. */
2372
2373 static rtx
fold_rtx_mult_add(rtx mult1,rtx mult2,rtx add1,enum machine_mode mode)2374 fold_rtx_mult_add (rtx mult1, rtx mult2, rtx add1, enum machine_mode mode)
2375 {
2376 rtx temp, mult_res;
2377 rtx result;
2378
2379 /* The modes must all be the same. This should always be true. For now,
2380 check to make sure. */
2381 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2382 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2383 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2384 abort ();
2385
2386 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2387 will be a constant. */
2388 if (GET_CODE (mult1) == CONST_INT)
2389 {
2390 temp = mult2;
2391 mult2 = mult1;
2392 mult1 = temp;
2393 }
2394
2395 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2396 if (! mult_res)
2397 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2398
2399 /* Again, put the constant second. */
2400 if (GET_CODE (add1) == CONST_INT)
2401 {
2402 temp = add1;
2403 add1 = mult_res;
2404 mult_res = temp;
2405 }
2406
2407 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2408 if (! result)
2409 result = gen_rtx_PLUS (mode, add1, mult_res);
2410
2411 return result;
2412 }
2413
2414 /* Searches the list of induction struct's for the biv BL, to try to calculate
2415 the total increment value for one iteration of the loop as a constant.
2416
2417 Returns the increment value as an rtx, simplified as much as possible,
2418 if it can be calculated. Otherwise, returns 0. */
2419
2420 rtx
biv_total_increment(const struct iv_class * bl)2421 biv_total_increment (const struct iv_class *bl)
2422 {
2423 struct induction *v;
2424 rtx result;
2425
2426 /* For increment, must check every instruction that sets it. Each
2427 instruction must be executed only once each time through the loop.
2428 To verify this, we check that the insn is always executed, and that
2429 there are no backward branches after the insn that branch to before it.
2430 Also, the insn must have a mult_val of one (to make sure it really is
2431 an increment). */
2432
2433 result = const0_rtx;
2434 for (v = bl->biv; v; v = v->next_iv)
2435 {
2436 if (v->always_computable && v->mult_val == const1_rtx
2437 && ! v->maybe_multiple
2438 && SCALAR_INT_MODE_P (v->mode))
2439 {
2440 /* If we have already counted it, skip it. */
2441 if (v->same)
2442 continue;
2443
2444 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2445 }
2446 else
2447 return 0;
2448 }
2449
2450 return result;
2451 }
2452
2453 /* For each biv and giv, determine whether it can be safely split into
2454 a different variable for each unrolled copy of the loop body. If it
2455 is safe to split, then indicate that by saving some useful info
2456 in the splittable_regs array.
2457
2458 If the loop is being completely unrolled, then splittable_regs will hold
2459 the current value of the induction variable while the loop is unrolled.
2460 It must be set to the initial value of the induction variable here.
2461 Otherwise, splittable_regs will hold the difference between the current
2462 value of the induction variable and the value the induction variable had
2463 at the top of the loop. It must be set to the value 0 here.
2464
2465 Returns the total number of instructions that set registers that are
2466 splittable. */
2467
2468 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2469 constant values are unnecessary, since we can easily calculate increment
2470 values in this case even if nothing is constant. The increment value
2471 should not involve a multiply however. */
2472
2473 /* ?? Even if the biv/giv increment values aren't constant, it may still
2474 be beneficial to split the variable if the loop is only unrolled a few
2475 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2476
2477 static int
find_splittable_regs(const struct loop * loop,enum unroll_types unroll_type,int unroll_number)2478 find_splittable_regs (const struct loop *loop,
2479 enum unroll_types unroll_type, int unroll_number)
2480 {
2481 struct loop_ivs *ivs = LOOP_IVS (loop);
2482 struct iv_class *bl;
2483 struct induction *v;
2484 rtx increment, tem;
2485 rtx biv_final_value;
2486 int biv_splittable;
2487 int result = 0;
2488
2489 for (bl = ivs->list; bl; bl = bl->next)
2490 {
2491 /* Biv_total_increment must return a constant value,
2492 otherwise we can not calculate the split values. */
2493
2494 increment = biv_total_increment (bl);
2495 if (! increment || GET_CODE (increment) != CONST_INT)
2496 continue;
2497
2498 /* The loop must be unrolled completely, or else have a known number
2499 of iterations and only one exit, or else the biv must be dead
2500 outside the loop, or else the final value must be known. Otherwise,
2501 it is unsafe to split the biv since it may not have the proper
2502 value on loop exit. */
2503
2504 /* loop_number_exit_count is nonzero if the loop has an exit other than
2505 a fall through at the end. */
2506
2507 biv_splittable = 1;
2508 biv_final_value = 0;
2509 if (unroll_type != UNROLL_COMPLETELY
2510 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2511 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2512 || ! bl->init_insn
2513 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2514 || (REGNO_FIRST_LUID (bl->regno)
2515 < INSN_LUID (bl->init_insn))
2516 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2517 && ! (biv_final_value = final_biv_value (loop, bl)))
2518 biv_splittable = 0;
2519
2520 /* If any of the insns setting the BIV don't do so with a simple
2521 PLUS, we don't know how to split it. */
2522 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2523 if ((tem = single_set (v->insn)) == 0
2524 || GET_CODE (SET_DEST (tem)) != REG
2525 || REGNO (SET_DEST (tem)) != bl->regno
2526 || GET_CODE (SET_SRC (tem)) != PLUS)
2527 biv_splittable = 0;
2528
2529 /* If final value is nonzero, then must emit an instruction which sets
2530 the value of the biv to the proper value. This is done after
2531 handling all of the givs, since some of them may need to use the
2532 biv's value in their initialization code. */
2533
2534 /* This biv is splittable. If completely unrolling the loop, save
2535 the biv's initial value. Otherwise, save the constant zero. */
2536
2537 if (biv_splittable == 1)
2538 {
2539 if (unroll_type == UNROLL_COMPLETELY)
2540 {
2541 /* If the initial value of the biv is itself (i.e. it is too
2542 complicated for strength_reduce to compute), or is a hard
2543 register, or it isn't invariant, then we must create a new
2544 pseudo reg to hold the initial value of the biv. */
2545
2546 if (GET_CODE (bl->initial_value) == REG
2547 && (REGNO (bl->initial_value) == bl->regno
2548 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2549 || ! loop_invariant_p (loop, bl->initial_value)))
2550 {
2551 rtx tem = gen_reg_rtx (bl->biv->mode);
2552
2553 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2554 loop_insn_hoist (loop,
2555 gen_move_insn (tem, bl->biv->src_reg));
2556
2557 if (loop_dump_stream)
2558 fprintf (loop_dump_stream,
2559 "Biv %d initial value remapped to %d.\n",
2560 bl->regno, REGNO (tem));
2561
2562 splittable_regs[bl->regno] = tem;
2563 }
2564 else
2565 splittable_regs[bl->regno] = bl->initial_value;
2566 }
2567 else
2568 splittable_regs[bl->regno] = const0_rtx;
2569
2570 /* Save the number of instructions that modify the biv, so that
2571 we can treat the last one specially. */
2572
2573 splittable_regs_updates[bl->regno] = bl->biv_count;
2574 result += bl->biv_count;
2575
2576 if (loop_dump_stream)
2577 fprintf (loop_dump_stream,
2578 "Biv %d safe to split.\n", bl->regno);
2579 }
2580
2581 /* Check every giv that depends on this biv to see whether it is
2582 splittable also. Even if the biv isn't splittable, givs which
2583 depend on it may be splittable if the biv is live outside the
2584 loop, and the givs aren't. */
2585
2586 result += find_splittable_givs (loop, bl, unroll_type, increment,
2587 unroll_number);
2588
2589 /* If final value is nonzero, then must emit an instruction which sets
2590 the value of the biv to the proper value. This is done after
2591 handling all of the givs, since some of them may need to use the
2592 biv's value in their initialization code. */
2593 if (biv_final_value)
2594 {
2595 /* If the loop has multiple exits, emit the insns before the
2596 loop to ensure that it will always be executed no matter
2597 how the loop exits. Otherwise emit the insn after the loop,
2598 since this is slightly more efficient. */
2599 if (! loop->exit_count)
2600 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2601 biv_final_value));
2602 else
2603 {
2604 /* Create a new register to hold the value of the biv, and then
2605 set the biv to its final value before the loop start. The biv
2606 is set to its final value before loop start to ensure that
2607 this insn will always be executed, no matter how the loop
2608 exits. */
2609 rtx tem = gen_reg_rtx (bl->biv->mode);
2610 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2611
2612 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2613 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2614 biv_final_value));
2615
2616 if (loop_dump_stream)
2617 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2618 REGNO (bl->biv->src_reg), REGNO (tem));
2619
2620 /* Set up the mapping from the original biv register to the new
2621 register. */
2622 bl->biv->src_reg = tem;
2623 }
2624 }
2625 }
2626 return result;
2627 }
2628
2629 /* For every giv based on the biv BL, check to determine whether it is
2630 splittable. This is a subroutine to find_splittable_regs ().
2631
2632 Return the number of instructions that set splittable registers. */
2633
2634 static int
find_splittable_givs(const struct loop * loop,struct iv_class * bl,enum unroll_types unroll_type,rtx increment,int unroll_number ATTRIBUTE_UNUSED)2635 find_splittable_givs (const struct loop *loop, struct iv_class *bl,
2636 enum unroll_types unroll_type, rtx increment,
2637 int unroll_number ATTRIBUTE_UNUSED)
2638 {
2639 struct loop_ivs *ivs = LOOP_IVS (loop);
2640 struct induction *v, *v2;
2641 rtx final_value;
2642 rtx tem;
2643 int result = 0;
2644
2645 /* Scan the list of givs, and set the same_insn field when there are
2646 multiple identical givs in the same insn. */
2647 for (v = bl->giv; v; v = v->next_iv)
2648 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2649 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2650 && ! v2->same_insn)
2651 v2->same_insn = v;
2652
2653 for (v = bl->giv; v; v = v->next_iv)
2654 {
2655 rtx giv_inc, value;
2656
2657 /* Only split the giv if it has already been reduced, or if the loop is
2658 being completely unrolled. */
2659 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2660 continue;
2661
2662 /* The giv can be split if the insn that sets the giv is executed once
2663 and only once on every iteration of the loop. */
2664 /* An address giv can always be split. v->insn is just a use not a set,
2665 and hence it does not matter whether it is always executed. All that
2666 matters is that all the biv increments are always executed, and we
2667 won't reach here if they aren't. */
2668 if (v->giv_type != DEST_ADDR
2669 && (! v->always_computable
2670 || back_branch_in_range_p (loop, v->insn)))
2671 continue;
2672
2673 /* The giv increment value must be a constant. */
2674 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2675 v->mode);
2676 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2677 continue;
2678
2679 /* The loop must be unrolled completely, or else have a known number of
2680 iterations and only one exit, or else the giv must be dead outside
2681 the loop, or else the final value of the giv must be known.
2682 Otherwise, it is not safe to split the giv since it may not have the
2683 proper value on loop exit. */
2684
2685 /* The used outside loop test will fail for DEST_ADDR givs. They are
2686 never used outside the loop anyways, so it is always safe to split a
2687 DEST_ADDR giv. */
2688
2689 final_value = 0;
2690 if (unroll_type != UNROLL_COMPLETELY
2691 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2692 && v->giv_type != DEST_ADDR
2693 /* The next part is true if the pseudo is used outside the loop.
2694 We assume that this is true for any pseudo created after loop
2695 starts, because we don't have a reg_n_info entry for them. */
2696 && (REGNO (v->dest_reg) >= max_reg_before_loop
2697 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2698 /* Check for the case where the pseudo is set by a shift/add
2699 sequence, in which case the first insn setting the pseudo
2700 is the first insn of the shift/add sequence. */
2701 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2702 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2703 != INSN_UID (XEXP (tem, 0)))))
2704 /* Line above always fails if INSN was moved by loop opt. */
2705 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2706 >= INSN_LUID (loop->end)))
2707 && ! (final_value = v->final_value))
2708 continue;
2709
2710 #if 0
2711 /* Currently, non-reduced/final-value givs are never split. */
2712 /* Should emit insns after the loop if possible, as the biv final value
2713 code below does. */
2714
2715 /* If the final value is nonzero, and the giv has not been reduced,
2716 then must emit an instruction to set the final value. */
2717 if (final_value && !v->new_reg)
2718 {
2719 /* Create a new register to hold the value of the giv, and then set
2720 the giv to its final value before the loop start. The giv is set
2721 to its final value before loop start to ensure that this insn
2722 will always be executed, no matter how we exit. */
2723 tem = gen_reg_rtx (v->mode);
2724 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2725 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2726
2727 if (loop_dump_stream)
2728 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2729 REGNO (v->dest_reg), REGNO (tem));
2730
2731 v->src_reg = tem;
2732 }
2733 #endif
2734
2735 /* This giv is splittable. If completely unrolling the loop, save the
2736 giv's initial value. Otherwise, save the constant zero for it. */
2737
2738 if (unroll_type == UNROLL_COMPLETELY)
2739 {
2740 /* It is not safe to use bl->initial_value here, because it may not
2741 be invariant. It is safe to use the initial value stored in
2742 the splittable_regs array if it is set. In rare cases, it won't
2743 be set, so then we do exactly the same thing as
2744 find_splittable_regs does to get a safe value. */
2745 rtx biv_initial_value;
2746
2747 if (splittable_regs[bl->regno])
2748 biv_initial_value = splittable_regs[bl->regno];
2749 else if (GET_CODE (bl->initial_value) != REG
2750 || (REGNO (bl->initial_value) != bl->regno
2751 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2752 biv_initial_value = bl->initial_value;
2753 else
2754 {
2755 rtx tem = gen_reg_rtx (bl->biv->mode);
2756
2757 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2758 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2759 biv_initial_value = tem;
2760 }
2761 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2762 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2763 v->add_val, v->mode);
2764 }
2765 else
2766 value = const0_rtx;
2767
2768 if (v->new_reg)
2769 {
2770 /* If a giv was combined with another giv, then we can only split
2771 this giv if the giv it was combined with was reduced. This
2772 is because the value of v->new_reg is meaningless in this
2773 case. */
2774 if (v->same && ! v->same->new_reg)
2775 {
2776 if (loop_dump_stream)
2777 fprintf (loop_dump_stream,
2778 "giv combined with unreduced giv not split.\n");
2779 continue;
2780 }
2781 /* If the giv is an address destination, it could be something other
2782 than a simple register, these have to be treated differently. */
2783 else if (v->giv_type == DEST_REG)
2784 {
2785 /* If value is not a constant, register, or register plus
2786 constant, then compute its value into a register before
2787 loop start. This prevents invalid rtx sharing, and should
2788 generate better code. We can use bl->initial_value here
2789 instead of splittable_regs[bl->regno] because this code
2790 is going before the loop start. */
2791 if (unroll_type == UNROLL_COMPLETELY
2792 && GET_CODE (value) != CONST_INT
2793 && GET_CODE (value) != REG
2794 && (GET_CODE (value) != PLUS
2795 || GET_CODE (XEXP (value, 0)) != REG
2796 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2797 {
2798 rtx tem = gen_reg_rtx (v->mode);
2799 record_base_value (REGNO (tem), v->add_val, 0);
2800 loop_iv_add_mult_hoist (loop,
2801 extend_value_for_giv (v, bl->initial_value),
2802 v->mult_val, v->add_val, tem);
2803 value = tem;
2804 }
2805
2806 splittable_regs[reg_or_subregno (v->new_reg)] = value;
2807 }
2808 else
2809 continue;
2810 }
2811 else
2812 {
2813 #if 0
2814 /* Currently, unreduced giv's can't be split. This is not too much
2815 of a problem since unreduced giv's are not live across loop
2816 iterations anyways. When unrolling a loop completely though,
2817 it makes sense to reduce&split givs when possible, as this will
2818 result in simpler instructions, and will not require that a reg
2819 be live across loop iterations. */
2820
2821 splittable_regs[REGNO (v->dest_reg)] = value;
2822 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2823 REGNO (v->dest_reg), INSN_UID (v->insn));
2824 #else
2825 continue;
2826 #endif
2827 }
2828
2829 /* Unreduced givs are only updated once by definition. Reduced givs
2830 are updated as many times as their biv is. Mark it so if this is
2831 a splittable register. Don't need to do anything for address givs
2832 where this may not be a register. */
2833
2834 if (GET_CODE (v->new_reg) == REG)
2835 {
2836 int count = 1;
2837 if (! v->ignore)
2838 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2839
2840 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2841 }
2842
2843 result++;
2844
2845 if (loop_dump_stream)
2846 {
2847 int regnum;
2848
2849 if (GET_CODE (v->dest_reg) == CONST_INT)
2850 regnum = -1;
2851 else if (GET_CODE (v->dest_reg) != REG)
2852 regnum = REGNO (XEXP (v->dest_reg, 0));
2853 else
2854 regnum = REGNO (v->dest_reg);
2855 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2856 regnum, INSN_UID (v->insn));
2857 }
2858 }
2859
2860 return result;
2861 }
2862
2863 /* Try to prove that the register is dead after the loop exits. Trace every
2864 loop exit looking for an insn that will always be executed, which sets
2865 the register to some value, and appears before the first use of the register
2866 is found. If successful, then return 1, otherwise return 0. */
2867
2868 /* ?? Could be made more intelligent in the handling of jumps, so that
2869 it can search past if statements and other similar structures. */
2870
2871 static int
reg_dead_after_loop(const struct loop * loop,rtx reg)2872 reg_dead_after_loop (const struct loop *loop, rtx reg)
2873 {
2874 rtx insn, label;
2875 enum rtx_code code;
2876 int jump_count = 0;
2877 int label_count = 0;
2878
2879 /* In addition to checking all exits of this loop, we must also check
2880 all exits of inner nested loops that would exit this loop. We don't
2881 have any way to identify those, so we just give up if there are any
2882 such inner loop exits. */
2883
2884 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2885 label_count++;
2886
2887 if (label_count != loop->exit_count)
2888 return 0;
2889
2890 /* HACK: Must also search the loop fall through exit, create a label_ref
2891 here which points to the loop->end, and append the loop_number_exit_labels
2892 list to it. */
2893 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2894 LABEL_NEXTREF (label) = loop->exit_labels;
2895
2896 for (; label; label = LABEL_NEXTREF (label))
2897 {
2898 /* Succeed if find an insn which sets the biv or if reach end of
2899 function. Fail if find an insn that uses the biv, or if come to
2900 a conditional jump. */
2901
2902 insn = NEXT_INSN (XEXP (label, 0));
2903 while (insn)
2904 {
2905 code = GET_CODE (insn);
2906 if (GET_RTX_CLASS (code) == 'i')
2907 {
2908 rtx set, note;
2909
2910 if (reg_referenced_p (reg, PATTERN (insn)))
2911 return 0;
2912
2913 note = find_reg_equal_equiv_note (insn);
2914 if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2915 return 0;
2916
2917 set = single_set (insn);
2918 if (set && rtx_equal_p (SET_DEST (set), reg))
2919 break;
2920 }
2921
2922 if (code == JUMP_INSN)
2923 {
2924 if (GET_CODE (PATTERN (insn)) == RETURN)
2925 break;
2926 else if (!any_uncondjump_p (insn)
2927 /* Prevent infinite loop following infinite loops. */
2928 || jump_count++ > 20)
2929 return 0;
2930 else
2931 insn = JUMP_LABEL (insn);
2932 }
2933
2934 insn = NEXT_INSN (insn);
2935 }
2936 }
2937
2938 /* Success, the register is dead on all loop exits. */
2939 return 1;
2940 }
2941
2942 /* Try to calculate the final value of the biv, the value it will have at
2943 the end of the loop. If we can do it, return that value. */
2944
2945 rtx
final_biv_value(const struct loop * loop,struct iv_class * bl)2946 final_biv_value (const struct loop *loop, struct iv_class *bl)
2947 {
2948 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2949 rtx increment, tem;
2950
2951 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2952
2953 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2954 return 0;
2955
2956 /* The final value for reversed bivs must be calculated differently than
2957 for ordinary bivs. In this case, there is already an insn after the
2958 loop which sets this biv's final value (if necessary), and there are
2959 no other loop exits, so we can return any value. */
2960 if (bl->reversed)
2961 {
2962 if (loop_dump_stream)
2963 fprintf (loop_dump_stream,
2964 "Final biv value for %d, reversed biv.\n", bl->regno);
2965
2966 return const0_rtx;
2967 }
2968
2969 /* Try to calculate the final value as initial value + (number of iterations
2970 * increment). For this to work, increment must be invariant, the only
2971 exit from the loop must be the fall through at the bottom (otherwise
2972 it may not have its final value when the loop exits), and the initial
2973 value of the biv must be invariant. */
2974
2975 if (n_iterations != 0
2976 && ! loop->exit_count
2977 && loop_invariant_p (loop, bl->initial_value))
2978 {
2979 increment = biv_total_increment (bl);
2980
2981 if (increment && loop_invariant_p (loop, increment))
2982 {
2983 /* Can calculate the loop exit value, emit insns after loop
2984 end to calculate this value into a temporary register in
2985 case it is needed later. */
2986
2987 tem = gen_reg_rtx (bl->biv->mode);
2988 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2989 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
2990 bl->initial_value, tem);
2991
2992 if (loop_dump_stream)
2993 fprintf (loop_dump_stream,
2994 "Final biv value for %d, calculated.\n", bl->regno);
2995
2996 return tem;
2997 }
2998 }
2999
3000 /* Check to see if the biv is dead at all loop exits. */
3001 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3002 {
3003 if (loop_dump_stream)
3004 fprintf (loop_dump_stream,
3005 "Final biv value for %d, biv dead after loop exit.\n",
3006 bl->regno);
3007
3008 return const0_rtx;
3009 }
3010
3011 return 0;
3012 }
3013
3014 /* Try to calculate the final value of the giv, the value it will have at
3015 the end of the loop. If we can do it, return that value. */
3016
3017 rtx
final_giv_value(const struct loop * loop,struct induction * v)3018 final_giv_value (const struct loop *loop, struct induction *v)
3019 {
3020 struct loop_ivs *ivs = LOOP_IVS (loop);
3021 struct iv_class *bl;
3022 rtx insn;
3023 rtx increment, tem;
3024 rtx seq;
3025 rtx loop_end = loop->end;
3026 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3027
3028 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3029
3030 /* The final value for givs which depend on reversed bivs must be calculated
3031 differently than for ordinary givs. In this case, there is already an
3032 insn after the loop which sets this giv's final value (if necessary),
3033 and there are no other loop exits, so we can return any value. */
3034 if (bl->reversed)
3035 {
3036 if (loop_dump_stream)
3037 fprintf (loop_dump_stream,
3038 "Final giv value for %d, depends on reversed biv\n",
3039 REGNO (v->dest_reg));
3040 return const0_rtx;
3041 }
3042
3043 /* Try to calculate the final value as a function of the biv it depends
3044 upon. The only exit from the loop must be the fall through at the bottom
3045 and the insn that sets the giv must be executed on every iteration
3046 (otherwise the giv may not have its final value when the loop exits). */
3047
3048 /* ??? Can calculate the final giv value by subtracting off the
3049 extra biv increments times the giv's mult_val. The loop must have
3050 only one exit for this to work, but the loop iterations does not need
3051 to be known. */
3052
3053 if (n_iterations != 0
3054 && ! loop->exit_count
3055 && v->always_executed)
3056 {
3057 /* ?? It is tempting to use the biv's value here since these insns will
3058 be put after the loop, and hence the biv will have its final value
3059 then. However, this fails if the biv is subsequently eliminated.
3060 Perhaps determine whether biv's are eliminable before trying to
3061 determine whether giv's are replaceable so that we can use the
3062 biv value here if it is not eliminable. */
3063
3064 /* We are emitting code after the end of the loop, so we must make
3065 sure that bl->initial_value is still valid then. It will still
3066 be valid if it is invariant. */
3067
3068 increment = biv_total_increment (bl);
3069
3070 if (increment && loop_invariant_p (loop, increment)
3071 && loop_invariant_p (loop, bl->initial_value))
3072 {
3073 /* Can calculate the loop exit value of its biv as
3074 (n_iterations * increment) + initial_value */
3075
3076 /* The loop exit value of the giv is then
3077 (final_biv_value - extra increments) * mult_val + add_val.
3078 The extra increments are any increments to the biv which
3079 occur in the loop after the giv's value is calculated.
3080 We must search from the insn that sets the giv to the end
3081 of the loop to calculate this value. */
3082
3083 /* Put the final biv value in tem. */
3084 tem = gen_reg_rtx (v->mode);
3085 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3086 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3087 GEN_INT (n_iterations),
3088 extend_value_for_giv (v, bl->initial_value),
3089 tem);
3090
3091 /* Subtract off extra increments as we find them. */
3092 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3093 insn = NEXT_INSN (insn))
3094 {
3095 struct induction *biv;
3096
3097 for (biv = bl->biv; biv; biv = biv->next_iv)
3098 if (biv->insn == insn)
3099 {
3100 start_sequence ();
3101 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3102 biv->add_val, NULL_RTX, 0,
3103 OPTAB_LIB_WIDEN);
3104 seq = get_insns ();
3105 end_sequence ();
3106 loop_insn_sink (loop, seq);
3107 }
3108 }
3109
3110 /* Now calculate the giv's final value. */
3111 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3112
3113 if (loop_dump_stream)
3114 fprintf (loop_dump_stream,
3115 "Final giv value for %d, calc from biv's value.\n",
3116 REGNO (v->dest_reg));
3117
3118 return tem;
3119 }
3120 }
3121
3122 /* Replaceable giv's should never reach here. */
3123 if (v->replaceable)
3124 abort ();
3125
3126 /* Check to see if the biv is dead at all loop exits. */
3127 if (reg_dead_after_loop (loop, v->dest_reg))
3128 {
3129 if (loop_dump_stream)
3130 fprintf (loop_dump_stream,
3131 "Final giv value for %d, giv dead after loop exit.\n",
3132 REGNO (v->dest_reg));
3133
3134 return const0_rtx;
3135 }
3136
3137 return 0;
3138 }
3139
3140 /* Look back before LOOP->START for the insn that sets REG and return
3141 the equivalent constant if there is a REG_EQUAL note otherwise just
3142 the SET_SRC of REG. */
3143
3144 static rtx
loop_find_equiv_value(const struct loop * loop,rtx reg)3145 loop_find_equiv_value (const struct loop *loop, rtx reg)
3146 {
3147 rtx loop_start = loop->start;
3148 rtx insn, set;
3149 rtx ret;
3150
3151 ret = reg;
3152 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3153 {
3154 if (GET_CODE (insn) == CODE_LABEL)
3155 break;
3156
3157 else if (INSN_P (insn) && reg_set_p (reg, insn))
3158 {
3159 /* We found the last insn before the loop that sets the register.
3160 If it sets the entire register, and has a REG_EQUAL note,
3161 then use the value of the REG_EQUAL note. */
3162 if ((set = single_set (insn))
3163 && (SET_DEST (set) == reg))
3164 {
3165 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3166
3167 /* Only use the REG_EQUAL note if it is a constant.
3168 Other things, divide in particular, will cause
3169 problems later if we use them. */
3170 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3171 && CONSTANT_P (XEXP (note, 0)))
3172 ret = XEXP (note, 0);
3173 else
3174 ret = SET_SRC (set);
3175
3176 /* We cannot do this if it changes between the
3177 assignment and loop start though. */
3178 if (modified_between_p (ret, insn, loop_start))
3179 ret = reg;
3180 }
3181 break;
3182 }
3183 }
3184 return ret;
3185 }
3186
3187 /* Return a simplified rtx for the expression OP - REG.
3188
3189 REG must appear in OP, and OP must be a register or the sum of a register
3190 and a second term.
3191
3192 Thus, the return value must be const0_rtx or the second term.
3193
3194 The caller is responsible for verifying that REG appears in OP and OP has
3195 the proper form. */
3196
3197 static rtx
subtract_reg_term(rtx op,rtx reg)3198 subtract_reg_term (rtx op, rtx reg)
3199 {
3200 if (op == reg)
3201 return const0_rtx;
3202 if (GET_CODE (op) == PLUS)
3203 {
3204 if (XEXP (op, 0) == reg)
3205 return XEXP (op, 1);
3206 else if (XEXP (op, 1) == reg)
3207 return XEXP (op, 0);
3208 }
3209 /* OP does not contain REG as a term. */
3210 abort ();
3211 }
3212
3213 /* Find and return register term common to both expressions OP0 and
3214 OP1 or NULL_RTX if no such term exists. Each expression must be a
3215 REG or a PLUS of a REG. */
3216
3217 static rtx
find_common_reg_term(rtx op0,rtx op1)3218 find_common_reg_term (rtx op0, rtx op1)
3219 {
3220 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3221 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3222 {
3223 rtx op00;
3224 rtx op01;
3225 rtx op10;
3226 rtx op11;
3227
3228 if (GET_CODE (op0) == PLUS)
3229 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3230 else
3231 op01 = const0_rtx, op00 = op0;
3232
3233 if (GET_CODE (op1) == PLUS)
3234 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3235 else
3236 op11 = const0_rtx, op10 = op1;
3237
3238 /* Find and return common register term if present. */
3239 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3240 return op00;
3241 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3242 return op01;
3243 }
3244
3245 /* No common register term found. */
3246 return NULL_RTX;
3247 }
3248
3249 /* Determine the loop iterator and calculate the number of loop
3250 iterations. Returns the exact number of loop iterations if it can
3251 be calculated, otherwise returns zero. */
3252
3253 unsigned HOST_WIDE_INT
loop_iterations(struct loop * loop)3254 loop_iterations (struct loop *loop)
3255 {
3256 struct loop_info *loop_info = LOOP_INFO (loop);
3257 struct loop_ivs *ivs = LOOP_IVS (loop);
3258 rtx comparison, comparison_value;
3259 rtx iteration_var, initial_value, increment, final_value;
3260 enum rtx_code comparison_code;
3261 HOST_WIDE_INT inc;
3262 unsigned HOST_WIDE_INT abs_inc;
3263 unsigned HOST_WIDE_INT abs_diff;
3264 int off_by_one;
3265 int increment_dir;
3266 int unsigned_p, compare_dir, final_larger;
3267 rtx last_loop_insn;
3268 rtx reg_term;
3269 struct iv_class *bl;
3270
3271 loop_info->n_iterations = 0;
3272 loop_info->initial_value = 0;
3273 loop_info->initial_equiv_value = 0;
3274 loop_info->comparison_value = 0;
3275 loop_info->final_value = 0;
3276 loop_info->final_equiv_value = 0;
3277 loop_info->increment = 0;
3278 loop_info->iteration_var = 0;
3279 loop_info->unroll_number = 1;
3280 loop_info->iv = 0;
3281
3282 /* We used to use prev_nonnote_insn here, but that fails because it might
3283 accidentally get the branch for a contained loop if the branch for this
3284 loop was deleted. We can only trust branches immediately before the
3285 loop_end. */
3286 last_loop_insn = PREV_INSN (loop->end);
3287
3288 /* ??? We should probably try harder to find the jump insn
3289 at the end of the loop. The following code assumes that
3290 the last loop insn is a jump to the top of the loop. */
3291 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3292 {
3293 if (loop_dump_stream)
3294 fprintf (loop_dump_stream,
3295 "Loop iterations: No final conditional branch found.\n");
3296 return 0;
3297 }
3298
3299 /* If there is a more than a single jump to the top of the loop
3300 we cannot (easily) determine the iteration count. */
3301 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3302 {
3303 if (loop_dump_stream)
3304 fprintf (loop_dump_stream,
3305 "Loop iterations: Loop has multiple back edges.\n");
3306 return 0;
3307 }
3308
3309 /* If there are multiple conditionalized loop exit tests, they may jump
3310 back to differing CODE_LABELs. */
3311 if (loop->top && loop->cont)
3312 {
3313 rtx temp = PREV_INSN (last_loop_insn);
3314
3315 do
3316 {
3317 if (GET_CODE (temp) == JUMP_INSN)
3318 {
3319 /* There are some kinds of jumps we can't deal with easily. */
3320 if (JUMP_LABEL (temp) == 0)
3321 {
3322 if (loop_dump_stream)
3323 fprintf
3324 (loop_dump_stream,
3325 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3326 return 0;
3327 }
3328
3329 if (/* Previous unrolling may have generated new insns not
3330 covered by the uid_luid array. */
3331 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3332 /* Check if we jump back into the loop body. */
3333 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3334 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3335 {
3336 if (loop_dump_stream)
3337 fprintf
3338 (loop_dump_stream,
3339 "Loop iterations: Loop has multiple back edges.\n");
3340 return 0;
3341 }
3342 }
3343 }
3344 while ((temp = PREV_INSN (temp)) != loop->cont);
3345 }
3346
3347 /* Find the iteration variable. If the last insn is a conditional
3348 branch, and the insn before tests a register value, make that the
3349 iteration variable. */
3350
3351 comparison = get_condition_for_loop (loop, last_loop_insn);
3352 if (comparison == 0)
3353 {
3354 if (loop_dump_stream)
3355 fprintf (loop_dump_stream,
3356 "Loop iterations: No final comparison found.\n");
3357 return 0;
3358 }
3359
3360 /* ??? Get_condition may switch position of induction variable and
3361 invariant register when it canonicalizes the comparison. */
3362
3363 comparison_code = GET_CODE (comparison);
3364 iteration_var = XEXP (comparison, 0);
3365 comparison_value = XEXP (comparison, 1);
3366
3367 if (GET_CODE (iteration_var) != REG)
3368 {
3369 if (loop_dump_stream)
3370 fprintf (loop_dump_stream,
3371 "Loop iterations: Comparison not against register.\n");
3372 return 0;
3373 }
3374
3375 /* The only new registers that are created before loop iterations
3376 are givs made from biv increments or registers created by
3377 load_mems. In the latter case, it is possible that try_copy_prop
3378 will propagate a new pseudo into the old iteration register but
3379 this will be marked by having the REG_USERVAR_P bit set. */
3380
3381 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3382 && ! REG_USERVAR_P (iteration_var))
3383 abort ();
3384
3385 /* Determine the initial value of the iteration variable, and the amount
3386 that it is incremented each loop. Use the tables constructed by
3387 the strength reduction pass to calculate these values. */
3388
3389 /* Clear the result values, in case no answer can be found. */
3390 initial_value = 0;
3391 increment = 0;
3392
3393 /* The iteration variable can be either a giv or a biv. Check to see
3394 which it is, and compute the variable's initial value, and increment
3395 value if possible. */
3396
3397 /* If this is a new register, can't handle it since we don't have any
3398 reg_iv_type entry for it. */
3399 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3400 {
3401 if (loop_dump_stream)
3402 fprintf (loop_dump_stream,
3403 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3404 return 0;
3405 }
3406
3407 /* Reject iteration variables larger than the host wide int size, since they
3408 could result in a number of iterations greater than the range of our
3409 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3410 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3411 > HOST_BITS_PER_WIDE_INT))
3412 {
3413 if (loop_dump_stream)
3414 fprintf (loop_dump_stream,
3415 "Loop iterations: Iteration var rejected because mode too large.\n");
3416 return 0;
3417 }
3418 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3419 {
3420 if (loop_dump_stream)
3421 fprintf (loop_dump_stream,
3422 "Loop iterations: Iteration var not an integer.\n");
3423 return 0;
3424 }
3425
3426 /* Try swapping the comparison to identify a suitable iv. */
3427 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) != BASIC_INDUCT
3428 && REG_IV_TYPE (ivs, REGNO (iteration_var)) != GENERAL_INDUCT
3429 && GET_CODE (comparison_value) == REG
3430 && REGNO (comparison_value) < ivs->n_regs)
3431 {
3432 rtx temp = comparison_value;
3433 comparison_code = swap_condition (comparison_code);
3434 comparison_value = iteration_var;
3435 iteration_var = temp;
3436 }
3437
3438 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3439 {
3440 if (REGNO (iteration_var) >= ivs->n_regs)
3441 abort ();
3442
3443 /* Grab initial value, only useful if it is a constant. */
3444 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3445 initial_value = bl->initial_value;
3446 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3447 {
3448 if (loop_dump_stream)
3449 fprintf (loop_dump_stream,
3450 "Loop iterations: Basic induction var not set once in each iteration.\n");
3451 return 0;
3452 }
3453
3454 increment = biv_total_increment (bl);
3455 }
3456 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3457 {
3458 HOST_WIDE_INT offset = 0;
3459 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3460 rtx biv_initial_value;
3461
3462 if (REGNO (v->src_reg) >= ivs->n_regs)
3463 abort ();
3464
3465 if (!v->always_executed || v->maybe_multiple)
3466 {
3467 if (loop_dump_stream)
3468 fprintf (loop_dump_stream,
3469 "Loop iterations: General induction var not set once in each iteration.\n");
3470 return 0;
3471 }
3472
3473 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3474
3475 /* Increment value is mult_val times the increment value of the biv. */
3476
3477 increment = biv_total_increment (bl);
3478 if (increment)
3479 {
3480 struct induction *biv_inc;
3481
3482 increment = fold_rtx_mult_add (v->mult_val,
3483 extend_value_for_giv (v, increment),
3484 const0_rtx, v->mode);
3485 /* The caller assumes that one full increment has occurred at the
3486 first loop test. But that's not true when the biv is incremented
3487 after the giv is set (which is the usual case), e.g.:
3488 i = 6; do {;} while (i++ < 9) .
3489 Therefore, we bias the initial value by subtracting the amount of
3490 the increment that occurs between the giv set and the giv test. */
3491 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3492 {
3493 if (loop_insn_first_p (v->insn, biv_inc->insn))
3494 {
3495 if (REG_P (biv_inc->add_val))
3496 {
3497 if (loop_dump_stream)
3498 fprintf (loop_dump_stream,
3499 "Loop iterations: Basic induction var add_val is REG %d.\n",
3500 REGNO (biv_inc->add_val));
3501 return 0;
3502 }
3503
3504 /* If we have already counted it, skip it. */
3505 if (biv_inc->same)
3506 continue;
3507
3508 offset -= INTVAL (biv_inc->add_val);
3509 }
3510 }
3511 }
3512 if (loop_dump_stream)
3513 fprintf (loop_dump_stream,
3514 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3515 (long) offset);
3516
3517 /* Initial value is mult_val times the biv's initial value plus
3518 add_val. Only useful if it is a constant. */
3519 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3520 initial_value
3521 = fold_rtx_mult_add (v->mult_val,
3522 plus_constant (biv_initial_value, offset),
3523 v->add_val, v->mode);
3524 }
3525 else
3526 {
3527 if (loop_dump_stream)
3528 fprintf (loop_dump_stream,
3529 "Loop iterations: Not basic or general induction var.\n");
3530 return 0;
3531 }
3532
3533 if (initial_value == 0)
3534 return 0;
3535
3536 unsigned_p = 0;
3537 off_by_one = 0;
3538 switch (comparison_code)
3539 {
3540 case LEU:
3541 unsigned_p = 1;
3542 case LE:
3543 compare_dir = 1;
3544 off_by_one = 1;
3545 break;
3546 case GEU:
3547 unsigned_p = 1;
3548 case GE:
3549 compare_dir = -1;
3550 off_by_one = -1;
3551 break;
3552 case EQ:
3553 /* Cannot determine loop iterations with this case. */
3554 compare_dir = 0;
3555 break;
3556 case LTU:
3557 unsigned_p = 1;
3558 case LT:
3559 compare_dir = 1;
3560 break;
3561 case GTU:
3562 unsigned_p = 1;
3563 case GT:
3564 compare_dir = -1;
3565 break;
3566 case NE:
3567 compare_dir = 0;
3568 break;
3569 default:
3570 abort ();
3571 }
3572
3573 /* If the comparison value is an invariant register, then try to find
3574 its value from the insns before the start of the loop. */
3575
3576 final_value = comparison_value;
3577 if (GET_CODE (comparison_value) == REG
3578 && loop_invariant_p (loop, comparison_value))
3579 {
3580 final_value = loop_find_equiv_value (loop, comparison_value);
3581
3582 /* If we don't get an invariant final value, we are better
3583 off with the original register. */
3584 if (! loop_invariant_p (loop, final_value))
3585 final_value = comparison_value;
3586 }
3587
3588 /* Calculate the approximate final value of the induction variable
3589 (on the last successful iteration). The exact final value
3590 depends on the branch operator, and increment sign. It will be
3591 wrong if the iteration variable is not incremented by one each
3592 time through the loop and (comparison_value + off_by_one -
3593 initial_value) % increment != 0.
3594 ??? Note that the final_value may overflow and thus final_larger
3595 will be bogus. A potentially infinite loop will be classified
3596 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3597 if (off_by_one)
3598 final_value = plus_constant (final_value, off_by_one);
3599
3600 /* Save the calculated values describing this loop's bounds, in case
3601 precondition_loop_p will need them later. These values can not be
3602 recalculated inside precondition_loop_p because strength reduction
3603 optimizations may obscure the loop's structure.
3604
3605 These values are only required by precondition_loop_p and insert_bct
3606 whenever the number of iterations cannot be computed at compile time.
3607 Only the difference between final_value and initial_value is
3608 important. Note that final_value is only approximate. */
3609 loop_info->initial_value = initial_value;
3610 loop_info->comparison_value = comparison_value;
3611 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3612 loop_info->increment = increment;
3613 loop_info->iteration_var = iteration_var;
3614 loop_info->comparison_code = comparison_code;
3615 loop_info->iv = bl;
3616
3617 /* Try to determine the iteration count for loops such
3618 as (for i = init; i < init + const; i++). When running the
3619 loop optimization twice, the first pass often converts simple
3620 loops into this form. */
3621
3622 if (REG_P (initial_value))
3623 {
3624 rtx reg1;
3625 rtx reg2;
3626 rtx const2;
3627
3628 reg1 = initial_value;
3629 if (GET_CODE (final_value) == PLUS)
3630 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3631 else
3632 reg2 = final_value, const2 = const0_rtx;
3633
3634 /* Check for initial_value = reg1, final_value = reg2 + const2,
3635 where reg1 != reg2. */
3636 if (REG_P (reg2) && reg2 != reg1)
3637 {
3638 rtx temp;
3639
3640 /* Find what reg1 is equivalent to. Hopefully it will
3641 either be reg2 or reg2 plus a constant. */
3642 temp = loop_find_equiv_value (loop, reg1);
3643
3644 if (find_common_reg_term (temp, reg2))
3645 initial_value = temp;
3646 else if (loop_invariant_p (loop, reg2))
3647 {
3648 /* Find what reg2 is equivalent to. Hopefully it will
3649 either be reg1 or reg1 plus a constant. Let's ignore
3650 the latter case for now since it is not so common. */
3651 temp = loop_find_equiv_value (loop, reg2);
3652
3653 if (temp == loop_info->iteration_var)
3654 temp = initial_value;
3655 if (temp == reg1)
3656 final_value = (const2 == const0_rtx)
3657 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3658 }
3659 }
3660 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3661 {
3662 rtx temp;
3663
3664 /* When running the loop optimizer twice, check_dbra_loop
3665 further obfuscates reversible loops of the form:
3666 for (i = init; i < init + const; i++). We often end up with
3667 final_value = 0, initial_value = temp, temp = temp2 - init,
3668 where temp2 = init + const. If the loop has a vtop we
3669 can replace initial_value with const. */
3670
3671 temp = loop_find_equiv_value (loop, reg1);
3672
3673 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3674 {
3675 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3676
3677 if (GET_CODE (temp2) == PLUS
3678 && XEXP (temp2, 0) == XEXP (temp, 1))
3679 initial_value = XEXP (temp2, 1);
3680 }
3681 }
3682 }
3683
3684 /* If have initial_value = reg + const1 and final_value = reg +
3685 const2, then replace initial_value with const1 and final_value
3686 with const2. This should be safe since we are protected by the
3687 initial comparison before entering the loop if we have a vtop.
3688 For example, a + b < a + c is not equivalent to b < c for all a
3689 when using modulo arithmetic.
3690
3691 ??? Without a vtop we could still perform the optimization if we check
3692 the initial and final values carefully. */
3693 if (loop->vtop
3694 && (reg_term = find_common_reg_term (initial_value, final_value)))
3695 {
3696 initial_value = subtract_reg_term (initial_value, reg_term);
3697 final_value = subtract_reg_term (final_value, reg_term);
3698 }
3699
3700 loop_info->initial_equiv_value = initial_value;
3701 loop_info->final_equiv_value = final_value;
3702
3703 /* For EQ comparison loops, we don't have a valid final value.
3704 Check this now so that we won't leave an invalid value if we
3705 return early for any other reason. */
3706 if (comparison_code == EQ)
3707 loop_info->final_equiv_value = loop_info->final_value = 0;
3708
3709 if (increment == 0)
3710 {
3711 if (loop_dump_stream)
3712 fprintf (loop_dump_stream,
3713 "Loop iterations: Increment value can't be calculated.\n");
3714 return 0;
3715 }
3716
3717 if (GET_CODE (increment) != CONST_INT)
3718 {
3719 /* If we have a REG, check to see if REG holds a constant value. */
3720 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3721 clear if it is worthwhile to try to handle such RTL. */
3722 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3723 increment = loop_find_equiv_value (loop, increment);
3724
3725 if (GET_CODE (increment) != CONST_INT)
3726 {
3727 if (loop_dump_stream)
3728 {
3729 fprintf (loop_dump_stream,
3730 "Loop iterations: Increment value not constant ");
3731 print_simple_rtl (loop_dump_stream, increment);
3732 fprintf (loop_dump_stream, ".\n");
3733 }
3734 return 0;
3735 }
3736 loop_info->increment = increment;
3737 }
3738
3739 if (GET_CODE (initial_value) != CONST_INT)
3740 {
3741 if (loop_dump_stream)
3742 {
3743 fprintf (loop_dump_stream,
3744 "Loop iterations: Initial value not constant ");
3745 print_simple_rtl (loop_dump_stream, initial_value);
3746 fprintf (loop_dump_stream, ".\n");
3747 }
3748 return 0;
3749 }
3750 else if (GET_CODE (final_value) != CONST_INT)
3751 {
3752 if (loop_dump_stream)
3753 {
3754 fprintf (loop_dump_stream,
3755 "Loop iterations: Final value not constant ");
3756 print_simple_rtl (loop_dump_stream, final_value);
3757 fprintf (loop_dump_stream, ".\n");
3758 }
3759 return 0;
3760 }
3761 else if (comparison_code == EQ)
3762 {
3763 rtx inc_once;
3764
3765 if (loop_dump_stream)
3766 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3767
3768 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3769 GET_MODE (iteration_var));
3770
3771 if (inc_once == final_value)
3772 {
3773 /* The iterator value once through the loop is equal to the
3774 comparison value. Either we have an infinite loop, or
3775 we'll loop twice. */
3776 if (increment == const0_rtx)
3777 return 0;
3778 loop_info->n_iterations = 2;
3779 }
3780 else
3781 loop_info->n_iterations = 1;
3782
3783 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3784 loop_info->final_value
3785 = gen_int_mode ((INTVAL (loop_info->initial_value)
3786 + loop_info->n_iterations * INTVAL (increment)),
3787 GET_MODE (iteration_var));
3788 else
3789 loop_info->final_value
3790 = plus_constant (loop_info->initial_value,
3791 loop_info->n_iterations * INTVAL (increment));
3792 loop_info->final_equiv_value
3793 = gen_int_mode ((INTVAL (initial_value)
3794 + loop_info->n_iterations * INTVAL (increment)),
3795 GET_MODE (iteration_var));
3796 return loop_info->n_iterations;
3797 }
3798
3799 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3800 if (unsigned_p)
3801 final_larger
3802 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3803 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3804 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3805 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3806 else
3807 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3808 - (INTVAL (final_value) < INTVAL (initial_value));
3809
3810 if (INTVAL (increment) > 0)
3811 increment_dir = 1;
3812 else if (INTVAL (increment) == 0)
3813 increment_dir = 0;
3814 else
3815 increment_dir = -1;
3816
3817 /* There are 27 different cases: compare_dir = -1, 0, 1;
3818 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3819 There are 4 normal cases, 4 reverse cases (where the iteration variable
3820 will overflow before the loop exits), 4 infinite loop cases, and 15
3821 immediate exit (0 or 1 iteration depending on loop type) cases.
3822 Only try to optimize the normal cases. */
3823
3824 /* (compare_dir/final_larger/increment_dir)
3825 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3826 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3827 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3828 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3829
3830 /* ?? If the meaning of reverse loops (where the iteration variable
3831 will overflow before the loop exits) is undefined, then could
3832 eliminate all of these special checks, and just always assume
3833 the loops are normal/immediate/infinite. Note that this means
3834 the sign of increment_dir does not have to be known. Also,
3835 since it does not really hurt if immediate exit loops or infinite loops
3836 are optimized, then that case could be ignored also, and hence all
3837 loops can be optimized.
3838
3839 According to ANSI Spec, the reverse loop case result is undefined,
3840 because the action on overflow is undefined.
3841
3842 See also the special test for NE loops below. */
3843
3844 if (final_larger == increment_dir && final_larger != 0
3845 && (final_larger == compare_dir || compare_dir == 0))
3846 /* Normal case. */
3847 ;
3848 else
3849 {
3850 if (loop_dump_stream)
3851 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3852 return 0;
3853 }
3854
3855 /* Calculate the number of iterations, final_value is only an approximation,
3856 so correct for that. Note that abs_diff and n_iterations are
3857 unsigned, because they can be as large as 2^n - 1. */
3858
3859 inc = INTVAL (increment);
3860 if (inc > 0)
3861 {
3862 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3863 abs_inc = inc;
3864 }
3865 else if (inc < 0)
3866 {
3867 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3868 abs_inc = -inc;
3869 }
3870 else
3871 abort ();
3872
3873 /* Given that iteration_var is going to iterate over its own mode,
3874 not HOST_WIDE_INT, disregard higher bits that might have come
3875 into the picture due to sign extension of initial and final
3876 values. */
3877 abs_diff &= ((unsigned HOST_WIDE_INT) 1
3878 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3879 << 1) - 1;
3880
3881 /* For NE tests, make sure that the iteration variable won't miss
3882 the final value. If abs_diff mod abs_incr is not zero, then the
3883 iteration variable will overflow before the loop exits, and we
3884 can not calculate the number of iterations. */
3885 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3886 return 0;
3887
3888 /* Note that the number of iterations could be calculated using
3889 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3890 handle potential overflow of the summation. */
3891 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3892 return loop_info->n_iterations;
3893 }
3894
3895 /* Replace uses of split bivs with their split pseudo register. This is
3896 for original instructions which remain after loop unrolling without
3897 copying. */
3898
3899 static rtx
remap_split_bivs(struct loop * loop,rtx x)3900 remap_split_bivs (struct loop *loop, rtx x)
3901 {
3902 struct loop_ivs *ivs = LOOP_IVS (loop);
3903 enum rtx_code code;
3904 int i;
3905 const char *fmt;
3906
3907 if (x == 0)
3908 return x;
3909
3910 code = GET_CODE (x);
3911 switch (code)
3912 {
3913 case SCRATCH:
3914 case PC:
3915 case CC0:
3916 case CONST_INT:
3917 case CONST_DOUBLE:
3918 case CONST:
3919 case SYMBOL_REF:
3920 case LABEL_REF:
3921 return x;
3922
3923 case REG:
3924 #if 0
3925 /* If non-reduced/final-value givs were split, then this would also
3926 have to remap those givs also. */
3927 #endif
3928 if (REGNO (x) < ivs->n_regs
3929 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3930 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3931 break;
3932
3933 default:
3934 break;
3935 }
3936
3937 fmt = GET_RTX_FORMAT (code);
3938 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3939 {
3940 if (fmt[i] == 'e')
3941 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3942 else if (fmt[i] == 'E')
3943 {
3944 int j;
3945 for (j = 0; j < XVECLEN (x, i); j++)
3946 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3947 }
3948 }
3949 return x;
3950 }
3951
3952 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3953 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3954 return 0. COPY_START is where we can start looking for the insns
3955 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3956 insns.
3957
3958 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3959 must dominate LAST_UID.
3960
3961 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3962 may not dominate LAST_UID.
3963
3964 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3965 must dominate LAST_UID. */
3966
3967 int
set_dominates_use(int regno,int first_uid,int last_uid,rtx copy_start,rtx copy_end)3968 set_dominates_use (int regno, int first_uid, int last_uid, rtx copy_start,
3969 rtx copy_end)
3970 {
3971 int passed_jump = 0;
3972 rtx p = NEXT_INSN (copy_start);
3973
3974 while (INSN_UID (p) != first_uid)
3975 {
3976 if (GET_CODE (p) == JUMP_INSN)
3977 passed_jump = 1;
3978 /* Could not find FIRST_UID. */
3979 if (p == copy_end)
3980 return 0;
3981 p = NEXT_INSN (p);
3982 }
3983
3984 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3985 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
3986 return 0;
3987
3988 /* FIRST_UID is always executed. */
3989 if (passed_jump == 0)
3990 return 1;
3991
3992 while (INSN_UID (p) != last_uid)
3993 {
3994 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3995 can not be sure that FIRST_UID dominates LAST_UID. */
3996 if (GET_CODE (p) == CODE_LABEL)
3997 return 0;
3998 /* Could not find LAST_UID, but we reached the end of the loop, so
3999 it must be safe. */
4000 else if (p == copy_end)
4001 return 1;
4002 p = NEXT_INSN (p);
4003 }
4004
4005 /* FIRST_UID is always executed if LAST_UID is executed. */
4006 return 1;
4007 }
4008
4009 /* This routine is called when the number of iterations for the unrolled
4010 loop is one. The goal is to identify a loop that begins with an
4011 unconditional branch to the loop continuation note (or a label just after).
4012 In this case, the unconditional branch that starts the loop needs to be
4013 deleted so that we execute the single iteration. */
4014
4015 static rtx
ujump_to_loop_cont(rtx loop_start,rtx loop_cont)4016 ujump_to_loop_cont (rtx loop_start, rtx loop_cont)
4017 {
4018 rtx x, label, label_ref;
4019
4020 /* See if loop start, or the next insn is an unconditional jump. */
4021 loop_start = next_nonnote_insn (loop_start);
4022
4023 x = pc_set (loop_start);
4024 if (!x)
4025 return NULL_RTX;
4026
4027 label_ref = SET_SRC (x);
4028 if (!label_ref)
4029 return NULL_RTX;
4030
4031 /* Examine insn after loop continuation note. Return if not a label. */
4032 label = next_nonnote_insn (loop_cont);
4033 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4034 return NULL_RTX;
4035
4036 /* Return the loop start if the branch label matches the code label. */
4037 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4038 return loop_start;
4039 else
4040 return NULL_RTX;
4041 }
4042