1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2 
3    Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5    Foundation, Inc.
6 
7    Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8    and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9 
10    This file is part of GDB.
11 
12    This program is free software; you can redistribute it and/or modify
13    it under the terms of the GNU General Public License as published by
14    the Free Software Foundation; either version 2 of the License, or
15    (at your option) any later version.
16 
17    This program is distributed in the hope that it will be useful,
18    but WITHOUT ANY WARRANTY; without even the implied warranty of
19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20    GNU General Public License for more details.
21 
22    You should have received a copy of the GNU General Public License
23    along with this program; if not, write to the Free Software
24    Foundation, Inc., 59 Temple Place - Suite 330,
25    Boston, MA 02111-1307, USA.  */
26 
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 
58 static const struct objfile_data *mips_pdr_data;
59 
60 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62 
63 /* A useful bit in the CP0 status register (PS_REGNUM).  */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip.  */
65 #define ST0_FR (1 << 26)
66 
67 /* The sizes of floating point registers.  */
68 
69 enum
70 {
71   MIPS_FPU_SINGLE_REGSIZE = 4,
72   MIPS_FPU_DOUBLE_REGSIZE = 8
73 };
74 
75 
76 static const char *mips_abi_string;
77 
78 static const char *mips_abi_strings[] = {
79   "auto",
80   "n32",
81   "o32",
82   "n64",
83   "o64",
84   "eabi32",
85   "eabi64",
86   NULL
87 };
88 
89 struct frame_extra_info
90 {
91   mips_extra_func_info_t proc_desc;
92   int num_args;
93 };
94 
95 /* Various MIPS ISA options (related to stack analysis) can be
96    overridden dynamically.  Establish an enum/array for managing
97    them. */
98 
99 static const char size_auto[] = "auto";
100 static const char size_32[] = "32";
101 static const char size_64[] = "64";
102 
103 static const char *size_enums[] = {
104   size_auto,
105   size_32,
106   size_64,
107   0
108 };
109 
110 /* Some MIPS boards don't support floating point while others only
111    support single-precision floating-point operations.  */
112 
113 enum mips_fpu_type
114 {
115   MIPS_FPU_DOUBLE,		/* Full double precision floating point.  */
116   MIPS_FPU_SINGLE,		/* Single precision floating point (R4650).  */
117   MIPS_FPU_NONE			/* No floating point.  */
118 };
119 
120 #ifndef MIPS_DEFAULT_FPU_TYPE
121 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
122 #endif
123 static int mips_fpu_type_auto = 1;
124 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
125 
126 static int mips_debug = 0;
127 
128 /* MIPS specific per-architecture information */
129 struct gdbarch_tdep
130 {
131   /* from the elf header */
132   int elf_flags;
133 
134   /* mips options */
135   enum mips_abi mips_abi;
136   enum mips_abi found_abi;
137   enum mips_fpu_type mips_fpu_type;
138   int mips_last_arg_regnum;
139   int mips_last_fp_arg_regnum;
140   int default_mask_address_p;
141   /* Is the target using 64-bit raw integer registers but only
142      storing a left-aligned 32-bit value in each?  */
143   int mips64_transfers_32bit_regs_p;
144   /* Indexes for various registers.  IRIX and embedded have
145      different values.  This contains the "public" fields.  Don't
146      add any that do not need to be public.  */
147   const struct mips_regnum *regnum;
148   /* Register names table for the current register set.  */
149   const char **mips_processor_reg_names;
150 };
151 
152 const struct mips_regnum *
mips_regnum(struct gdbarch * gdbarch)153 mips_regnum (struct gdbarch *gdbarch)
154 {
155   return gdbarch_tdep (gdbarch)->regnum;
156 }
157 
158 static int
mips_fpa0_regnum(struct gdbarch * gdbarch)159 mips_fpa0_regnum (struct gdbarch *gdbarch)
160 {
161   return mips_regnum (gdbarch)->fp0 + 12;
162 }
163 
164 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
165 		   || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
166 
167 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
168 
169 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
170 
171 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
172 
173 /* MIPS16 function addresses are odd (bit 0 is set).  Here are some
174    functions to test, set, or clear bit 0 of addresses.  */
175 
176 static CORE_ADDR
is_mips16_addr(CORE_ADDR addr)177 is_mips16_addr (CORE_ADDR addr)
178 {
179   return ((addr) & 1);
180 }
181 
182 static CORE_ADDR
make_mips16_addr(CORE_ADDR addr)183 make_mips16_addr (CORE_ADDR addr)
184 {
185   return ((addr) | 1);
186 }
187 
188 static CORE_ADDR
unmake_mips16_addr(CORE_ADDR addr)189 unmake_mips16_addr (CORE_ADDR addr)
190 {
191   return ((addr) & ~1);
192 }
193 
194 /* Return the contents of register REGNUM as a signed integer.  */
195 
196 static LONGEST
read_signed_register(int regnum)197 read_signed_register (int regnum)
198 {
199   void *buf = alloca (register_size (current_gdbarch, regnum));
200   deprecated_read_register_gen (regnum, buf);
201   return (extract_signed_integer
202 	  (buf, register_size (current_gdbarch, regnum)));
203 }
204 
205 static LONGEST
read_signed_register_pid(int regnum,ptid_t ptid)206 read_signed_register_pid (int regnum, ptid_t ptid)
207 {
208   ptid_t save_ptid;
209   LONGEST retval;
210 
211   if (ptid_equal (ptid, inferior_ptid))
212     return read_signed_register (regnum);
213 
214   save_ptid = inferior_ptid;
215 
216   inferior_ptid = ptid;
217 
218   retval = read_signed_register (regnum);
219 
220   inferior_ptid = save_ptid;
221 
222   return retval;
223 }
224 
225 /* Return the MIPS ABI associated with GDBARCH.  */
226 enum mips_abi
mips_abi(struct gdbarch * gdbarch)227 mips_abi (struct gdbarch *gdbarch)
228 {
229   return gdbarch_tdep (gdbarch)->mips_abi;
230 }
231 
232 int
mips_isa_regsize(struct gdbarch * gdbarch)233 mips_isa_regsize (struct gdbarch *gdbarch)
234 {
235   return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
236 	  / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
237 }
238 
239 /* Return the currently configured (or set) saved register size. */
240 
241 static const char *mips_abi_regsize_string = size_auto;
242 
243 static unsigned int
mips_abi_regsize(struct gdbarch * gdbarch)244 mips_abi_regsize (struct gdbarch *gdbarch)
245 {
246   if (mips_abi_regsize_string == size_auto)
247     switch (mips_abi (gdbarch))
248       {
249       case MIPS_ABI_EABI32:
250       case MIPS_ABI_O32:
251 	return 4;
252       case MIPS_ABI_N32:
253       case MIPS_ABI_N64:
254       case MIPS_ABI_O64:
255       case MIPS_ABI_EABI64:
256 	return 8;
257       case MIPS_ABI_UNKNOWN:
258       case MIPS_ABI_LAST:
259       default:
260 	internal_error (__FILE__, __LINE__, "bad switch");
261       }
262   else if (mips_abi_regsize_string == size_64)
263     return 8;
264   else				/* if (mips_abi_regsize_string == size_32) */
265     return 4;
266 }
267 
268 /* Functions for setting and testing a bit in a minimal symbol that
269    marks it as 16-bit function.  The MSB of the minimal symbol's
270    "info" field is used for this purpose.
271 
272    ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
273    i.e. refers to a 16-bit function, and sets a "special" bit in a
274    minimal symbol to mark it as a 16-bit function
275 
276    MSYMBOL_IS_SPECIAL   tests the "special" bit in a minimal symbol  */
277 
278 static void
mips_elf_make_msymbol_special(asymbol * sym,struct minimal_symbol * msym)279 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
280 {
281   if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
282     {
283       MSYMBOL_INFO (msym) = (char *)
284 	(((long) MSYMBOL_INFO (msym)) | 0x80000000);
285       SYMBOL_VALUE_ADDRESS (msym) |= 1;
286     }
287 }
288 
289 static int
msymbol_is_special(struct minimal_symbol * msym)290 msymbol_is_special (struct minimal_symbol *msym)
291 {
292   return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
293 }
294 
295 /* XFER a value from the big/little/left end of the register.
296    Depending on the size of the value it might occupy the entire
297    register or just part of it.  Make an allowance for this, aligning
298    things accordingly.  */
299 
300 static void
mips_xfer_register(struct regcache * regcache,int reg_num,int length,enum bfd_endian endian,bfd_byte * in,const bfd_byte * out,int buf_offset)301 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
302 		    enum bfd_endian endian, bfd_byte * in,
303 		    const bfd_byte * out, int buf_offset)
304 {
305   int reg_offset = 0;
306   gdb_assert (reg_num >= NUM_REGS);
307   /* Need to transfer the left or right part of the register, based on
308      the targets byte order.  */
309   switch (endian)
310     {
311     case BFD_ENDIAN_BIG:
312       reg_offset = register_size (current_gdbarch, reg_num) - length;
313       break;
314     case BFD_ENDIAN_LITTLE:
315       reg_offset = 0;
316       break;
317     case BFD_ENDIAN_UNKNOWN:	/* Indicates no alignment.  */
318       reg_offset = 0;
319       break;
320     default:
321       internal_error (__FILE__, __LINE__, "bad switch");
322     }
323   if (mips_debug)
324     fprintf_unfiltered (gdb_stderr,
325 			"xfer $%d, reg offset %d, buf offset %d, length %d, ",
326 			reg_num, reg_offset, buf_offset, length);
327   if (mips_debug && out != NULL)
328     {
329       int i;
330       fprintf_unfiltered (gdb_stdlog, "out ");
331       for (i = 0; i < length; i++)
332 	fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
333     }
334   if (in != NULL)
335     regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
336 			       in + buf_offset);
337   if (out != NULL)
338     regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
339 				out + buf_offset);
340   if (mips_debug && in != NULL)
341     {
342       int i;
343       fprintf_unfiltered (gdb_stdlog, "in ");
344       for (i = 0; i < length; i++)
345 	fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
346     }
347   if (mips_debug)
348     fprintf_unfiltered (gdb_stdlog, "\n");
349 }
350 
351 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
352    compatiblity mode.  A return value of 1 means that we have
353    physical 64-bit registers, but should treat them as 32-bit registers.  */
354 
355 static int
mips2_fp_compat(void)356 mips2_fp_compat (void)
357 {
358   /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
359      meaningful.  */
360   if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
361       4)
362     return 0;
363 
364 #if 0
365   /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
366      in all the places we deal with FP registers.  PR gdb/413.  */
367   /* Otherwise check the FR bit in the status register - it controls
368      the FP compatiblity mode.  If it is clear we are in compatibility
369      mode.  */
370   if ((read_register (PS_REGNUM) & ST0_FR) == 0)
371     return 1;
372 #endif
373 
374   return 0;
375 }
376 
377 /* The amount of space reserved on the stack for registers. This is
378    different to MIPS_ABI_REGSIZE as it determines the alignment of
379    data allocated after the registers have run out. */
380 
381 static const char *mips_stack_argsize_string = size_auto;
382 
383 static unsigned int
mips_stack_argsize(struct gdbarch * gdbarch)384 mips_stack_argsize (struct gdbarch *gdbarch)
385 {
386   if (mips_stack_argsize_string == size_auto)
387     return mips_abi_regsize (gdbarch);
388   else if (mips_stack_argsize_string == size_64)
389     return 8;
390   else				/* if (mips_stack_argsize_string == size_32) */
391     return 4;
392 }
393 
394 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
395 
396 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
397 						   struct frame_info *, int);
398 
399 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
400 
401 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
402 
403 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
404 
405 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
406 					      struct frame_info *next_frame,
407 					      int cur_frame);
408 
409 static CORE_ADDR after_prologue (CORE_ADDR pc,
410 				 mips_extra_func_info_t proc_desc);
411 
412 static struct type *mips_float_register_type (void);
413 static struct type *mips_double_register_type (void);
414 
415 /* The list of available "set mips " and "show mips " commands */
416 
417 static struct cmd_list_element *setmipscmdlist = NULL;
418 static struct cmd_list_element *showmipscmdlist = NULL;
419 
420 /* Integer registers 0 thru 31 are handled explicitly by
421    mips_register_name().  Processor specific registers 32 and above
422    are listed in the followign tables.  */
423 
424 enum
425 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
426 
427 /* Generic MIPS.  */
428 
429 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
430   "sr", "lo", "hi", "bad", "cause", "pc",
431   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
432   "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
433   "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
434   "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
435   "fsr", "fir", "" /*"fp" */ , "",
436   "", "", "", "", "", "", "", "",
437   "", "", "", "", "", "", "", "",
438 };
439 
440 /* Names of IDT R3041 registers.  */
441 
442 static const char *mips_r3041_reg_names[] = {
443   "sr", "lo", "hi", "bad", "cause", "pc",
444   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
445   "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
446   "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
447   "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
448   "fsr", "fir", "", /*"fp" */ "",
449   "", "", "bus", "ccfg", "", "", "", "",
450   "", "", "port", "cmp", "", "", "epc", "prid",
451 };
452 
453 /* Names of tx39 registers.  */
454 
455 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
456   "sr", "lo", "hi", "bad", "cause", "pc",
457   "", "", "", "", "", "", "", "",
458   "", "", "", "", "", "", "", "",
459   "", "", "", "", "", "", "", "",
460   "", "", "", "", "", "", "", "",
461   "", "", "", "",
462   "", "", "", "", "", "", "", "",
463   "", "", "config", "cache", "debug", "depc", "epc", ""
464 };
465 
466 /* Names of IRIX registers.  */
467 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
468   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
469   "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
470   "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
471   "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
472   "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
473 };
474 
475 
476 /* Return the name of the register corresponding to REGNO.  */
477 static const char *
mips_register_name(int regno)478 mips_register_name (int regno)
479 {
480   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
481   /* GPR names for all ABIs other than n32/n64.  */
482   static char *mips_gpr_names[] = {
483     "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
484     "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
485     "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
486     "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
487   };
488 
489   /* GPR names for n32 and n64 ABIs.  */
490   static char *mips_n32_n64_gpr_names[] = {
491     "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
492     "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
493     "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
494     "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
495   };
496 
497   enum mips_abi abi = mips_abi (current_gdbarch);
498 
499   /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
500      don't make the raw register names visible.  */
501   int rawnum = regno % NUM_REGS;
502   if (regno < NUM_REGS)
503     return "";
504 
505   /* The MIPS integer registers are always mapped from 0 to 31.  The
506      names of the registers (which reflects the conventions regarding
507      register use) vary depending on the ABI.  */
508   if (0 <= rawnum && rawnum < 32)
509     {
510       if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
511 	return mips_n32_n64_gpr_names[rawnum];
512       else
513 	return mips_gpr_names[rawnum];
514     }
515   else if (32 <= rawnum && rawnum < NUM_REGS)
516     {
517       gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
518       return tdep->mips_processor_reg_names[rawnum - 32];
519     }
520   else
521     internal_error (__FILE__, __LINE__,
522 		    "mips_register_name: bad register number %d", rawnum);
523 }
524 
525 /* Return the groups that a MIPS register can be categorised into.  */
526 
527 static int
mips_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * reggroup)528 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
529 			  struct reggroup *reggroup)
530 {
531   int vector_p;
532   int float_p;
533   int raw_p;
534   int rawnum = regnum % NUM_REGS;
535   int pseudo = regnum / NUM_REGS;
536   if (reggroup == all_reggroup)
537     return pseudo;
538   vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
539   float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
540   /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
541      (gdbarch), as not all architectures are multi-arch.  */
542   raw_p = rawnum < NUM_REGS;
543   if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
544     return 0;
545   if (reggroup == float_reggroup)
546     return float_p && pseudo;
547   if (reggroup == vector_reggroup)
548     return vector_p && pseudo;
549   if (reggroup == general_reggroup)
550     return (!vector_p && !float_p) && pseudo;
551   /* Save the pseudo registers.  Need to make certain that any code
552      extracting register values from a saved register cache also uses
553      pseudo registers.  */
554   if (reggroup == save_reggroup)
555     return raw_p && pseudo;
556   /* Restore the same pseudo register.  */
557   if (reggroup == restore_reggroup)
558     return raw_p && pseudo;
559   return 0;
560 }
561 
562 /* Map the symbol table registers which live in the range [1 *
563    NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
564    registers.  Take care of alignment and size problems.  */
565 
566 static void
mips_pseudo_register_read(struct gdbarch * gdbarch,struct regcache * regcache,int cookednum,void * buf)567 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
568 			   int cookednum, void *buf)
569 {
570   int rawnum = cookednum % NUM_REGS;
571   gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
572   if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
573     regcache_raw_read (regcache, rawnum, buf);
574   else if (register_size (gdbarch, rawnum) >
575 	   register_size (gdbarch, cookednum))
576     {
577       if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
578 	  || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
579 	regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
580       else
581 	regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
582     }
583   else
584     internal_error (__FILE__, __LINE__, "bad register size");
585 }
586 
587 static void
mips_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int cookednum,const void * buf)588 mips_pseudo_register_write (struct gdbarch *gdbarch,
589 			    struct regcache *regcache, int cookednum,
590 			    const void *buf)
591 {
592   int rawnum = cookednum % NUM_REGS;
593   gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
594   if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
595     regcache_raw_write (regcache, rawnum, buf);
596   else if (register_size (gdbarch, rawnum) >
597 	   register_size (gdbarch, cookednum))
598     {
599       if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
600 	  || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
601 	regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
602       else
603 	regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
604     }
605   else
606     internal_error (__FILE__, __LINE__, "bad register size");
607 }
608 
609 /* Table to translate MIPS16 register field to actual register number.  */
610 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
611 
612 /* Heuristic_proc_start may hunt through the text section for a long
613    time across a 2400 baud serial line.  Allows the user to limit this
614    search.  */
615 
616 static unsigned int heuristic_fence_post = 0;
617 
618 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr)	/* least address */
619 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr)	/* upper address bound */
620 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
621 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
622 #define PROC_FRAME_ADJUST(proc)  ((proc)->frame_adjust)
623 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
624 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
625 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
626 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
627 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
628 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
629    this will corrupt pdr.iline.  Fortunately we don't use it.  */
630 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
631 #define _PROC_MAGIC_ 0x0F0F0F0F
632 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
633 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
634 
635 struct linked_proc_info
636 {
637   struct mips_extra_func_info info;
638   struct linked_proc_info *next;
639 }
640  *linked_proc_desc_table = NULL;
641 
642 /* Number of bytes of storage in the actual machine representation for
643    register N.  NOTE: This defines the pseudo register type so need to
644    rebuild the architecture vector.  */
645 
646 static int mips64_transfers_32bit_regs_p = 0;
647 
648 static void
set_mips64_transfers_32bit_regs(char * args,int from_tty,struct cmd_list_element * c)649 set_mips64_transfers_32bit_regs (char *args, int from_tty,
650 				 struct cmd_list_element *c)
651 {
652   struct gdbarch_info info;
653   gdbarch_info_init (&info);
654   /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
655      instead of relying on globals.  Doing that would let generic code
656      handle the search for this specific architecture.  */
657   if (!gdbarch_update_p (info))
658     {
659       mips64_transfers_32bit_regs_p = 0;
660       error ("32-bit compatibility mode not supported");
661     }
662 }
663 
664 /* Convert to/from a register and the corresponding memory value.  */
665 
666 static int
mips_convert_register_p(int regnum,struct type * type)667 mips_convert_register_p (int regnum, struct type *type)
668 {
669   return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
670 	  && register_size (current_gdbarch, regnum) == 4
671 	  && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
672 	  && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
673 	  && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
674 }
675 
676 static void
mips_register_to_value(struct frame_info * frame,int regnum,struct type * type,void * to)677 mips_register_to_value (struct frame_info *frame, int regnum,
678 			struct type *type, void *to)
679 {
680   get_frame_register (frame, regnum + 0, (char *) to + 4);
681   get_frame_register (frame, regnum + 1, (char *) to + 0);
682 }
683 
684 static void
mips_value_to_register(struct frame_info * frame,int regnum,struct type * type,const void * from)685 mips_value_to_register (struct frame_info *frame, int regnum,
686 			struct type *type, const void *from)
687 {
688   put_frame_register (frame, regnum + 0, (const char *) from + 4);
689   put_frame_register (frame, regnum + 1, (const char *) from + 0);
690 }
691 
692 /* Return the GDB type object for the "standard" data type of data in
693    register REG.  */
694 
695 static struct type *
mips_register_type(struct gdbarch * gdbarch,int regnum)696 mips_register_type (struct gdbarch *gdbarch, int regnum)
697 {
698   gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
699   if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
700       && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
701     {
702       /* The floating-point registers raw, or cooked, always match
703          mips_isa_regsize(), and also map 1:1, byte for byte.  */
704       switch (gdbarch_byte_order (gdbarch))
705 	{
706 	case BFD_ENDIAN_BIG:
707 	  if (mips_isa_regsize (gdbarch) == 4)
708 	    return builtin_type_ieee_single_big;
709 	  else
710 	    return builtin_type_ieee_double_big;
711 	case BFD_ENDIAN_LITTLE:
712 	  if (mips_isa_regsize (gdbarch) == 4)
713 	    return builtin_type_ieee_single_little;
714 	  else
715 	    return builtin_type_ieee_double_little;
716 	case BFD_ENDIAN_UNKNOWN:
717 	default:
718 	  internal_error (__FILE__, __LINE__, "bad switch");
719 	}
720     }
721   else if (regnum < NUM_REGS)
722     {
723       /* The raw or ISA registers.  These are all sized according to
724 	 the ISA regsize.  */
725       if (mips_isa_regsize (gdbarch) == 4)
726 	return builtin_type_int32;
727       else
728 	return builtin_type_int64;
729     }
730   else
731     {
732       /* The cooked or ABI registers.  These are sized according to
733 	 the ABI (with a few complications).  */
734       if (regnum >= (NUM_REGS
735 		     + mips_regnum (current_gdbarch)->fp_control_status)
736 	  && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
737 	/* The pseudo/cooked view of the embedded registers is always
738 	   32-bit.  The raw view is handled below.  */
739 	return builtin_type_int32;
740       else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
741 	/* The target, while possibly using a 64-bit register buffer,
742 	   is only transfering 32-bits of each integer register.
743 	   Reflect this in the cooked/pseudo (ABI) register value.  */
744 	return builtin_type_int32;
745       else if (mips_abi_regsize (gdbarch) == 4)
746 	/* The ABI is restricted to 32-bit registers (the ISA could be
747 	   32- or 64-bit).  */
748 	return builtin_type_int32;
749       else
750 	/* 64-bit ABI.  */
751 	return builtin_type_int64;
752     }
753 }
754 
755 /* TARGET_READ_SP -- Remove useless bits from the stack pointer.  */
756 
757 static CORE_ADDR
mips_read_sp(void)758 mips_read_sp (void)
759 {
760   return read_signed_register (MIPS_SP_REGNUM);
761 }
762 
763 /* Should the upper word of 64-bit addresses be zeroed? */
764 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
765 
766 static int
mips_mask_address_p(struct gdbarch_tdep * tdep)767 mips_mask_address_p (struct gdbarch_tdep *tdep)
768 {
769   switch (mask_address_var)
770     {
771     case AUTO_BOOLEAN_TRUE:
772       return 1;
773     case AUTO_BOOLEAN_FALSE:
774       return 0;
775       break;
776     case AUTO_BOOLEAN_AUTO:
777       return tdep->default_mask_address_p;
778     default:
779       internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch");
780       return -1;
781     }
782 }
783 
784 static void
show_mask_address(char * cmd,int from_tty,struct cmd_list_element * c)785 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
786 {
787   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
788   switch (mask_address_var)
789     {
790     case AUTO_BOOLEAN_TRUE:
791       printf_filtered ("The 32 bit mips address mask is enabled\n");
792       break;
793     case AUTO_BOOLEAN_FALSE:
794       printf_filtered ("The 32 bit mips address mask is disabled\n");
795       break;
796     case AUTO_BOOLEAN_AUTO:
797       printf_filtered
798 	("The 32 bit address mask is set automatically.  Currently %s\n",
799 	 mips_mask_address_p (tdep) ? "enabled" : "disabled");
800       break;
801     default:
802       internal_error (__FILE__, __LINE__, "show_mask_address: bad switch");
803       break;
804     }
805 }
806 
807 /* Tell if the program counter value in MEMADDR is in a MIPS16 function.  */
808 
809 static int
pc_is_mips16(bfd_vma memaddr)810 pc_is_mips16 (bfd_vma memaddr)
811 {
812   struct minimal_symbol *sym;
813 
814   /* If bit 0 of the address is set, assume this is a MIPS16 address. */
815   if (is_mips16_addr (memaddr))
816     return 1;
817 
818   /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
819      the high bit of the info field.  Use this to decide if the function is
820      MIPS16 or normal MIPS.  */
821   sym = lookup_minimal_symbol_by_pc (memaddr);
822   if (sym)
823     return msymbol_is_special (sym);
824   else
825     return 0;
826 }
827 
828 /* MIPS believes that the PC has a sign extended value.  Perhaphs the
829    all registers should be sign extended for simplicity? */
830 
831 static CORE_ADDR
mips_read_pc(ptid_t ptid)832 mips_read_pc (ptid_t ptid)
833 {
834   return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
835 }
836 
837 static CORE_ADDR
mips_unwind_pc(struct gdbarch * gdbarch,struct frame_info * next_frame)838 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
839 {
840   return frame_unwind_register_signed (next_frame,
841 				       NUM_REGS + mips_regnum (gdbarch)->pc);
842 }
843 
844 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
845    dummy frame.  The frame ID's base needs to match the TOS value
846    saved by save_dummy_frame_tos(), and the PC match the dummy frame's
847    breakpoint.  */
848 
849 static struct frame_id
mips_unwind_dummy_id(struct gdbarch * gdbarch,struct frame_info * next_frame)850 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
851 {
852   return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
853 			 frame_pc_unwind (next_frame));
854 }
855 
856 static void
mips_write_pc(CORE_ADDR pc,ptid_t ptid)857 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
858 {
859   write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
860 }
861 
862 /* This returns the PC of the first inst after the prologue.  If we can't
863    find the prologue, then return 0.  */
864 
865 static CORE_ADDR
after_prologue(CORE_ADDR pc,mips_extra_func_info_t proc_desc)866 after_prologue (CORE_ADDR pc, mips_extra_func_info_t proc_desc)
867 {
868   struct symtab_and_line sal;
869   CORE_ADDR func_addr, func_end;
870 
871   /* Pass cur_frame == 0 to find_proc_desc.  We should not attempt
872      to read the stack pointer from the current machine state, because
873      the current machine state has nothing to do with the information
874      we need from the proc_desc; and the process may or may not exist
875      right now.  */
876   if (!proc_desc)
877     proc_desc = find_proc_desc (pc, NULL, 0);
878 
879   if (proc_desc)
880     {
881       /* If function is frameless, then we need to do it the hard way.  I
882          strongly suspect that frameless always means prologueless... */
883       if (PROC_FRAME_REG (proc_desc) == MIPS_SP_REGNUM
884 	  && PROC_FRAME_OFFSET (proc_desc) == 0)
885 	return 0;
886     }
887 
888   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
889     return 0;			/* Unknown */
890 
891   sal = find_pc_line (func_addr, 0);
892 
893   if (sal.end < func_end)
894     return sal.end;
895 
896   /* The line after the prologue is after the end of the function.  In this
897      case, tell the caller to find the prologue the hard way.  */
898 
899   return 0;
900 }
901 
902 /* Decode a MIPS32 instruction that saves a register in the stack, and
903    set the appropriate bit in the general register mask or float register mask
904    to indicate which register is saved.  This is a helper function
905    for mips_find_saved_regs.  */
906 
907 static void
mips32_decode_reg_save(t_inst inst,unsigned long * gen_mask,unsigned long * float_mask)908 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
909 			unsigned long *float_mask)
910 {
911   int reg;
912 
913   if ((inst & 0xffe00000) == 0xafa00000	/* sw reg,n($sp) */
914       || (inst & 0xffe00000) == 0xafc00000	/* sw reg,n($r30) */
915       || (inst & 0xffe00000) == 0xffa00000)	/* sd reg,n($sp) */
916     {
917       /* It might be possible to use the instruction to
918          find the offset, rather than the code below which
919          is based on things being in a certain order in the
920          frame, but figuring out what the instruction's offset
921          is relative to might be a little tricky.  */
922       reg = (inst & 0x001f0000) >> 16;
923       *gen_mask |= (1 << reg);
924     }
925   else if ((inst & 0xffe00000) == 0xe7a00000	/* swc1 freg,n($sp) */
926 	   || (inst & 0xffe00000) == 0xe7c00000	/* swc1 freg,n($r30) */
927 	   || (inst & 0xffe00000) == 0xf7a00000)	/* sdc1 freg,n($sp) */
928 
929     {
930       reg = ((inst & 0x001f0000) >> 16);
931       *float_mask |= (1 << reg);
932     }
933 }
934 
935 /* Decode a MIPS16 instruction that saves a register in the stack, and
936    set the appropriate bit in the general register or float register mask
937    to indicate which register is saved.  This is a helper function
938    for mips_find_saved_regs.  */
939 
940 static void
mips16_decode_reg_save(t_inst inst,unsigned long * gen_mask)941 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
942 {
943   if ((inst & 0xf800) == 0xd000)	/* sw reg,n($sp) */
944     {
945       int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
946       *gen_mask |= (1 << reg);
947     }
948   else if ((inst & 0xff00) == 0xf900)	/* sd reg,n($sp) */
949     {
950       int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
951       *gen_mask |= (1 << reg);
952     }
953   else if ((inst & 0xff00) == 0x6200	/* sw $ra,n($sp) */
954 	   || (inst & 0xff00) == 0xfa00)	/* sd $ra,n($sp) */
955     *gen_mask |= (1 << RA_REGNUM);
956 }
957 
958 
959 /* Fetch and return instruction from the specified location.  If the PC
960    is odd, assume it's a MIPS16 instruction; otherwise MIPS32.  */
961 
962 static t_inst
mips_fetch_instruction(CORE_ADDR addr)963 mips_fetch_instruction (CORE_ADDR addr)
964 {
965   char buf[MIPS_INSTLEN];
966   int instlen;
967   int status;
968 
969   if (pc_is_mips16 (addr))
970     {
971       instlen = MIPS16_INSTLEN;
972       addr = unmake_mips16_addr (addr);
973     }
974   else
975     instlen = MIPS_INSTLEN;
976   status = read_memory_nobpt (addr, buf, instlen);
977   if (status)
978     memory_error (status, addr);
979   return extract_unsigned_integer (buf, instlen);
980 }
981 
982 static ULONGEST
mips16_fetch_instruction(CORE_ADDR addr)983 mips16_fetch_instruction (CORE_ADDR addr)
984 {
985   char buf[MIPS_INSTLEN];
986   int instlen;
987   int status;
988 
989   instlen = MIPS16_INSTLEN;
990   addr = unmake_mips16_addr (addr);
991   status = read_memory_nobpt (addr, buf, instlen);
992   if (status)
993     memory_error (status, addr);
994   return extract_unsigned_integer (buf, instlen);
995 }
996 
997 static ULONGEST
mips32_fetch_instruction(CORE_ADDR addr)998 mips32_fetch_instruction (CORE_ADDR addr)
999 {
1000   char buf[MIPS_INSTLEN];
1001   int instlen;
1002   int status;
1003   instlen = MIPS_INSTLEN;
1004   status = read_memory_nobpt (addr, buf, instlen);
1005   if (status)
1006     memory_error (status, addr);
1007   return extract_unsigned_integer (buf, instlen);
1008 }
1009 
1010 
1011 /* These the fields of 32 bit mips instructions */
1012 #define mips32_op(x) (x >> 26)
1013 #define itype_op(x) (x >> 26)
1014 #define itype_rs(x) ((x >> 21) & 0x1f)
1015 #define itype_rt(x) ((x >> 16) & 0x1f)
1016 #define itype_immediate(x) (x & 0xffff)
1017 
1018 #define jtype_op(x) (x >> 26)
1019 #define jtype_target(x) (x & 0x03ffffff)
1020 
1021 #define rtype_op(x) (x >> 26)
1022 #define rtype_rs(x) ((x >> 21) & 0x1f)
1023 #define rtype_rt(x) ((x >> 16) & 0x1f)
1024 #define rtype_rd(x) ((x >> 11) & 0x1f)
1025 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1026 #define rtype_funct(x) (x & 0x3f)
1027 
1028 static CORE_ADDR
mips32_relative_offset(unsigned long inst)1029 mips32_relative_offset (unsigned long inst)
1030 {
1031   long x;
1032   x = itype_immediate (inst);
1033   if (x & 0x8000)		/* sign bit set */
1034     {
1035       x |= 0xffff0000;		/* sign extension */
1036     }
1037   x = x << 2;
1038   return x;
1039 }
1040 
1041 /* Determine whate to set a single step breakpoint while considering
1042    branch prediction */
1043 static CORE_ADDR
mips32_next_pc(CORE_ADDR pc)1044 mips32_next_pc (CORE_ADDR pc)
1045 {
1046   unsigned long inst;
1047   int op;
1048   inst = mips_fetch_instruction (pc);
1049   if ((inst & 0xe0000000) != 0)	/* Not a special, jump or branch instruction */
1050     {
1051       if (itype_op (inst) >> 2 == 5)
1052 	/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1053 	{
1054 	  op = (itype_op (inst) & 0x03);
1055 	  switch (op)
1056 	    {
1057 	    case 0:		/* BEQL */
1058 	      goto equal_branch;
1059 	    case 1:		/* BNEL */
1060 	      goto neq_branch;
1061 	    case 2:		/* BLEZL */
1062 	      goto less_branch;
1063 	    case 3:		/* BGTZ */
1064 	      goto greater_branch;
1065 	    default:
1066 	      pc += 4;
1067 	    }
1068 	}
1069       else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1070 	/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1071 	{
1072 	  int tf = itype_rt (inst) & 0x01;
1073 	  int cnum = itype_rt (inst) >> 2;
1074 	  int fcrcs =
1075 	    read_signed_register (mips_regnum (current_gdbarch)->
1076 				  fp_control_status);
1077 	  int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1078 
1079 	  if (((cond >> cnum) & 0x01) == tf)
1080 	    pc += mips32_relative_offset (inst) + 4;
1081 	  else
1082 	    pc += 8;
1083 	}
1084       else
1085 	pc += 4;		/* Not a branch, next instruction is easy */
1086     }
1087   else
1088     {				/* This gets way messy */
1089 
1090       /* Further subdivide into SPECIAL, REGIMM and other */
1091       switch (op = itype_op (inst) & 0x07)	/* extract bits 28,27,26 */
1092 	{
1093 	case 0:		/* SPECIAL */
1094 	  op = rtype_funct (inst);
1095 	  switch (op)
1096 	    {
1097 	    case 8:		/* JR */
1098 	    case 9:		/* JALR */
1099 	      /* Set PC to that address */
1100 	      pc = read_signed_register (rtype_rs (inst));
1101 	      break;
1102 	    default:
1103 	      pc += 4;
1104 	    }
1105 
1106 	  break;		/* end SPECIAL */
1107 	case 1:		/* REGIMM */
1108 	  {
1109 	    op = itype_rt (inst);	/* branch condition */
1110 	    switch (op)
1111 	      {
1112 	      case 0:		/* BLTZ */
1113 	      case 2:		/* BLTZL */
1114 	      case 16:		/* BLTZAL */
1115 	      case 18:		/* BLTZALL */
1116 	      less_branch:
1117 		if (read_signed_register (itype_rs (inst)) < 0)
1118 		  pc += mips32_relative_offset (inst) + 4;
1119 		else
1120 		  pc += 8;	/* after the delay slot */
1121 		break;
1122 	      case 1:		/* BGEZ */
1123 	      case 3:		/* BGEZL */
1124 	      case 17:		/* BGEZAL */
1125 	      case 19:		/* BGEZALL */
1126 		if (read_signed_register (itype_rs (inst)) >= 0)
1127 		  pc += mips32_relative_offset (inst) + 4;
1128 		else
1129 		  pc += 8;	/* after the delay slot */
1130 		break;
1131 		/* All of the other instructions in the REGIMM category */
1132 	      default:
1133 		pc += 4;
1134 	      }
1135 	  }
1136 	  break;		/* end REGIMM */
1137 	case 2:		/* J */
1138 	case 3:		/* JAL */
1139 	  {
1140 	    unsigned long reg;
1141 	    reg = jtype_target (inst) << 2;
1142 	    /* Upper four bits get never changed... */
1143 	    pc = reg + ((pc + 4) & 0xf0000000);
1144 	  }
1145 	  break;
1146 	  /* FIXME case JALX : */
1147 	  {
1148 	    unsigned long reg;
1149 	    reg = jtype_target (inst) << 2;
1150 	    pc = reg + ((pc + 4) & 0xf0000000) + 1;	/* yes, +1 */
1151 	    /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1152 	  }
1153 	  break;		/* The new PC will be alternate mode */
1154 	case 4:		/* BEQ, BEQL */
1155 	equal_branch:
1156 	  if (read_signed_register (itype_rs (inst)) ==
1157 	      read_signed_register (itype_rt (inst)))
1158 	    pc += mips32_relative_offset (inst) + 4;
1159 	  else
1160 	    pc += 8;
1161 	  break;
1162 	case 5:		/* BNE, BNEL */
1163 	neq_branch:
1164 	  if (read_signed_register (itype_rs (inst)) !=
1165 	      read_signed_register (itype_rt (inst)))
1166 	    pc += mips32_relative_offset (inst) + 4;
1167 	  else
1168 	    pc += 8;
1169 	  break;
1170 	case 6:		/* BLEZ, BLEZL */
1171 	  if (read_signed_register (itype_rs (inst) <= 0))
1172 	    pc += mips32_relative_offset (inst) + 4;
1173 	  else
1174 	    pc += 8;
1175 	  break;
1176 	case 7:
1177 	default:
1178 	greater_branch:	/* BGTZ, BGTZL */
1179 	  if (read_signed_register (itype_rs (inst) > 0))
1180 	    pc += mips32_relative_offset (inst) + 4;
1181 	  else
1182 	    pc += 8;
1183 	  break;
1184 	}			/* switch */
1185     }				/* else */
1186   return pc;
1187 }				/* mips32_next_pc */
1188 
1189 /* Decoding the next place to set a breakpoint is irregular for the
1190    mips 16 variant, but fortunately, there fewer instructions. We have to cope
1191    ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1192    We dont want to set a single step instruction on the extend instruction
1193    either.
1194  */
1195 
1196 /* Lots of mips16 instruction formats */
1197 /* Predicting jumps requires itype,ritype,i8type
1198    and their extensions      extItype,extritype,extI8type
1199  */
1200 enum mips16_inst_fmts
1201 {
1202   itype,			/* 0  immediate 5,10 */
1203   ritype,			/* 1   5,3,8 */
1204   rrtype,			/* 2   5,3,3,5 */
1205   rritype,			/* 3   5,3,3,5 */
1206   rrrtype,			/* 4   5,3,3,3,2 */
1207   rriatype,			/* 5   5,3,3,1,4 */
1208   shifttype,			/* 6   5,3,3,3,2 */
1209   i8type,			/* 7   5,3,8 */
1210   i8movtype,			/* 8   5,3,3,5 */
1211   i8mov32rtype,			/* 9   5,3,5,3 */
1212   i64type,			/* 10  5,3,8 */
1213   ri64type,			/* 11  5,3,3,5 */
1214   jalxtype,			/* 12  5,1,5,5,16 - a 32 bit instruction */
1215   exiItype,			/* 13  5,6,5,5,1,1,1,1,1,1,5 */
1216   extRitype,			/* 14  5,6,5,5,3,1,1,1,5 */
1217   extRRItype,			/* 15  5,5,5,5,3,3,5 */
1218   extRRIAtype,			/* 16  5,7,4,5,3,3,1,4 */
1219   EXTshifttype,			/* 17  5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1220   extI8type,			/* 18  5,6,5,5,3,1,1,1,5 */
1221   extI64type,			/* 19  5,6,5,5,3,1,1,1,5 */
1222   extRi64type,			/* 20  5,6,5,5,3,3,5 */
1223   extshift64type		/* 21  5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1224 };
1225 /* I am heaping all the fields of the formats into one structure and
1226    then, only the fields which are involved in instruction extension */
1227 struct upk_mips16
1228 {
1229   CORE_ADDR offset;
1230   unsigned int regx;		/* Function in i8 type */
1231   unsigned int regy;
1232 };
1233 
1234 
1235 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1236    for the bits which make up the immediatate extension.  */
1237 
1238 static CORE_ADDR
extended_offset(unsigned int extension)1239 extended_offset (unsigned int extension)
1240 {
1241   CORE_ADDR value;
1242   value = (extension >> 21) & 0x3f;	/* * extract 15:11 */
1243   value = value << 6;
1244   value |= (extension >> 16) & 0x1f;	/* extrace 10:5 */
1245   value = value << 5;
1246   value |= extension & 0x01f;	/* extract 4:0 */
1247   return value;
1248 }
1249 
1250 /* Only call this function if you know that this is an extendable
1251    instruction, It wont malfunction, but why make excess remote memory references?
1252    If the immediate operands get sign extended or somthing, do it after
1253    the extension is performed.
1254  */
1255 /* FIXME: Every one of these cases needs to worry about sign extension
1256    when the offset is to be used in relative addressing */
1257 
1258 
1259 static unsigned int
fetch_mips_16(CORE_ADDR pc)1260 fetch_mips_16 (CORE_ADDR pc)
1261 {
1262   char buf[8];
1263   pc &= 0xfffffffe;		/* clear the low order bit */
1264   target_read_memory (pc, buf, 2);
1265   return extract_unsigned_integer (buf, 2);
1266 }
1267 
1268 static void
unpack_mips16(CORE_ADDR pc,unsigned int extension,unsigned int inst,enum mips16_inst_fmts insn_format,struct upk_mips16 * upk)1269 unpack_mips16 (CORE_ADDR pc,
1270 	       unsigned int extension,
1271 	       unsigned int inst,
1272 	       enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1273 {
1274   CORE_ADDR offset;
1275   int regx;
1276   int regy;
1277   switch (insn_format)
1278     {
1279     case itype:
1280       {
1281 	CORE_ADDR value;
1282 	if (extension)
1283 	  {
1284 	    value = extended_offset (extension);
1285 	    value = value << 11;	/* rom for the original value */
1286 	    value |= inst & 0x7ff;	/* eleven bits from instruction */
1287 	  }
1288 	else
1289 	  {
1290 	    value = inst & 0x7ff;
1291 	    /* FIXME : Consider sign extension */
1292 	  }
1293 	offset = value;
1294 	regx = -1;
1295 	regy = -1;
1296       }
1297       break;
1298     case ritype:
1299     case i8type:
1300       {				/* A register identifier and an offset */
1301 	/* Most of the fields are the same as I type but the
1302 	   immediate value is of a different length */
1303 	CORE_ADDR value;
1304 	if (extension)
1305 	  {
1306 	    value = extended_offset (extension);
1307 	    value = value << 8;	/* from the original instruction */
1308 	    value |= inst & 0xff;	/* eleven bits from instruction */
1309 	    regx = (extension >> 8) & 0x07;	/* or i8 funct */
1310 	    if (value & 0x4000)	/* test the sign bit , bit 26 */
1311 	      {
1312 		value &= ~0x3fff;	/* remove the sign bit */
1313 		value = -value;
1314 	      }
1315 	  }
1316 	else
1317 	  {
1318 	    value = inst & 0xff;	/* 8 bits */
1319 	    regx = (inst >> 8) & 0x07;	/* or i8 funct */
1320 	    /* FIXME: Do sign extension , this format needs it */
1321 	    if (value & 0x80)	/* THIS CONFUSES ME */
1322 	      {
1323 		value &= 0xef;	/* remove the sign bit */
1324 		value = -value;
1325 	      }
1326 	  }
1327 	offset = value;
1328 	regy = -1;
1329 	break;
1330       }
1331     case jalxtype:
1332       {
1333 	unsigned long value;
1334 	unsigned int nexthalf;
1335 	value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1336 	value = value << 16;
1337 	nexthalf = mips_fetch_instruction (pc + 2);	/* low bit still set */
1338 	value |= nexthalf;
1339 	offset = value;
1340 	regx = -1;
1341 	regy = -1;
1342 	break;
1343       }
1344     default:
1345       internal_error (__FILE__, __LINE__, "bad switch");
1346     }
1347   upk->offset = offset;
1348   upk->regx = regx;
1349   upk->regy = regy;
1350 }
1351 
1352 
1353 static CORE_ADDR
add_offset_16(CORE_ADDR pc,int offset)1354 add_offset_16 (CORE_ADDR pc, int offset)
1355 {
1356   return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1357 }
1358 
1359 static CORE_ADDR
extended_mips16_next_pc(CORE_ADDR pc,unsigned int extension,unsigned int insn)1360 extended_mips16_next_pc (CORE_ADDR pc,
1361 			 unsigned int extension, unsigned int insn)
1362 {
1363   int op = (insn >> 11);
1364   switch (op)
1365     {
1366     case 2:			/* Branch */
1367       {
1368 	CORE_ADDR offset;
1369 	struct upk_mips16 upk;
1370 	unpack_mips16 (pc, extension, insn, itype, &upk);
1371 	offset = upk.offset;
1372 	if (offset & 0x800)
1373 	  {
1374 	    offset &= 0xeff;
1375 	    offset = -offset;
1376 	  }
1377 	pc += (offset << 1) + 2;
1378 	break;
1379       }
1380     case 3:			/* JAL , JALX - Watch out, these are 32 bit instruction */
1381       {
1382 	struct upk_mips16 upk;
1383 	unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1384 	pc = add_offset_16 (pc, upk.offset);
1385 	if ((insn >> 10) & 0x01)	/* Exchange mode */
1386 	  pc = pc & ~0x01;	/* Clear low bit, indicate 32 bit mode */
1387 	else
1388 	  pc |= 0x01;
1389 	break;
1390       }
1391     case 4:			/* beqz */
1392       {
1393 	struct upk_mips16 upk;
1394 	int reg;
1395 	unpack_mips16 (pc, extension, insn, ritype, &upk);
1396 	reg = read_signed_register (upk.regx);
1397 	if (reg == 0)
1398 	  pc += (upk.offset << 1) + 2;
1399 	else
1400 	  pc += 2;
1401 	break;
1402       }
1403     case 5:			/* bnez */
1404       {
1405 	struct upk_mips16 upk;
1406 	int reg;
1407 	unpack_mips16 (pc, extension, insn, ritype, &upk);
1408 	reg = read_signed_register (upk.regx);
1409 	if (reg != 0)
1410 	  pc += (upk.offset << 1) + 2;
1411 	else
1412 	  pc += 2;
1413 	break;
1414       }
1415     case 12:			/* I8 Formats btez btnez */
1416       {
1417 	struct upk_mips16 upk;
1418 	int reg;
1419 	unpack_mips16 (pc, extension, insn, i8type, &upk);
1420 	/* upk.regx contains the opcode */
1421 	reg = read_signed_register (24);	/* Test register is 24 */
1422 	if (((upk.regx == 0) && (reg == 0))	/* BTEZ */
1423 	    || ((upk.regx == 1) && (reg != 0)))	/* BTNEZ */
1424 	  /* pc = add_offset_16(pc,upk.offset) ; */
1425 	  pc += (upk.offset << 1) + 2;
1426 	else
1427 	  pc += 2;
1428 	break;
1429       }
1430     case 29:			/* RR Formats JR, JALR, JALR-RA */
1431       {
1432 	struct upk_mips16 upk;
1433 	/* upk.fmt = rrtype; */
1434 	op = insn & 0x1f;
1435 	if (op == 0)
1436 	  {
1437 	    int reg;
1438 	    upk.regx = (insn >> 8) & 0x07;
1439 	    upk.regy = (insn >> 5) & 0x07;
1440 	    switch (upk.regy)
1441 	      {
1442 	      case 0:
1443 		reg = upk.regx;
1444 		break;
1445 	      case 1:
1446 		reg = 31;
1447 		break;		/* Function return instruction */
1448 	      case 2:
1449 		reg = upk.regx;
1450 		break;
1451 	      default:
1452 		reg = 31;
1453 		break;		/* BOGUS Guess */
1454 	      }
1455 	    pc = read_signed_register (reg);
1456 	  }
1457 	else
1458 	  pc += 2;
1459 	break;
1460       }
1461     case 30:
1462       /* This is an instruction extension.  Fetch the real instruction
1463          (which follows the extension) and decode things based on
1464          that. */
1465       {
1466 	pc += 2;
1467 	pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1468 	break;
1469       }
1470     default:
1471       {
1472 	pc += 2;
1473 	break;
1474       }
1475     }
1476   return pc;
1477 }
1478 
1479 static CORE_ADDR
mips16_next_pc(CORE_ADDR pc)1480 mips16_next_pc (CORE_ADDR pc)
1481 {
1482   unsigned int insn = fetch_mips_16 (pc);
1483   return extended_mips16_next_pc (pc, 0, insn);
1484 }
1485 
1486 /* The mips_next_pc function supports single_step when the remote
1487    target monitor or stub is not developed enough to do a single_step.
1488    It works by decoding the current instruction and predicting where a
1489    branch will go. This isnt hard because all the data is available.
1490    The MIPS32 and MIPS16 variants are quite different */
1491 CORE_ADDR
mips_next_pc(CORE_ADDR pc)1492 mips_next_pc (CORE_ADDR pc)
1493 {
1494   if (pc & 0x01)
1495     return mips16_next_pc (pc);
1496   else
1497     return mips32_next_pc (pc);
1498 }
1499 
1500 struct mips_frame_cache
1501 {
1502   CORE_ADDR base;
1503   struct trad_frame_saved_reg *saved_regs;
1504 };
1505 
1506 
1507 static struct mips_frame_cache *
mips_mdebug_frame_cache(struct frame_info * next_frame,void ** this_cache)1508 mips_mdebug_frame_cache (struct frame_info *next_frame, void **this_cache)
1509 {
1510   mips_extra_func_info_t proc_desc;
1511   struct mips_frame_cache *cache;
1512   struct gdbarch *gdbarch = get_frame_arch (next_frame);
1513   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1514   /* r0 bit means kernel trap */
1515   int kernel_trap;
1516   /* What registers have been saved?  Bitmasks.  */
1517   unsigned long gen_mask, float_mask;
1518 
1519   if ((*this_cache) != NULL)
1520     return (*this_cache);
1521   cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1522   (*this_cache) = cache;
1523   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1524 
1525   /* Get the mdebug proc descriptor.  */
1526   proc_desc = find_proc_desc (frame_pc_unwind (next_frame), next_frame, 1);
1527   if (proc_desc == NULL)
1528     /* I'm not sure how/whether this can happen.  Normally when we
1529        can't find a proc_desc, we "synthesize" one using
1530        heuristic_proc_desc and set the saved_regs right away.  */
1531     return cache;
1532 
1533   /* Extract the frame's base.  */
1534   cache->base = (frame_unwind_register_signed (next_frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
1535 		 + PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1536 
1537   kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1538   gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1539   float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1540 
1541   /* In any frame other than the innermost or a frame interrupted by a
1542      signal, we assume that all registers have been saved.  This
1543      assumes that all register saves in a function happen before the
1544      first function call.  */
1545   if (in_prologue (frame_pc_unwind (next_frame), PROC_LOW_ADDR (proc_desc))
1546       /* Not sure exactly what kernel_trap means, but if it means the
1547 	 kernel saves the registers without a prologue doing it, we
1548 	 better not examine the prologue to see whether registers
1549 	 have been saved yet.  */
1550       && !kernel_trap)
1551     {
1552       /* We need to figure out whether the registers that the
1553          proc_desc claims are saved have been saved yet.  */
1554 
1555       CORE_ADDR addr;
1556 
1557       /* Bitmasks; set if we have found a save for the register.  */
1558       unsigned long gen_save_found = 0;
1559       unsigned long float_save_found = 0;
1560       int mips16;
1561 
1562       /* If the address is odd, assume this is MIPS16 code.  */
1563       addr = PROC_LOW_ADDR (proc_desc);
1564       mips16 = pc_is_mips16 (addr);
1565 
1566       /* Scan through this function's instructions preceding the
1567          current PC, and look for those that save registers.  */
1568       while (addr < frame_pc_unwind (next_frame))
1569 	{
1570 	  if (mips16)
1571 	    {
1572 	      mips16_decode_reg_save (mips16_fetch_instruction (addr),
1573 				      &gen_save_found);
1574 	      addr += MIPS16_INSTLEN;
1575 	    }
1576 	  else
1577 	    {
1578 	      mips32_decode_reg_save (mips32_fetch_instruction (addr),
1579 				      &gen_save_found, &float_save_found);
1580 	      addr += MIPS_INSTLEN;
1581 	    }
1582 	}
1583       gen_mask = gen_save_found;
1584       float_mask = float_save_found;
1585     }
1586 
1587   /* Fill in the offsets for the registers which gen_mask says were
1588      saved.  */
1589   {
1590     CORE_ADDR reg_position = (cache->base
1591 			      + PROC_REG_OFFSET (proc_desc));
1592     int ireg;
1593     for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1594       if (gen_mask & 0x80000000)
1595 	{
1596 	  cache->saved_regs[NUM_REGS + ireg].addr = reg_position;
1597 	  reg_position -= mips_abi_regsize (gdbarch);
1598 	}
1599   }
1600 
1601   /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1602      order of that normally used by gcc.  Therefore, we have to fetch
1603      the first instruction of the function, and if it's an entry
1604      instruction that saves $s0 or $s1, correct their saved addresses.  */
1605   if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1606     {
1607       ULONGEST inst = mips16_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1608       if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1609 	/* entry */
1610 	{
1611 	  int reg;
1612 	  int sreg_count = (inst >> 6) & 3;
1613 
1614 	  /* Check if the ra register was pushed on the stack.  */
1615 	  CORE_ADDR reg_position = (cache->base
1616 				    + PROC_REG_OFFSET (proc_desc));
1617 	  if (inst & 0x20)
1618 	    reg_position -= mips_abi_regsize (gdbarch);
1619 
1620 	  /* Check if the s0 and s1 registers were pushed on the
1621 	     stack.  */
1622 	  /* NOTE: cagney/2004-02-08: Huh?  This is doing no such
1623              check.  */
1624 	  for (reg = 16; reg < sreg_count + 16; reg++)
1625 	    {
1626 	      cache->saved_regs[NUM_REGS + reg].addr = reg_position;
1627 	      reg_position -= mips_abi_regsize (gdbarch);
1628 	    }
1629 	}
1630     }
1631 
1632   /* Fill in the offsets for the registers which float_mask says were
1633      saved.  */
1634   {
1635     CORE_ADDR reg_position = (cache->base
1636 			      + PROC_FREG_OFFSET (proc_desc));
1637     int ireg;
1638     /* Fill in the offsets for the float registers which float_mask
1639        says were saved.  */
1640     for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1641       if (float_mask & 0x80000000)
1642 	{
1643 	  if (mips_abi_regsize (gdbarch) == 4
1644 	      && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1645 	    {
1646 	      /* On a big endian 32 bit ABI, floating point registers
1647 	         are paired to form doubles such that the most
1648 	         significant part is in $f[N+1] and the least
1649 	         significant in $f[N] vis: $f[N+1] ||| $f[N].  The
1650 	         registers are also spilled as a pair and stored as a
1651 	         double.
1652 
1653 	         When little-endian the least significant part is
1654 	         stored first leading to the memory order $f[N] and
1655 	         then $f[N+1].
1656 
1657 	         Unfortunately, when big-endian the most significant
1658 	         part of the double is stored first, and the least
1659 	         significant is stored second.  This leads to the
1660 	         registers being ordered in memory as firt $f[N+1] and
1661 	         then $f[N].
1662 
1663 	         For the big-endian case make certain that the
1664 	         addresses point at the correct (swapped) locations
1665 	         $f[N] and $f[N+1] pair (keep in mind that
1666 	         reg_position is decremented each time through the
1667 	         loop).  */
1668 	      if ((ireg & 1))
1669 		cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
1670 		  .addr = reg_position - mips_abi_regsize (gdbarch);
1671 	      else
1672 		cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
1673 		  .addr = reg_position + mips_abi_regsize (gdbarch);
1674 	    }
1675 	  else
1676 	    cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
1677 	      .addr = reg_position;
1678 	  reg_position -= mips_abi_regsize (gdbarch);
1679 	}
1680 
1681     cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1682       = cache->saved_regs[NUM_REGS + RA_REGNUM];
1683   }
1684 
1685   /* SP_REGNUM, contains the value and not the address.  */
1686   trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1687 
1688   return (*this_cache);
1689 }
1690 
1691 static void
mips_mdebug_frame_this_id(struct frame_info * next_frame,void ** this_cache,struct frame_id * this_id)1692 mips_mdebug_frame_this_id (struct frame_info *next_frame, void **this_cache,
1693 			   struct frame_id *this_id)
1694 {
1695   struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame,
1696 							   this_cache);
1697   (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1698 }
1699 
1700 static void
mips_mdebug_frame_prev_register(struct frame_info * next_frame,void ** this_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)1701 mips_mdebug_frame_prev_register (struct frame_info *next_frame,
1702 				 void **this_cache,
1703 				 int regnum, int *optimizedp,
1704 				 enum lval_type *lvalp, CORE_ADDR *addrp,
1705 				 int *realnump, void *valuep)
1706 {
1707   struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame,
1708 							   this_cache);
1709   trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1710 			    optimizedp, lvalp, addrp, realnump, valuep);
1711 }
1712 
1713 static const struct frame_unwind mips_mdebug_frame_unwind =
1714 {
1715   NORMAL_FRAME,
1716   mips_mdebug_frame_this_id,
1717   mips_mdebug_frame_prev_register
1718 };
1719 
1720 static const struct frame_unwind *
mips_mdebug_frame_sniffer(struct frame_info * next_frame)1721 mips_mdebug_frame_sniffer (struct frame_info *next_frame)
1722 {
1723   return &mips_mdebug_frame_unwind;
1724 }
1725 
1726 static CORE_ADDR
mips_mdebug_frame_base_address(struct frame_info * next_frame,void ** this_cache)1727 mips_mdebug_frame_base_address (struct frame_info *next_frame,
1728 				void **this_cache)
1729 {
1730   struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame,
1731 							   this_cache);
1732   return info->base;
1733 }
1734 
1735 static const struct frame_base mips_mdebug_frame_base = {
1736   &mips_mdebug_frame_unwind,
1737   mips_mdebug_frame_base_address,
1738   mips_mdebug_frame_base_address,
1739   mips_mdebug_frame_base_address
1740 };
1741 
1742 static const struct frame_base *
mips_mdebug_frame_base_sniffer(struct frame_info * next_frame)1743 mips_mdebug_frame_base_sniffer (struct frame_info *next_frame)
1744 {
1745   return &mips_mdebug_frame_base;
1746 }
1747 
1748 static CORE_ADDR
read_next_frame_reg(struct frame_info * fi,int regno)1749 read_next_frame_reg (struct frame_info *fi, int regno)
1750 {
1751   /* Always a pseudo.  */
1752   gdb_assert (regno >= NUM_REGS);
1753   if (fi == NULL)
1754     {
1755       LONGEST val;
1756       regcache_cooked_read_signed (current_regcache, regno, &val);
1757       return val;
1758     }
1759   else if ((regno % NUM_REGS) == MIPS_SP_REGNUM)
1760     /* MIPS_SP_REGNUM is special, its value is stored in saved_regs.
1761        In fact, it is so special that it can even only be fetched
1762        using a raw register number!  Once this code as been converted
1763        to frame-unwind the problem goes away.  */
1764     return frame_unwind_register_signed (fi, regno % NUM_REGS);
1765   else
1766     return frame_unwind_register_signed (fi, regno);
1767 
1768 }
1769 
1770 /* mips_addr_bits_remove - remove useless address bits  */
1771 
1772 static CORE_ADDR
mips_addr_bits_remove(CORE_ADDR addr)1773 mips_addr_bits_remove (CORE_ADDR addr)
1774 {
1775   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1776   if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1777     /* This hack is a work-around for existing boards using PMON, the
1778        simulator, and any other 64-bit targets that doesn't have true
1779        64-bit addressing.  On these targets, the upper 32 bits of
1780        addresses are ignored by the hardware.  Thus, the PC or SP are
1781        likely to have been sign extended to all 1s by instruction
1782        sequences that load 32-bit addresses.  For example, a typical
1783        piece of code that loads an address is this:
1784 
1785        lui $r2, <upper 16 bits>
1786        ori $r2, <lower 16 bits>
1787 
1788        But the lui sign-extends the value such that the upper 32 bits
1789        may be all 1s.  The workaround is simply to mask off these
1790        bits.  In the future, gcc may be changed to support true 64-bit
1791        addressing, and this masking will have to be disabled.  */
1792     return addr &= 0xffffffffUL;
1793   else
1794     return addr;
1795 }
1796 
1797 /* mips_software_single_step() is called just before we want to resume
1798    the inferior, if we want to single-step it but there is no hardware
1799    or kernel single-step support (MIPS on GNU/Linux for example).  We find
1800    the target of the coming instruction and breakpoint it.
1801 
1802    single_step is also called just after the inferior stops.  If we had
1803    set up a simulated single-step, we undo our damage.  */
1804 
1805 void
mips_software_single_step(enum target_signal sig,int insert_breakpoints_p)1806 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1807 {
1808   static CORE_ADDR next_pc;
1809   typedef char binsn_quantum[BREAKPOINT_MAX];
1810   static binsn_quantum break_mem;
1811   CORE_ADDR pc;
1812 
1813   if (insert_breakpoints_p)
1814     {
1815       pc = read_register (mips_regnum (current_gdbarch)->pc);
1816       next_pc = mips_next_pc (pc);
1817 
1818       target_insert_breakpoint (next_pc, break_mem);
1819     }
1820   else
1821     target_remove_breakpoint (next_pc, break_mem);
1822 }
1823 
1824 static struct mips_extra_func_info temp_proc_desc;
1825 
1826 /* This hack will go away once the get_prev_frame() code has been
1827    modified to set the frame's type first.  That is BEFORE init extra
1828    frame info et.al.  is called.  This is because it will become
1829    possible to skip the init extra info call for sigtramp and dummy
1830    frames.  */
1831 static CORE_ADDR *temp_saved_regs;
1832 
1833 /* Set a register's saved stack address in temp_saved_regs.  If an
1834    address has already been set for this register, do nothing; this
1835    way we will only recognize the first save of a given register in a
1836    function prologue.
1837 
1838    For simplicity, save the address in both [0 .. NUM_REGS) and
1839    [NUM_REGS .. 2*NUM_REGS).  Strictly speaking, only the second range
1840    is used as it is only second range (the ABI instead of ISA
1841    registers) that comes into play when finding saved registers in a
1842    frame.  */
1843 
1844 static void
set_reg_offset(CORE_ADDR * saved_regs,int regno,CORE_ADDR offset)1845 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1846 {
1847   if (saved_regs[regno] == 0)
1848     {
1849       saved_regs[regno + 0 * NUM_REGS] = offset;
1850       saved_regs[regno + 1 * NUM_REGS] = offset;
1851     }
1852 }
1853 
1854 
1855 /* Test whether the PC points to the return instruction at the
1856    end of a function. */
1857 
1858 static int
mips_about_to_return(CORE_ADDR pc)1859 mips_about_to_return (CORE_ADDR pc)
1860 {
1861   if (pc_is_mips16 (pc))
1862     /* This mips16 case isn't necessarily reliable.  Sometimes the compiler
1863        generates a "jr $ra"; other times it generates code to load
1864        the return address from the stack to an accessible register (such
1865        as $a3), then a "jr" using that register.  This second case
1866        is almost impossible to distinguish from an indirect jump
1867        used for switch statements, so we don't even try.  */
1868     return mips_fetch_instruction (pc) == 0xe820;	/* jr $ra */
1869   else
1870     return mips_fetch_instruction (pc) == 0x3e00008;	/* jr $ra */
1871 }
1872 
1873 
1874 /* This fencepost looks highly suspicious to me.  Removing it also
1875    seems suspicious as it could affect remote debugging across serial
1876    lines.  */
1877 
1878 static CORE_ADDR
heuristic_proc_start(CORE_ADDR pc)1879 heuristic_proc_start (CORE_ADDR pc)
1880 {
1881   CORE_ADDR start_pc;
1882   CORE_ADDR fence;
1883   int instlen;
1884   int seen_adjsp = 0;
1885 
1886   pc = ADDR_BITS_REMOVE (pc);
1887   start_pc = pc;
1888   fence = start_pc - heuristic_fence_post;
1889   if (start_pc == 0)
1890     return 0;
1891 
1892   if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
1893     fence = VM_MIN_ADDRESS;
1894 
1895   instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1896 
1897   /* search back for previous return */
1898   for (start_pc -= instlen;; start_pc -= instlen)
1899     if (start_pc < fence)
1900       {
1901 	/* It's not clear to me why we reach this point when
1902 	   stop_soon, but with this test, at least we
1903 	   don't print out warnings for every child forked (eg, on
1904 	   decstation).  22apr93 rich@cygnus.com.  */
1905 	if (stop_soon == NO_STOP_QUIETLY)
1906 	  {
1907 	    static int blurb_printed = 0;
1908 
1909 	    warning ("GDB can't find the start of the function at 0x%s.",
1910 		     paddr_nz (pc));
1911 
1912 	    if (!blurb_printed)
1913 	      {
1914 		/* This actually happens frequently in embedded
1915 		   development, when you first connect to a board
1916 		   and your stack pointer and pc are nowhere in
1917 		   particular.  This message needs to give people
1918 		   in that situation enough information to
1919 		   determine that it's no big deal.  */
1920 		printf_filtered ("\n\
1921     GDB is unable to find the start of the function at 0x%s\n\
1922 and thus can't determine the size of that function's stack frame.\n\
1923 This means that GDB may be unable to access that stack frame, or\n\
1924 the frames below it.\n\
1925     This problem is most likely caused by an invalid program counter or\n\
1926 stack pointer.\n\
1927     However, if you think GDB should simply search farther back\n\
1928 from 0x%s for code which looks like the beginning of a\n\
1929 function, you can increase the range of the search using the `set\n\
1930 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
1931 		blurb_printed = 1;
1932 	      }
1933 	  }
1934 
1935 	return 0;
1936       }
1937     else if (pc_is_mips16 (start_pc))
1938       {
1939 	unsigned short inst;
1940 
1941 	/* On MIPS16, any one of the following is likely to be the
1942 	   start of a function:
1943 	   entry
1944 	   addiu sp,-n
1945 	   daddiu sp,-n
1946 	   extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'  */
1947 	inst = mips_fetch_instruction (start_pc);
1948 	if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)	/* entry */
1949 	    || (inst & 0xff80) == 0x6380	/* addiu sp,-n */
1950 	    || (inst & 0xff80) == 0xfb80	/* daddiu sp,-n */
1951 	    || ((inst & 0xf810) == 0xf010 && seen_adjsp))	/* extend -n */
1952 	  break;
1953 	else if ((inst & 0xff00) == 0x6300	/* addiu sp */
1954 		 || (inst & 0xff00) == 0xfb00)	/* daddiu sp */
1955 	  seen_adjsp = 1;
1956 	else
1957 	  seen_adjsp = 0;
1958       }
1959     else if (mips_about_to_return (start_pc))
1960       {
1961 	start_pc += 2 * MIPS_INSTLEN;	/* skip return, and its delay slot */
1962 	break;
1963       }
1964 
1965   return start_pc;
1966 }
1967 
1968 /* Fetch the immediate value from a MIPS16 instruction.
1969    If the previous instruction was an EXTEND, use it to extend
1970    the upper bits of the immediate value.  This is a helper function
1971    for mips16_heuristic_proc_desc.  */
1972 
1973 static int
mips16_get_imm(unsigned short prev_inst,unsigned short inst,int nbits,int scale,int is_signed)1974 mips16_get_imm (unsigned short prev_inst,	/* previous instruction */
1975 		unsigned short inst,	/* current instruction */
1976 		int nbits,	/* number of bits in imm field */
1977 		int scale,	/* scale factor to be applied to imm */
1978 		int is_signed)	/* is the imm field signed? */
1979 {
1980   int offset;
1981 
1982   if ((prev_inst & 0xf800) == 0xf000)	/* prev instruction was EXTEND? */
1983     {
1984       offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1985       if (offset & 0x8000)	/* check for negative extend */
1986 	offset = 0 - (0x10000 - (offset & 0xffff));
1987       return offset | (inst & 0x1f);
1988     }
1989   else
1990     {
1991       int max_imm = 1 << nbits;
1992       int mask = max_imm - 1;
1993       int sign_bit = max_imm >> 1;
1994 
1995       offset = inst & mask;
1996       if (is_signed && (offset & sign_bit))
1997 	offset = 0 - (max_imm - offset);
1998       return offset * scale;
1999     }
2000 }
2001 
2002 
2003 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2004    stream from start_pc to limit_pc.  */
2005 
2006 static void
mips16_heuristic_proc_desc(CORE_ADDR start_pc,CORE_ADDR limit_pc,struct frame_info * next_frame,CORE_ADDR sp)2007 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2008 			    struct frame_info *next_frame, CORE_ADDR sp)
2009 {
2010   CORE_ADDR cur_pc;
2011   CORE_ADDR frame_addr = 0;	/* Value of $r17, used as frame pointer */
2012   unsigned short prev_inst = 0;	/* saved copy of previous instruction */
2013   unsigned inst = 0;		/* current instruction */
2014   unsigned entry_inst = 0;	/* the entry instruction */
2015   int reg, offset;
2016   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2017 
2018   PROC_FRAME_OFFSET (&temp_proc_desc) = 0;	/* size of stack frame */
2019   PROC_FRAME_ADJUST (&temp_proc_desc) = 0;	/* offset of FP from SP */
2020 
2021   for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2022     {
2023       /* Save the previous instruction.  If it's an EXTEND, we'll extract
2024          the immediate offset extension from it in mips16_get_imm.  */
2025       prev_inst = inst;
2026 
2027       /* Fetch and decode the instruction.   */
2028       inst = (unsigned short) mips_fetch_instruction (cur_pc);
2029       if ((inst & 0xff00) == 0x6300	/* addiu sp */
2030 	  || (inst & 0xff00) == 0xfb00)	/* daddiu sp */
2031 	{
2032 	  offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2033 	  if (offset < 0)	/* negative stack adjustment? */
2034 	    PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2035 	  else
2036 	    /* Exit loop if a positive stack adjustment is found, which
2037 	       usually means that the stack cleanup code in the function
2038 	       epilogue is reached.  */
2039 	    break;
2040 	}
2041       else if ((inst & 0xf800) == 0xd000)	/* sw reg,n($sp) */
2042 	{
2043 	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2044 	  reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2045 	  PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2046 	  set_reg_offset (temp_saved_regs, reg, sp + offset);
2047 	}
2048       else if ((inst & 0xff00) == 0xf900)	/* sd reg,n($sp) */
2049 	{
2050 	  offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2051 	  reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2052 	  PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2053 	  set_reg_offset (temp_saved_regs, reg, sp + offset);
2054 	}
2055       else if ((inst & 0xff00) == 0x6200)	/* sw $ra,n($sp) */
2056 	{
2057 	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2058 	  PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2059 	  set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2060 	}
2061       else if ((inst & 0xff00) == 0xfa00)	/* sd $ra,n($sp) */
2062 	{
2063 	  offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2064 	  PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2065 	  set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2066 	}
2067       else if (inst == 0x673d)	/* move $s1, $sp */
2068 	{
2069 	  frame_addr = sp;
2070 	  PROC_FRAME_REG (&temp_proc_desc) = 17;
2071 	}
2072       else if ((inst & 0xff00) == 0x0100)	/* addiu $s1,sp,n */
2073 	{
2074 	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2075 	  frame_addr = sp + offset;
2076 	  PROC_FRAME_REG (&temp_proc_desc) = 17;
2077 	  PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2078 	}
2079       else if ((inst & 0xFF00) == 0xd900)	/* sw reg,offset($s1) */
2080 	{
2081 	  offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2082 	  reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2083 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2084 	  set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2085 	}
2086       else if ((inst & 0xFF00) == 0x7900)	/* sd reg,offset($s1) */
2087 	{
2088 	  offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2089 	  reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2090 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2091 	  set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2092 	}
2093       else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)	/* entry */
2094 	entry_inst = inst;	/* save for later processing */
2095       else if ((inst & 0xf800) == 0x1800)	/* jal(x) */
2096 	cur_pc += MIPS16_INSTLEN;	/* 32-bit instruction */
2097     }
2098 
2099   /* The entry instruction is typically the first instruction in a function,
2100      and it stores registers at offsets relative to the value of the old SP
2101      (before the prologue).  But the value of the sp parameter to this
2102      function is the new SP (after the prologue has been executed).  So we
2103      can't calculate those offsets until we've seen the entire prologue,
2104      and can calculate what the old SP must have been. */
2105   if (entry_inst != 0)
2106     {
2107       int areg_count = (entry_inst >> 8) & 7;
2108       int sreg_count = (entry_inst >> 6) & 3;
2109 
2110       /* The entry instruction always subtracts 32 from the SP.  */
2111       PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2112 
2113       /* Now we can calculate what the SP must have been at the
2114          start of the function prologue.  */
2115       sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2116 
2117       /* Check if a0-a3 were saved in the caller's argument save area.  */
2118       for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2119 	{
2120 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2121 	  set_reg_offset (temp_saved_regs, reg, sp + offset);
2122 	  offset += mips_abi_regsize (current_gdbarch);
2123 	}
2124 
2125       /* Check if the ra register was pushed on the stack.  */
2126       offset = -4;
2127       if (entry_inst & 0x20)
2128 	{
2129 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2130 	  set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2131 	  offset -= mips_abi_regsize (current_gdbarch);
2132 	}
2133 
2134       /* Check if the s0 and s1 registers were pushed on the stack.  */
2135       for (reg = 16; reg < sreg_count + 16; reg++)
2136 	{
2137 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2138 	  set_reg_offset (temp_saved_regs, reg, sp + offset);
2139 	  offset -= mips_abi_regsize (current_gdbarch);
2140 	}
2141     }
2142 }
2143 
2144 static void
mips32_heuristic_proc_desc(CORE_ADDR start_pc,CORE_ADDR limit_pc,struct frame_info * next_frame,CORE_ADDR sp)2145 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2146 			    struct frame_info *next_frame, CORE_ADDR sp)
2147 {
2148   CORE_ADDR cur_pc;
2149   CORE_ADDR frame_addr = 0;	/* Value of $r30. Used by gcc for frame-pointer */
2150 restart:
2151   temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2152   memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2153   PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2154   PROC_FRAME_ADJUST (&temp_proc_desc) = 0;	/* offset of FP from SP */
2155   for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2156     {
2157       unsigned long inst, high_word, low_word;
2158       int reg;
2159 
2160       /* Fetch the instruction.   */
2161       inst = (unsigned long) mips_fetch_instruction (cur_pc);
2162 
2163       /* Save some code by pre-extracting some useful fields.  */
2164       high_word = (inst >> 16) & 0xffff;
2165       low_word = inst & 0xffff;
2166       reg = high_word & 0x1f;
2167 
2168       if (high_word == 0x27bd	/* addiu $sp,$sp,-i */
2169 	  || high_word == 0x23bd	/* addi $sp,$sp,-i */
2170 	  || high_word == 0x67bd)	/* daddiu $sp,$sp,-i */
2171 	{
2172 	  if (low_word & 0x8000)	/* negative stack adjustment? */
2173 	    PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2174 	  else
2175 	    /* Exit loop if a positive stack adjustment is found, which
2176 	       usually means that the stack cleanup code in the function
2177 	       epilogue is reached.  */
2178 	    break;
2179 	}
2180       else if ((high_word & 0xFFE0) == 0xafa0)	/* sw reg,offset($sp) */
2181 	{
2182 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2183 	  set_reg_offset (temp_saved_regs, reg, sp + low_word);
2184 	}
2185       else if ((high_word & 0xFFE0) == 0xffa0)	/* sd reg,offset($sp) */
2186 	{
2187 	  /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and
2188 	     $ra.  */
2189 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2190 	  set_reg_offset (temp_saved_regs, reg, sp + low_word);
2191 	}
2192       else if (high_word == 0x27be)	/* addiu $30,$sp,size */
2193 	{
2194 	  /* Old gcc frame, r30 is virtual frame pointer.  */
2195 	  if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2196 	    frame_addr = sp + low_word;
2197 	  else if (PROC_FRAME_REG (&temp_proc_desc) == MIPS_SP_REGNUM)
2198 	    {
2199 	      unsigned alloca_adjust;
2200 	      PROC_FRAME_REG (&temp_proc_desc) = 30;
2201 	      frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2202 	      alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2203 	      if (alloca_adjust > 0)
2204 		{
2205 		  /* FP > SP + frame_size. This may be because
2206 		   * of an alloca or somethings similar.
2207 		   * Fix sp to "pre-alloca" value, and try again.
2208 		   */
2209 		  sp += alloca_adjust;
2210 		  goto restart;
2211 		}
2212 	    }
2213 	}
2214       /* move $30,$sp.  With different versions of gas this will be either
2215          `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2216          Accept any one of these.  */
2217       else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2218 	{
2219 	  /* New gcc frame, virtual frame pointer is at r30 + frame_size.  */
2220 	  if (PROC_FRAME_REG (&temp_proc_desc) == MIPS_SP_REGNUM)
2221 	    {
2222 	      unsigned alloca_adjust;
2223 	      PROC_FRAME_REG (&temp_proc_desc) = 30;
2224 	      frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2225 	      alloca_adjust = (unsigned) (frame_addr - sp);
2226 	      if (alloca_adjust > 0)
2227 		{
2228 		  /* FP > SP + frame_size. This may be because
2229 		   * of an alloca or somethings similar.
2230 		   * Fix sp to "pre-alloca" value, and try again.
2231 		   */
2232 		  sp += alloca_adjust;
2233 		  goto restart;
2234 		}
2235 	    }
2236 	}
2237       else if ((high_word & 0xFFE0) == 0xafc0)	/* sw reg,offset($30) */
2238 	{
2239 	  PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2240 	  set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2241 	}
2242     }
2243 }
2244 
2245 static mips_extra_func_info_t
heuristic_proc_desc(CORE_ADDR start_pc,CORE_ADDR limit_pc,struct frame_info * next_frame,int cur_frame)2246 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2247 		     struct frame_info *next_frame, int cur_frame)
2248 {
2249   CORE_ADDR sp;
2250 
2251   if (cur_frame)
2252     sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
2253   else
2254     sp = 0;
2255 
2256   if (start_pc == 0)
2257     return NULL;
2258   memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2259   temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2260   memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2261   PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2262   PROC_FRAME_REG (&temp_proc_desc) = MIPS_SP_REGNUM;
2263   PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2264 
2265   if (start_pc + 200 < limit_pc)
2266     limit_pc = start_pc + 200;
2267   if (pc_is_mips16 (start_pc))
2268     mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2269   else
2270     mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2271   return &temp_proc_desc;
2272 }
2273 
2274 struct mips_objfile_private
2275 {
2276   bfd_size_type size;
2277   char *contents;
2278 };
2279 
2280 /* Global used to communicate between non_heuristic_proc_desc and
2281    compare_pdr_entries within qsort ().  */
2282 static bfd *the_bfd;
2283 
2284 static int
compare_pdr_entries(const void * a,const void * b)2285 compare_pdr_entries (const void *a, const void *b)
2286 {
2287   CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2288   CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2289 
2290   if (lhs < rhs)
2291     return -1;
2292   else if (lhs == rhs)
2293     return 0;
2294   else
2295     return 1;
2296 }
2297 
2298 static mips_extra_func_info_t
non_heuristic_proc_desc(CORE_ADDR pc,CORE_ADDR * addrptr)2299 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2300 {
2301   CORE_ADDR startaddr;
2302   mips_extra_func_info_t proc_desc;
2303   struct block *b = block_for_pc (pc);
2304   struct symbol *sym;
2305   struct obj_section *sec;
2306   struct mips_objfile_private *priv;
2307 
2308   find_pc_partial_function (pc, NULL, &startaddr, NULL);
2309   if (addrptr)
2310     *addrptr = startaddr;
2311 
2312   priv = NULL;
2313 
2314   sec = find_pc_section (pc);
2315   if (sec != NULL)
2316     {
2317       priv = (struct mips_objfile_private *) objfile_data (sec->objfile, mips_pdr_data);
2318 
2319       /* Search the ".pdr" section generated by GAS.  This includes most of
2320          the information normally found in ECOFF PDRs.  */
2321 
2322       the_bfd = sec->objfile->obfd;
2323       if (priv == NULL
2324 	  && (the_bfd->format == bfd_object
2325 	      && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2326 	      && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2327 	{
2328 	  /* Right now GAS only outputs the address as a four-byte sequence.
2329 	     This means that we should not bother with this method on 64-bit
2330 	     targets (until that is fixed).  */
2331 
2332 	  priv = obstack_alloc (&sec->objfile->objfile_obstack,
2333 				sizeof (struct mips_objfile_private));
2334 	  priv->size = 0;
2335 	  set_objfile_data (sec->objfile, mips_pdr_data, priv);
2336 	}
2337       else if (priv == NULL)
2338 	{
2339 	  asection *bfdsec;
2340 
2341 	  priv = obstack_alloc (&sec->objfile->objfile_obstack,
2342 				sizeof (struct mips_objfile_private));
2343 
2344 	  bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2345 	  if (bfdsec != NULL)
2346 	    {
2347 	      priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2348 	      priv->contents = obstack_alloc (&sec->objfile->objfile_obstack,
2349 					      priv->size);
2350 	      bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2351 					priv->contents, 0, priv->size);
2352 
2353 	      /* In general, the .pdr section is sorted.  However, in the
2354 	         presence of multiple code sections (and other corner cases)
2355 	         it can become unsorted.  Sort it so that we can use a faster
2356 	         binary search.  */
2357 	      qsort (priv->contents, priv->size / 32, 32,
2358 		     compare_pdr_entries);
2359 	    }
2360 	  else
2361 	    priv->size = 0;
2362 
2363 	  set_objfile_data (sec->objfile, mips_pdr_data, priv);
2364 	}
2365       the_bfd = NULL;
2366 
2367       if (priv->size != 0)
2368 	{
2369 	  int low, mid, high;
2370 	  char *ptr;
2371 	  CORE_ADDR pdr_pc;
2372 
2373 	  low = 0;
2374 	  high = priv->size / 32;
2375 
2376 	  /* We've found a .pdr section describing this objfile.  We want to
2377 	     find the entry which describes this code address.  The .pdr
2378 	     information is not very descriptive; we have only a function
2379 	     start address.  We have to look for the closest entry, because
2380 	     the local symbol at the beginning of this function may have
2381 	     been stripped - so if we ask the symbol table for the start
2382 	     address we may get a preceding global function.  */
2383 
2384 	  /* First, find the last .pdr entry starting at or before PC.  */
2385 	  do
2386 	    {
2387 	      mid = (low + high) / 2;
2388 
2389 	      ptr = priv->contents + mid * 32;
2390 	      pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2391 	      pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2392 				  SECT_OFF_TEXT (sec->objfile));
2393 
2394 	      if (pdr_pc > pc)
2395 		high = mid;
2396 	      else
2397 		low = mid + 1;
2398 	    }
2399 	  while (low != high);
2400 
2401 	  /* Both low and high point one past the PDR of interest.  If
2402 	     both are zero, that means this PC is before any region
2403 	     covered by a PDR, i.e. pdr_pc for the first PDR entry is
2404 	     greater than PC.  */
2405 	  if (low > 0)
2406 	    {
2407 	      ptr = priv->contents + (low - 1) * 32;
2408 	      pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2409 	      pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2410 				  SECT_OFF_TEXT (sec->objfile));
2411 	    }
2412 
2413 	  /* We don't have a range, so we have no way to know for sure
2414 	     whether we're in the correct PDR or a PDR for a preceding
2415 	     function and the current function was a stripped local
2416 	     symbol.  But if the PDR's PC is at least as great as the
2417 	     best guess from the symbol table, assume that it does cover
2418 	     the right area; if a .pdr section is present at all then
2419 	     nearly every function will have an entry.  The biggest exception
2420 	     will be the dynamic linker stubs; conveniently these are
2421 	     placed before .text instead of after.  */
2422 
2423 	  if (pc >= pdr_pc && pdr_pc >= startaddr)
2424 	    {
2425 	      struct symbol *sym = find_pc_function (pc);
2426 
2427 	      if (addrptr)
2428 		*addrptr = pdr_pc;
2429 
2430 	      /* Fill in what we need of the proc_desc.  */
2431 	      proc_desc = (mips_extra_func_info_t)
2432 		obstack_alloc (&sec->objfile->objfile_obstack,
2433 			       sizeof (struct mips_extra_func_info));
2434 	      PROC_LOW_ADDR (proc_desc) = pdr_pc;
2435 
2436 	      /* Only used for dummy frames.  */
2437 	      PROC_HIGH_ADDR (proc_desc) = 0;
2438 
2439 	      PROC_FRAME_OFFSET (proc_desc)
2440 		= bfd_get_32 (sec->objfile->obfd, ptr + 20);
2441 	      PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2442 						       ptr + 24);
2443 	      PROC_FRAME_ADJUST (proc_desc) = 0;
2444 	      PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2445 						      ptr + 4);
2446 	      PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2447 						       ptr + 12);
2448 	      PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2449 							ptr + 8);
2450 	      PROC_FREG_OFFSET (proc_desc)
2451 		= bfd_get_32 (sec->objfile->obfd, ptr + 16);
2452 	      PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2453 						    ptr + 28);
2454 	      proc_desc->pdr.isym = (long) sym;
2455 
2456 	      return proc_desc;
2457 	    }
2458 	}
2459     }
2460 
2461   if (b == NULL)
2462     return NULL;
2463 
2464   if (startaddr > BLOCK_START (b))
2465     {
2466       /* This is the "pathological" case referred to in a comment in
2467          print_frame_info.  It might be better to move this check into
2468          symbol reading.  */
2469       return NULL;
2470     }
2471 
2472   sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2473 
2474   /* If we never found a PDR for this function in symbol reading, then
2475      examine prologues to find the information.  */
2476   if (sym)
2477     {
2478       proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2479       if (PROC_FRAME_REG (proc_desc) == -1)
2480 	return NULL;
2481       else
2482 	return proc_desc;
2483     }
2484   else
2485     return NULL;
2486 }
2487 
2488 
2489 static mips_extra_func_info_t
find_proc_desc(CORE_ADDR pc,struct frame_info * next_frame,int cur_frame)2490 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2491 {
2492   mips_extra_func_info_t proc_desc;
2493   CORE_ADDR startaddr = 0;
2494 
2495   proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2496 
2497   if (proc_desc)
2498     {
2499       /* IF this is the topmost frame AND
2500        * (this proc does not have debugging information OR
2501        * the PC is in the procedure prologue)
2502        * THEN create a "heuristic" proc_desc (by analyzing
2503        * the actual code) to replace the "official" proc_desc.
2504        */
2505       if (next_frame == NULL)
2506 	{
2507 	  struct symtab_and_line val;
2508 	  struct symbol *proc_symbol =
2509 	    PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2510 
2511 	  if (proc_symbol)
2512 	    {
2513 	      val = find_pc_line (BLOCK_START
2514 				  (SYMBOL_BLOCK_VALUE (proc_symbol)), 0);
2515 	      val.pc = val.end ? val.end : pc;
2516 	    }
2517 	  if (!proc_symbol || pc < val.pc)
2518 	    {
2519 	      mips_extra_func_info_t found_heuristic =
2520 		heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2521 				     pc, next_frame, cur_frame);
2522 	      if (found_heuristic)
2523 		proc_desc = found_heuristic;
2524 	    }
2525 	}
2526     }
2527   else
2528     {
2529       /* Is linked_proc_desc_table really necessary?  It only seems to be used
2530          by procedure call dummys.  However, the procedures being called ought
2531          to have their own proc_descs, and even if they don't,
2532          heuristic_proc_desc knows how to create them! */
2533 
2534       struct linked_proc_info *link;
2535 
2536       for (link = linked_proc_desc_table; link; link = link->next)
2537 	if (PROC_LOW_ADDR (&link->info) <= pc
2538 	    && PROC_HIGH_ADDR (&link->info) > pc)
2539 	  return &link->info;
2540 
2541       if (startaddr == 0)
2542 	startaddr = heuristic_proc_start (pc);
2543 
2544       proc_desc = heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2545     }
2546   return proc_desc;
2547 }
2548 
2549 /* MIPS stack frames are almost impenetrable.  When execution stops,
2550    we basically have to look at symbol information for the function
2551    that we stopped in, which tells us *which* register (if any) is
2552    the base of the frame pointer, and what offset from that register
2553    the frame itself is at.
2554 
2555    This presents a problem when trying to examine a stack in memory
2556    (that isn't executing at the moment), using the "frame" command.  We
2557    don't have a PC, nor do we have any registers except SP.
2558 
2559    This routine takes two arguments, SP and PC, and tries to make the
2560    cached frames look as if these two arguments defined a frame on the
2561    cache.  This allows the rest of info frame to extract the important
2562    arguments without difficulty.  */
2563 
2564 struct frame_info *
setup_arbitrary_frame(int argc,CORE_ADDR * argv)2565 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2566 {
2567   if (argc != 2)
2568     error ("MIPS frame specifications require two arguments: sp and pc");
2569 
2570   return create_new_frame (argv[0], argv[1]);
2571 }
2572 
2573 /* According to the current ABI, should the type be passed in a
2574    floating-point register (assuming that there is space)?  When there
2575    is no FPU, FP are not even considered as possibile candidates for
2576    FP registers and, consequently this returns false - forces FP
2577    arguments into integer registers. */
2578 
2579 static int
fp_register_arg_p(enum type_code typecode,struct type * arg_type)2580 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2581 {
2582   return ((typecode == TYPE_CODE_FLT
2583 	   || (MIPS_EABI
2584 	       && (typecode == TYPE_CODE_STRUCT
2585 		   || typecode == TYPE_CODE_UNION)
2586 	       && TYPE_NFIELDS (arg_type) == 1
2587 	       && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2588 	  && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2589 }
2590 
2591 /* On o32, argument passing in GPRs depends on the alignment of the type being
2592    passed.  Return 1 if this type must be aligned to a doubleword boundary. */
2593 
2594 static int
mips_type_needs_double_align(struct type * type)2595 mips_type_needs_double_align (struct type *type)
2596 {
2597   enum type_code typecode = TYPE_CODE (type);
2598 
2599   if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2600     return 1;
2601   else if (typecode == TYPE_CODE_STRUCT)
2602     {
2603       if (TYPE_NFIELDS (type) < 1)
2604 	return 0;
2605       return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2606     }
2607   else if (typecode == TYPE_CODE_UNION)
2608     {
2609       int i, n;
2610 
2611       n = TYPE_NFIELDS (type);
2612       for (i = 0; i < n; i++)
2613 	if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2614 	  return 1;
2615       return 0;
2616     }
2617   return 0;
2618 }
2619 
2620 /* Adjust the address downward (direction of stack growth) so that it
2621    is correctly aligned for a new stack frame.  */
2622 static CORE_ADDR
mips_frame_align(struct gdbarch * gdbarch,CORE_ADDR addr)2623 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2624 {
2625   return align_down (addr, 16);
2626 }
2627 
2628 /* Determine how a return value is stored within the MIPS register
2629    file, given the return type `valtype'. */
2630 
2631 struct return_value_word
2632 {
2633   int len;
2634   int reg;
2635   int reg_offset;
2636   int buf_offset;
2637 };
2638 
2639 static void
return_value_location(struct type * valtype,struct return_value_word * hi,struct return_value_word * lo)2640 return_value_location (struct type *valtype,
2641 		       struct return_value_word *hi,
2642 		       struct return_value_word *lo)
2643 {
2644   int len = TYPE_LENGTH (valtype);
2645   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2646 
2647   if (TYPE_CODE (valtype) == TYPE_CODE_FLT
2648       && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
2649 	  || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
2650     {
2651       if (mips_abi_regsize (current_gdbarch) < 8 && len == 8)
2652 	{
2653 	  /* We need to break a 64bit float in two 32 bit halves and
2654 	     spread them across a floating-point register pair.  */
2655 	  lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2656 	  hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
2657 	  lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2658 			     && register_size (current_gdbarch,
2659 					       mips_regnum (current_gdbarch)->
2660 					       fp0) == 8) ? 4 : 0);
2661 	  hi->reg_offset = lo->reg_offset;
2662 	  lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
2663 	  hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
2664 	  lo->len = 4;
2665 	  hi->len = 4;
2666 	}
2667       else
2668 	{
2669 	  /* The floating point value fits in a single floating-point
2670 	     register. */
2671 	  lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2672 			     && register_size (current_gdbarch,
2673 					       mips_regnum (current_gdbarch)->
2674 					       fp0) == 8
2675 			     && len == 4) ? 4 : 0);
2676 	  lo->reg = mips_regnum (current_gdbarch)->fp0;
2677 	  lo->len = len;
2678 	  lo->buf_offset = 0;
2679 	  hi->len = 0;
2680 	  hi->reg_offset = 0;
2681 	  hi->buf_offset = 0;
2682 	  hi->reg = 0;
2683 	}
2684     }
2685   else
2686     {
2687       /* Locate a result possibly spread across two registers. */
2688       int regnum = 2;
2689       lo->reg = regnum + 0;
2690       hi->reg = regnum + 1;
2691       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2692 	  && len < mips_abi_regsize (current_gdbarch))
2693 	{
2694 	  /* "un-left-justify" the value in the low register */
2695 	  lo->reg_offset = mips_abi_regsize (current_gdbarch) - len;
2696 	  lo->len = len;
2697 	  hi->reg_offset = 0;
2698 	  hi->len = 0;
2699 	}
2700       else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG && len > mips_abi_regsize (current_gdbarch)	/* odd-size structs */
2701 	       && len < mips_abi_regsize (current_gdbarch) * 2
2702 	       && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
2703 		   TYPE_CODE (valtype) == TYPE_CODE_UNION))
2704 	{
2705 	  /* "un-left-justify" the value spread across two registers. */
2706 	  lo->reg_offset = 2 * mips_abi_regsize (current_gdbarch) - len;
2707 	  lo->len = mips_abi_regsize (current_gdbarch) - lo->reg_offset;
2708 	  hi->reg_offset = 0;
2709 	  hi->len = len - lo->len;
2710 	}
2711       else
2712 	{
2713 	  /* Only perform a partial copy of the second register. */
2714 	  lo->reg_offset = 0;
2715 	  hi->reg_offset = 0;
2716 	  if (len > mips_abi_regsize (current_gdbarch))
2717 	    {
2718 	      lo->len = mips_abi_regsize (current_gdbarch);
2719 	      hi->len = len - mips_abi_regsize (current_gdbarch);
2720 	    }
2721 	  else
2722 	    {
2723 	      lo->len = len;
2724 	      hi->len = 0;
2725 	    }
2726 	}
2727       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2728 	  && register_size (current_gdbarch, regnum) == 8
2729 	  && mips_abi_regsize (current_gdbarch) == 4)
2730 	{
2731 	  /* Account for the fact that only the least-signficant part
2732 	     of the register is being used */
2733 	  lo->reg_offset += 4;
2734 	  hi->reg_offset += 4;
2735 	}
2736       lo->buf_offset = 0;
2737       hi->buf_offset = lo->len;
2738     }
2739 }
2740 
2741 /* Should call_function allocate stack space for a struct return?  */
2742 
2743 static int
mips_eabi_use_struct_convention(int gcc_p,struct type * type)2744 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
2745 {
2746   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2747   return (TYPE_LENGTH (type) > 2 * mips_abi_regsize (current_gdbarch));
2748 }
2749 
2750 /* Should call_function pass struct by reference?
2751    For each architecture, structs are passed either by
2752    value or by reference, depending on their size.  */
2753 
2754 static int
mips_eabi_reg_struct_has_addr(int gcc_p,struct type * type)2755 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
2756 {
2757   enum type_code typecode = TYPE_CODE (check_typedef (type));
2758   int len = TYPE_LENGTH (check_typedef (type));
2759   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2760 
2761   if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2762     return (len > mips_abi_regsize (current_gdbarch));
2763 
2764   return 0;
2765 }
2766 
2767 static CORE_ADDR
mips_eabi_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)2768 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2769 			   struct regcache *regcache, CORE_ADDR bp_addr,
2770 			   int nargs, struct value **args, CORE_ADDR sp,
2771 			   int struct_return, CORE_ADDR struct_addr)
2772 {
2773   int argreg;
2774   int float_argreg;
2775   int argnum;
2776   int len = 0;
2777   int stack_offset = 0;
2778   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2779   CORE_ADDR func_addr = find_function_addr (function, NULL);
2780 
2781   /* For shared libraries, "t9" needs to point at the function
2782      address.  */
2783   regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2784 
2785   /* Set the return address register to point to the entry point of
2786      the program, where a breakpoint lies in wait.  */
2787   regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2788 
2789   /* First ensure that the stack and structure return address (if any)
2790      are properly aligned.  The stack has to be at least 64-bit
2791      aligned even on 32-bit machines, because doubles must be 64-bit
2792      aligned.  For n32 and n64, stack frames need to be 128-bit
2793      aligned, so we round to this widest known alignment.  */
2794 
2795   sp = align_down (sp, 16);
2796   struct_addr = align_down (struct_addr, 16);
2797 
2798   /* Now make space on the stack for the args.  We allocate more
2799      than necessary for EABI, because the first few arguments are
2800      passed in registers, but that's OK.  */
2801   for (argnum = 0; argnum < nargs; argnum++)
2802     len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2803 		     mips_stack_argsize (gdbarch));
2804   sp -= align_up (len, 16);
2805 
2806   if (mips_debug)
2807     fprintf_unfiltered (gdb_stdlog,
2808 			"mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2809 			paddr_nz (sp), (long) align_up (len, 16));
2810 
2811   /* Initialize the integer and float register pointers.  */
2812   argreg = A0_REGNUM;
2813   float_argreg = mips_fpa0_regnum (current_gdbarch);
2814 
2815   /* The struct_return pointer occupies the first parameter-passing reg.  */
2816   if (struct_return)
2817     {
2818       if (mips_debug)
2819 	fprintf_unfiltered (gdb_stdlog,
2820 			    "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2821 			    argreg, paddr_nz (struct_addr));
2822       write_register (argreg++, struct_addr);
2823     }
2824 
2825   /* Now load as many as possible of the first arguments into
2826      registers, and push the rest onto the stack.  Loop thru args
2827      from first to last.  */
2828   for (argnum = 0; argnum < nargs; argnum++)
2829     {
2830       char *val;
2831       char valbuf[MAX_REGISTER_SIZE];
2832       struct value *arg = args[argnum];
2833       struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2834       int len = TYPE_LENGTH (arg_type);
2835       enum type_code typecode = TYPE_CODE (arg_type);
2836 
2837       if (mips_debug)
2838 	fprintf_unfiltered (gdb_stdlog,
2839 			    "mips_eabi_push_dummy_call: %d len=%d type=%d",
2840 			    argnum + 1, len, (int) typecode);
2841 
2842       /* The EABI passes structures that do not fit in a register by
2843          reference.  */
2844       if (len > mips_abi_regsize (gdbarch)
2845 	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2846 	{
2847 	  store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2848 				  VALUE_ADDRESS (arg));
2849 	  typecode = TYPE_CODE_PTR;
2850 	  len = mips_abi_regsize (gdbarch);
2851 	  val = valbuf;
2852 	  if (mips_debug)
2853 	    fprintf_unfiltered (gdb_stdlog, " push");
2854 	}
2855       else
2856 	val = (char *) VALUE_CONTENTS (arg);
2857 
2858       /* 32-bit ABIs always start floating point arguments in an
2859          even-numbered floating point register.  Round the FP register
2860          up before the check to see if there are any FP registers
2861          left.  Non MIPS_EABI targets also pass the FP in the integer
2862          registers so also round up normal registers.  */
2863       if (mips_abi_regsize (gdbarch) < 8
2864 	  && fp_register_arg_p (typecode, arg_type))
2865 	{
2866 	  if ((float_argreg & 1))
2867 	    float_argreg++;
2868 	}
2869 
2870       /* Floating point arguments passed in registers have to be
2871          treated specially.  On 32-bit architectures, doubles
2872          are passed in register pairs; the even register gets
2873          the low word, and the odd register gets the high word.
2874          On non-EABI processors, the first two floating point arguments are
2875          also copied to general registers, because MIPS16 functions
2876          don't use float registers for arguments.  This duplication of
2877          arguments in general registers can't hurt non-MIPS16 functions
2878          because those registers are normally skipped.  */
2879       /* MIPS_EABI squeezes a struct that contains a single floating
2880          point value into an FP register instead of pushing it onto the
2881          stack.  */
2882       if (fp_register_arg_p (typecode, arg_type)
2883 	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2884 	{
2885 	  if (mips_abi_regsize (gdbarch) < 8 && len == 8)
2886 	    {
2887 	      int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2888 	      unsigned long regval;
2889 
2890 	      /* Write the low word of the double to the even register(s).  */
2891 	      regval = extract_unsigned_integer (val + low_offset, 4);
2892 	      if (mips_debug)
2893 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2894 				    float_argreg, phex (regval, 4));
2895 	      write_register (float_argreg++, regval);
2896 
2897 	      /* Write the high word of the double to the odd register(s).  */
2898 	      regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2899 	      if (mips_debug)
2900 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2901 				    float_argreg, phex (regval, 4));
2902 	      write_register (float_argreg++, regval);
2903 	    }
2904 	  else
2905 	    {
2906 	      /* This is a floating point value that fits entirely
2907 	         in a single register.  */
2908 	      /* On 32 bit ABI's the float_argreg is further adjusted
2909 	         above to ensure that it is even register aligned.  */
2910 	      LONGEST regval = extract_unsigned_integer (val, len);
2911 	      if (mips_debug)
2912 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2913 				    float_argreg, phex (regval, len));
2914 	      write_register (float_argreg++, regval);
2915 	    }
2916 	}
2917       else
2918 	{
2919 	  /* Copy the argument to general registers or the stack in
2920 	     register-sized pieces.  Large arguments are split between
2921 	     registers and stack.  */
2922 	  /* Note: structs whose size is not a multiple of
2923 	     mips_abi_regsize() are treated specially: Irix cc passes
2924 	     them in registers where gcc sometimes puts them on the
2925 	     stack.  For maximum compatibility, we will put them in
2926 	     both places.  */
2927 	  int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2928 				  && (len % mips_abi_regsize (gdbarch) != 0));
2929 
2930 	  /* Note: Floating-point values that didn't fit into an FP
2931 	     register are only written to memory.  */
2932 	  while (len > 0)
2933 	    {
2934 	      /* Remember if the argument was written to the stack.  */
2935 	      int stack_used_p = 0;
2936 	      int partial_len = (len < mips_abi_regsize (gdbarch)
2937 				 ? len : mips_abi_regsize (gdbarch));
2938 
2939 	      if (mips_debug)
2940 		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2941 				    partial_len);
2942 
2943 	      /* Write this portion of the argument to the stack.  */
2944 	      if (argreg > MIPS_LAST_ARG_REGNUM
2945 		  || odd_sized_struct
2946 		  || fp_register_arg_p (typecode, arg_type))
2947 		{
2948 		  /* Should shorter than int integer values be
2949 		     promoted to int before being stored? */
2950 		  int longword_offset = 0;
2951 		  CORE_ADDR addr;
2952 		  stack_used_p = 1;
2953 		  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2954 		    {
2955 		      if (mips_stack_argsize (gdbarch) == 8
2956 			  && (typecode == TYPE_CODE_INT
2957 			      || typecode == TYPE_CODE_PTR
2958 			      || typecode == TYPE_CODE_FLT) && len <= 4)
2959 			longword_offset = mips_stack_argsize (gdbarch) - len;
2960 		      else if ((typecode == TYPE_CODE_STRUCT
2961 				|| typecode == TYPE_CODE_UNION)
2962 			       && (TYPE_LENGTH (arg_type)
2963 				   < mips_stack_argsize (gdbarch)))
2964 			longword_offset = mips_stack_argsize (gdbarch) - len;
2965 		    }
2966 
2967 		  if (mips_debug)
2968 		    {
2969 		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2970 					  paddr_nz (stack_offset));
2971 		      fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2972 					  paddr_nz (longword_offset));
2973 		    }
2974 
2975 		  addr = sp + stack_offset + longword_offset;
2976 
2977 		  if (mips_debug)
2978 		    {
2979 		      int i;
2980 		      fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2981 					  paddr_nz (addr));
2982 		      for (i = 0; i < partial_len; i++)
2983 			{
2984 			  fprintf_unfiltered (gdb_stdlog, "%02x",
2985 					      val[i] & 0xff);
2986 			}
2987 		    }
2988 		  write_memory (addr, val, partial_len);
2989 		}
2990 
2991 	      /* Note!!! This is NOT an else clause.  Odd sized
2992 	         structs may go thru BOTH paths.  Floating point
2993 	         arguments will not.  */
2994 	      /* Write this portion of the argument to a general
2995 	         purpose register.  */
2996 	      if (argreg <= MIPS_LAST_ARG_REGNUM
2997 		  && !fp_register_arg_p (typecode, arg_type))
2998 		{
2999 		  LONGEST regval =
3000 		    extract_unsigned_integer (val, partial_len);
3001 
3002 		  if (mips_debug)
3003 		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3004 				      argreg,
3005 				      phex (regval,
3006 					    mips_abi_regsize (gdbarch)));
3007 		  write_register (argreg, regval);
3008 		  argreg++;
3009 		}
3010 
3011 	      len -= partial_len;
3012 	      val += partial_len;
3013 
3014 	      /* Compute the the offset into the stack at which we
3015 	         will copy the next parameter.
3016 
3017 	         In the new EABI (and the NABI32), the stack_offset
3018 	         only needs to be adjusted when it has been used.  */
3019 
3020 	      if (stack_used_p)
3021 		stack_offset += align_up (partial_len,
3022 					  mips_stack_argsize (gdbarch));
3023 	    }
3024 	}
3025       if (mips_debug)
3026 	fprintf_unfiltered (gdb_stdlog, "\n");
3027     }
3028 
3029   regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3030 
3031   /* Return adjusted stack pointer.  */
3032   return sp;
3033 }
3034 
3035 /* Given a return value in `regbuf' with a type `valtype', extract and
3036    copy its value into `valbuf'. */
3037 
3038 static void
mips_eabi_extract_return_value(struct type * valtype,char regbuf[],char * valbuf)3039 mips_eabi_extract_return_value (struct type *valtype,
3040 				char regbuf[], char *valbuf)
3041 {
3042   struct return_value_word lo;
3043   struct return_value_word hi;
3044   return_value_location (valtype, &hi, &lo);
3045 
3046   memcpy (valbuf + lo.buf_offset,
3047 	  regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) +
3048 	  lo.reg_offset, lo.len);
3049 
3050   if (hi.len > 0)
3051     memcpy (valbuf + hi.buf_offset,
3052 	    regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) +
3053 	    hi.reg_offset, hi.len);
3054 }
3055 
3056 /* Given a return value in `valbuf' with a type `valtype', write it's
3057    value into the appropriate register. */
3058 
3059 static void
mips_eabi_store_return_value(struct type * valtype,char * valbuf)3060 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
3061 {
3062   char raw_buffer[MAX_REGISTER_SIZE];
3063   struct return_value_word lo;
3064   struct return_value_word hi;
3065   return_value_location (valtype, &hi, &lo);
3066 
3067   memset (raw_buffer, 0, sizeof (raw_buffer));
3068   memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3069   deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg),
3070 				   raw_buffer, register_size (current_gdbarch,
3071 							      lo.reg));
3072 
3073   if (hi.len > 0)
3074     {
3075       memset (raw_buffer, 0, sizeof (raw_buffer));
3076       memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3077       deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg),
3078 				       raw_buffer,
3079 				       register_size (current_gdbarch,
3080 						      hi.reg));
3081     }
3082 }
3083 
3084 /* N32/N64 ABI stuff.  */
3085 
3086 static CORE_ADDR
mips_n32n64_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)3087 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3088 			     struct regcache *regcache, CORE_ADDR bp_addr,
3089 			     int nargs, struct value **args, CORE_ADDR sp,
3090 			     int struct_return, CORE_ADDR struct_addr)
3091 {
3092   int argreg;
3093   int float_argreg;
3094   int argnum;
3095   int len = 0;
3096   int stack_offset = 0;
3097   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3098   CORE_ADDR func_addr = find_function_addr (function, NULL);
3099 
3100   /* For shared libraries, "t9" needs to point at the function
3101      address.  */
3102   regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3103 
3104   /* Set the return address register to point to the entry point of
3105      the program, where a breakpoint lies in wait.  */
3106   regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3107 
3108   /* First ensure that the stack and structure return address (if any)
3109      are properly aligned.  The stack has to be at least 64-bit
3110      aligned even on 32-bit machines, because doubles must be 64-bit
3111      aligned.  For n32 and n64, stack frames need to be 128-bit
3112      aligned, so we round to this widest known alignment.  */
3113 
3114   sp = align_down (sp, 16);
3115   struct_addr = align_down (struct_addr, 16);
3116 
3117   /* Now make space on the stack for the args.  */
3118   for (argnum = 0; argnum < nargs; argnum++)
3119     len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3120 		     mips_stack_argsize (gdbarch));
3121   sp -= align_up (len, 16);
3122 
3123   if (mips_debug)
3124     fprintf_unfiltered (gdb_stdlog,
3125 			"mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3126 			paddr_nz (sp), (long) align_up (len, 16));
3127 
3128   /* Initialize the integer and float register pointers.  */
3129   argreg = A0_REGNUM;
3130   float_argreg = mips_fpa0_regnum (current_gdbarch);
3131 
3132   /* The struct_return pointer occupies the first parameter-passing reg.  */
3133   if (struct_return)
3134     {
3135       if (mips_debug)
3136 	fprintf_unfiltered (gdb_stdlog,
3137 			    "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3138 			    argreg, paddr_nz (struct_addr));
3139       write_register (argreg++, struct_addr);
3140     }
3141 
3142   /* Now load as many as possible of the first arguments into
3143      registers, and push the rest onto the stack.  Loop thru args
3144      from first to last.  */
3145   for (argnum = 0; argnum < nargs; argnum++)
3146     {
3147       char *val;
3148       struct value *arg = args[argnum];
3149       struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3150       int len = TYPE_LENGTH (arg_type);
3151       enum type_code typecode = TYPE_CODE (arg_type);
3152 
3153       if (mips_debug)
3154 	fprintf_unfiltered (gdb_stdlog,
3155 			    "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3156 			    argnum + 1, len, (int) typecode);
3157 
3158       val = (char *) VALUE_CONTENTS (arg);
3159 
3160       if (fp_register_arg_p (typecode, arg_type)
3161 	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3162 	{
3163 	  /* This is a floating point value that fits entirely
3164 	     in a single register.  */
3165 	  /* On 32 bit ABI's the float_argreg is further adjusted
3166 	     above to ensure that it is even register aligned.  */
3167 	  LONGEST regval = extract_unsigned_integer (val, len);
3168 	  if (mips_debug)
3169 	    fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3170 				float_argreg, phex (regval, len));
3171 	  write_register (float_argreg++, regval);
3172 
3173 	  if (mips_debug)
3174 	    fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3175 				argreg, phex (regval, len));
3176 	  write_register (argreg, regval);
3177 	  argreg += 1;
3178 	}
3179       else
3180 	{
3181 	  /* Copy the argument to general registers or the stack in
3182 	     register-sized pieces.  Large arguments are split between
3183 	     registers and stack.  */
3184 	  /* Note: structs whose size is not a multiple of
3185 	     mips_abi_regsize() are treated specially: Irix cc passes
3186 	     them in registers where gcc sometimes puts them on the
3187 	     stack.  For maximum compatibility, we will put them in
3188 	     both places.  */
3189 	  int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3190 				  && (len % mips_abi_regsize (gdbarch) != 0));
3191 	  /* Note: Floating-point values that didn't fit into an FP
3192 	     register are only written to memory.  */
3193 	  while (len > 0)
3194 	    {
3195 	      /* Rememer if the argument was written to the stack.  */
3196 	      int stack_used_p = 0;
3197 	      int partial_len = (len < mips_abi_regsize (gdbarch)
3198 				 ? len : mips_abi_regsize (gdbarch));
3199 
3200 	      if (mips_debug)
3201 		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3202 				    partial_len);
3203 
3204 	      /* Write this portion of the argument to the stack.  */
3205 	      if (argreg > MIPS_LAST_ARG_REGNUM
3206 		  || odd_sized_struct
3207 		  || fp_register_arg_p (typecode, arg_type))
3208 		{
3209 		  /* Should shorter than int integer values be
3210 		     promoted to int before being stored? */
3211 		  int longword_offset = 0;
3212 		  CORE_ADDR addr;
3213 		  stack_used_p = 1;
3214 		  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3215 		    {
3216 		      if (mips_stack_argsize (gdbarch) == 8
3217 			  && (typecode == TYPE_CODE_INT
3218 			      || typecode == TYPE_CODE_PTR
3219 			      || typecode == TYPE_CODE_FLT) && len <= 4)
3220 			longword_offset = mips_stack_argsize (gdbarch) - len;
3221 		    }
3222 
3223 		  if (mips_debug)
3224 		    {
3225 		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3226 					  paddr_nz (stack_offset));
3227 		      fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3228 					  paddr_nz (longword_offset));
3229 		    }
3230 
3231 		  addr = sp + stack_offset + longword_offset;
3232 
3233 		  if (mips_debug)
3234 		    {
3235 		      int i;
3236 		      fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3237 					  paddr_nz (addr));
3238 		      for (i = 0; i < partial_len; i++)
3239 			{
3240 			  fprintf_unfiltered (gdb_stdlog, "%02x",
3241 					      val[i] & 0xff);
3242 			}
3243 		    }
3244 		  write_memory (addr, val, partial_len);
3245 		}
3246 
3247 	      /* Note!!! This is NOT an else clause.  Odd sized
3248 	         structs may go thru BOTH paths.  Floating point
3249 	         arguments will not.  */
3250 	      /* Write this portion of the argument to a general
3251 	         purpose register.  */
3252 	      if (argreg <= MIPS_LAST_ARG_REGNUM
3253 		  && !fp_register_arg_p (typecode, arg_type))
3254 		{
3255 		  LONGEST regval =
3256 		    extract_unsigned_integer (val, partial_len);
3257 
3258 		  /* A non-floating-point argument being passed in a
3259 		     general register.  If a struct or union, and if
3260 		     the remaining length is smaller than the register
3261 		     size, we have to adjust the register value on
3262 		     big endian targets.
3263 
3264 		     It does not seem to be necessary to do the
3265 		     same for integral types.
3266 
3267 		     cagney/2001-07-23: gdb/179: Also, GCC, when
3268 		     outputting LE O32 with sizeof (struct) <
3269 		     mips_abi_regsize(), generates a left shift as
3270 		     part of storing the argument in a register a
3271 		     register (the left shift isn't generated when
3272 		     sizeof (struct) >= mips_abi_regsize()).  Since
3273 		     it is quite possible that this is GCC
3274 		     contradicting the LE/O32 ABI, GDB has not been
3275 		     adjusted to accommodate this.  Either someone
3276 		     needs to demonstrate that the LE/O32 ABI
3277 		     specifies such a left shift OR this new ABI gets
3278 		     identified as such and GDB gets tweaked
3279 		     accordingly.  */
3280 
3281 		  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3282 		      && partial_len < mips_abi_regsize (gdbarch)
3283 		      && (typecode == TYPE_CODE_STRUCT ||
3284 			  typecode == TYPE_CODE_UNION))
3285 		    regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3286 				TARGET_CHAR_BIT);
3287 
3288 		  if (mips_debug)
3289 		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3290 				      argreg,
3291 				      phex (regval,
3292 					    mips_abi_regsize (gdbarch)));
3293 		  write_register (argreg, regval);
3294 		  argreg++;
3295 		}
3296 
3297 	      len -= partial_len;
3298 	      val += partial_len;
3299 
3300 	      /* Compute the the offset into the stack at which we
3301 	         will copy the next parameter.
3302 
3303 	         In N32 (N64?), the stack_offset only needs to be
3304 	         adjusted when it has been used.  */
3305 
3306 	      if (stack_used_p)
3307 		stack_offset += align_up (partial_len,
3308 					  mips_stack_argsize (gdbarch));
3309 	    }
3310 	}
3311       if (mips_debug)
3312 	fprintf_unfiltered (gdb_stdlog, "\n");
3313     }
3314 
3315   regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3316 
3317   /* Return adjusted stack pointer.  */
3318   return sp;
3319 }
3320 
3321 static enum return_value_convention
mips_n32n64_return_value(struct gdbarch * gdbarch,struct type * type,struct regcache * regcache,void * readbuf,const void * writebuf)3322 mips_n32n64_return_value (struct gdbarch *gdbarch,
3323 			  struct type *type, struct regcache *regcache,
3324 			  void *readbuf, const void *writebuf)
3325 {
3326   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3327   if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3328       || TYPE_CODE (type) == TYPE_CODE_UNION
3329       || TYPE_CODE (type) == TYPE_CODE_ARRAY
3330       || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
3331     return RETURN_VALUE_STRUCT_CONVENTION;
3332   else if (TYPE_CODE (type) == TYPE_CODE_FLT
3333 	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
3334     {
3335       /* A floating-point value belongs in the least significant part
3336          of FP0.  */
3337       if (mips_debug)
3338 	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3339       mips_xfer_register (regcache,
3340 			  NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3341 			  TYPE_LENGTH (type),
3342 			  TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3343       return RETURN_VALUE_REGISTER_CONVENTION;
3344     }
3345   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3346 	   && TYPE_NFIELDS (type) <= 2
3347 	   && TYPE_NFIELDS (type) >= 1
3348 	   && ((TYPE_NFIELDS (type) == 1
3349 		&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3350 		    == TYPE_CODE_FLT))
3351 	       || (TYPE_NFIELDS (type) == 2
3352 		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3353 		       == TYPE_CODE_FLT)
3354 		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3355 		       == TYPE_CODE_FLT)))
3356 	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
3357     {
3358       /* A struct that contains one or two floats.  Each value is part
3359          in the least significant part of their floating point
3360          register..  */
3361       int regnum;
3362       int field;
3363       for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3364 	   field < TYPE_NFIELDS (type); field++, regnum += 2)
3365 	{
3366 	  int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3367 			/ TARGET_CHAR_BIT);
3368 	  if (mips_debug)
3369 	    fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3370 				offset);
3371 	  mips_xfer_register (regcache, NUM_REGS + regnum,
3372 			      TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3373 			      TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3374 	}
3375       return RETURN_VALUE_REGISTER_CONVENTION;
3376     }
3377   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3378 	   || TYPE_CODE (type) == TYPE_CODE_UNION)
3379     {
3380       /* A structure or union.  Extract the left justified value,
3381          regardless of the byte order.  I.e. DO NOT USE
3382          mips_xfer_lower.  */
3383       int offset;
3384       int regnum;
3385       for (offset = 0, regnum = V0_REGNUM;
3386 	   offset < TYPE_LENGTH (type);
3387 	   offset += register_size (current_gdbarch, regnum), regnum++)
3388 	{
3389 	  int xfer = register_size (current_gdbarch, regnum);
3390 	  if (offset + xfer > TYPE_LENGTH (type))
3391 	    xfer = TYPE_LENGTH (type) - offset;
3392 	  if (mips_debug)
3393 	    fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3394 				offset, xfer, regnum);
3395 	  mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3396 			      BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3397 	}
3398       return RETURN_VALUE_REGISTER_CONVENTION;
3399     }
3400   else
3401     {
3402       /* A scalar extract each part but least-significant-byte
3403          justified.  */
3404       int offset;
3405       int regnum;
3406       for (offset = 0, regnum = V0_REGNUM;
3407 	   offset < TYPE_LENGTH (type);
3408 	   offset += register_size (current_gdbarch, regnum), regnum++)
3409 	{
3410 	  int xfer = register_size (current_gdbarch, regnum);
3411 	  if (offset + xfer > TYPE_LENGTH (type))
3412 	    xfer = TYPE_LENGTH (type) - offset;
3413 	  if (mips_debug)
3414 	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3415 				offset, xfer, regnum);
3416 	  mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3417 			      TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3418 	}
3419       return RETURN_VALUE_REGISTER_CONVENTION;
3420     }
3421 }
3422 
3423 /* O32 ABI stuff.  */
3424 
3425 static CORE_ADDR
mips_o32_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)3426 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3427 			  struct regcache *regcache, CORE_ADDR bp_addr,
3428 			  int nargs, struct value **args, CORE_ADDR sp,
3429 			  int struct_return, CORE_ADDR struct_addr)
3430 {
3431   int argreg;
3432   int float_argreg;
3433   int argnum;
3434   int len = 0;
3435   int stack_offset = 0;
3436   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3437   CORE_ADDR func_addr = find_function_addr (function, NULL);
3438 
3439   /* For shared libraries, "t9" needs to point at the function
3440      address.  */
3441   regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3442 
3443   /* Set the return address register to point to the entry point of
3444      the program, where a breakpoint lies in wait.  */
3445   regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3446 
3447   /* First ensure that the stack and structure return address (if any)
3448      are properly aligned.  The stack has to be at least 64-bit
3449      aligned even on 32-bit machines, because doubles must be 64-bit
3450      aligned.  For n32 and n64, stack frames need to be 128-bit
3451      aligned, so we round to this widest known alignment.  */
3452 
3453   sp = align_down (sp, 16);
3454   struct_addr = align_down (struct_addr, 16);
3455 
3456   /* Now make space on the stack for the args.  */
3457   for (argnum = 0; argnum < nargs; argnum++)
3458     len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3459 		     mips_stack_argsize (gdbarch));
3460   sp -= align_up (len, 16);
3461 
3462   if (mips_debug)
3463     fprintf_unfiltered (gdb_stdlog,
3464 			"mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3465 			paddr_nz (sp), (long) align_up (len, 16));
3466 
3467   /* Initialize the integer and float register pointers.  */
3468   argreg = A0_REGNUM;
3469   float_argreg = mips_fpa0_regnum (current_gdbarch);
3470 
3471   /* The struct_return pointer occupies the first parameter-passing reg.  */
3472   if (struct_return)
3473     {
3474       if (mips_debug)
3475 	fprintf_unfiltered (gdb_stdlog,
3476 			    "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3477 			    argreg, paddr_nz (struct_addr));
3478       write_register (argreg++, struct_addr);
3479       stack_offset += mips_stack_argsize (gdbarch);
3480     }
3481 
3482   /* Now load as many as possible of the first arguments into
3483      registers, and push the rest onto the stack.  Loop thru args
3484      from first to last.  */
3485   for (argnum = 0; argnum < nargs; argnum++)
3486     {
3487       char *val;
3488       struct value *arg = args[argnum];
3489       struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3490       int len = TYPE_LENGTH (arg_type);
3491       enum type_code typecode = TYPE_CODE (arg_type);
3492 
3493       if (mips_debug)
3494 	fprintf_unfiltered (gdb_stdlog,
3495 			    "mips_o32_push_dummy_call: %d len=%d type=%d",
3496 			    argnum + 1, len, (int) typecode);
3497 
3498       val = (char *) VALUE_CONTENTS (arg);
3499 
3500       /* 32-bit ABIs always start floating point arguments in an
3501          even-numbered floating point register.  Round the FP register
3502          up before the check to see if there are any FP registers
3503          left.  O32/O64 targets also pass the FP in the integer
3504          registers so also round up normal registers.  */
3505       if (mips_abi_regsize (gdbarch) < 8
3506 	  && fp_register_arg_p (typecode, arg_type))
3507 	{
3508 	  if ((float_argreg & 1))
3509 	    float_argreg++;
3510 	}
3511 
3512       /* Floating point arguments passed in registers have to be
3513          treated specially.  On 32-bit architectures, doubles
3514          are passed in register pairs; the even register gets
3515          the low word, and the odd register gets the high word.
3516          On O32/O64, the first two floating point arguments are
3517          also copied to general registers, because MIPS16 functions
3518          don't use float registers for arguments.  This duplication of
3519          arguments in general registers can't hurt non-MIPS16 functions
3520          because those registers are normally skipped.  */
3521 
3522       if (fp_register_arg_p (typecode, arg_type)
3523 	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3524 	{
3525 	  if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3526 	    {
3527 	      int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3528 	      unsigned long regval;
3529 
3530 	      /* Write the low word of the double to the even register(s).  */
3531 	      regval = extract_unsigned_integer (val + low_offset, 4);
3532 	      if (mips_debug)
3533 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3534 				    float_argreg, phex (regval, 4));
3535 	      write_register (float_argreg++, regval);
3536 	      if (mips_debug)
3537 		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3538 				    argreg, phex (regval, 4));
3539 	      write_register (argreg++, regval);
3540 
3541 	      /* Write the high word of the double to the odd register(s).  */
3542 	      regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3543 	      if (mips_debug)
3544 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3545 				    float_argreg, phex (regval, 4));
3546 	      write_register (float_argreg++, regval);
3547 
3548 	      if (mips_debug)
3549 		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3550 				    argreg, phex (regval, 4));
3551 	      write_register (argreg++, regval);
3552 	    }
3553 	  else
3554 	    {
3555 	      /* This is a floating point value that fits entirely
3556 	         in a single register.  */
3557 	      /* On 32 bit ABI's the float_argreg is further adjusted
3558 	         above to ensure that it is even register aligned.  */
3559 	      LONGEST regval = extract_unsigned_integer (val, len);
3560 	      if (mips_debug)
3561 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3562 				    float_argreg, phex (regval, len));
3563 	      write_register (float_argreg++, regval);
3564 	      /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3565 	         registers for each argument.  The below is (my
3566 	         guess) to ensure that the corresponding integer
3567 	         register has reserved the same space.  */
3568 	      if (mips_debug)
3569 		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3570 				    argreg, phex (regval, len));
3571 	      write_register (argreg, regval);
3572 	      argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3573 	    }
3574 	  /* Reserve space for the FP register.  */
3575 	  stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3576 	}
3577       else
3578 	{
3579 	  /* Copy the argument to general registers or the stack in
3580 	     register-sized pieces.  Large arguments are split between
3581 	     registers and stack.  */
3582 	  /* Note: structs whose size is not a multiple of
3583 	     mips_abi_regsize() are treated specially: Irix cc passes
3584 	     them in registers where gcc sometimes puts them on the
3585 	     stack.  For maximum compatibility, we will put them in
3586 	     both places.  */
3587 	  int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3588 				  && (len % mips_abi_regsize (gdbarch) != 0));
3589 	  /* Structures should be aligned to eight bytes (even arg registers)
3590 	     on MIPS_ABI_O32, if their first member has double precision.  */
3591 	  if (mips_abi_regsize (gdbarch) < 8
3592 	      && mips_type_needs_double_align (arg_type))
3593 	    {
3594 	      if ((argreg & 1))
3595 		argreg++;
3596 	    }
3597 	  /* Note: Floating-point values that didn't fit into an FP
3598 	     register are only written to memory.  */
3599 	  while (len > 0)
3600 	    {
3601 	      /* Remember if the argument was written to the stack.  */
3602 	      int stack_used_p = 0;
3603 	      int partial_len = (len < mips_abi_regsize (gdbarch)
3604 				 ? len : mips_abi_regsize (gdbarch));
3605 
3606 	      if (mips_debug)
3607 		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3608 				    partial_len);
3609 
3610 	      /* Write this portion of the argument to the stack.  */
3611 	      if (argreg > MIPS_LAST_ARG_REGNUM
3612 		  || odd_sized_struct
3613 		  || fp_register_arg_p (typecode, arg_type))
3614 		{
3615 		  /* Should shorter than int integer values be
3616 		     promoted to int before being stored? */
3617 		  int longword_offset = 0;
3618 		  CORE_ADDR addr;
3619 		  stack_used_p = 1;
3620 		  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3621 		    {
3622 		      if (mips_stack_argsize (gdbarch) == 8
3623 			  && (typecode == TYPE_CODE_INT
3624 			      || typecode == TYPE_CODE_PTR
3625 			      || typecode == TYPE_CODE_FLT) && len <= 4)
3626 			longword_offset = mips_stack_argsize (gdbarch) - len;
3627 		    }
3628 
3629 		  if (mips_debug)
3630 		    {
3631 		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3632 					  paddr_nz (stack_offset));
3633 		      fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3634 					  paddr_nz (longword_offset));
3635 		    }
3636 
3637 		  addr = sp + stack_offset + longword_offset;
3638 
3639 		  if (mips_debug)
3640 		    {
3641 		      int i;
3642 		      fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3643 					  paddr_nz (addr));
3644 		      for (i = 0; i < partial_len; i++)
3645 			{
3646 			  fprintf_unfiltered (gdb_stdlog, "%02x",
3647 					      val[i] & 0xff);
3648 			}
3649 		    }
3650 		  write_memory (addr, val, partial_len);
3651 		}
3652 
3653 	      /* Note!!! This is NOT an else clause.  Odd sized
3654 	         structs may go thru BOTH paths.  Floating point
3655 	         arguments will not.  */
3656 	      /* Write this portion of the argument to a general
3657 	         purpose register.  */
3658 	      if (argreg <= MIPS_LAST_ARG_REGNUM
3659 		  && !fp_register_arg_p (typecode, arg_type))
3660 		{
3661 		  LONGEST regval = extract_signed_integer (val, partial_len);
3662 		  /* Value may need to be sign extended, because
3663 		     mips_isa_regsize() != mips_abi_regsize().  */
3664 
3665 		  /* A non-floating-point argument being passed in a
3666 		     general register.  If a struct or union, and if
3667 		     the remaining length is smaller than the register
3668 		     size, we have to adjust the register value on
3669 		     big endian targets.
3670 
3671 		     It does not seem to be necessary to do the
3672 		     same for integral types.
3673 
3674 		     Also don't do this adjustment on O64 binaries.
3675 
3676 		     cagney/2001-07-23: gdb/179: Also, GCC, when
3677 		     outputting LE O32 with sizeof (struct) <
3678 		     mips_abi_regsize(), generates a left shift as
3679 		     part of storing the argument in a register a
3680 		     register (the left shift isn't generated when
3681 		     sizeof (struct) >= mips_abi_regsize()).  Since
3682 		     it is quite possible that this is GCC
3683 		     contradicting the LE/O32 ABI, GDB has not been
3684 		     adjusted to accommodate this.  Either someone
3685 		     needs to demonstrate that the LE/O32 ABI
3686 		     specifies such a left shift OR this new ABI gets
3687 		     identified as such and GDB gets tweaked
3688 		     accordingly.  */
3689 
3690 		  if (mips_abi_regsize (gdbarch) < 8
3691 		      && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3692 		      && partial_len < mips_abi_regsize (gdbarch)
3693 		      && (typecode == TYPE_CODE_STRUCT ||
3694 			  typecode == TYPE_CODE_UNION))
3695 		    regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3696 				TARGET_CHAR_BIT);
3697 
3698 		  if (mips_debug)
3699 		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3700 				      argreg,
3701 				      phex (regval,
3702 					    mips_abi_regsize (gdbarch)));
3703 		  write_register (argreg, regval);
3704 		  argreg++;
3705 
3706 		  /* Prevent subsequent floating point arguments from
3707 		     being passed in floating point registers.  */
3708 		  float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3709 		}
3710 
3711 	      len -= partial_len;
3712 	      val += partial_len;
3713 
3714 	      /* Compute the the offset into the stack at which we
3715 	         will copy the next parameter.
3716 
3717 	         In older ABIs, the caller reserved space for
3718 	         registers that contained arguments.  This was loosely
3719 	         refered to as their "home".  Consequently, space is
3720 	         always allocated.  */
3721 
3722 	      stack_offset += align_up (partial_len,
3723 					mips_stack_argsize (gdbarch));
3724 	    }
3725 	}
3726       if (mips_debug)
3727 	fprintf_unfiltered (gdb_stdlog, "\n");
3728     }
3729 
3730   regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3731 
3732   /* Return adjusted stack pointer.  */
3733   return sp;
3734 }
3735 
3736 static enum return_value_convention
mips_o32_return_value(struct gdbarch * gdbarch,struct type * type,struct regcache * regcache,void * readbuf,const void * writebuf)3737 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3738 		       struct regcache *regcache,
3739 		       void *readbuf, const void *writebuf)
3740 {
3741   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3742 
3743   if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3744       || TYPE_CODE (type) == TYPE_CODE_UNION
3745       || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3746     return RETURN_VALUE_STRUCT_CONVENTION;
3747   else if (TYPE_CODE (type) == TYPE_CODE_FLT
3748 	   && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3749     {
3750       /* A single-precision floating-point value.  It fits in the
3751          least significant part of FP0.  */
3752       if (mips_debug)
3753 	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3754       mips_xfer_register (regcache,
3755 			  NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3756 			  TYPE_LENGTH (type),
3757 			  TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3758       return RETURN_VALUE_REGISTER_CONVENTION;
3759     }
3760   else if (TYPE_CODE (type) == TYPE_CODE_FLT
3761 	   && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3762     {
3763       /* A double-precision floating-point value.  The most
3764          significant part goes in FP1, and the least significant in
3765          FP0.  */
3766       if (mips_debug)
3767 	fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3768       switch (TARGET_BYTE_ORDER)
3769 	{
3770 	case BFD_ENDIAN_LITTLE:
3771 	  mips_xfer_register (regcache,
3772 			      NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3773 			      0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3774 	  mips_xfer_register (regcache,
3775 			      NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3776 			      1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3777 	  break;
3778 	case BFD_ENDIAN_BIG:
3779 	  mips_xfer_register (regcache,
3780 			      NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3781 			      1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3782 	  mips_xfer_register (regcache,
3783 			      NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3784 			      0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3785 	  break;
3786 	default:
3787 	  internal_error (__FILE__, __LINE__, "bad switch");
3788 	}
3789       return RETURN_VALUE_REGISTER_CONVENTION;
3790     }
3791 #if 0
3792   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3793 	   && TYPE_NFIELDS (type) <= 2
3794 	   && TYPE_NFIELDS (type) >= 1
3795 	   && ((TYPE_NFIELDS (type) == 1
3796 		&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3797 		    == TYPE_CODE_FLT))
3798 	       || (TYPE_NFIELDS (type) == 2
3799 		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3800 		       == TYPE_CODE_FLT)
3801 		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3802 		       == TYPE_CODE_FLT)))
3803 	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
3804     {
3805       /* A struct that contains one or two floats.  Each value is part
3806          in the least significant part of their floating point
3807          register..  */
3808       bfd_byte reg[MAX_REGISTER_SIZE];
3809       int regnum;
3810       int field;
3811       for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3812 	   field < TYPE_NFIELDS (type); field++, regnum += 2)
3813 	{
3814 	  int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3815 			/ TARGET_CHAR_BIT);
3816 	  if (mips_debug)
3817 	    fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3818 				offset);
3819 	  mips_xfer_register (regcache, NUM_REGS + regnum,
3820 			      TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3821 			      TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3822 	}
3823       return RETURN_VALUE_REGISTER_CONVENTION;
3824     }
3825 #endif
3826 #if 0
3827   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3828 	   || TYPE_CODE (type) == TYPE_CODE_UNION)
3829     {
3830       /* A structure or union.  Extract the left justified value,
3831          regardless of the byte order.  I.e. DO NOT USE
3832          mips_xfer_lower.  */
3833       int offset;
3834       int regnum;
3835       for (offset = 0, regnum = V0_REGNUM;
3836 	   offset < TYPE_LENGTH (type);
3837 	   offset += register_size (current_gdbarch, regnum), regnum++)
3838 	{
3839 	  int xfer = register_size (current_gdbarch, regnum);
3840 	  if (offset + xfer > TYPE_LENGTH (type))
3841 	    xfer = TYPE_LENGTH (type) - offset;
3842 	  if (mips_debug)
3843 	    fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3844 				offset, xfer, regnum);
3845 	  mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3846 			      BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3847 	}
3848       return RETURN_VALUE_REGISTER_CONVENTION;
3849     }
3850 #endif
3851   else
3852     {
3853       /* A scalar extract each part but least-significant-byte
3854          justified.  o32 thinks registers are 4 byte, regardless of
3855          the ISA.  mips_stack_argsize controls this.  */
3856       int offset;
3857       int regnum;
3858       for (offset = 0, regnum = V0_REGNUM;
3859 	   offset < TYPE_LENGTH (type);
3860 	   offset += mips_stack_argsize (gdbarch), regnum++)
3861 	{
3862 	  int xfer = mips_stack_argsize (gdbarch);
3863 	  if (offset + xfer > TYPE_LENGTH (type))
3864 	    xfer = TYPE_LENGTH (type) - offset;
3865 	  if (mips_debug)
3866 	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3867 				offset, xfer, regnum);
3868 	  mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3869 			      TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3870 	}
3871       return RETURN_VALUE_REGISTER_CONVENTION;
3872     }
3873 }
3874 
3875 /* O64 ABI.  This is a hacked up kind of 64-bit version of the o32
3876    ABI.  */
3877 
3878 static CORE_ADDR
mips_o64_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)3879 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3880 			  struct regcache *regcache, CORE_ADDR bp_addr,
3881 			  int nargs,
3882 			  struct value **args, CORE_ADDR sp,
3883 			  int struct_return, CORE_ADDR struct_addr)
3884 {
3885   int argreg;
3886   int float_argreg;
3887   int argnum;
3888   int len = 0;
3889   int stack_offset = 0;
3890   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3891   CORE_ADDR func_addr = find_function_addr (function, NULL);
3892 
3893   /* For shared libraries, "t9" needs to point at the function
3894      address.  */
3895   regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3896 
3897   /* Set the return address register to point to the entry point of
3898      the program, where a breakpoint lies in wait.  */
3899   regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3900 
3901   /* First ensure that the stack and structure return address (if any)
3902      are properly aligned.  The stack has to be at least 64-bit
3903      aligned even on 32-bit machines, because doubles must be 64-bit
3904      aligned.  For n32 and n64, stack frames need to be 128-bit
3905      aligned, so we round to this widest known alignment.  */
3906 
3907   sp = align_down (sp, 16);
3908   struct_addr = align_down (struct_addr, 16);
3909 
3910   /* Now make space on the stack for the args.  */
3911   for (argnum = 0; argnum < nargs; argnum++)
3912     len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3913 		     mips_stack_argsize (gdbarch));
3914   sp -= align_up (len, 16);
3915 
3916   if (mips_debug)
3917     fprintf_unfiltered (gdb_stdlog,
3918 			"mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3919 			paddr_nz (sp), (long) align_up (len, 16));
3920 
3921   /* Initialize the integer and float register pointers.  */
3922   argreg = A0_REGNUM;
3923   float_argreg = mips_fpa0_regnum (current_gdbarch);
3924 
3925   /* The struct_return pointer occupies the first parameter-passing reg.  */
3926   if (struct_return)
3927     {
3928       if (mips_debug)
3929 	fprintf_unfiltered (gdb_stdlog,
3930 			    "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3931 			    argreg, paddr_nz (struct_addr));
3932       write_register (argreg++, struct_addr);
3933       stack_offset += mips_stack_argsize (gdbarch);
3934     }
3935 
3936   /* Now load as many as possible of the first arguments into
3937      registers, and push the rest onto the stack.  Loop thru args
3938      from first to last.  */
3939   for (argnum = 0; argnum < nargs; argnum++)
3940     {
3941       char *val;
3942       struct value *arg = args[argnum];
3943       struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3944       int len = TYPE_LENGTH (arg_type);
3945       enum type_code typecode = TYPE_CODE (arg_type);
3946 
3947       if (mips_debug)
3948 	fprintf_unfiltered (gdb_stdlog,
3949 			    "mips_o64_push_dummy_call: %d len=%d type=%d",
3950 			    argnum + 1, len, (int) typecode);
3951 
3952       val = (char *) VALUE_CONTENTS (arg);
3953 
3954       /* 32-bit ABIs always start floating point arguments in an
3955          even-numbered floating point register.  Round the FP register
3956          up before the check to see if there are any FP registers
3957          left.  O32/O64 targets also pass the FP in the integer
3958          registers so also round up normal registers.  */
3959       if (mips_abi_regsize (gdbarch) < 8
3960 	  && fp_register_arg_p (typecode, arg_type))
3961 	{
3962 	  if ((float_argreg & 1))
3963 	    float_argreg++;
3964 	}
3965 
3966       /* Floating point arguments passed in registers have to be
3967          treated specially.  On 32-bit architectures, doubles
3968          are passed in register pairs; the even register gets
3969          the low word, and the odd register gets the high word.
3970          On O32/O64, the first two floating point arguments are
3971          also copied to general registers, because MIPS16 functions
3972          don't use float registers for arguments.  This duplication of
3973          arguments in general registers can't hurt non-MIPS16 functions
3974          because those registers are normally skipped.  */
3975 
3976       if (fp_register_arg_p (typecode, arg_type)
3977 	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3978 	{
3979 	  if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3980 	    {
3981 	      int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3982 	      unsigned long regval;
3983 
3984 	      /* Write the low word of the double to the even register(s).  */
3985 	      regval = extract_unsigned_integer (val + low_offset, 4);
3986 	      if (mips_debug)
3987 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3988 				    float_argreg, phex (regval, 4));
3989 	      write_register (float_argreg++, regval);
3990 	      if (mips_debug)
3991 		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3992 				    argreg, phex (regval, 4));
3993 	      write_register (argreg++, regval);
3994 
3995 	      /* Write the high word of the double to the odd register(s).  */
3996 	      regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3997 	      if (mips_debug)
3998 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3999 				    float_argreg, phex (regval, 4));
4000 	      write_register (float_argreg++, regval);
4001 
4002 	      if (mips_debug)
4003 		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4004 				    argreg, phex (regval, 4));
4005 	      write_register (argreg++, regval);
4006 	    }
4007 	  else
4008 	    {
4009 	      /* This is a floating point value that fits entirely
4010 	         in a single register.  */
4011 	      /* On 32 bit ABI's the float_argreg is further adjusted
4012 	         above to ensure that it is even register aligned.  */
4013 	      LONGEST regval = extract_unsigned_integer (val, len);
4014 	      if (mips_debug)
4015 		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4016 				    float_argreg, phex (regval, len));
4017 	      write_register (float_argreg++, regval);
4018 	      /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
4019 	         registers for each argument.  The below is (my
4020 	         guess) to ensure that the corresponding integer
4021 	         register has reserved the same space.  */
4022 	      if (mips_debug)
4023 		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4024 				    argreg, phex (regval, len));
4025 	      write_register (argreg, regval);
4026 	      argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
4027 	    }
4028 	  /* Reserve space for the FP register.  */
4029 	  stack_offset += align_up (len, mips_stack_argsize (gdbarch));
4030 	}
4031       else
4032 	{
4033 	  /* Copy the argument to general registers or the stack in
4034 	     register-sized pieces.  Large arguments are split between
4035 	     registers and stack.  */
4036 	  /* Note: structs whose size is not a multiple of
4037 	     mips_abi_regsize() are treated specially: Irix cc passes
4038 	     them in registers where gcc sometimes puts them on the
4039 	     stack.  For maximum compatibility, we will put them in
4040 	     both places.  */
4041 	  int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
4042 				  && (len % mips_abi_regsize (gdbarch) != 0));
4043 	  /* Structures should be aligned to eight bytes (even arg registers)
4044 	     on MIPS_ABI_O32, if their first member has double precision.  */
4045 	  if (mips_abi_regsize (gdbarch) < 8
4046 	      && mips_type_needs_double_align (arg_type))
4047 	    {
4048 	      if ((argreg & 1))
4049 		argreg++;
4050 	    }
4051 	  /* Note: Floating-point values that didn't fit into an FP
4052 	     register are only written to memory.  */
4053 	  while (len > 0)
4054 	    {
4055 	      /* Remember if the argument was written to the stack.  */
4056 	      int stack_used_p = 0;
4057 	      int partial_len = (len < mips_abi_regsize (gdbarch)
4058 				 ? len : mips_abi_regsize (gdbarch));
4059 
4060 	      if (mips_debug)
4061 		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4062 				    partial_len);
4063 
4064 	      /* Write this portion of the argument to the stack.  */
4065 	      if (argreg > MIPS_LAST_ARG_REGNUM
4066 		  || odd_sized_struct
4067 		  || fp_register_arg_p (typecode, arg_type))
4068 		{
4069 		  /* Should shorter than int integer values be
4070 		     promoted to int before being stored? */
4071 		  int longword_offset = 0;
4072 		  CORE_ADDR addr;
4073 		  stack_used_p = 1;
4074 		  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4075 		    {
4076 		      if (mips_stack_argsize (gdbarch) == 8
4077 			  && (typecode == TYPE_CODE_INT
4078 			      || typecode == TYPE_CODE_PTR
4079 			      || typecode == TYPE_CODE_FLT) && len <= 4)
4080 			longword_offset = mips_stack_argsize (gdbarch) - len;
4081 		    }
4082 
4083 		  if (mips_debug)
4084 		    {
4085 		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
4086 					  paddr_nz (stack_offset));
4087 		      fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
4088 					  paddr_nz (longword_offset));
4089 		    }
4090 
4091 		  addr = sp + stack_offset + longword_offset;
4092 
4093 		  if (mips_debug)
4094 		    {
4095 		      int i;
4096 		      fprintf_unfiltered (gdb_stdlog, " @0x%s ",
4097 					  paddr_nz (addr));
4098 		      for (i = 0; i < partial_len; i++)
4099 			{
4100 			  fprintf_unfiltered (gdb_stdlog, "%02x",
4101 					      val[i] & 0xff);
4102 			}
4103 		    }
4104 		  write_memory (addr, val, partial_len);
4105 		}
4106 
4107 	      /* Note!!! This is NOT an else clause.  Odd sized
4108 	         structs may go thru BOTH paths.  Floating point
4109 	         arguments will not.  */
4110 	      /* Write this portion of the argument to a general
4111 	         purpose register.  */
4112 	      if (argreg <= MIPS_LAST_ARG_REGNUM
4113 		  && !fp_register_arg_p (typecode, arg_type))
4114 		{
4115 		  LONGEST regval = extract_signed_integer (val, partial_len);
4116 		  /* Value may need to be sign extended, because
4117 		     mips_isa_regsize() != mips_abi_regsize().  */
4118 
4119 		  /* A non-floating-point argument being passed in a
4120 		     general register.  If a struct or union, and if
4121 		     the remaining length is smaller than the register
4122 		     size, we have to adjust the register value on
4123 		     big endian targets.
4124 
4125 		     It does not seem to be necessary to do the
4126 		     same for integral types.
4127 
4128 		     Also don't do this adjustment on O64 binaries.
4129 
4130 		     cagney/2001-07-23: gdb/179: Also, GCC, when
4131 		     outputting LE O32 with sizeof (struct) <
4132 		     mips_abi_regsize(), generates a left shift as
4133 		     part of storing the argument in a register a
4134 		     register (the left shift isn't generated when
4135 		     sizeof (struct) >= mips_abi_regsize()).  Since
4136 		     it is quite possible that this is GCC
4137 		     contradicting the LE/O32 ABI, GDB has not been
4138 		     adjusted to accommodate this.  Either someone
4139 		     needs to demonstrate that the LE/O32 ABI
4140 		     specifies such a left shift OR this new ABI gets
4141 		     identified as such and GDB gets tweaked
4142 		     accordingly.  */
4143 
4144 		  if (mips_abi_regsize (gdbarch) < 8
4145 		      && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4146 		      && partial_len < mips_abi_regsize (gdbarch)
4147 		      && (typecode == TYPE_CODE_STRUCT ||
4148 			  typecode == TYPE_CODE_UNION))
4149 		    regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
4150 				TARGET_CHAR_BIT);
4151 
4152 		  if (mips_debug)
4153 		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4154 				      argreg,
4155 				      phex (regval,
4156 					    mips_abi_regsize (gdbarch)));
4157 		  write_register (argreg, regval);
4158 		  argreg++;
4159 
4160 		  /* Prevent subsequent floating point arguments from
4161 		     being passed in floating point registers.  */
4162 		  float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
4163 		}
4164 
4165 	      len -= partial_len;
4166 	      val += partial_len;
4167 
4168 	      /* Compute the the offset into the stack at which we
4169 	         will copy the next parameter.
4170 
4171 	         In older ABIs, the caller reserved space for
4172 	         registers that contained arguments.  This was loosely
4173 	         refered to as their "home".  Consequently, space is
4174 	         always allocated.  */
4175 
4176 	      stack_offset += align_up (partial_len,
4177 					mips_stack_argsize (gdbarch));
4178 	    }
4179 	}
4180       if (mips_debug)
4181 	fprintf_unfiltered (gdb_stdlog, "\n");
4182     }
4183 
4184   regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4185 
4186   /* Return adjusted stack pointer.  */
4187   return sp;
4188 }
4189 
4190 static void
mips_o64_extract_return_value(struct type * valtype,char regbuf[],char * valbuf)4191 mips_o64_extract_return_value (struct type *valtype,
4192 			       char regbuf[], char *valbuf)
4193 {
4194   struct return_value_word lo;
4195   struct return_value_word hi;
4196   return_value_location (valtype, &hi, &lo);
4197 
4198   memcpy (valbuf + lo.buf_offset,
4199 	  regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) +
4200 	  lo.reg_offset, lo.len);
4201 
4202   if (hi.len > 0)
4203     memcpy (valbuf + hi.buf_offset,
4204 	    regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) +
4205 	    hi.reg_offset, hi.len);
4206 }
4207 
4208 static void
mips_o64_store_return_value(struct type * valtype,char * valbuf)4209 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4210 {
4211   char raw_buffer[MAX_REGISTER_SIZE];
4212   struct return_value_word lo;
4213   struct return_value_word hi;
4214   return_value_location (valtype, &hi, &lo);
4215 
4216   memset (raw_buffer, 0, sizeof (raw_buffer));
4217   memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4218   deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg),
4219 				   raw_buffer, register_size (current_gdbarch,
4220 							      lo.reg));
4221 
4222   if (hi.len > 0)
4223     {
4224       memset (raw_buffer, 0, sizeof (raw_buffer));
4225       memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4226       deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg),
4227 				       raw_buffer,
4228 				       register_size (current_gdbarch,
4229 						      hi.reg));
4230     }
4231 }
4232 
4233 /* Floating point register management.
4234 
4235    Background: MIPS1 & 2 fp registers are 32 bits wide.  To support
4236    64bit operations, these early MIPS cpus treat fp register pairs
4237    (f0,f1) as a single register (d0).  Later MIPS cpu's have 64 bit fp
4238    registers and offer a compatibility mode that emulates the MIPS2 fp
4239    model.  When operating in MIPS2 fp compat mode, later cpu's split
4240    double precision floats into two 32-bit chunks and store them in
4241    consecutive fp regs.  To display 64-bit floats stored in this
4242    fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4243    Throw in user-configurable endianness and you have a real mess.
4244 
4245    The way this works is:
4246      - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4247        double-precision value will be split across two logical registers.
4248        The lower-numbered logical register will hold the low-order bits,
4249        regardless of the processor's endianness.
4250      - If we are on a 64-bit processor, and we are looking for a
4251        single-precision value, it will be in the low ordered bits
4252        of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4253        save slot in memory.
4254      - If we are in 64-bit mode, everything is straightforward.
4255 
4256    Note that this code only deals with "live" registers at the top of the
4257    stack.  We will attempt to deal with saved registers later, when
4258    the raw/cooked register interface is in place. (We need a general
4259    interface that can deal with dynamic saved register sizes -- fp
4260    regs could be 32 bits wide in one frame and 64 on the frame above
4261    and below).  */
4262 
4263 static struct type *
mips_float_register_type(void)4264 mips_float_register_type (void)
4265 {
4266   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4267     return builtin_type_ieee_single_big;
4268   else
4269     return builtin_type_ieee_single_little;
4270 }
4271 
4272 static struct type *
mips_double_register_type(void)4273 mips_double_register_type (void)
4274 {
4275   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4276     return builtin_type_ieee_double_big;
4277   else
4278     return builtin_type_ieee_double_little;
4279 }
4280 
4281 /* Copy a 32-bit single-precision value from the current frame
4282    into rare_buffer.  */
4283 
4284 static void
mips_read_fp_register_single(struct frame_info * frame,int regno,char * rare_buffer)4285 mips_read_fp_register_single (struct frame_info *frame, int regno,
4286 			      char *rare_buffer)
4287 {
4288   int raw_size = register_size (current_gdbarch, regno);
4289   char *raw_buffer = alloca (raw_size);
4290 
4291   if (!frame_register_read (frame, regno, raw_buffer))
4292     error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4293   if (raw_size == 8)
4294     {
4295       /* We have a 64-bit value for this register.  Find the low-order
4296          32 bits.  */
4297       int offset;
4298 
4299       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4300 	offset = 4;
4301       else
4302 	offset = 0;
4303 
4304       memcpy (rare_buffer, raw_buffer + offset, 4);
4305     }
4306   else
4307     {
4308       memcpy (rare_buffer, raw_buffer, 4);
4309     }
4310 }
4311 
4312 /* Copy a 64-bit double-precision value from the current frame into
4313    rare_buffer.  This may include getting half of it from the next
4314    register.  */
4315 
4316 static void
mips_read_fp_register_double(struct frame_info * frame,int regno,char * rare_buffer)4317 mips_read_fp_register_double (struct frame_info *frame, int regno,
4318 			      char *rare_buffer)
4319 {
4320   int raw_size = register_size (current_gdbarch, regno);
4321 
4322   if (raw_size == 8 && !mips2_fp_compat ())
4323     {
4324       /* We have a 64-bit value for this register, and we should use
4325          all 64 bits.  */
4326       if (!frame_register_read (frame, regno, rare_buffer))
4327 	error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4328     }
4329   else
4330     {
4331       if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4332 	internal_error (__FILE__, __LINE__,
4333 			"mips_read_fp_register_double: bad access to "
4334 			"odd-numbered FP register");
4335 
4336       /* mips_read_fp_register_single will find the correct 32 bits from
4337          each register.  */
4338       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4339 	{
4340 	  mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4341 	  mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4342 	}
4343       else
4344 	{
4345 	  mips_read_fp_register_single (frame, regno, rare_buffer);
4346 	  mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4347 	}
4348     }
4349 }
4350 
4351 static void
mips_print_fp_register(struct ui_file * file,struct frame_info * frame,int regnum)4352 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4353 			int regnum)
4354 {				/* do values for FP (float) regs */
4355   char *raw_buffer;
4356   double doub, flt1;	/* doubles extracted from raw hex data */
4357   int inv1, inv2;
4358 
4359   raw_buffer =
4360     (char *) alloca (2 *
4361 		     register_size (current_gdbarch,
4362 				    mips_regnum (current_gdbarch)->fp0));
4363 
4364   fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4365   fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4366 		    "");
4367 
4368   if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
4369     {
4370       /* 4-byte registers: Print hex and floating.  Also print even
4371          numbered registers as doubles.  */
4372       mips_read_fp_register_single (frame, regnum, raw_buffer);
4373       flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4374 
4375       print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4376 			      file);
4377 
4378       fprintf_filtered (file, " flt: ");
4379       if (inv1)
4380 	fprintf_filtered (file, " <invalid float> ");
4381       else
4382 	fprintf_filtered (file, "%-17.9g", flt1);
4383 
4384       if (regnum % 2 == 0)
4385 	{
4386 	  mips_read_fp_register_double (frame, regnum, raw_buffer);
4387 	  doub = unpack_double (mips_double_register_type (), raw_buffer,
4388 				&inv2);
4389 
4390 	  fprintf_filtered (file, " dbl: ");
4391 	  if (inv2)
4392 	    fprintf_filtered (file, "<invalid double>");
4393 	  else
4394 	    fprintf_filtered (file, "%-24.17g", doub);
4395 	}
4396     }
4397   else
4398     {
4399       /* Eight byte registers: print each one as hex, float and double.  */
4400       mips_read_fp_register_single (frame, regnum, raw_buffer);
4401       flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4402 
4403       mips_read_fp_register_double (frame, regnum, raw_buffer);
4404       doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4405 
4406 
4407       print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4408 			      file);
4409 
4410       fprintf_filtered (file, " flt: ");
4411       if (inv1)
4412 	fprintf_filtered (file, "<invalid float>");
4413       else
4414 	fprintf_filtered (file, "%-17.9g", flt1);
4415 
4416       fprintf_filtered (file, " dbl: ");
4417       if (inv2)
4418 	fprintf_filtered (file, "<invalid double>");
4419       else
4420 	fprintf_filtered (file, "%-24.17g", doub);
4421     }
4422 }
4423 
4424 static void
mips_print_register(struct ui_file * file,struct frame_info * frame,int regnum,int all)4425 mips_print_register (struct ui_file *file, struct frame_info *frame,
4426 		     int regnum, int all)
4427 {
4428   struct gdbarch *gdbarch = get_frame_arch (frame);
4429   char raw_buffer[MAX_REGISTER_SIZE];
4430   int offset;
4431 
4432   if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4433     {
4434       mips_print_fp_register (file, frame, regnum);
4435       return;
4436     }
4437 
4438   /* Get the data in raw format.  */
4439   if (!frame_register_read (frame, regnum, raw_buffer))
4440     {
4441       fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4442       return;
4443     }
4444 
4445   fputs_filtered (REGISTER_NAME (regnum), file);
4446 
4447   /* The problem with printing numeric register names (r26, etc.) is that
4448      the user can't use them on input.  Probably the best solution is to
4449      fix it so that either the numeric or the funky (a2, etc.) names
4450      are accepted on input.  */
4451   if (regnum < MIPS_NUMREGS)
4452     fprintf_filtered (file, "(r%d): ", regnum);
4453   else
4454     fprintf_filtered (file, ": ");
4455 
4456   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4457     offset =
4458       register_size (current_gdbarch,
4459 		     regnum) - register_size (current_gdbarch, regnum);
4460   else
4461     offset = 0;
4462 
4463   print_scalar_formatted (raw_buffer + offset,
4464 			  gdbarch_register_type (gdbarch, regnum), 'x', 0,
4465 			  file);
4466 }
4467 
4468 /* Replacement for generic do_registers_info.
4469    Print regs in pretty columns.  */
4470 
4471 static int
print_fp_register_row(struct ui_file * file,struct frame_info * frame,int regnum)4472 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4473 		       int regnum)
4474 {
4475   fprintf_filtered (file, " ");
4476   mips_print_fp_register (file, frame, regnum);
4477   fprintf_filtered (file, "\n");
4478   return regnum + 1;
4479 }
4480 
4481 
4482 /* Print a row's worth of GP (int) registers, with name labels above */
4483 
4484 static int
print_gp_register_row(struct ui_file * file,struct frame_info * frame,int start_regnum)4485 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4486 		       int start_regnum)
4487 {
4488   struct gdbarch *gdbarch = get_frame_arch (frame);
4489   /* do values for GP (int) regs */
4490   char raw_buffer[MAX_REGISTER_SIZE];
4491   int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8);	/* display cols per row */
4492   int col, byte;
4493   int regnum;
4494 
4495   /* For GP registers, we print a separate row of names above the vals */
4496   fprintf_filtered (file, "     ");
4497   for (col = 0, regnum = start_regnum;
4498        col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4499     {
4500       if (*REGISTER_NAME (regnum) == '\0')
4501 	continue;		/* unused register */
4502       if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4503 	  TYPE_CODE_FLT)
4504 	break;			/* end the row: reached FP register */
4505       fprintf_filtered (file,
4506 			mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4507 			REGISTER_NAME (regnum));
4508       col++;
4509     }
4510   /* print the R0 to R31 names */
4511   if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4512     fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4513   else
4514     fprintf_filtered (file, "\n      ");
4515 
4516   /* now print the values in hex, 4 or 8 to the row */
4517   for (col = 0, regnum = start_regnum;
4518        col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4519     {
4520       if (*REGISTER_NAME (regnum) == '\0')
4521 	continue;		/* unused register */
4522       if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4523 	  TYPE_CODE_FLT)
4524 	break;			/* end row: reached FP register */
4525       /* OK: get the data in raw format.  */
4526       if (!frame_register_read (frame, regnum, raw_buffer))
4527 	error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4528       /* pad small registers */
4529       for (byte = 0;
4530 	   byte < (mips_abi_regsize (current_gdbarch)
4531 		   - register_size (current_gdbarch, regnum)); byte++)
4532 	printf_filtered ("  ");
4533       /* Now print the register value in hex, endian order. */
4534       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4535 	for (byte =
4536 	     register_size (current_gdbarch,
4537 			    regnum) - register_size (current_gdbarch, regnum);
4538 	     byte < register_size (current_gdbarch, regnum); byte++)
4539 	  fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4540       else
4541 	for (byte = register_size (current_gdbarch, regnum) - 1;
4542 	     byte >= 0; byte--)
4543 	  fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4544       fprintf_filtered (file, " ");
4545       col++;
4546     }
4547   if (col > 0)			/* ie. if we actually printed anything... */
4548     fprintf_filtered (file, "\n");
4549 
4550   return regnum;
4551 }
4552 
4553 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4554 
4555 static void
mips_print_registers_info(struct gdbarch * gdbarch,struct ui_file * file,struct frame_info * frame,int regnum,int all)4556 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4557 			   struct frame_info *frame, int regnum, int all)
4558 {
4559   if (regnum != -1)		/* do one specified register */
4560     {
4561       gdb_assert (regnum >= NUM_REGS);
4562       if (*(REGISTER_NAME (regnum)) == '\0')
4563 	error ("Not a valid register for the current processor type");
4564 
4565       mips_print_register (file, frame, regnum, 0);
4566       fprintf_filtered (file, "\n");
4567     }
4568   else
4569     /* do all (or most) registers */
4570     {
4571       regnum = NUM_REGS;
4572       while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4573 	{
4574 	  if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4575 	      TYPE_CODE_FLT)
4576 	    {
4577 	      if (all)		/* true for "INFO ALL-REGISTERS" command */
4578 		regnum = print_fp_register_row (file, frame, regnum);
4579 	      else
4580 		regnum += MIPS_NUMREGS;	/* skip floating point regs */
4581 	    }
4582 	  else
4583 	    regnum = print_gp_register_row (file, frame, regnum);
4584 	}
4585     }
4586 }
4587 
4588 /* Is this a branch with a delay slot?  */
4589 
4590 static int is_delayed (unsigned long);
4591 
4592 static int
is_delayed(unsigned long insn)4593 is_delayed (unsigned long insn)
4594 {
4595   int i;
4596   for (i = 0; i < NUMOPCODES; ++i)
4597     if (mips_opcodes[i].pinfo != INSN_MACRO
4598 	&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4599       break;
4600   return (i < NUMOPCODES
4601 	  && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4602 				       | INSN_COND_BRANCH_DELAY
4603 				       | INSN_COND_BRANCH_LIKELY)));
4604 }
4605 
4606 int
mips_step_skips_delay(CORE_ADDR pc)4607 mips_step_skips_delay (CORE_ADDR pc)
4608 {
4609   char buf[MIPS_INSTLEN];
4610 
4611   /* There is no branch delay slot on MIPS16.  */
4612   if (pc_is_mips16 (pc))
4613     return 0;
4614 
4615   if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4616     /* If error reading memory, guess that it is not a delayed branch.  */
4617     return 0;
4618   return is_delayed ((unsigned long)
4619 		     extract_unsigned_integer (buf, MIPS_INSTLEN));
4620 }
4621 
4622 /* Skip the PC past function prologue instructions (32-bit version).
4623    This is a helper function for mips_skip_prologue.  */
4624 
4625 static CORE_ADDR
mips32_skip_prologue(CORE_ADDR pc)4626 mips32_skip_prologue (CORE_ADDR pc)
4627 {
4628   t_inst inst;
4629   CORE_ADDR end_pc;
4630   int seen_sp_adjust = 0;
4631   int load_immediate_bytes = 0;
4632 
4633   /* Find an upper bound on the prologue.  */
4634   end_pc = skip_prologue_using_sal (pc);
4635   if (end_pc == 0)
4636     end_pc = pc + 100;		/* Magic.  */
4637 
4638   /* Skip the typical prologue instructions. These are the stack adjustment
4639      instruction and the instructions that save registers on the stack
4640      or in the gcc frame.  */
4641   for (; pc < end_pc; pc += MIPS_INSTLEN)
4642     {
4643       unsigned long high_word;
4644 
4645       inst = mips_fetch_instruction (pc);
4646       high_word = (inst >> 16) & 0xffff;
4647 
4648       if (high_word == 0x27bd	/* addiu $sp,$sp,offset */
4649 	  || high_word == 0x67bd)	/* daddiu $sp,$sp,offset */
4650 	seen_sp_adjust = 1;
4651       else if (inst == 0x03a1e823 ||	/* subu $sp,$sp,$at */
4652 	       inst == 0x03a8e823)	/* subu $sp,$sp,$t0 */
4653 	seen_sp_adjust = 1;
4654       else if (((inst & 0xFFE00000) == 0xAFA00000	/* sw reg,n($sp) */
4655 		|| (inst & 0xFFE00000) == 0xFFA00000)	/* sd reg,n($sp) */
4656 	       && (inst & 0x001F0000))	/* reg != $zero */
4657 	continue;
4658 
4659       else if ((inst & 0xFFE00000) == 0xE7A00000)	/* swc1 freg,n($sp) */
4660 	continue;
4661       else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4662 	/* sx reg,n($s8) */
4663 	continue;		/* reg != $zero */
4664 
4665       /* move $s8,$sp.  With different versions of gas this will be either
4666          `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4667          Accept any one of these.  */
4668       else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4669 	continue;
4670 
4671       else if ((inst & 0xFF9F07FF) == 0x00800021)	/* move reg,$a0-$a3 */
4672 	continue;
4673       else if (high_word == 0x3c1c)	/* lui $gp,n */
4674 	continue;
4675       else if (high_word == 0x279c)	/* addiu $gp,$gp,n */
4676 	continue;
4677       else if (inst == 0x0399e021	/* addu $gp,$gp,$t9 */
4678 	       || inst == 0x033ce021)	/* addu $gp,$t9,$gp */
4679 	continue;
4680       /* The following instructions load $at or $t0 with an immediate
4681          value in preparation for a stack adjustment via
4682          subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4683          a local variable, so we accept them only before a stack adjustment
4684          instruction was seen.  */
4685       else if (!seen_sp_adjust)
4686 	{
4687 	  if (high_word == 0x3c01 ||	/* lui $at,n */
4688 	      high_word == 0x3c08)	/* lui $t0,n */
4689 	    {
4690 	      load_immediate_bytes += MIPS_INSTLEN;	/* FIXME!! */
4691 	      continue;
4692 	    }
4693 	  else if (high_word == 0x3421 ||	/* ori $at,$at,n */
4694 		   high_word == 0x3508 ||	/* ori $t0,$t0,n */
4695 		   high_word == 0x3401 ||	/* ori $at,$zero,n */
4696 		   high_word == 0x3408)	/* ori $t0,$zero,n */
4697 	    {
4698 	      load_immediate_bytes += MIPS_INSTLEN;	/* FIXME!! */
4699 	      continue;
4700 	    }
4701 	  else
4702 	    break;
4703 	}
4704       else
4705 	break;
4706     }
4707 
4708   /* In a frameless function, we might have incorrectly
4709      skipped some load immediate instructions. Undo the skipping
4710      if the load immediate was not followed by a stack adjustment.  */
4711   if (load_immediate_bytes && !seen_sp_adjust)
4712     pc -= load_immediate_bytes;
4713   return pc;
4714 }
4715 
4716 /* Skip the PC past function prologue instructions (16-bit version).
4717    This is a helper function for mips_skip_prologue.  */
4718 
4719 static CORE_ADDR
mips16_skip_prologue(CORE_ADDR pc)4720 mips16_skip_prologue (CORE_ADDR pc)
4721 {
4722   CORE_ADDR end_pc;
4723   int extend_bytes = 0;
4724   int prev_extend_bytes;
4725 
4726   /* Table of instructions likely to be found in a function prologue.  */
4727   static struct
4728   {
4729     unsigned short inst;
4730     unsigned short mask;
4731   }
4732   table[] =
4733   {
4734     {
4735     0x6300, 0xff00}
4736     ,				/* addiu $sp,offset */
4737     {
4738     0xfb00, 0xff00}
4739     ,				/* daddiu $sp,offset */
4740     {
4741     0xd000, 0xf800}
4742     ,				/* sw reg,n($sp) */
4743     {
4744     0xf900, 0xff00}
4745     ,				/* sd reg,n($sp) */
4746     {
4747     0x6200, 0xff00}
4748     ,				/* sw $ra,n($sp) */
4749     {
4750     0xfa00, 0xff00}
4751     ,				/* sd $ra,n($sp) */
4752     {
4753     0x673d, 0xffff}
4754     ,				/* move $s1,sp */
4755     {
4756     0xd980, 0xff80}
4757     ,				/* sw $a0-$a3,n($s1) */
4758     {
4759     0x6704, 0xff1c}
4760     ,				/* move reg,$a0-$a3 */
4761     {
4762     0xe809, 0xf81f}
4763     ,				/* entry pseudo-op */
4764     {
4765     0x0100, 0xff00}
4766     ,				/* addiu $s1,$sp,n */
4767     {
4768     0, 0}			/* end of table marker */
4769   };
4770 
4771   /* Find an upper bound on the prologue.  */
4772   end_pc = skip_prologue_using_sal (pc);
4773   if (end_pc == 0)
4774     end_pc = pc + 100;		/* Magic.  */
4775 
4776   /* Skip the typical prologue instructions. These are the stack adjustment
4777      instruction and the instructions that save registers on the stack
4778      or in the gcc frame.  */
4779   for (; pc < end_pc; pc += MIPS16_INSTLEN)
4780     {
4781       unsigned short inst;
4782       int i;
4783 
4784       inst = mips_fetch_instruction (pc);
4785 
4786       /* Normally we ignore an extend instruction.  However, if it is
4787          not followed by a valid prologue instruction, we must adjust
4788          the pc back over the extend so that it won't be considered
4789          part of the prologue.  */
4790       if ((inst & 0xf800) == 0xf000)	/* extend */
4791 	{
4792 	  extend_bytes = MIPS16_INSTLEN;
4793 	  continue;
4794 	}
4795       prev_extend_bytes = extend_bytes;
4796       extend_bytes = 0;
4797 
4798       /* Check for other valid prologue instructions besides extend.  */
4799       for (i = 0; table[i].mask != 0; i++)
4800 	if ((inst & table[i].mask) == table[i].inst)	/* found, get out */
4801 	  break;
4802       if (table[i].mask != 0)	/* it was in table? */
4803 	continue;		/* ignore it */
4804       else
4805 	/* non-prologue */
4806 	{
4807 	  /* Return the current pc, adjusted backwards by 2 if
4808 	     the previous instruction was an extend.  */
4809 	  return pc - prev_extend_bytes;
4810 	}
4811     }
4812   return pc;
4813 }
4814 
4815 /* To skip prologues, I use this predicate.  Returns either PC itself
4816    if the code at PC does not look like a function prologue; otherwise
4817    returns an address that (if we're lucky) follows the prologue.  If
4818    LENIENT, then we must skip everything which is involved in setting
4819    up the frame (it's OK to skip more, just so long as we don't skip
4820    anything which might clobber the registers which are being saved.
4821    We must skip more in the case where part of the prologue is in the
4822    delay slot of a non-prologue instruction).  */
4823 
4824 static CORE_ADDR
mips_skip_prologue(CORE_ADDR pc)4825 mips_skip_prologue (CORE_ADDR pc)
4826 {
4827   /* See if we can determine the end of the prologue via the symbol table.
4828      If so, then return either PC, or the PC after the prologue, whichever
4829      is greater.  */
4830 
4831   CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4832 
4833   if (post_prologue_pc != 0)
4834     return max (pc, post_prologue_pc);
4835 
4836   /* Can't determine prologue from the symbol table, need to examine
4837      instructions.  */
4838 
4839   if (pc_is_mips16 (pc))
4840     return mips16_skip_prologue (pc);
4841   else
4842     return mips32_skip_prologue (pc);
4843 }
4844 
4845 /* Root of all "set mips "/"show mips " commands. This will eventually be
4846    used for all MIPS-specific commands.  */
4847 
4848 static void
show_mips_command(char * args,int from_tty)4849 show_mips_command (char *args, int from_tty)
4850 {
4851   help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4852 }
4853 
4854 static void
set_mips_command(char * args,int from_tty)4855 set_mips_command (char *args, int from_tty)
4856 {
4857   printf_unfiltered
4858     ("\"set mips\" must be followed by an appropriate subcommand.\n");
4859   help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4860 }
4861 
4862 /* Commands to show/set the MIPS FPU type.  */
4863 
4864 static void
show_mipsfpu_command(char * args,int from_tty)4865 show_mipsfpu_command (char *args, int from_tty)
4866 {
4867   char *fpu;
4868   switch (MIPS_FPU_TYPE)
4869     {
4870     case MIPS_FPU_SINGLE:
4871       fpu = "single-precision";
4872       break;
4873     case MIPS_FPU_DOUBLE:
4874       fpu = "double-precision";
4875       break;
4876     case MIPS_FPU_NONE:
4877       fpu = "absent (none)";
4878       break;
4879     default:
4880       internal_error (__FILE__, __LINE__, "bad switch");
4881     }
4882   if (mips_fpu_type_auto)
4883     printf_unfiltered
4884       ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4885        fpu);
4886   else
4887     printf_unfiltered
4888       ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4889 }
4890 
4891 
4892 static void
set_mipsfpu_command(char * args,int from_tty)4893 set_mipsfpu_command (char *args, int from_tty)
4894 {
4895   printf_unfiltered
4896     ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4897   show_mipsfpu_command (args, from_tty);
4898 }
4899 
4900 static void
set_mipsfpu_single_command(char * args,int from_tty)4901 set_mipsfpu_single_command (char *args, int from_tty)
4902 {
4903   struct gdbarch_info info;
4904   gdbarch_info_init (&info);
4905   mips_fpu_type = MIPS_FPU_SINGLE;
4906   mips_fpu_type_auto = 0;
4907   /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4908      instead of relying on globals.  Doing that would let generic code
4909      handle the search for this specific architecture.  */
4910   if (!gdbarch_update_p (info))
4911     internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4912 }
4913 
4914 static void
set_mipsfpu_double_command(char * args,int from_tty)4915 set_mipsfpu_double_command (char *args, int from_tty)
4916 {
4917   struct gdbarch_info info;
4918   gdbarch_info_init (&info);
4919   mips_fpu_type = MIPS_FPU_DOUBLE;
4920   mips_fpu_type_auto = 0;
4921   /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4922      instead of relying on globals.  Doing that would let generic code
4923      handle the search for this specific architecture.  */
4924   if (!gdbarch_update_p (info))
4925     internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4926 }
4927 
4928 static void
set_mipsfpu_none_command(char * args,int from_tty)4929 set_mipsfpu_none_command (char *args, int from_tty)
4930 {
4931   struct gdbarch_info info;
4932   gdbarch_info_init (&info);
4933   mips_fpu_type = MIPS_FPU_NONE;
4934   mips_fpu_type_auto = 0;
4935   /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4936      instead of relying on globals.  Doing that would let generic code
4937      handle the search for this specific architecture.  */
4938   if (!gdbarch_update_p (info))
4939     internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4940 }
4941 
4942 static void
set_mipsfpu_auto_command(char * args,int from_tty)4943 set_mipsfpu_auto_command (char *args, int from_tty)
4944 {
4945   mips_fpu_type_auto = 1;
4946 }
4947 
4948 /* Attempt to identify the particular processor model by reading the
4949    processor id.  NOTE: cagney/2003-11-15: Firstly it isn't clear that
4950    the relevant processor still exists (it dates back to '94) and
4951    secondly this is not the way to do this.  The processor type should
4952    be set by forcing an architecture change.  */
4953 
4954 void
deprecated_mips_set_processor_regs_hack(void)4955 deprecated_mips_set_processor_regs_hack (void)
4956 {
4957   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4958   CORE_ADDR prid;
4959 
4960   prid = read_register (PRID_REGNUM);
4961 
4962   if ((prid & ~0xf) == 0x700)
4963     tdep->mips_processor_reg_names = mips_r3041_reg_names;
4964 }
4965 
4966 /* Just like reinit_frame_cache, but with the right arguments to be
4967    callable as an sfunc.  */
4968 
4969 static void
reinit_frame_cache_sfunc(char * args,int from_tty,struct cmd_list_element * c)4970 reinit_frame_cache_sfunc (char *args, int from_tty,
4971 			  struct cmd_list_element *c)
4972 {
4973   reinit_frame_cache ();
4974 }
4975 
4976 static int
gdb_print_insn_mips(bfd_vma memaddr,struct disassemble_info * info)4977 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4978 {
4979   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4980   mips_extra_func_info_t proc_desc;
4981 
4982   /* Search for the function containing this address.  Set the low bit
4983      of the address when searching, in case we were given an even address
4984      that is the start of a 16-bit function.  If we didn't do this,
4985      the search would fail because the symbol table says the function
4986      starts at an odd address, i.e. 1 byte past the given address.  */
4987   memaddr = ADDR_BITS_REMOVE (memaddr);
4988   proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
4989 
4990   /* Make an attempt to determine if this is a 16-bit function.  If
4991      the procedure descriptor exists and the address therein is odd,
4992      it's definitely a 16-bit function.  Otherwise, we have to just
4993      guess that if the address passed in is odd, it's 16-bits.  */
4994   /* FIXME: cagney/2003-06-26: Is this even necessary?  The
4995      disassembler needs to be able to locally determine the ISA, and
4996      not rely on GDB.  Otherwize the stand-alone 'objdump -d' will not
4997      work.  */
4998   if (proc_desc)
4999     {
5000       if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5001 	info->mach = bfd_mach_mips16;
5002     }
5003   else
5004     {
5005       if (pc_is_mips16 (memaddr))
5006 	info->mach = bfd_mach_mips16;
5007     }
5008 
5009   /* Round down the instruction address to the appropriate boundary.  */
5010   memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5011 
5012   /* Set the disassembler options.  */
5013   if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
5014     {
5015       /* Set up the disassembler info, so that we get the right
5016          register names from libopcodes.  */
5017       if (tdep->mips_abi == MIPS_ABI_N32)
5018 	info->disassembler_options = "gpr-names=n32";
5019       else
5020 	info->disassembler_options = "gpr-names=64";
5021       info->flavour = bfd_target_elf_flavour;
5022     }
5023   else
5024     /* This string is not recognized explicitly by the disassembler,
5025        but it tells the disassembler to not try to guess the ABI from
5026        the bfd elf headers, such that, if the user overrides the ABI
5027        of a program linked as NewABI, the disassembly will follow the
5028        register naming conventions specified by the user.  */
5029     info->disassembler_options = "gpr-names=32";
5030 
5031   /* Call the appropriate disassembler based on the target endian-ness.  */
5032   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5033     return print_insn_big_mips (memaddr, info);
5034   else
5035     return print_insn_little_mips (memaddr, info);
5036 }
5037 
5038 /* This function implements the BREAKPOINT_FROM_PC macro.  It uses the program
5039    counter value to determine whether a 16- or 32-bit breakpoint should be
5040    used.  It returns a pointer to a string of bytes that encode a breakpoint
5041    instruction, stores the length of the string to *lenptr, and adjusts pc
5042    (if necessary) to point to the actual memory location where the
5043    breakpoint should be inserted.  */
5044 
5045 static const unsigned char *
mips_breakpoint_from_pc(CORE_ADDR * pcptr,int * lenptr)5046 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
5047 {
5048   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5049     {
5050       if (pc_is_mips16 (*pcptr))
5051 	{
5052 	  static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 };
5053 	  *pcptr = unmake_mips16_addr (*pcptr);
5054 	  *lenptr = sizeof (mips16_big_breakpoint);
5055 	  return mips16_big_breakpoint;
5056 	}
5057       else
5058 	{
5059 	  /* The IDT board uses an unusual breakpoint value, and
5060 	     sometimes gets confused when it sees the usual MIPS
5061 	     breakpoint instruction.  */
5062 	  static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd };
5063 	  static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
5064 	  static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
5065 
5066 	  *lenptr = sizeof (big_breakpoint);
5067 
5068 	  if (strcmp (target_shortname, "mips") == 0)
5069 	    return idt_big_breakpoint;
5070 	  else if (strcmp (target_shortname, "ddb") == 0
5071 		   || strcmp (target_shortname, "pmon") == 0
5072 		   || strcmp (target_shortname, "lsi") == 0)
5073 	    return pmon_big_breakpoint;
5074 	  else
5075 	    return big_breakpoint;
5076 	}
5077     }
5078   else
5079     {
5080       if (pc_is_mips16 (*pcptr))
5081 	{
5082 	  static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 };
5083 	  *pcptr = unmake_mips16_addr (*pcptr);
5084 	  *lenptr = sizeof (mips16_little_breakpoint);
5085 	  return mips16_little_breakpoint;
5086 	}
5087       else
5088 	{
5089 	  static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 };
5090 	  static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
5091 	  static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
5092 
5093 	  *lenptr = sizeof (little_breakpoint);
5094 
5095 	  if (strcmp (target_shortname, "mips") == 0)
5096 	    return idt_little_breakpoint;
5097 	  else if (strcmp (target_shortname, "ddb") == 0
5098 		   || strcmp (target_shortname, "pmon") == 0
5099 		   || strcmp (target_shortname, "lsi") == 0)
5100 	    return pmon_little_breakpoint;
5101 	  else
5102 	    return little_breakpoint;
5103 	}
5104     }
5105 }
5106 
5107 /* If PC is in a mips16 call or return stub, return the address of the target
5108    PC, which is either the callee or the caller.  There are several
5109    cases which must be handled:
5110 
5111    * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5112    target PC is in $31 ($ra).
5113    * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5114    and the target PC is in $2.
5115    * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5116    before the jal instruction, this is effectively a call stub
5117    and the the target PC is in $2.  Otherwise this is effectively
5118    a return stub and the target PC is in $18.
5119 
5120    See the source code for the stubs in gcc/config/mips/mips16.S for
5121    gory details.
5122 
5123    This function implements the SKIP_TRAMPOLINE_CODE macro.
5124  */
5125 
5126 static CORE_ADDR
mips_skip_stub(CORE_ADDR pc)5127 mips_skip_stub (CORE_ADDR pc)
5128 {
5129   char *name;
5130   CORE_ADDR start_addr;
5131 
5132   /* Find the starting address and name of the function containing the PC.  */
5133   if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5134     return 0;
5135 
5136   /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5137      target PC is in $31 ($ra).  */
5138   if (strcmp (name, "__mips16_ret_sf") == 0
5139       || strcmp (name, "__mips16_ret_df") == 0)
5140     return read_signed_register (RA_REGNUM);
5141 
5142   if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5143     {
5144       /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5145          and the target PC is in $2.  */
5146       if (name[19] >= '0' && name[19] <= '9')
5147 	return read_signed_register (2);
5148 
5149       /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5150          before the jal instruction, this is effectively a call stub
5151          and the the target PC is in $2.  Otherwise this is effectively
5152          a return stub and the target PC is in $18.  */
5153       else if (name[19] == 's' || name[19] == 'd')
5154 	{
5155 	  if (pc == start_addr)
5156 	    {
5157 	      /* Check if the target of the stub is a compiler-generated
5158 	         stub.  Such a stub for a function bar might have a name
5159 	         like __fn_stub_bar, and might look like this:
5160 	         mfc1    $4,$f13
5161 	         mfc1    $5,$f12
5162 	         mfc1    $6,$f15
5163 	         mfc1    $7,$f14
5164 	         la      $1,bar   (becomes a lui/addiu pair)
5165 	         jr      $1
5166 	         So scan down to the lui/addi and extract the target
5167 	         address from those two instructions.  */
5168 
5169 	      CORE_ADDR target_pc = read_signed_register (2);
5170 	      t_inst inst;
5171 	      int i;
5172 
5173 	      /* See if the name of the target function is  __fn_stub_*.  */
5174 	      if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
5175 		  0)
5176 		return target_pc;
5177 	      if (strncmp (name, "__fn_stub_", 10) != 0
5178 		  && strcmp (name, "etext") != 0
5179 		  && strcmp (name, "_etext") != 0)
5180 		return target_pc;
5181 
5182 	      /* Scan through this _fn_stub_ code for the lui/addiu pair.
5183 	         The limit on the search is arbitrarily set to 20
5184 	         instructions.  FIXME.  */
5185 	      for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5186 		{
5187 		  inst = mips_fetch_instruction (target_pc);
5188 		  if ((inst & 0xffff0000) == 0x3c010000)	/* lui $at */
5189 		    pc = (inst << 16) & 0xffff0000;	/* high word */
5190 		  else if ((inst & 0xffff0000) == 0x24210000)	/* addiu $at */
5191 		    return pc | (inst & 0xffff);	/* low word */
5192 		}
5193 
5194 	      /* Couldn't find the lui/addui pair, so return stub address.  */
5195 	      return target_pc;
5196 	    }
5197 	  else
5198 	    /* This is the 'return' part of a call stub.  The return
5199 	       address is in $r18.  */
5200 	    return read_signed_register (18);
5201 	}
5202     }
5203   return 0;			/* not a stub */
5204 }
5205 
5206 
5207 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5208    This implements the IN_SOLIB_CALL_TRAMPOLINE macro.  */
5209 
5210 static int
mips_in_call_stub(CORE_ADDR pc,char * name)5211 mips_in_call_stub (CORE_ADDR pc, char *name)
5212 {
5213   CORE_ADDR start_addr;
5214 
5215   /* Find the starting address of the function containing the PC.  If the
5216      caller didn't give us a name, look it up at the same time.  */
5217   if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) ==
5218       0)
5219     return 0;
5220 
5221   if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5222     {
5223       /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub.  */
5224       if (name[19] >= '0' && name[19] <= '9')
5225 	return 1;
5226       /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5227          before the jal instruction, this is effectively a call stub.  */
5228       else if (name[19] == 's' || name[19] == 'd')
5229 	return pc == start_addr;
5230     }
5231 
5232   return 0;			/* not a stub */
5233 }
5234 
5235 
5236 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5237    This implements the IN_SOLIB_RETURN_TRAMPOLINE macro.  */
5238 
5239 static int
mips_in_return_stub(CORE_ADDR pc,char * name)5240 mips_in_return_stub (CORE_ADDR pc, char *name)
5241 {
5242   CORE_ADDR start_addr;
5243 
5244   /* Find the starting address of the function containing the PC.  */
5245   if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5246     return 0;
5247 
5248   /* If the PC is in __mips16_ret_{d,s}f, this is a return stub.  */
5249   if (strcmp (name, "__mips16_ret_sf") == 0
5250       || strcmp (name, "__mips16_ret_df") == 0)
5251     return 1;
5252 
5253   /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5254      i.e. after the jal instruction, this is effectively a return stub.  */
5255   if (strncmp (name, "__mips16_call_stub_", 19) == 0
5256       && (name[19] == 's' || name[19] == 'd') && pc != start_addr)
5257     return 1;
5258 
5259   return 0;			/* not a stub */
5260 }
5261 
5262 
5263 /* Return non-zero if the PC is in a library helper function that should
5264    be ignored.  This implements the IGNORE_HELPER_CALL macro.  */
5265 
5266 int
mips_ignore_helper(CORE_ADDR pc)5267 mips_ignore_helper (CORE_ADDR pc)
5268 {
5269   char *name;
5270 
5271   /* Find the starting address and name of the function containing the PC.  */
5272   if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5273     return 0;
5274 
5275   /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5276      that we want to ignore.  */
5277   return (strcmp (name, "__mips16_ret_sf") == 0
5278 	  || strcmp (name, "__mips16_ret_df") == 0);
5279 }
5280 
5281 
5282 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5283    [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM.  */
5284 
5285 static int
mips_stab_reg_to_regnum(int num)5286 mips_stab_reg_to_regnum (int num)
5287 {
5288   int regnum;
5289   if (num >= 0 && num < 32)
5290     regnum = num;
5291   else if (num >= 38 && num < 70)
5292     regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
5293   else if (num == 70)
5294     regnum = mips_regnum (current_gdbarch)->hi;
5295   else if (num == 71)
5296     regnum = mips_regnum (current_gdbarch)->lo;
5297   else
5298     /* This will hopefully (eventually) provoke a warning.  Should
5299        we be calling complaint() here?  */
5300     return NUM_REGS + NUM_PSEUDO_REGS;
5301   return NUM_REGS + regnum;
5302 }
5303 
5304 
5305 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5306    NUM_REGS .. 2 * NUM_REGS) REGNUM.  */
5307 
5308 static int
mips_dwarf_dwarf2_ecoff_reg_to_regnum(int num)5309 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5310 {
5311   int regnum;
5312   if (num >= 0 && num < 32)
5313     regnum = num;
5314   else if (num >= 32 && num < 64)
5315     regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
5316   else if (num == 64)
5317     regnum = mips_regnum (current_gdbarch)->hi;
5318   else if (num == 65)
5319     regnum = mips_regnum (current_gdbarch)->lo;
5320   else
5321     /* This will hopefully (eventually) provoke a warning.  Should we
5322        be calling complaint() here?  */
5323     return NUM_REGS + NUM_PSEUDO_REGS;
5324   return NUM_REGS + regnum;
5325 }
5326 
5327 static int
mips_register_sim_regno(int regnum)5328 mips_register_sim_regno (int regnum)
5329 {
5330   /* Only makes sense to supply raw registers.  */
5331   gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5332   /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5333      decide if it is valid.  Should instead define a standard sim/gdb
5334      register numbering scheme.  */
5335   if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5336       && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5337     return regnum;
5338   else
5339     return LEGACY_SIM_REGNO_IGNORE;
5340 }
5341 
5342 
5343 /* Convert an integer into an address.  By first converting the value
5344    into a pointer and then extracting it signed, the address is
5345    guarenteed to be correctly sign extended.  */
5346 
5347 static CORE_ADDR
mips_integer_to_address(struct type * type,void * buf)5348 mips_integer_to_address (struct type *type, void *buf)
5349 {
5350   char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5351   LONGEST val = unpack_long (type, buf);
5352   store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5353   return extract_signed_integer (tmp,
5354 				 TYPE_LENGTH (builtin_type_void_data_ptr));
5355 }
5356 
5357 static void
mips_find_abi_section(bfd * abfd,asection * sect,void * obj)5358 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5359 {
5360   enum mips_abi *abip = (enum mips_abi *) obj;
5361   const char *name = bfd_get_section_name (abfd, sect);
5362 
5363   if (*abip != MIPS_ABI_UNKNOWN)
5364     return;
5365 
5366   if (strncmp (name, ".mdebug.", 8) != 0)
5367     return;
5368 
5369   if (strcmp (name, ".mdebug.abi32") == 0)
5370     *abip = MIPS_ABI_O32;
5371   else if (strcmp (name, ".mdebug.abiN32") == 0)
5372     *abip = MIPS_ABI_N32;
5373   else if (strcmp (name, ".mdebug.abi64") == 0)
5374     *abip = MIPS_ABI_N64;
5375   else if (strcmp (name, ".mdebug.abiO64") == 0)
5376     *abip = MIPS_ABI_O64;
5377   else if (strcmp (name, ".mdebug.eabi32") == 0)
5378     *abip = MIPS_ABI_EABI32;
5379   else if (strcmp (name, ".mdebug.eabi64") == 0)
5380     *abip = MIPS_ABI_EABI64;
5381   else
5382     warning ("unsupported ABI %s.", name + 8);
5383 }
5384 
5385 static enum mips_abi
global_mips_abi(void)5386 global_mips_abi (void)
5387 {
5388   int i;
5389 
5390   for (i = 0; mips_abi_strings[i] != NULL; i++)
5391     if (mips_abi_strings[i] == mips_abi_string)
5392       return (enum mips_abi) i;
5393 
5394   internal_error (__FILE__, __LINE__, "unknown ABI string");
5395 }
5396 
5397 static struct gdbarch *
mips_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)5398 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5399 {
5400   struct gdbarch *gdbarch;
5401   struct gdbarch_tdep *tdep;
5402   int elf_flags;
5403   enum mips_abi mips_abi, found_abi, wanted_abi;
5404   int num_regs;
5405   enum mips_fpu_type fpu_type;
5406 
5407   /* First of all, extract the elf_flags, if available.  */
5408   if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5409     elf_flags = elf_elfheader (info.abfd)->e_flags;
5410   else if (arches != NULL)
5411     elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5412   else
5413     elf_flags = 0;
5414   if (gdbarch_debug)
5415     fprintf_unfiltered (gdb_stdlog,
5416 			"mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5417 
5418   /* Check ELF_FLAGS to see if it specifies the ABI being used.  */
5419   switch ((elf_flags & EF_MIPS_ABI))
5420     {
5421     case E_MIPS_ABI_O32:
5422       found_abi = MIPS_ABI_O32;
5423       break;
5424     case E_MIPS_ABI_O64:
5425       found_abi = MIPS_ABI_O64;
5426       break;
5427     case E_MIPS_ABI_EABI32:
5428       found_abi = MIPS_ABI_EABI32;
5429       break;
5430     case E_MIPS_ABI_EABI64:
5431       found_abi = MIPS_ABI_EABI64;
5432       break;
5433     default:
5434       if ((elf_flags & EF_MIPS_ABI2))
5435 	found_abi = MIPS_ABI_N32;
5436       else
5437 	found_abi = MIPS_ABI_UNKNOWN;
5438       break;
5439     }
5440 
5441   /* GCC creates a pseudo-section whose name describes the ABI.  */
5442   if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5443     bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5444 
5445   /* If we have no useful BFD information, use the ABI from the last
5446      MIPS architecture (if there is one).  */
5447   if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5448     found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5449 
5450   /* Try the architecture for any hint of the correct ABI.  */
5451   if (found_abi == MIPS_ABI_UNKNOWN
5452       && info.bfd_arch_info != NULL
5453       && info.bfd_arch_info->arch == bfd_arch_mips)
5454     {
5455       switch (info.bfd_arch_info->mach)
5456 	{
5457 	case bfd_mach_mips3900:
5458 	  found_abi = MIPS_ABI_EABI32;
5459 	  break;
5460 	case bfd_mach_mips4100:
5461 	case bfd_mach_mips5000:
5462 	  found_abi = MIPS_ABI_EABI64;
5463 	  break;
5464 	case bfd_mach_mips8000:
5465 	case bfd_mach_mips10000:
5466 	  /* On Irix, ELF64 executables use the N64 ABI.  The
5467 	     pseudo-sections which describe the ABI aren't present
5468 	     on IRIX.  (Even for executables created by gcc.)  */
5469 	  if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5470 	      && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5471 	    found_abi = MIPS_ABI_N64;
5472 	  else
5473 	    found_abi = MIPS_ABI_N32;
5474 	  break;
5475 	}
5476     }
5477 
5478   if (gdbarch_debug)
5479     fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5480 			found_abi);
5481 
5482   /* What has the user specified from the command line?  */
5483   wanted_abi = global_mips_abi ();
5484   if (gdbarch_debug)
5485     fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5486 			wanted_abi);
5487 
5488   /* Now that we have found what the ABI for this binary would be,
5489      check whether the user is overriding it.  */
5490   if (wanted_abi != MIPS_ABI_UNKNOWN)
5491     mips_abi = wanted_abi;
5492   else if (found_abi != MIPS_ABI_UNKNOWN)
5493     mips_abi = found_abi;
5494   else
5495     mips_abi = MIPS_ABI_O32;
5496   if (gdbarch_debug)
5497     fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5498 			mips_abi);
5499 
5500   /* Also used when doing an architecture lookup.  */
5501   if (gdbarch_debug)
5502     fprintf_unfiltered (gdb_stdlog,
5503 			"mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5504 			mips64_transfers_32bit_regs_p);
5505 
5506   /* Determine the MIPS FPU type.  */
5507   if (!mips_fpu_type_auto)
5508     fpu_type = mips_fpu_type;
5509   else if (info.bfd_arch_info != NULL
5510 	   && info.bfd_arch_info->arch == bfd_arch_mips)
5511     switch (info.bfd_arch_info->mach)
5512       {
5513       case bfd_mach_mips3900:
5514       case bfd_mach_mips4100:
5515       case bfd_mach_mips4111:
5516       case bfd_mach_mips4120:
5517 	fpu_type = MIPS_FPU_NONE;
5518 	break;
5519       case bfd_mach_mips4650:
5520 	fpu_type = MIPS_FPU_SINGLE;
5521 	break;
5522       default:
5523 	fpu_type = MIPS_FPU_DOUBLE;
5524 	break;
5525       }
5526   else if (arches != NULL)
5527     fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5528   else
5529     fpu_type = MIPS_FPU_DOUBLE;
5530   if (gdbarch_debug)
5531     fprintf_unfiltered (gdb_stdlog,
5532 			"mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5533 
5534   /* try to find a pre-existing architecture */
5535   for (arches = gdbarch_list_lookup_by_info (arches, &info);
5536        arches != NULL;
5537        arches = gdbarch_list_lookup_by_info (arches->next, &info))
5538     {
5539       /* MIPS needs to be pedantic about which ABI the object is
5540          using.  */
5541       if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5542 	continue;
5543       if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5544 	continue;
5545       /* Need to be pedantic about which register virtual size is
5546          used.  */
5547       if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5548 	  != mips64_transfers_32bit_regs_p)
5549 	continue;
5550       /* Be pedantic about which FPU is selected.  */
5551       if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5552 	continue;
5553       return arches->gdbarch;
5554     }
5555 
5556   /* Need a new architecture.  Fill in a target specific vector.  */
5557   tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5558   gdbarch = gdbarch_alloc (&info, tdep);
5559   tdep->elf_flags = elf_flags;
5560   tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5561   tdep->found_abi = found_abi;
5562   tdep->mips_abi = mips_abi;
5563   tdep->mips_fpu_type = fpu_type;
5564 
5565   /* Initially set everything according to the default ABI/ISA.  */
5566   set_gdbarch_short_bit (gdbarch, 16);
5567   set_gdbarch_int_bit (gdbarch, 32);
5568   set_gdbarch_float_bit (gdbarch, 32);
5569   set_gdbarch_double_bit (gdbarch, 64);
5570   set_gdbarch_long_double_bit (gdbarch, 64);
5571   set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5572   set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5573   set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5574 
5575   set_gdbarch_elf_make_msymbol_special (gdbarch,
5576 					mips_elf_make_msymbol_special);
5577 
5578   /* Fill in the OS dependant register numbers and names.  */
5579   {
5580     const char **reg_names;
5581     struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5582 							 struct mips_regnum);
5583     if (info.osabi == GDB_OSABI_IRIX)
5584       {
5585 	regnum->fp0 = 32;
5586 	regnum->pc = 64;
5587 	regnum->cause = 65;
5588 	regnum->badvaddr = 66;
5589 	regnum->hi = 67;
5590 	regnum->lo = 68;
5591 	regnum->fp_control_status = 69;
5592 	regnum->fp_implementation_revision = 70;
5593 	num_regs = 71;
5594 	reg_names = mips_irix_reg_names;
5595       }
5596     else
5597       {
5598 	regnum->lo = MIPS_EMBED_LO_REGNUM;
5599 	regnum->hi = MIPS_EMBED_HI_REGNUM;
5600 	regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5601 	regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5602 	regnum->pc = MIPS_EMBED_PC_REGNUM;
5603 	regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5604 	regnum->fp_control_status = 70;
5605 	regnum->fp_implementation_revision = 71;
5606 	num_regs = 90;
5607 	if (info.bfd_arch_info != NULL
5608 	    && info.bfd_arch_info->mach == bfd_mach_mips3900)
5609 	  reg_names = mips_tx39_reg_names;
5610 	else
5611 	  reg_names = mips_generic_reg_names;
5612       }
5613     /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5614        replaced by read_pc?  */
5615     set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5616     set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5617     set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5618     set_gdbarch_num_regs (gdbarch, num_regs);
5619     set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5620     set_gdbarch_register_name (gdbarch, mips_register_name);
5621     tdep->mips_processor_reg_names = reg_names;
5622     tdep->regnum = regnum;
5623   }
5624 
5625   switch (mips_abi)
5626     {
5627     case MIPS_ABI_O32:
5628       set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5629       set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5630       tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5631       tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5632       tdep->default_mask_address_p = 0;
5633       set_gdbarch_long_bit (gdbarch, 32);
5634       set_gdbarch_ptr_bit (gdbarch, 32);
5635       set_gdbarch_long_long_bit (gdbarch, 64);
5636       break;
5637     case MIPS_ABI_O64:
5638       set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5639       set_gdbarch_deprecated_store_return_value (gdbarch,
5640 						 mips_o64_store_return_value);
5641       set_gdbarch_deprecated_extract_return_value (gdbarch,
5642 						   mips_o64_extract_return_value);
5643       tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5644       tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5645       tdep->default_mask_address_p = 0;
5646       set_gdbarch_long_bit (gdbarch, 32);
5647       set_gdbarch_ptr_bit (gdbarch, 32);
5648       set_gdbarch_long_long_bit (gdbarch, 64);
5649       set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
5650       break;
5651     case MIPS_ABI_EABI32:
5652       set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5653       set_gdbarch_deprecated_store_return_value (gdbarch,
5654 						 mips_eabi_store_return_value);
5655       set_gdbarch_deprecated_extract_return_value (gdbarch,
5656 						   mips_eabi_extract_return_value);
5657       tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5658       tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5659       tdep->default_mask_address_p = 0;
5660       set_gdbarch_long_bit (gdbarch, 32);
5661       set_gdbarch_ptr_bit (gdbarch, 32);
5662       set_gdbarch_long_long_bit (gdbarch, 64);
5663       set_gdbarch_deprecated_reg_struct_has_addr
5664 	(gdbarch, mips_eabi_reg_struct_has_addr);
5665       set_gdbarch_deprecated_use_struct_convention (gdbarch, mips_eabi_use_struct_convention);
5666       break;
5667     case MIPS_ABI_EABI64:
5668       set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5669       set_gdbarch_deprecated_store_return_value (gdbarch,
5670 						 mips_eabi_store_return_value);
5671       set_gdbarch_deprecated_extract_return_value (gdbarch,
5672 						   mips_eabi_extract_return_value);
5673       tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5674       tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5675       tdep->default_mask_address_p = 0;
5676       set_gdbarch_long_bit (gdbarch, 64);
5677       set_gdbarch_ptr_bit (gdbarch, 64);
5678       set_gdbarch_long_long_bit (gdbarch, 64);
5679       set_gdbarch_deprecated_reg_struct_has_addr
5680 	(gdbarch, mips_eabi_reg_struct_has_addr);
5681       set_gdbarch_deprecated_use_struct_convention (gdbarch, mips_eabi_use_struct_convention);
5682       break;
5683     case MIPS_ABI_N32:
5684       set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5685       set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5686       tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5687       tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5688       tdep->default_mask_address_p = 0;
5689       set_gdbarch_long_bit (gdbarch, 32);
5690       set_gdbarch_ptr_bit (gdbarch, 32);
5691       set_gdbarch_long_long_bit (gdbarch, 64);
5692       break;
5693     case MIPS_ABI_N64:
5694       set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5695       set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5696       tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5697       tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5698       tdep->default_mask_address_p = 0;
5699       set_gdbarch_long_bit (gdbarch, 64);
5700       set_gdbarch_ptr_bit (gdbarch, 64);
5701       set_gdbarch_long_long_bit (gdbarch, 64);
5702       break;
5703     default:
5704       internal_error (__FILE__, __LINE__, "unknown ABI in switch");
5705     }
5706 
5707   /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5708      that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5709      comment:
5710 
5711      ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5712      flag in object files because to do so would make it impossible to
5713      link with libraries compiled without "-gp32".  This is
5714      unnecessarily restrictive.
5715 
5716      We could solve this problem by adding "-gp32" multilibs to gcc,
5717      but to set this flag before gcc is built with such multilibs will
5718      break too many systems.''
5719 
5720      But even more unhelpfully, the default linker output target for
5721      mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5722      for 64-bit programs - you need to change the ABI to change this,
5723      and not all gcc targets support that currently.  Therefore using
5724      this flag to detect 32-bit mode would do the wrong thing given
5725      the current gcc - it would make GDB treat these 64-bit programs
5726      as 32-bit programs by default.  */
5727 
5728   set_gdbarch_read_pc (gdbarch, mips_read_pc);
5729   set_gdbarch_write_pc (gdbarch, mips_write_pc);
5730   set_gdbarch_read_sp (gdbarch, mips_read_sp);
5731 
5732   /* Add/remove bits from an address.  The MIPS needs be careful to
5733      ensure that all 32 bit addresses are sign extended to 64 bits.  */
5734   set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5735 
5736   /* Unwind the frame.  */
5737   set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5738   set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5739 
5740   /* Map debug register numbers onto internal register numbers.  */
5741   set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5742   set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5743 				   mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5744   set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5745 				   mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5746   set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5747 				    mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5748   set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5749 
5750   /* MIPS version of CALL_DUMMY */
5751 
5752   /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5753      replaced by a command, and all targets will default to on stack
5754      (regardless of the stack's execute status).  */
5755   set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5756   set_gdbarch_frame_align (gdbarch, mips_frame_align);
5757 
5758   set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5759   set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5760   set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5761 
5762   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5763   set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5764 
5765   set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5766 
5767   set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5768   set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5769   set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5770 
5771   set_gdbarch_register_type (gdbarch, mips_register_type);
5772 
5773   set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5774 
5775   set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5776 
5777   /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5778      HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5779      need to all be folded into the target vector.  Since they are
5780      being used as guards for STOPPED_BY_WATCHPOINT, why not have
5781      STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5782      is sitting on?  */
5783   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5784 
5785   set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5786 
5787   /* NOTE drow/2004-02-11: We overload the core solib trampoline code
5788      to support MIPS16.  This is a bad thing.  Make sure not to do it
5789      if we have an OS ABI that actually supports shared libraries, since
5790      shared library support is more important.  If we have an OS someday
5791      that supports both shared libraries and MIPS16, we'll have to find
5792      a better place for these.  */
5793   if (info.osabi == GDB_OSABI_UNKNOWN)
5794     {
5795       set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
5796       set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
5797     }
5798 
5799   /* Hook in OS ABI-specific overrides, if they have been registered.  */
5800   gdbarch_init_osabi (info, gdbarch);
5801 
5802   /* Unwind the frame.  */
5803   frame_unwind_append_sniffer (gdbarch, mips_mdebug_frame_sniffer);
5804   frame_base_append_sniffer (gdbarch, mips_mdebug_frame_base_sniffer);
5805 
5806   return gdbarch;
5807 }
5808 
5809 static void
mips_abi_update(char * ignore_args,int from_tty,struct cmd_list_element * c)5810 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5811 {
5812   struct gdbarch_info info;
5813 
5814   /* Force the architecture to update, and (if it's a MIPS architecture)
5815      mips_gdbarch_init will take care of the rest.  */
5816   gdbarch_info_init (&info);
5817   gdbarch_update_p (info);
5818 }
5819 
5820 /* Print out which MIPS ABI is in use.  */
5821 
5822 static void
show_mips_abi(char * ignore_args,int from_tty)5823 show_mips_abi (char *ignore_args, int from_tty)
5824 {
5825   if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5826     printf_filtered
5827       ("The MIPS ABI is unknown because the current architecture is not MIPS.\n");
5828   else
5829     {
5830       enum mips_abi global_abi = global_mips_abi ();
5831       enum mips_abi actual_abi = mips_abi (current_gdbarch);
5832       const char *actual_abi_str = mips_abi_strings[actual_abi];
5833 
5834       if (global_abi == MIPS_ABI_UNKNOWN)
5835 	printf_filtered
5836 	  ("The MIPS ABI is set automatically (currently \"%s\").\n",
5837 	   actual_abi_str);
5838       else if (global_abi == actual_abi)
5839 	printf_filtered
5840 	  ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5841 	   actual_abi_str);
5842       else
5843 	{
5844 	  /* Probably shouldn't happen...  */
5845 	  printf_filtered
5846 	    ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5847 	     actual_abi_str, mips_abi_strings[global_abi]);
5848 	}
5849     }
5850 }
5851 
5852 static void
mips_dump_tdep(struct gdbarch * current_gdbarch,struct ui_file * file)5853 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5854 {
5855   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5856   if (tdep != NULL)
5857     {
5858       int ef_mips_arch;
5859       int ef_mips_32bitmode;
5860       /* determine the ISA */
5861       switch (tdep->elf_flags & EF_MIPS_ARCH)
5862 	{
5863 	case E_MIPS_ARCH_1:
5864 	  ef_mips_arch = 1;
5865 	  break;
5866 	case E_MIPS_ARCH_2:
5867 	  ef_mips_arch = 2;
5868 	  break;
5869 	case E_MIPS_ARCH_3:
5870 	  ef_mips_arch = 3;
5871 	  break;
5872 	case E_MIPS_ARCH_4:
5873 	  ef_mips_arch = 4;
5874 	  break;
5875 	default:
5876 	  ef_mips_arch = 0;
5877 	  break;
5878 	}
5879       /* determine the size of a pointer */
5880       ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5881       fprintf_unfiltered (file,
5882 			  "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5883 			  tdep->elf_flags);
5884       fprintf_unfiltered (file,
5885 			  "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5886 			  ef_mips_32bitmode);
5887       fprintf_unfiltered (file,
5888 			  "mips_dump_tdep: ef_mips_arch = %d\n",
5889 			  ef_mips_arch);
5890       fprintf_unfiltered (file,
5891 			  "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5892 			  tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5893       fprintf_unfiltered (file,
5894 			  "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5895 			  mips_mask_address_p (tdep),
5896 			  tdep->default_mask_address_p);
5897     }
5898   fprintf_unfiltered (file,
5899 		      "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5900 		      MIPS_DEFAULT_FPU_TYPE,
5901 		      (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5902 		       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5903 		       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5904 		       : "???"));
5905   fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5906   fprintf_unfiltered (file,
5907 		      "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5908 		      MIPS_FPU_TYPE,
5909 		      (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5910 		       : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5911 		       : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5912 		       : "???"));
5913   fprintf_unfiltered (file,
5914 		      "mips_dump_tdep: mips_stack_argsize() = %d\n",
5915 		      mips_stack_argsize (current_gdbarch));
5916   fprintf_unfiltered (file, "mips_dump_tdep: A0_REGNUM = %d\n", A0_REGNUM);
5917   fprintf_unfiltered (file,
5918 		      "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
5919 		      XSTRING (ADDR_BITS_REMOVE (ADDR)));
5920   fprintf_unfiltered (file,
5921 		      "mips_dump_tdep: ATTACH_DETACH # %s\n",
5922 		      XSTRING (ATTACH_DETACH));
5923   fprintf_unfiltered (file,
5924 		      "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
5925 		      XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
5926   fprintf_unfiltered (file,
5927 		      "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
5928 		      XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
5929   fprintf_unfiltered (file,
5930 		      "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
5931 		      FIRST_EMBED_REGNUM);
5932   fprintf_unfiltered (file,
5933 		      "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
5934 		      XSTRING (IGNORE_HELPER_CALL (PC)));
5935   fprintf_unfiltered (file,
5936 		      "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
5937 		      XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
5938   fprintf_unfiltered (file,
5939 		      "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
5940 		      XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
5941   fprintf_unfiltered (file,
5942 		      "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
5943 		      LAST_EMBED_REGNUM);
5944 #ifdef MACHINE_CPROC_FP_OFFSET
5945   fprintf_unfiltered (file,
5946 		      "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
5947 		      MACHINE_CPROC_FP_OFFSET);
5948 #endif
5949 #ifdef MACHINE_CPROC_PC_OFFSET
5950   fprintf_unfiltered (file,
5951 		      "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
5952 		      MACHINE_CPROC_PC_OFFSET);
5953 #endif
5954 #ifdef MACHINE_CPROC_SP_OFFSET
5955   fprintf_unfiltered (file,
5956 		      "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
5957 		      MACHINE_CPROC_SP_OFFSET);
5958 #endif
5959   fprintf_unfiltered (file,
5960 		      "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
5961 		      MIPS16_INSTLEN);
5962   fprintf_unfiltered (file, "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
5963   fprintf_unfiltered (file,
5964 		      "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
5965   fprintf_unfiltered (file,
5966 		      "mips_dump_tdep: MIPS_INSTLEN = %d\n", MIPS_INSTLEN);
5967   fprintf_unfiltered (file,
5968 		      "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
5969 		      MIPS_LAST_ARG_REGNUM,
5970 		      MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
5971   fprintf_unfiltered (file,
5972 		      "mips_dump_tdep: MIPS_NUMREGS = %d\n", MIPS_NUMREGS);
5973   fprintf_unfiltered (file,
5974 		      "mips_dump_tdep: mips_abi_regsize() = %d\n",
5975 		      mips_abi_regsize (current_gdbarch));
5976   fprintf_unfiltered (file,
5977 		      "mips_dump_tdep: PRID_REGNUM = %d\n", PRID_REGNUM);
5978   fprintf_unfiltered (file,
5979 		      "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
5980   fprintf_unfiltered (file,
5981 		      "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
5982   fprintf_unfiltered (file,
5983 		      "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
5984   fprintf_unfiltered (file, "mips_dump_tdep: PROC_FRAME_REG = function?\n");
5985   fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_MASK = function?\n");
5986   fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
5987   fprintf_unfiltered (file, "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
5988   fprintf_unfiltered (file, "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
5989   fprintf_unfiltered (file, "mips_dump_tdep: PROC_PC_REG = function?\n");
5990   fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_MASK = function?\n");
5991   fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
5992   fprintf_unfiltered (file, "mips_dump_tdep: PROC_SYMBOL = function?\n");
5993   fprintf_unfiltered (file, "mips_dump_tdep: PS_REGNUM = %d\n", PS_REGNUM);
5994   fprintf_unfiltered (file, "mips_dump_tdep: RA_REGNUM = %d\n", RA_REGNUM);
5995 #ifdef SAVED_BYTES
5996   fprintf_unfiltered (file,
5997 		      "mips_dump_tdep: SAVED_BYTES = %d\n", SAVED_BYTES);
5998 #endif
5999 #ifdef SAVED_FP
6000   fprintf_unfiltered (file, "mips_dump_tdep: SAVED_FP = %d\n", SAVED_FP);
6001 #endif
6002 #ifdef SAVED_PC
6003   fprintf_unfiltered (file, "mips_dump_tdep: SAVED_PC = %d\n", SAVED_PC);
6004 #endif
6005   fprintf_unfiltered (file,
6006 		      "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6007 		      XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6008   fprintf_unfiltered (file,
6009 		      "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6010   fprintf_unfiltered (file,
6011 		      "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6012 		      XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6013   fprintf_unfiltered (file,
6014 		      "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6015 		      XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6016   fprintf_unfiltered (file,
6017 		      "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6018 		      SOFTWARE_SINGLE_STEP_P ());
6019   fprintf_unfiltered (file,
6020 		      "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6021 		      XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6022 #ifdef STACK_END_ADDR
6023   fprintf_unfiltered (file,
6024 		      "mips_dump_tdep: STACK_END_ADDR = %d\n",
6025 		      STACK_END_ADDR);
6026 #endif
6027   fprintf_unfiltered (file,
6028 		      "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6029 		      XSTRING (STEP_SKIPS_DELAY (PC)));
6030   fprintf_unfiltered (file,
6031 		      "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6032 		      STEP_SKIPS_DELAY_P);
6033   fprintf_unfiltered (file,
6034 		      "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6035 		      XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6036   fprintf_unfiltered (file, "mips_dump_tdep: T9_REGNUM = %d\n", T9_REGNUM);
6037   fprintf_unfiltered (file,
6038 		      "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6039   fprintf_unfiltered (file,
6040 		      "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6041 		      XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT
6042 			       (TYPE, CNT, OTHERTYPE)));
6043   fprintf_unfiltered (file,
6044 		      "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6045 		      XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6046 #ifdef TRACE_CLEAR
6047   fprintf_unfiltered (file,
6048 		      "mips_dump_tdep: TRACE_CLEAR # %s\n",
6049 		      XSTRING (TRACE_CLEAR (THREAD, STATE)));
6050 #endif
6051 #ifdef TRACE_FLAVOR
6052   fprintf_unfiltered (file,
6053 		      "mips_dump_tdep: TRACE_FLAVOR = %d\n", TRACE_FLAVOR);
6054 #endif
6055 #ifdef TRACE_FLAVOR_SIZE
6056   fprintf_unfiltered (file,
6057 		      "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6058 		      TRACE_FLAVOR_SIZE);
6059 #endif
6060 #ifdef TRACE_SET
6061   fprintf_unfiltered (file,
6062 		      "mips_dump_tdep: TRACE_SET # %s\n",
6063 		      XSTRING (TRACE_SET (X, STATE)));
6064 #endif
6065 #ifdef UNUSED_REGNUM
6066   fprintf_unfiltered (file,
6067 		      "mips_dump_tdep: UNUSED_REGNUM = %d\n", UNUSED_REGNUM);
6068 #endif
6069   fprintf_unfiltered (file, "mips_dump_tdep: V0_REGNUM = %d\n", V0_REGNUM);
6070   fprintf_unfiltered (file,
6071 		      "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6072 		      (long) VM_MIN_ADDRESS);
6073   fprintf_unfiltered (file,
6074 		      "mips_dump_tdep: ZERO_REGNUM = %d\n", ZERO_REGNUM);
6075   fprintf_unfiltered (file,
6076 		      "mips_dump_tdep: _PROC_MAGIC_ = %d\n", _PROC_MAGIC_);
6077 }
6078 
6079 extern initialize_file_ftype _initialize_mips_tdep;	/* -Wmissing-prototypes */
6080 
6081 void
_initialize_mips_tdep(void)6082 _initialize_mips_tdep (void)
6083 {
6084   static struct cmd_list_element *mipsfpulist = NULL;
6085   struct cmd_list_element *c;
6086 
6087   mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
6088   if (MIPS_ABI_LAST + 1
6089       != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6090     internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6091 
6092   gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6093 
6094   mips_pdr_data = register_objfile_data ();
6095 
6096   /* Add root prefix command for all "set mips"/"show mips" commands */
6097   add_prefix_cmd ("mips", no_class, set_mips_command,
6098 		  "Various MIPS specific commands.",
6099 		  &setmipscmdlist, "set mips ", 0, &setlist);
6100 
6101   add_prefix_cmd ("mips", no_class, show_mips_command,
6102 		  "Various MIPS specific commands.",
6103 		  &showmipscmdlist, "show mips ", 0, &showlist);
6104 
6105   /* Allow the user to override the saved register size. */
6106   add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6107 				       class_obscure,
6108 				       size_enums,
6109 				       &mips_abi_regsize_string, "\
6110 Set size of general purpose registers saved on the stack.\n\
6111 This option can be set to one of:\n\
6112   32    - Force GDB to treat saved GP registers as 32-bit\n\
6113   64    - Force GDB to treat saved GP registers as 64-bit\n\
6114   auto  - Allow GDB to use the target's default setting or autodetect the\n\
6115           saved GP register size from information contained in the executable.\n\
6116           (default: auto)", &setmipscmdlist), &showmipscmdlist);
6117 
6118   /* Allow the user to override the argument stack size. */
6119   add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6120 				       class_obscure,
6121 				       size_enums,
6122 				       &mips_stack_argsize_string, "\
6123 Set the amount of stack space reserved for each argument.\n\
6124 This option can be set to one of:\n\
6125   32    - Force GDB to allocate 32-bit chunks per argument\n\
6126   64    - Force GDB to allocate 64-bit chunks per argument\n\
6127   auto  - Allow GDB to determine the correct setting from the current\n\
6128           target and executable (default)", &setmipscmdlist), &showmipscmdlist);
6129 
6130   /* Allow the user to override the ABI. */
6131   c = add_set_enum_cmd
6132     ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6133      "Set the ABI used by this program.\n"
6134      "This option can be set to one of:\n"
6135      "  auto  - the default ABI associated with the current binary\n"
6136      "  o32\n"
6137      "  o64\n" "  n32\n" "  n64\n" "  eabi32\n" "  eabi64", &setmipscmdlist);
6138   set_cmd_sfunc (c, mips_abi_update);
6139   add_cmd ("abi", class_obscure, show_mips_abi,
6140 	   "Show ABI in use by MIPS target", &showmipscmdlist);
6141 
6142   /* Let the user turn off floating point and set the fence post for
6143      heuristic_proc_start.  */
6144 
6145   add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6146 		  "Set use of MIPS floating-point coprocessor.",
6147 		  &mipsfpulist, "set mipsfpu ", 0, &setlist);
6148   add_cmd ("single", class_support, set_mipsfpu_single_command,
6149 	   "Select single-precision MIPS floating-point coprocessor.",
6150 	   &mipsfpulist);
6151   add_cmd ("double", class_support, set_mipsfpu_double_command,
6152 	   "Select double-precision MIPS floating-point coprocessor.",
6153 	   &mipsfpulist);
6154   add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6155   add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6156   add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6157   add_cmd ("none", class_support, set_mipsfpu_none_command,
6158 	   "Select no MIPS floating-point coprocessor.", &mipsfpulist);
6159   add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6160   add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6161   add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6162   add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6163 	   "Select MIPS floating-point coprocessor automatically.",
6164 	   &mipsfpulist);
6165   add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6166 	   "Show current use of MIPS floating-point coprocessor target.",
6167 	   &showlist);
6168 
6169   /* We really would like to have both "0" and "unlimited" work, but
6170      command.c doesn't deal with that.  So make it a var_zinteger
6171      because the user can always use "999999" or some such for unlimited.  */
6172   c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6173 		   (char *) &heuristic_fence_post, "\
6174 Set the distance searched for the start of a function.\n\
6175 If you are debugging a stripped executable, GDB needs to search through the\n\
6176 program for the start of a function.  This command sets the distance of the\n\
6177 search.  The only need to set it is when debugging a stripped executable.", &setlist);
6178   /* We need to throw away the frame cache when we set this, since it
6179      might change our ability to get backtraces.  */
6180   set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6181   add_show_from_set (c, &showlist);
6182 
6183   /* Allow the user to control whether the upper bits of 64-bit
6184      addresses should be zeroed.  */
6185   add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6186 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6187 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6188 allow GDB to determine the correct value.\n", "\
6189 Show zeroing of upper 32 bits of 64-bit addresses.",
6190 				NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist);
6191 
6192   /* Allow the user to control the size of 32 bit registers within the
6193      raw remote packet.  */
6194   add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6195 		   var_boolean, &mips64_transfers_32bit_regs_p, "\
6196 Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6197 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6198 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6199 64 bits for others.  Use \"off\" to disable compatibility mode", "\
6200 Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6201 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6202 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6203 64 bits for others.  Use \"off\" to disable compatibility mode", set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist);
6204 
6205   /* Debug this files internals. */
6206   add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6207 				  &mips_debug, "Set mips debugging.\n\
6208 When non-zero, mips specific debugging is enabled.", &setdebuglist), &showdebuglist);
6209 }
6210