1 /* BFD back-end for Renesas Super-H COFF binaries.
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3    Free Software Foundation, Inc.
4    Contributed by Cygnus Support.
5    Written by Steve Chamberlain, <sac@cygnus.com>.
6    Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7 
8    This file is part of BFD, the Binary File Descriptor library.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
23 
24 #include "bfd.h"
25 #include "sysdep.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "coff/sh.h"
30 #include "coff/internal.h"
31 
32 #ifdef COFF_WITH_PE
33 #include "coff/pe.h"
34 
35 #ifndef COFF_IMAGE_WITH_PE
36 static bfd_boolean sh_align_load_span
37   PARAMS ((bfd *, asection *, bfd_byte *,
38 	   bfd_boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma),
39 	   PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *));
40 
41 #define _bfd_sh_align_load_span sh_align_load_span
42 #endif
43 #endif
44 
45 #include "libcoff.h"
46 
47 /* Internal functions.  */
48 static bfd_reloc_status_type sh_reloc
49   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
50 static long get_symbol_value PARAMS ((asymbol *));
51 static bfd_boolean sh_relax_section
52   PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
53 static bfd_boolean sh_relax_delete_bytes
54   PARAMS ((bfd *, asection *, bfd_vma, int));
55 #ifndef COFF_IMAGE_WITH_PE
56 static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
57 #endif
58 static bfd_boolean sh_align_loads
59   PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *,
60 	   bfd_boolean *));
61 static bfd_boolean sh_swap_insns
62   PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
63 static bfd_boolean sh_relocate_section
64   PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
65 	   struct internal_reloc *, struct internal_syment *, asection **));
66 static bfd_byte *sh_coff_get_relocated_section_contents
67   PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
68 	   bfd_byte *, bfd_boolean, asymbol **));
69 static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));
70 
71 #ifdef COFF_WITH_PE
72 /* Can't build import tables with 2**4 alignment.  */
73 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	2
74 #else
75 /* Default section alignment to 2**4.  */
76 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	4
77 #endif
78 
79 #ifdef COFF_IMAGE_WITH_PE
80 /* Align PE executables.  */
81 #define COFF_PAGE_SIZE 0x1000
82 #endif
83 
84 /* Generate long file names.  */
85 #define COFF_LONG_FILENAMES
86 
87 #ifdef COFF_WITH_PE
88 static bfd_boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *));
89 /* Return TRUE if this relocation should
90    appear in the output .reloc section.  */
91 static bfd_boolean in_reloc_p (abfd, howto)
92      bfd * abfd ATTRIBUTE_UNUSED;
93      reloc_howto_type * howto;
94 {
95   return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
96 }
97 #endif
98 
99 /* The supported relocations.  There are a lot of relocations defined
100    in coff/internal.h which we do not expect to ever see.  */
101 static reloc_howto_type sh_coff_howtos[] =
102 {
103   EMPTY_HOWTO (0),
104   EMPTY_HOWTO (1),
105 #ifdef COFF_WITH_PE
106   /* Windows CE */
107   HOWTO (R_SH_IMM32CE,		/* type */
108 	 0,			/* rightshift */
109 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
110 	 32,			/* bitsize */
111 	 FALSE,			/* pc_relative */
112 	 0,			/* bitpos */
113 	 complain_overflow_bitfield, /* complain_on_overflow */
114 	 sh_reloc,		/* special_function */
115 	 "r_imm32ce",		/* name */
116 	 TRUE,			/* partial_inplace */
117 	 0xffffffff,		/* src_mask */
118 	 0xffffffff,		/* dst_mask */
119 	 FALSE),		/* pcrel_offset */
120 #else
121   EMPTY_HOWTO (2),
122 #endif
123   EMPTY_HOWTO (3), /* R_SH_PCREL8 */
124   EMPTY_HOWTO (4), /* R_SH_PCREL16 */
125   EMPTY_HOWTO (5), /* R_SH_HIGH8 */
126   EMPTY_HOWTO (6), /* R_SH_IMM24 */
127   EMPTY_HOWTO (7), /* R_SH_LOW16 */
128   EMPTY_HOWTO (8),
129   EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
130 
131   HOWTO (R_SH_PCDISP8BY2,	/* type */
132 	 1,			/* rightshift */
133 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
134 	 8,			/* bitsize */
135 	 TRUE,			/* pc_relative */
136 	 0,			/* bitpos */
137 	 complain_overflow_signed, /* complain_on_overflow */
138 	 sh_reloc,		/* special_function */
139 	 "r_pcdisp8by2",	/* name */
140 	 TRUE,			/* partial_inplace */
141 	 0xff,			/* src_mask */
142 	 0xff,			/* dst_mask */
143 	 TRUE),			/* pcrel_offset */
144 
145   EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
146 
147   HOWTO (R_SH_PCDISP,		/* type */
148 	 1,			/* rightshift */
149 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
150 	 12,			/* bitsize */
151 	 TRUE,			/* pc_relative */
152 	 0,			/* bitpos */
153 	 complain_overflow_signed, /* complain_on_overflow */
154 	 sh_reloc,		/* special_function */
155 	 "r_pcdisp12by2",	/* name */
156 	 TRUE,			/* partial_inplace */
157 	 0xfff,			/* src_mask */
158 	 0xfff,			/* dst_mask */
159 	 TRUE),			/* pcrel_offset */
160 
161   EMPTY_HOWTO (13),
162 
163   HOWTO (R_SH_IMM32,		/* type */
164 	 0,			/* rightshift */
165 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
166 	 32,			/* bitsize */
167 	 FALSE,			/* pc_relative */
168 	 0,			/* bitpos */
169 	 complain_overflow_bitfield, /* complain_on_overflow */
170 	 sh_reloc,		/* special_function */
171 	 "r_imm32",		/* name */
172 	 TRUE,			/* partial_inplace */
173 	 0xffffffff,		/* src_mask */
174 	 0xffffffff,		/* dst_mask */
175 	 FALSE),		/* pcrel_offset */
176 
177   EMPTY_HOWTO (15),
178 #ifdef COFF_WITH_PE
179   HOWTO (R_SH_IMAGEBASE,        /* type */
180 	 0,	                /* rightshift */
181 	 2,	                /* size (0 = byte, 1 = short, 2 = long) */
182 	 32,	                /* bitsize */
183 	 FALSE,	                /* pc_relative */
184 	 0,	                /* bitpos */
185 	 complain_overflow_bitfield, /* complain_on_overflow */
186 	 sh_reloc,       	/* special_function */
187 	 "rva32",	        /* name */
188 	 TRUE,	                /* partial_inplace */
189 	 0xffffffff,            /* src_mask */
190 	 0xffffffff,            /* dst_mask */
191 	 FALSE),                /* pcrel_offset */
192 #else
193   EMPTY_HOWTO (16), /* R_SH_IMM8 */
194 #endif
195   EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
196   EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
197   EMPTY_HOWTO (19), /* R_SH_IMM4 */
198   EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
199   EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
200 
201   HOWTO (R_SH_PCRELIMM8BY2,	/* type */
202 	 1,			/* rightshift */
203 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
204 	 8,			/* bitsize */
205 	 TRUE,			/* pc_relative */
206 	 0,			/* bitpos */
207 	 complain_overflow_unsigned, /* complain_on_overflow */
208 	 sh_reloc,		/* special_function */
209 	 "r_pcrelimm8by2",	/* name */
210 	 TRUE,			/* partial_inplace */
211 	 0xff,			/* src_mask */
212 	 0xff,			/* dst_mask */
213 	 TRUE),			/* pcrel_offset */
214 
215   HOWTO (R_SH_PCRELIMM8BY4,	/* type */
216 	 2,			/* rightshift */
217 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
218 	 8,			/* bitsize */
219 	 TRUE,			/* pc_relative */
220 	 0,			/* bitpos */
221 	 complain_overflow_unsigned, /* complain_on_overflow */
222 	 sh_reloc,		/* special_function */
223 	 "r_pcrelimm8by4",	/* name */
224 	 TRUE,			/* partial_inplace */
225 	 0xff,			/* src_mask */
226 	 0xff,			/* dst_mask */
227 	 TRUE),			/* pcrel_offset */
228 
229   HOWTO (R_SH_IMM16,		/* type */
230 	 0,			/* rightshift */
231 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
232 	 16,			/* bitsize */
233 	 FALSE,			/* pc_relative */
234 	 0,			/* bitpos */
235 	 complain_overflow_bitfield, /* complain_on_overflow */
236 	 sh_reloc,		/* special_function */
237 	 "r_imm16",		/* name */
238 	 TRUE,			/* partial_inplace */
239 	 0xffff,		/* src_mask */
240 	 0xffff,		/* dst_mask */
241 	 FALSE),		/* pcrel_offset */
242 
243   HOWTO (R_SH_SWITCH16,		/* type */
244 	 0,			/* rightshift */
245 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
246 	 16,			/* bitsize */
247 	 FALSE,			/* pc_relative */
248 	 0,			/* bitpos */
249 	 complain_overflow_bitfield, /* complain_on_overflow */
250 	 sh_reloc,		/* special_function */
251 	 "r_switch16",		/* name */
252 	 TRUE,			/* partial_inplace */
253 	 0xffff,		/* src_mask */
254 	 0xffff,		/* dst_mask */
255 	 FALSE),		/* pcrel_offset */
256 
257   HOWTO (R_SH_SWITCH32,		/* type */
258 	 0,			/* rightshift */
259 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
260 	 32,			/* bitsize */
261 	 FALSE,			/* pc_relative */
262 	 0,			/* bitpos */
263 	 complain_overflow_bitfield, /* complain_on_overflow */
264 	 sh_reloc,		/* special_function */
265 	 "r_switch32",		/* name */
266 	 TRUE,			/* partial_inplace */
267 	 0xffffffff,		/* src_mask */
268 	 0xffffffff,		/* dst_mask */
269 	 FALSE),		/* pcrel_offset */
270 
271   HOWTO (R_SH_USES,		/* type */
272 	 0,			/* rightshift */
273 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
274 	 16,			/* bitsize */
275 	 FALSE,			/* pc_relative */
276 	 0,			/* bitpos */
277 	 complain_overflow_bitfield, /* complain_on_overflow */
278 	 sh_reloc,		/* special_function */
279 	 "r_uses",		/* name */
280 	 TRUE,			/* partial_inplace */
281 	 0xffff,		/* src_mask */
282 	 0xffff,		/* dst_mask */
283 	 FALSE),		/* pcrel_offset */
284 
285   HOWTO (R_SH_COUNT,		/* type */
286 	 0,			/* rightshift */
287 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
288 	 32,			/* bitsize */
289 	 FALSE,			/* pc_relative */
290 	 0,			/* bitpos */
291 	 complain_overflow_bitfield, /* complain_on_overflow */
292 	 sh_reloc,		/* special_function */
293 	 "r_count",		/* name */
294 	 TRUE,			/* partial_inplace */
295 	 0xffffffff,		/* src_mask */
296 	 0xffffffff,		/* dst_mask */
297 	 FALSE),		/* pcrel_offset */
298 
299   HOWTO (R_SH_ALIGN,		/* type */
300 	 0,			/* rightshift */
301 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
302 	 32,			/* bitsize */
303 	 FALSE,			/* pc_relative */
304 	 0,			/* bitpos */
305 	 complain_overflow_bitfield, /* complain_on_overflow */
306 	 sh_reloc,		/* special_function */
307 	 "r_align",		/* name */
308 	 TRUE,			/* partial_inplace */
309 	 0xffffffff,		/* src_mask */
310 	 0xffffffff,		/* dst_mask */
311 	 FALSE),		/* pcrel_offset */
312 
313   HOWTO (R_SH_CODE,		/* type */
314 	 0,			/* rightshift */
315 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
316 	 32,			/* bitsize */
317 	 FALSE,			/* pc_relative */
318 	 0,			/* bitpos */
319 	 complain_overflow_bitfield, /* complain_on_overflow */
320 	 sh_reloc,		/* special_function */
321 	 "r_code",		/* name */
322 	 TRUE,			/* partial_inplace */
323 	 0xffffffff,		/* src_mask */
324 	 0xffffffff,		/* dst_mask */
325 	 FALSE),		/* pcrel_offset */
326 
327   HOWTO (R_SH_DATA,		/* type */
328 	 0,			/* rightshift */
329 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
330 	 32,			/* bitsize */
331 	 FALSE,			/* pc_relative */
332 	 0,			/* bitpos */
333 	 complain_overflow_bitfield, /* complain_on_overflow */
334 	 sh_reloc,		/* special_function */
335 	 "r_data",		/* name */
336 	 TRUE,			/* partial_inplace */
337 	 0xffffffff,		/* src_mask */
338 	 0xffffffff,		/* dst_mask */
339 	 FALSE),		/* pcrel_offset */
340 
341   HOWTO (R_SH_LABEL,		/* type */
342 	 0,			/* rightshift */
343 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
344 	 32,			/* bitsize */
345 	 FALSE,			/* pc_relative */
346 	 0,			/* bitpos */
347 	 complain_overflow_bitfield, /* complain_on_overflow */
348 	 sh_reloc,		/* special_function */
349 	 "r_label",		/* name */
350 	 TRUE,			/* partial_inplace */
351 	 0xffffffff,		/* src_mask */
352 	 0xffffffff,		/* dst_mask */
353 	 FALSE),		/* pcrel_offset */
354 
355   HOWTO (R_SH_SWITCH8,		/* type */
356 	 0,			/* rightshift */
357 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
358 	 8,			/* bitsize */
359 	 FALSE,			/* pc_relative */
360 	 0,			/* bitpos */
361 	 complain_overflow_bitfield, /* complain_on_overflow */
362 	 sh_reloc,		/* special_function */
363 	 "r_switch8",		/* name */
364 	 TRUE,			/* partial_inplace */
365 	 0xff,			/* src_mask */
366 	 0xff,			/* dst_mask */
367 	 FALSE)			/* pcrel_offset */
368 };
369 
370 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
371 
372 /* Check for a bad magic number.  */
373 #define BADMAG(x) SHBADMAG(x)
374 
375 /* Customize coffcode.h (this is not currently used).  */
376 #define SH 1
377 
378 /* FIXME: This should not be set here.  */
379 #define __A_MAGIC_SET__
380 
381 #ifndef COFF_WITH_PE
382 /* Swap the r_offset field in and out.  */
383 #define SWAP_IN_RELOC_OFFSET  H_GET_32
384 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
385 
386 /* Swap out extra information in the reloc structure.  */
387 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)	\
388   do						\
389     {						\
390       dst->r_stuff[0] = 'S';			\
391       dst->r_stuff[1] = 'C';			\
392     }						\
393   while (0)
394 #endif
395 
396 /* Get the value of a symbol, when performing a relocation.  */
397 
398 static long
399 get_symbol_value (symbol)
400      asymbol *symbol;
401 {
402   bfd_vma relocation;
403 
404   if (bfd_is_com_section (symbol->section))
405     relocation = 0;
406   else
407     relocation = (symbol->value +
408 		  symbol->section->output_section->vma +
409 		  symbol->section->output_offset);
410 
411   return relocation;
412 }
413 
414 #ifdef COFF_WITH_PE
415 /* Convert an rtype to howto for the COFF backend linker.
416    Copied from coff-i386.  */
417 #define coff_rtype_to_howto coff_sh_rtype_to_howto
418 static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *));
419 
420 static reloc_howto_type *
421 coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp)
422      bfd * abfd ATTRIBUTE_UNUSED;
423      asection * sec;
424      struct internal_reloc * rel;
425      struct coff_link_hash_entry * h;
426      struct internal_syment * sym;
427      bfd_vma * addendp;
428 {
429   reloc_howto_type * howto;
430 
431   howto = sh_coff_howtos + rel->r_type;
432 
433   *addendp = 0;
434 
435   if (howto->pc_relative)
436     *addendp += sec->vma;
437 
438   if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
439     {
440       /* This is a common symbol.  The section contents include the
441 	 size (sym->n_value) as an addend.  The relocate_section
442 	 function will be adding in the final value of the symbol.  We
443 	 need to subtract out the current size in order to get the
444 	 correct result.  */
445       BFD_ASSERT (h != NULL);
446     }
447 
448   if (howto->pc_relative)
449     {
450       *addendp -= 4;
451 
452       /* If the symbol is defined, then the generic code is going to
453          add back the symbol value in order to cancel out an
454          adjustment it made to the addend.  However, we set the addend
455          to 0 at the start of this function.  We need to adjust here,
456          to avoid the adjustment the generic code will make.  FIXME:
457          This is getting a bit hackish.  */
458       if (sym != NULL && sym->n_scnum != 0)
459 	*addendp -= sym->n_value;
460     }
461 
462   if (rel->r_type == R_SH_IMAGEBASE)
463     *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
464 
465   return howto;
466 }
467 
468 #endif /* COFF_WITH_PE */
469 
470 /* This structure is used to map BFD reloc codes to SH PE relocs.  */
471 struct shcoff_reloc_map
472 {
473   bfd_reloc_code_real_type bfd_reloc_val;
474   unsigned char shcoff_reloc_val;
475 };
476 
477 #ifdef COFF_WITH_PE
478 /* An array mapping BFD reloc codes to SH PE relocs.  */
479 static const struct shcoff_reloc_map sh_reloc_map[] =
480 {
481   { BFD_RELOC_32, R_SH_IMM32CE },
482   { BFD_RELOC_RVA, R_SH_IMAGEBASE },
483   { BFD_RELOC_CTOR, R_SH_IMM32CE },
484 };
485 #else
486 /* An array mapping BFD reloc codes to SH PE relocs.  */
487 static const struct shcoff_reloc_map sh_reloc_map[] =
488 {
489   { BFD_RELOC_32, R_SH_IMM32 },
490   { BFD_RELOC_CTOR, R_SH_IMM32 },
491 };
492 #endif
493 
494 /* Given a BFD reloc code, return the howto structure for the
495    corresponding SH PE reloc.  */
496 #define coff_bfd_reloc_type_lookup	sh_coff_reloc_type_lookup
497 
498 static reloc_howto_type *
499 sh_coff_reloc_type_lookup (abfd, code)
500      bfd * abfd ATTRIBUTE_UNUSED;
501      bfd_reloc_code_real_type code;
502 {
503   unsigned int i;
504 
505   for (i = ARRAY_SIZE (sh_reloc_map); i--;)
506     if (sh_reloc_map[i].bfd_reloc_val == code)
507       return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
508 
509   fprintf (stderr, "SH Error: unknown reloc type %d\n", code);
510   return NULL;
511 }
512 
513 /* This macro is used in coffcode.h to get the howto corresponding to
514    an internal reloc.  */
515 
516 #define RTYPE2HOWTO(relent, internal)		\
517   ((relent)->howto =				\
518    ((internal)->r_type < SH_COFF_HOWTO_COUNT	\
519     ? &sh_coff_howtos[(internal)->r_type]	\
520     : (reloc_howto_type *) NULL))
521 
522 /* This is the same as the macro in coffcode.h, except that it copies
523    r_offset into reloc_entry->addend for some relocs.  */
524 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)                \
525   {                                                             \
526     coff_symbol_type *coffsym = (coff_symbol_type *) NULL;      \
527     if (ptr && bfd_asymbol_bfd (ptr) != abfd)                   \
528       coffsym = (obj_symbols (abfd)                             \
529                  + (cache_ptr->sym_ptr_ptr - symbols));         \
530     else if (ptr)                                               \
531       coffsym = coff_symbol_from (abfd, ptr);                   \
532     if (coffsym != (coff_symbol_type *) NULL                    \
533         && coffsym->native->u.syment.n_scnum == 0)              \
534       cache_ptr->addend = 0;                                    \
535     else if (ptr && bfd_asymbol_bfd (ptr) == abfd               \
536              && ptr->section != (asection *) NULL)              \
537       cache_ptr->addend = - (ptr->section->vma + ptr->value);   \
538     else                                                        \
539       cache_ptr->addend = 0;                                    \
540     if ((reloc).r_type == R_SH_SWITCH8				\
541 	|| (reloc).r_type == R_SH_SWITCH16			\
542 	|| (reloc).r_type == R_SH_SWITCH32			\
543 	|| (reloc).r_type == R_SH_USES				\
544 	|| (reloc).r_type == R_SH_COUNT				\
545 	|| (reloc).r_type == R_SH_ALIGN)			\
546       cache_ptr->addend = (reloc).r_offset;			\
547   }
548 
549 /* This is the howto function for the SH relocations.  */
550 
551 static bfd_reloc_status_type
552 sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
553 	  error_message)
554      bfd *abfd;
555      arelent *reloc_entry;
556      asymbol *symbol_in;
557      PTR data;
558      asection *input_section;
559      bfd *output_bfd;
560      char **error_message ATTRIBUTE_UNUSED;
561 {
562   unsigned long insn;
563   bfd_vma sym_value;
564   unsigned short r_type;
565   bfd_vma addr = reloc_entry->address;
566   bfd_byte *hit_data = addr + (bfd_byte *) data;
567 
568   r_type = reloc_entry->howto->type;
569 
570   if (output_bfd != NULL)
571     {
572       /* Partial linking--do nothing.  */
573       reloc_entry->address += input_section->output_offset;
574       return bfd_reloc_ok;
575     }
576 
577   /* Almost all relocs have to do with relaxing.  If any work must be
578      done for them, it has been done in sh_relax_section.  */
579   if (r_type != R_SH_IMM32
580 #ifdef COFF_WITH_PE
581       && r_type != R_SH_IMM32CE
582       && r_type != R_SH_IMAGEBASE
583 #endif
584       && (r_type != R_SH_PCDISP
585 	  || (symbol_in->flags & BSF_LOCAL) != 0))
586     return bfd_reloc_ok;
587 
588   if (symbol_in != NULL
589       && bfd_is_und_section (symbol_in->section))
590     return bfd_reloc_undefined;
591 
592   sym_value = get_symbol_value (symbol_in);
593 
594   switch (r_type)
595     {
596     case R_SH_IMM32:
597 #ifdef COFF_WITH_PE
598     case R_SH_IMM32CE:
599 #endif
600       insn = bfd_get_32 (abfd, hit_data);
601       insn += sym_value + reloc_entry->addend;
602       bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
603       break;
604 #ifdef COFF_WITH_PE
605     case R_SH_IMAGEBASE:
606       insn = bfd_get_32 (abfd, hit_data);
607       insn += sym_value + reloc_entry->addend;
608       insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
609       bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
610       break;
611 #endif
612     case R_SH_PCDISP:
613       insn = bfd_get_16 (abfd, hit_data);
614       sym_value += reloc_entry->addend;
615       sym_value -= (input_section->output_section->vma
616 		    + input_section->output_offset
617 		    + addr
618 		    + 4);
619       sym_value += (insn & 0xfff) << 1;
620       if (insn & 0x800)
621 	sym_value -= 0x1000;
622       insn = (insn & 0xf000) | (sym_value & 0xfff);
623       bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
624       if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
625 	return bfd_reloc_overflow;
626       break;
627     default:
628       abort ();
629       break;
630     }
631 
632   return bfd_reloc_ok;
633 }
634 
635 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
636 
637 /* We can do relaxing.  */
638 #define coff_bfd_relax_section sh_relax_section
639 
640 /* We use the special COFF backend linker.  */
641 #define coff_relocate_section sh_relocate_section
642 
643 /* When relaxing, we need to use special code to get the relocated
644    section contents.  */
645 #define coff_bfd_get_relocated_section_contents \
646   sh_coff_get_relocated_section_contents
647 
648 #include "coffcode.h"
649 
650 /* This function handles relaxing on the SH.
651 
652    Function calls on the SH look like this:
653 
654        movl  L1,r0
655        ...
656        jsr   @r0
657        ...
658      L1:
659        .long function
660 
661    The compiler and assembler will cooperate to create R_SH_USES
662    relocs on the jsr instructions.  The r_offset field of the
663    R_SH_USES reloc is the PC relative offset to the instruction which
664    loads the register (the r_offset field is computed as though it
665    were a jump instruction, so the offset value is actually from four
666    bytes past the instruction).  The linker can use this reloc to
667    determine just which function is being called, and thus decide
668    whether it is possible to replace the jsr with a bsr.
669 
670    If multiple function calls are all based on a single register load
671    (i.e., the same function is called multiple times), the compiler
672    guarantees that each function call will have an R_SH_USES reloc.
673    Therefore, if the linker is able to convert each R_SH_USES reloc
674    which refers to that address, it can safely eliminate the register
675    load.
676 
677    When the assembler creates an R_SH_USES reloc, it examines it to
678    determine which address is being loaded (L1 in the above example).
679    It then counts the number of references to that address, and
680    creates an R_SH_COUNT reloc at that address.  The r_offset field of
681    the R_SH_COUNT reloc will be the number of references.  If the
682    linker is able to eliminate a register load, it can use the
683    R_SH_COUNT reloc to see whether it can also eliminate the function
684    address.
685 
686    SH relaxing also handles another, unrelated, matter.  On the SH, if
687    a load or store instruction is not aligned on a four byte boundary,
688    the memory cycle interferes with the 32 bit instruction fetch,
689    causing a one cycle bubble in the pipeline.  Therefore, we try to
690    align load and store instructions on four byte boundaries if we
691    can, by swapping them with one of the adjacent instructions.  */
692 
693 static bfd_boolean
694 sh_relax_section (abfd, sec, link_info, again)
695      bfd *abfd;
696      asection *sec;
697      struct bfd_link_info *link_info;
698      bfd_boolean *again;
699 {
700   struct internal_reloc *internal_relocs;
701   struct internal_reloc *free_relocs = NULL;
702   bfd_boolean have_code;
703   struct internal_reloc *irel, *irelend;
704   bfd_byte *contents = NULL;
705   bfd_byte *free_contents = NULL;
706 
707   *again = FALSE;
708 
709   if (link_info->relocatable
710       || (sec->flags & SEC_RELOC) == 0
711       || sec->reloc_count == 0)
712     return TRUE;
713 
714   /* If this is the first time we have been called for this section,
715      initialize the cooked size.  */
716   if (sec->_cooked_size == 0)
717     sec->_cooked_size = sec->_raw_size;
718 
719   internal_relocs = (_bfd_coff_read_internal_relocs
720 		     (abfd, sec, link_info->keep_memory,
721 		      (bfd_byte *) NULL, FALSE,
722 		      (struct internal_reloc *) NULL));
723   if (internal_relocs == NULL)
724     goto error_return;
725   if (! link_info->keep_memory)
726     free_relocs = internal_relocs;
727 
728   have_code = FALSE;
729 
730   irelend = internal_relocs + sec->reloc_count;
731   for (irel = internal_relocs; irel < irelend; irel++)
732     {
733       bfd_vma laddr, paddr, symval;
734       unsigned short insn;
735       struct internal_reloc *irelfn, *irelscan, *irelcount;
736       struct internal_syment sym;
737       bfd_signed_vma foff;
738 
739       if (irel->r_type == R_SH_CODE)
740 	have_code = TRUE;
741 
742       if (irel->r_type != R_SH_USES)
743 	continue;
744 
745       /* Get the section contents.  */
746       if (contents == NULL)
747 	{
748 	  if (coff_section_data (abfd, sec) != NULL
749 	      && coff_section_data (abfd, sec)->contents != NULL)
750 	    contents = coff_section_data (abfd, sec)->contents;
751 	  else
752 	    {
753 	      contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
754 	      if (contents == NULL)
755 		goto error_return;
756 	      free_contents = contents;
757 
758 	      if (! bfd_get_section_contents (abfd, sec, contents,
759 					      (file_ptr) 0, sec->_raw_size))
760 		goto error_return;
761 	    }
762 	}
763 
764       /* The r_offset field of the R_SH_USES reloc will point us to
765          the register load.  The 4 is because the r_offset field is
766          computed as though it were a jump offset, which are based
767          from 4 bytes after the jump instruction.  */
768       laddr = irel->r_vaddr - sec->vma + 4;
769       /* Careful to sign extend the 32-bit offset.  */
770       laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
771       if (laddr >= sec->_raw_size)
772 	{
773 	  (*_bfd_error_handler) ("%s: 0x%lx: warning: bad R_SH_USES offset",
774 				 bfd_archive_filename (abfd),
775 				 (unsigned long) irel->r_vaddr);
776 	  continue;
777 	}
778       insn = bfd_get_16 (abfd, contents + laddr);
779 
780       /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
781       if ((insn & 0xf000) != 0xd000)
782 	{
783 	  ((*_bfd_error_handler)
784 	   ("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
785 	    bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr, insn));
786 	  continue;
787 	}
788 
789       /* Get the address from which the register is being loaded.  The
790       	 displacement in the mov.l instruction is quadrupled.  It is a
791       	 displacement from four bytes after the movl instruction, but,
792       	 before adding in the PC address, two least significant bits
793       	 of the PC are cleared.  We assume that the section is aligned
794       	 on a four byte boundary.  */
795       paddr = insn & 0xff;
796       paddr *= 4;
797       paddr += (laddr + 4) &~ (bfd_vma) 3;
798       if (paddr >= sec->_raw_size)
799 	{
800 	  ((*_bfd_error_handler)
801 	   ("%s: 0x%lx: warning: bad R_SH_USES load offset",
802 	    bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
803 	  continue;
804 	}
805 
806       /* Get the reloc for the address from which the register is
807          being loaded.  This reloc will tell us which function is
808          actually being called.  */
809       paddr += sec->vma;
810       for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
811 	if (irelfn->r_vaddr == paddr
812 #ifdef COFF_WITH_PE
813 	    && (irelfn->r_type == R_SH_IMM32
814 		|| irelfn->r_type == R_SH_IMM32CE
815 		|| irelfn->r_type == R_SH_IMAGEBASE))
816 
817 #else
818 	    && irelfn->r_type == R_SH_IMM32)
819 #endif
820 	  break;
821       if (irelfn >= irelend)
822 	{
823 	  ((*_bfd_error_handler)
824 	   ("%s: 0x%lx: warning: could not find expected reloc",
825 	    bfd_archive_filename (abfd), (unsigned long) paddr));
826 	  continue;
827 	}
828 
829       /* Get the value of the symbol referred to by the reloc.  */
830       if (! _bfd_coff_get_external_symbols (abfd))
831 	goto error_return;
832       bfd_coff_swap_sym_in (abfd,
833 			    ((bfd_byte *) obj_coff_external_syms (abfd)
834 			     + (irelfn->r_symndx
835 				* bfd_coff_symesz (abfd))),
836 			    &sym);
837       if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
838 	{
839 	  ((*_bfd_error_handler)
840 	   ("%s: 0x%lx: warning: symbol in unexpected section",
841 	    bfd_archive_filename (abfd), (unsigned long) paddr));
842 	  continue;
843 	}
844 
845       if (sym.n_sclass != C_EXT)
846 	{
847 	  symval = (sym.n_value
848 		    - sec->vma
849 		    + sec->output_section->vma
850 		    + sec->output_offset);
851 	}
852       else
853 	{
854 	  struct coff_link_hash_entry *h;
855 
856 	  h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
857 	  BFD_ASSERT (h != NULL);
858 	  if (h->root.type != bfd_link_hash_defined
859 	      && h->root.type != bfd_link_hash_defweak)
860 	    {
861 	      /* This appears to be a reference to an undefined
862                  symbol.  Just ignore it--it will be caught by the
863                  regular reloc processing.  */
864 	      continue;
865 	    }
866 
867 	  symval = (h->root.u.def.value
868 		    + h->root.u.def.section->output_section->vma
869 		    + h->root.u.def.section->output_offset);
870 	}
871 
872       symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
873 
874       /* See if this function call can be shortened.  */
875       foff = (symval
876 	      - (irel->r_vaddr
877 		 - sec->vma
878 		 + sec->output_section->vma
879 		 + sec->output_offset
880 		 + 4));
881       if (foff < -0x1000 || foff >= 0x1000)
882 	{
883 	  /* After all that work, we can't shorten this function call.  */
884 	  continue;
885 	}
886 
887       /* Shorten the function call.  */
888 
889       /* For simplicity of coding, we are going to modify the section
890 	 contents, the section relocs, and the BFD symbol table.  We
891 	 must tell the rest of the code not to free up this
892 	 information.  It would be possible to instead create a table
893 	 of changes which have to be made, as is done in coff-mips.c;
894 	 that would be more work, but would require less memory when
895 	 the linker is run.  */
896 
897       if (coff_section_data (abfd, sec) == NULL)
898 	{
899 	  bfd_size_type amt = sizeof (struct coff_section_tdata);
900 	  sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
901 	  if (sec->used_by_bfd == NULL)
902 	    goto error_return;
903 	}
904 
905       coff_section_data (abfd, sec)->relocs = internal_relocs;
906       coff_section_data (abfd, sec)->keep_relocs = TRUE;
907       free_relocs = NULL;
908 
909       coff_section_data (abfd, sec)->contents = contents;
910       coff_section_data (abfd, sec)->keep_contents = TRUE;
911       free_contents = NULL;
912 
913       obj_coff_keep_syms (abfd) = TRUE;
914 
915       /* Replace the jsr with a bsr.  */
916 
917       /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
918          replace the jsr with a bsr.  */
919       irel->r_type = R_SH_PCDISP;
920       irel->r_symndx = irelfn->r_symndx;
921       if (sym.n_sclass != C_EXT)
922 	{
923 	  /* If this needs to be changed because of future relaxing,
924              it will be handled here like other internal PCDISP
925              relocs.  */
926 	  bfd_put_16 (abfd,
927 		      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
928 		      contents + irel->r_vaddr - sec->vma);
929 	}
930       else
931 	{
932 	  /* We can't fully resolve this yet, because the external
933              symbol value may be changed by future relaxing.  We let
934              the final link phase handle it.  */
935 	  bfd_put_16 (abfd, (bfd_vma) 0xb000,
936 		      contents + irel->r_vaddr - sec->vma);
937 	}
938 
939       /* See if there is another R_SH_USES reloc referring to the same
940          register load.  */
941       for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
942 	if (irelscan->r_type == R_SH_USES
943 	    && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
944 	  break;
945       if (irelscan < irelend)
946 	{
947 	  /* Some other function call depends upon this register load,
948 	     and we have not yet converted that function call.
949 	     Indeed, we may never be able to convert it.  There is
950 	     nothing else we can do at this point.  */
951 	  continue;
952 	}
953 
954       /* Look for a R_SH_COUNT reloc on the location where the
955          function address is stored.  Do this before deleting any
956          bytes, to avoid confusion about the address.  */
957       for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
958 	if (irelcount->r_vaddr == paddr
959 	    && irelcount->r_type == R_SH_COUNT)
960 	  break;
961 
962       /* Delete the register load.  */
963       if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
964 	goto error_return;
965 
966       /* That will change things, so, just in case it permits some
967          other function call to come within range, we should relax
968          again.  Note that this is not required, and it may be slow.  */
969       *again = TRUE;
970 
971       /* Now check whether we got a COUNT reloc.  */
972       if (irelcount >= irelend)
973 	{
974 	  ((*_bfd_error_handler)
975 	   ("%s: 0x%lx: warning: could not find expected COUNT reloc",
976 	    bfd_archive_filename (abfd), (unsigned long) paddr));
977 	  continue;
978 	}
979 
980       /* The number of uses is stored in the r_offset field.  We've
981          just deleted one.  */
982       if (irelcount->r_offset == 0)
983 	{
984 	  ((*_bfd_error_handler) ("%s: 0x%lx: warning: bad count",
985 				  bfd_archive_filename (abfd),
986 				  (unsigned long) paddr));
987 	  continue;
988 	}
989 
990       --irelcount->r_offset;
991 
992       /* If there are no more uses, we can delete the address.  Reload
993          the address from irelfn, in case it was changed by the
994          previous call to sh_relax_delete_bytes.  */
995       if (irelcount->r_offset == 0)
996 	{
997 	  if (! sh_relax_delete_bytes (abfd, sec,
998 				       irelfn->r_vaddr - sec->vma, 4))
999 	    goto error_return;
1000 	}
1001 
1002       /* We've done all we can with that function call.  */
1003     }
1004 
1005   /* Look for load and store instructions that we can align on four
1006      byte boundaries.  */
1007   if (have_code)
1008     {
1009       bfd_boolean swapped;
1010 
1011       /* Get the section contents.  */
1012       if (contents == NULL)
1013 	{
1014 	  if (coff_section_data (abfd, sec) != NULL
1015 	      && coff_section_data (abfd, sec)->contents != NULL)
1016 	    contents = coff_section_data (abfd, sec)->contents;
1017 	  else
1018 	    {
1019 	      contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
1020 	      if (contents == NULL)
1021 		goto error_return;
1022 	      free_contents = contents;
1023 
1024 	      if (! bfd_get_section_contents (abfd, sec, contents,
1025 					      (file_ptr) 0, sec->_raw_size))
1026 		goto error_return;
1027 	    }
1028 	}
1029 
1030       if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1031 	goto error_return;
1032 
1033       if (swapped)
1034 	{
1035 	  if (coff_section_data (abfd, sec) == NULL)
1036 	    {
1037 	      bfd_size_type amt = sizeof (struct coff_section_tdata);
1038 	      sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
1039 	      if (sec->used_by_bfd == NULL)
1040 		goto error_return;
1041 	    }
1042 
1043 	  coff_section_data (abfd, sec)->relocs = internal_relocs;
1044 	  coff_section_data (abfd, sec)->keep_relocs = TRUE;
1045 	  free_relocs = NULL;
1046 
1047 	  coff_section_data (abfd, sec)->contents = contents;
1048 	  coff_section_data (abfd, sec)->keep_contents = TRUE;
1049 	  free_contents = NULL;
1050 
1051 	  obj_coff_keep_syms (abfd) = TRUE;
1052 	}
1053     }
1054 
1055   if (free_relocs != NULL)
1056     {
1057       free (free_relocs);
1058       free_relocs = NULL;
1059     }
1060 
1061   if (free_contents != NULL)
1062     {
1063       if (! link_info->keep_memory)
1064 	free (free_contents);
1065       else
1066 	{
1067 	  /* Cache the section contents for coff_link_input_bfd.  */
1068 	  if (coff_section_data (abfd, sec) == NULL)
1069 	    {
1070 	      bfd_size_type amt = sizeof (struct coff_section_tdata);
1071 	      sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
1072 	      if (sec->used_by_bfd == NULL)
1073 		goto error_return;
1074 	      coff_section_data (abfd, sec)->relocs = NULL;
1075 	    }
1076 	  coff_section_data (abfd, sec)->contents = contents;
1077 	}
1078     }
1079 
1080   return TRUE;
1081 
1082  error_return:
1083   if (free_relocs != NULL)
1084     free (free_relocs);
1085   if (free_contents != NULL)
1086     free (free_contents);
1087   return FALSE;
1088 }
1089 
1090 /* Delete some bytes from a section while relaxing.  */
1091 
1092 static bfd_boolean
1093 sh_relax_delete_bytes (abfd, sec, addr, count)
1094      bfd *abfd;
1095      asection *sec;
1096      bfd_vma addr;
1097      int count;
1098 {
1099   bfd_byte *contents;
1100   struct internal_reloc *irel, *irelend;
1101   struct internal_reloc *irelalign;
1102   bfd_vma toaddr;
1103   bfd_byte *esym, *esymend;
1104   bfd_size_type symesz;
1105   struct coff_link_hash_entry **sym_hash;
1106   asection *o;
1107 
1108   contents = coff_section_data (abfd, sec)->contents;
1109 
1110   /* The deletion must stop at the next ALIGN reloc for an aligment
1111      power larger than the number of bytes we are deleting.  */
1112 
1113   irelalign = NULL;
1114   toaddr = sec->_cooked_size;
1115 
1116   irel = coff_section_data (abfd, sec)->relocs;
1117   irelend = irel + sec->reloc_count;
1118   for (; irel < irelend; irel++)
1119     {
1120       if (irel->r_type == R_SH_ALIGN
1121 	  && irel->r_vaddr - sec->vma > addr
1122 	  && count < (1 << irel->r_offset))
1123 	{
1124 	  irelalign = irel;
1125 	  toaddr = irel->r_vaddr - sec->vma;
1126 	  break;
1127 	}
1128     }
1129 
1130   /* Actually delete the bytes.  */
1131   memmove (contents + addr, contents + addr + count,
1132 	   (size_t) (toaddr - addr - count));
1133   if (irelalign == NULL)
1134     sec->_cooked_size -= count;
1135   else
1136     {
1137       int i;
1138 
1139 #define NOP_OPCODE (0x0009)
1140 
1141       BFD_ASSERT ((count & 1) == 0);
1142       for (i = 0; i < count; i += 2)
1143 	bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1144     }
1145 
1146   /* Adjust all the relocs.  */
1147   for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1148     {
1149       bfd_vma nraddr, stop;
1150       bfd_vma start = 0;
1151       int insn = 0;
1152       struct internal_syment sym;
1153       int off, adjust, oinsn;
1154       bfd_signed_vma voff = 0;
1155       bfd_boolean overflow;
1156 
1157       /* Get the new reloc address.  */
1158       nraddr = irel->r_vaddr - sec->vma;
1159       if ((irel->r_vaddr - sec->vma > addr
1160 	   && irel->r_vaddr - sec->vma < toaddr)
1161 	  || (irel->r_type == R_SH_ALIGN
1162 	      && irel->r_vaddr - sec->vma == toaddr))
1163 	nraddr -= count;
1164 
1165       /* See if this reloc was for the bytes we have deleted, in which
1166 	 case we no longer care about it.  Don't delete relocs which
1167 	 represent addresses, though.  */
1168       if (irel->r_vaddr - sec->vma >= addr
1169 	  && irel->r_vaddr - sec->vma < addr + count
1170 	  && irel->r_type != R_SH_ALIGN
1171 	  && irel->r_type != R_SH_CODE
1172 	  && irel->r_type != R_SH_DATA
1173 	  && irel->r_type != R_SH_LABEL)
1174 	irel->r_type = R_SH_UNUSED;
1175 
1176       /* If this is a PC relative reloc, see if the range it covers
1177          includes the bytes we have deleted.  */
1178       switch (irel->r_type)
1179 	{
1180 	default:
1181 	  break;
1182 
1183 	case R_SH_PCDISP8BY2:
1184 	case R_SH_PCDISP:
1185 	case R_SH_PCRELIMM8BY2:
1186 	case R_SH_PCRELIMM8BY4:
1187 	  start = irel->r_vaddr - sec->vma;
1188 	  insn = bfd_get_16 (abfd, contents + nraddr);
1189 	  break;
1190 	}
1191 
1192       switch (irel->r_type)
1193 	{
1194 	default:
1195 	  start = stop = addr;
1196 	  break;
1197 
1198 	case R_SH_IMM32:
1199 #ifdef COFF_WITH_PE
1200 	case R_SH_IMM32CE:
1201 	case R_SH_IMAGEBASE:
1202 #endif
1203 	  /* If this reloc is against a symbol defined in this
1204              section, and the symbol will not be adjusted below, we
1205              must check the addend to see it will put the value in
1206              range to be adjusted, and hence must be changed.  */
1207 	  bfd_coff_swap_sym_in (abfd,
1208 				((bfd_byte *) obj_coff_external_syms (abfd)
1209 				 + (irel->r_symndx
1210 				    * bfd_coff_symesz (abfd))),
1211 				&sym);
1212 	  if (sym.n_sclass != C_EXT
1213 	      && sym.n_scnum == sec->target_index
1214 	      && ((bfd_vma) sym.n_value <= addr
1215 		  || (bfd_vma) sym.n_value >= toaddr))
1216 	    {
1217 	      bfd_vma val;
1218 
1219 	      val = bfd_get_32 (abfd, contents + nraddr);
1220 	      val += sym.n_value;
1221 	      if (val > addr && val < toaddr)
1222 		bfd_put_32 (abfd, val - count, contents + nraddr);
1223 	    }
1224 	  start = stop = addr;
1225 	  break;
1226 
1227 	case R_SH_PCDISP8BY2:
1228 	  off = insn & 0xff;
1229 	  if (off & 0x80)
1230 	    off -= 0x100;
1231 	  stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1232 	  break;
1233 
1234 	case R_SH_PCDISP:
1235 	  bfd_coff_swap_sym_in (abfd,
1236 				((bfd_byte *) obj_coff_external_syms (abfd)
1237 				 + (irel->r_symndx
1238 				    * bfd_coff_symesz (abfd))),
1239 				&sym);
1240 	  if (sym.n_sclass == C_EXT)
1241 	    start = stop = addr;
1242 	  else
1243 	    {
1244 	      off = insn & 0xfff;
1245 	      if (off & 0x800)
1246 		off -= 0x1000;
1247 	      stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1248 	    }
1249 	  break;
1250 
1251 	case R_SH_PCRELIMM8BY2:
1252 	  off = insn & 0xff;
1253 	  stop = start + 4 + off * 2;
1254 	  break;
1255 
1256 	case R_SH_PCRELIMM8BY4:
1257 	  off = insn & 0xff;
1258 	  stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1259 	  break;
1260 
1261 	case R_SH_SWITCH8:
1262 	case R_SH_SWITCH16:
1263 	case R_SH_SWITCH32:
1264 	  /* These relocs types represent
1265 	       .word L2-L1
1266 	     The r_offset field holds the difference between the reloc
1267 	     address and L1.  That is the start of the reloc, and
1268 	     adding in the contents gives us the top.  We must adjust
1269 	     both the r_offset field and the section contents.  */
1270 
1271 	  start = irel->r_vaddr - sec->vma;
1272 	  stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1273 
1274 	  if (start > addr
1275 	      && start < toaddr
1276 	      && (stop <= addr || stop >= toaddr))
1277 	    irel->r_offset += count;
1278 	  else if (stop > addr
1279 		   && stop < toaddr
1280 		   && (start <= addr || start >= toaddr))
1281 	    irel->r_offset -= count;
1282 
1283 	  start = stop;
1284 
1285 	  if (irel->r_type == R_SH_SWITCH16)
1286 	    voff = bfd_get_signed_16 (abfd, contents + nraddr);
1287 	  else if (irel->r_type == R_SH_SWITCH8)
1288 	    voff = bfd_get_8 (abfd, contents + nraddr);
1289 	  else
1290 	    voff = bfd_get_signed_32 (abfd, contents + nraddr);
1291 	  stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1292 
1293 	  break;
1294 
1295 	case R_SH_USES:
1296 	  start = irel->r_vaddr - sec->vma;
1297 	  stop = (bfd_vma) ((bfd_signed_vma) start
1298 			    + (long) irel->r_offset
1299 			    + 4);
1300 	  break;
1301 	}
1302 
1303       if (start > addr
1304 	  && start < toaddr
1305 	  && (stop <= addr || stop >= toaddr))
1306 	adjust = count;
1307       else if (stop > addr
1308 	       && stop < toaddr
1309 	       && (start <= addr || start >= toaddr))
1310 	adjust = - count;
1311       else
1312 	adjust = 0;
1313 
1314       if (adjust != 0)
1315 	{
1316 	  oinsn = insn;
1317 	  overflow = FALSE;
1318 	  switch (irel->r_type)
1319 	    {
1320 	    default:
1321 	      abort ();
1322 	      break;
1323 
1324 	    case R_SH_PCDISP8BY2:
1325 	    case R_SH_PCRELIMM8BY2:
1326 	      insn += adjust / 2;
1327 	      if ((oinsn & 0xff00) != (insn & 0xff00))
1328 		overflow = TRUE;
1329 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1330 	      break;
1331 
1332 	    case R_SH_PCDISP:
1333 	      insn += adjust / 2;
1334 	      if ((oinsn & 0xf000) != (insn & 0xf000))
1335 		overflow = TRUE;
1336 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1337 	      break;
1338 
1339 	    case R_SH_PCRELIMM8BY4:
1340 	      BFD_ASSERT (adjust == count || count >= 4);
1341 	      if (count >= 4)
1342 		insn += adjust / 4;
1343 	      else
1344 		{
1345 		  if ((irel->r_vaddr & 3) == 0)
1346 		    ++insn;
1347 		}
1348 	      if ((oinsn & 0xff00) != (insn & 0xff00))
1349 		overflow = TRUE;
1350 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1351 	      break;
1352 
1353 	    case R_SH_SWITCH8:
1354 	      voff += adjust;
1355 	      if (voff < 0 || voff >= 0xff)
1356 		overflow = TRUE;
1357 	      bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1358 	      break;
1359 
1360 	    case R_SH_SWITCH16:
1361 	      voff += adjust;
1362 	      if (voff < - 0x8000 || voff >= 0x8000)
1363 		overflow = TRUE;
1364 	      bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1365 	      break;
1366 
1367 	    case R_SH_SWITCH32:
1368 	      voff += adjust;
1369 	      bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1370 	      break;
1371 
1372 	    case R_SH_USES:
1373 	      irel->r_offset += adjust;
1374 	      break;
1375 	    }
1376 
1377 	  if (overflow)
1378 	    {
1379 	      ((*_bfd_error_handler)
1380 	       ("%s: 0x%lx: fatal: reloc overflow while relaxing",
1381 		bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
1382 	      bfd_set_error (bfd_error_bad_value);
1383 	      return FALSE;
1384 	    }
1385 	}
1386 
1387       irel->r_vaddr = nraddr + sec->vma;
1388     }
1389 
1390   /* Look through all the other sections.  If there contain any IMM32
1391      relocs against internal symbols which we are not going to adjust
1392      below, we may need to adjust the addends.  */
1393   for (o = abfd->sections; o != NULL; o = o->next)
1394     {
1395       struct internal_reloc *internal_relocs;
1396       struct internal_reloc *irelscan, *irelscanend;
1397       bfd_byte *ocontents;
1398 
1399       if (o == sec
1400 	  || (o->flags & SEC_RELOC) == 0
1401 	  || o->reloc_count == 0)
1402 	continue;
1403 
1404       /* We always cache the relocs.  Perhaps, if info->keep_memory is
1405          FALSE, we should free them, if we are permitted to, when we
1406          leave sh_coff_relax_section.  */
1407       internal_relocs = (_bfd_coff_read_internal_relocs
1408 			 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
1409 			  (struct internal_reloc *) NULL));
1410       if (internal_relocs == NULL)
1411 	return FALSE;
1412 
1413       ocontents = NULL;
1414       irelscanend = internal_relocs + o->reloc_count;
1415       for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1416 	{
1417 	  struct internal_syment sym;
1418 
1419 #ifdef COFF_WITH_PE
1420 	  if (irelscan->r_type != R_SH_IMM32
1421 	      && irelscan->r_type != R_SH_IMAGEBASE
1422 	      && irelscan->r_type != R_SH_IMM32CE)
1423 #else
1424 	  if (irelscan->r_type != R_SH_IMM32)
1425 #endif
1426 	    continue;
1427 
1428 	  bfd_coff_swap_sym_in (abfd,
1429 				((bfd_byte *) obj_coff_external_syms (abfd)
1430 				 + (irelscan->r_symndx
1431 				    * bfd_coff_symesz (abfd))),
1432 				&sym);
1433 	  if (sym.n_sclass != C_EXT
1434 	      && sym.n_scnum == sec->target_index
1435 	      && ((bfd_vma) sym.n_value <= addr
1436 		  || (bfd_vma) sym.n_value >= toaddr))
1437 	    {
1438 	      bfd_vma val;
1439 
1440 	      if (ocontents == NULL)
1441 		{
1442 		  if (coff_section_data (abfd, o)->contents != NULL)
1443 		    ocontents = coff_section_data (abfd, o)->contents;
1444 		  else
1445 		    {
1446 		      /* We always cache the section contents.
1447                          Perhaps, if info->keep_memory is FALSE, we
1448                          should free them, if we are permitted to,
1449                          when we leave sh_coff_relax_section.  */
1450 		      ocontents = (bfd_byte *) bfd_malloc (o->_raw_size);
1451 		      if (ocontents == NULL)
1452 			return FALSE;
1453 		      if (! bfd_get_section_contents (abfd, o, ocontents,
1454 						      (file_ptr) 0,
1455 						      o->_raw_size))
1456 			return FALSE;
1457 		      coff_section_data (abfd, o)->contents = ocontents;
1458 		    }
1459 		}
1460 
1461 	      val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1462 	      val += sym.n_value;
1463 	      if (val > addr && val < toaddr)
1464 		bfd_put_32 (abfd, val - count,
1465 			    ocontents + irelscan->r_vaddr - o->vma);
1466 
1467 	      coff_section_data (abfd, o)->keep_contents = TRUE;
1468 	    }
1469 	}
1470     }
1471 
1472   /* Adjusting the internal symbols will not work if something has
1473      already retrieved the generic symbols.  It would be possible to
1474      make this work by adjusting the generic symbols at the same time.
1475      However, this case should not arise in normal usage.  */
1476   if (obj_symbols (abfd) != NULL
1477       || obj_raw_syments (abfd) != NULL)
1478     {
1479       ((*_bfd_error_handler)
1480        ("%s: fatal: generic symbols retrieved before relaxing",
1481 	bfd_archive_filename (abfd)));
1482       bfd_set_error (bfd_error_invalid_operation);
1483       return FALSE;
1484     }
1485 
1486   /* Adjust all the symbols.  */
1487   sym_hash = obj_coff_sym_hashes (abfd);
1488   symesz = bfd_coff_symesz (abfd);
1489   esym = (bfd_byte *) obj_coff_external_syms (abfd);
1490   esymend = esym + obj_raw_syment_count (abfd) * symesz;
1491   while (esym < esymend)
1492     {
1493       struct internal_syment isym;
1494 
1495       bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);
1496 
1497       if (isym.n_scnum == sec->target_index
1498 	  && (bfd_vma) isym.n_value > addr
1499 	  && (bfd_vma) isym.n_value < toaddr)
1500 	{
1501 	  isym.n_value -= count;
1502 
1503 	  bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);
1504 
1505 	  if (*sym_hash != NULL)
1506 	    {
1507 	      BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1508 			  || (*sym_hash)->root.type == bfd_link_hash_defweak);
1509 	      BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1510 			  && (*sym_hash)->root.u.def.value < toaddr);
1511 	      (*sym_hash)->root.u.def.value -= count;
1512 	    }
1513 	}
1514 
1515       esym += (isym.n_numaux + 1) * symesz;
1516       sym_hash += isym.n_numaux + 1;
1517     }
1518 
1519   /* See if we can move the ALIGN reloc forward.  We have adjusted
1520      r_vaddr for it already.  */
1521   if (irelalign != NULL)
1522     {
1523       bfd_vma alignto, alignaddr;
1524 
1525       alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1526       alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1527 			     1 << irelalign->r_offset);
1528       if (alignto != alignaddr)
1529 	{
1530 	  /* Tail recursion.  */
1531 	  return sh_relax_delete_bytes (abfd, sec, alignaddr,
1532 					(int) (alignto - alignaddr));
1533 	}
1534     }
1535 
1536   return TRUE;
1537 }
1538 
1539 /* This is yet another version of the SH opcode table, used to rapidly
1540    get information about a particular instruction.  */
1541 
1542 /* The opcode map is represented by an array of these structures.  The
1543    array is indexed by the high order four bits in the instruction.  */
1544 
1545 struct sh_major_opcode
1546 {
1547   /* A pointer to the instruction list.  This is an array which
1548      contains all the instructions with this major opcode.  */
1549   const struct sh_minor_opcode *minor_opcodes;
1550   /* The number of elements in minor_opcodes.  */
1551   unsigned short count;
1552 };
1553 
1554 /* This structure holds information for a set of SH opcodes.  The
1555    instruction code is anded with the mask value, and the resulting
1556    value is used to search the order opcode list.  */
1557 
1558 struct sh_minor_opcode
1559 {
1560   /* The sorted opcode list.  */
1561   const struct sh_opcode *opcodes;
1562   /* The number of elements in opcodes.  */
1563   unsigned short count;
1564   /* The mask value to use when searching the opcode list.  */
1565   unsigned short mask;
1566 };
1567 
1568 /* This structure holds information for an SH instruction.  An array
1569    of these structures is sorted in order by opcode.  */
1570 
1571 struct sh_opcode
1572 {
1573   /* The code for this instruction, after it has been anded with the
1574      mask value in the sh_major_opcode structure.  */
1575   unsigned short opcode;
1576   /* Flags for this instruction.  */
1577   unsigned long flags;
1578 };
1579 
1580 /* Flag which appear in the sh_opcode structure.  */
1581 
1582 /* This instruction loads a value from memory.  */
1583 #define LOAD (0x1)
1584 
1585 /* This instruction stores a value to memory.  */
1586 #define STORE (0x2)
1587 
1588 /* This instruction is a branch.  */
1589 #define BRANCH (0x4)
1590 
1591 /* This instruction has a delay slot.  */
1592 #define DELAY (0x8)
1593 
1594 /* This instruction uses the value in the register in the field at
1595    mask 0x0f00 of the instruction.  */
1596 #define USES1 (0x10)
1597 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1598 
1599 /* This instruction uses the value in the register in the field at
1600    mask 0x00f0 of the instruction.  */
1601 #define USES2 (0x20)
1602 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1603 
1604 /* This instruction uses the value in register 0.  */
1605 #define USESR0 (0x40)
1606 
1607 /* This instruction sets the value in the register in the field at
1608    mask 0x0f00 of the instruction.  */
1609 #define SETS1 (0x80)
1610 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1611 
1612 /* This instruction sets the value in the register in the field at
1613    mask 0x00f0 of the instruction.  */
1614 #define SETS2 (0x100)
1615 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1616 
1617 /* This instruction sets register 0.  */
1618 #define SETSR0 (0x200)
1619 
1620 /* This instruction sets a special register.  */
1621 #define SETSSP (0x400)
1622 
1623 /* This instruction uses a special register.  */
1624 #define USESSP (0x800)
1625 
1626 /* This instruction uses the floating point register in the field at
1627    mask 0x0f00 of the instruction.  */
1628 #define USESF1 (0x1000)
1629 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1630 
1631 /* This instruction uses the floating point register in the field at
1632    mask 0x00f0 of the instruction.  */
1633 #define USESF2 (0x2000)
1634 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1635 
1636 /* This instruction uses floating point register 0.  */
1637 #define USESF0 (0x4000)
1638 
1639 /* This instruction sets the floating point register in the field at
1640    mask 0x0f00 of the instruction.  */
1641 #define SETSF1 (0x8000)
1642 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1643 
1644 #define USESAS (0x10000)
1645 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1646 #define USESR8 (0x20000)
1647 #define SETSAS (0x40000)
1648 #define SETSAS_REG(x) USESAS_REG (x)
1649 
1650 #define MAP(a) a, sizeof a / sizeof a[0]
1651 
1652 #ifndef COFF_IMAGE_WITH_PE
1653 static bfd_boolean sh_insn_uses_reg
1654   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1655 static bfd_boolean sh_insn_sets_reg
1656   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1657 static bfd_boolean sh_insn_uses_or_sets_reg
1658   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1659 static bfd_boolean sh_insn_uses_freg
1660   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1661 static bfd_boolean sh_insn_sets_freg
1662   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1663 static bfd_boolean sh_insn_uses_or_sets_freg
1664   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1665 static bfd_boolean sh_insns_conflict
1666   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1667 	   const struct sh_opcode *));
1668 static bfd_boolean sh_load_use
1669   PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1670 	   const struct sh_opcode *));
1671 
1672 /* The opcode maps.  */
1673 
1674 static const struct sh_opcode sh_opcode00[] =
1675 {
1676   { 0x0008, SETSSP },			/* clrt */
1677   { 0x0009, 0 },			/* nop */
1678   { 0x000b, BRANCH | DELAY | USESSP },	/* rts */
1679   { 0x0018, SETSSP },			/* sett */
1680   { 0x0019, SETSSP },			/* div0u */
1681   { 0x001b, 0 },			/* sleep */
1682   { 0x0028, SETSSP },			/* clrmac */
1683   { 0x002b, BRANCH | DELAY | SETSSP },	/* rte */
1684   { 0x0038, USESSP | SETSSP },		/* ldtlb */
1685   { 0x0048, SETSSP },			/* clrs */
1686   { 0x0058, SETSSP }			/* sets */
1687 };
1688 
1689 static const struct sh_opcode sh_opcode01[] =
1690 {
1691   { 0x0003, BRANCH | DELAY | USES1 | SETSSP },	/* bsrf rn */
1692   { 0x000a, SETS1 | USESSP },			/* sts mach,rn */
1693   { 0x001a, SETS1 | USESSP },			/* sts macl,rn */
1694   { 0x0023, BRANCH | DELAY | USES1 },		/* braf rn */
1695   { 0x0029, SETS1 | USESSP },			/* movt rn */
1696   { 0x002a, SETS1 | USESSP },			/* sts pr,rn */
1697   { 0x005a, SETS1 | USESSP },			/* sts fpul,rn */
1698   { 0x006a, SETS1 | USESSP },			/* sts fpscr,rn / sts dsr,rn */
1699   { 0x0083, LOAD | USES1 },			/* pref @rn */
1700   { 0x007a, SETS1 | USESSP },			/* sts a0,rn */
1701   { 0x008a, SETS1 | USESSP },			/* sts x0,rn */
1702   { 0x009a, SETS1 | USESSP },			/* sts x1,rn */
1703   { 0x00aa, SETS1 | USESSP },			/* sts y0,rn */
1704   { 0x00ba, SETS1 | USESSP }			/* sts y1,rn */
1705 };
1706 
1707 /* These sixteen instructions can be handled with one table entry below.  */
1708 #if 0
1709   { 0x0002, SETS1 | USESSP },			/* stc sr,rn */
1710   { 0x0012, SETS1 | USESSP },			/* stc gbr,rn */
1711   { 0x0022, SETS1 | USESSP },			/* stc vbr,rn */
1712   { 0x0032, SETS1 | USESSP },			/* stc ssr,rn */
1713   { 0x0042, SETS1 | USESSP },			/* stc spc,rn */
1714   { 0x0052, SETS1 | USESSP },			/* stc mod,rn */
1715   { 0x0062, SETS1 | USESSP },			/* stc rs,rn */
1716   { 0x0072, SETS1 | USESSP },			/* stc re,rn */
1717   { 0x0082, SETS1 | USESSP },			/* stc r0_bank,rn */
1718   { 0x0092, SETS1 | USESSP },			/* stc r1_bank,rn */
1719   { 0x00a2, SETS1 | USESSP },			/* stc r2_bank,rn */
1720   { 0x00b2, SETS1 | USESSP },			/* stc r3_bank,rn */
1721   { 0x00c2, SETS1 | USESSP },			/* stc r4_bank,rn */
1722   { 0x00d2, SETS1 | USESSP },			/* stc r5_bank,rn */
1723   { 0x00e2, SETS1 | USESSP },			/* stc r6_bank,rn */
1724   { 0x00f2, SETS1 | USESSP }			/* stc r7_bank,rn */
1725 #endif
1726 
1727 static const struct sh_opcode sh_opcode02[] =
1728 {
1729   { 0x0002, SETS1 | USESSP },			/* stc <special_reg>,rn */
1730   { 0x0004, STORE | USES1 | USES2 | USESR0 },	/* mov.b rm,@(r0,rn) */
1731   { 0x0005, STORE | USES1 | USES2 | USESR0 },	/* mov.w rm,@(r0,rn) */
1732   { 0x0006, STORE | USES1 | USES2 | USESR0 },	/* mov.l rm,@(r0,rn) */
1733   { 0x0007, SETSSP | USES1 | USES2 },		/* mul.l rm,rn */
1734   { 0x000c, LOAD | SETS1 | USES2 | USESR0 },	/* mov.b @(r0,rm),rn */
1735   { 0x000d, LOAD | SETS1 | USES2 | USESR0 },	/* mov.w @(r0,rm),rn */
1736   { 0x000e, LOAD | SETS1 | USES2 | USESR0 },	/* mov.l @(r0,rm),rn */
1737   { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1738 };
1739 
1740 static const struct sh_minor_opcode sh_opcode0[] =
1741 {
1742   { MAP (sh_opcode00), 0xffff },
1743   { MAP (sh_opcode01), 0xf0ff },
1744   { MAP (sh_opcode02), 0xf00f }
1745 };
1746 
1747 static const struct sh_opcode sh_opcode10[] =
1748 {
1749   { 0x1000, STORE | USES1 | USES2 }	/* mov.l rm,@(disp,rn) */
1750 };
1751 
1752 static const struct sh_minor_opcode sh_opcode1[] =
1753 {
1754   { MAP (sh_opcode10), 0xf000 }
1755 };
1756 
1757 static const struct sh_opcode sh_opcode20[] =
1758 {
1759   { 0x2000, STORE | USES1 | USES2 },		/* mov.b rm,@rn */
1760   { 0x2001, STORE | USES1 | USES2 },		/* mov.w rm,@rn */
1761   { 0x2002, STORE | USES1 | USES2 },		/* mov.l rm,@rn */
1762   { 0x2004, STORE | SETS1 | USES1 | USES2 },	/* mov.b rm,@-rn */
1763   { 0x2005, STORE | SETS1 | USES1 | USES2 },	/* mov.w rm,@-rn */
1764   { 0x2006, STORE | SETS1 | USES1 | USES2 },	/* mov.l rm,@-rn */
1765   { 0x2007, SETSSP | USES1 | USES2 | USESSP },	/* div0s */
1766   { 0x2008, SETSSP | USES1 | USES2 },		/* tst rm,rn */
1767   { 0x2009, SETS1 | USES1 | USES2 },		/* and rm,rn */
1768   { 0x200a, SETS1 | USES1 | USES2 },		/* xor rm,rn */
1769   { 0x200b, SETS1 | USES1 | USES2 },		/* or rm,rn */
1770   { 0x200c, SETSSP | USES1 | USES2 },		/* cmp/str rm,rn */
1771   { 0x200d, SETS1 | USES1 | USES2 },		/* xtrct rm,rn */
1772   { 0x200e, SETSSP | USES1 | USES2 },		/* mulu.w rm,rn */
1773   { 0x200f, SETSSP | USES1 | USES2 }		/* muls.w rm,rn */
1774 };
1775 
1776 static const struct sh_minor_opcode sh_opcode2[] =
1777 {
1778   { MAP (sh_opcode20), 0xf00f }
1779 };
1780 
1781 static const struct sh_opcode sh_opcode30[] =
1782 {
1783   { 0x3000, SETSSP | USES1 | USES2 },		/* cmp/eq rm,rn */
1784   { 0x3002, SETSSP | USES1 | USES2 },		/* cmp/hs rm,rn */
1785   { 0x3003, SETSSP | USES1 | USES2 },		/* cmp/ge rm,rn */
1786   { 0x3004, SETSSP | USESSP | USES1 | USES2 },	/* div1 rm,rn */
1787   { 0x3005, SETSSP | USES1 | USES2 },		/* dmulu.l rm,rn */
1788   { 0x3006, SETSSP | USES1 | USES2 },		/* cmp/hi rm,rn */
1789   { 0x3007, SETSSP | USES1 | USES2 },		/* cmp/gt rm,rn */
1790   { 0x3008, SETS1 | USES1 | USES2 },		/* sub rm,rn */
1791   { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1792   { 0x300b, SETS1 | SETSSP | USES1 | USES2 },	/* subv rm,rn */
1793   { 0x300c, SETS1 | USES1 | USES2 },		/* add rm,rn */
1794   { 0x300d, SETSSP | USES1 | USES2 },		/* dmuls.l rm,rn */
1795   { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1796   { 0x300f, SETS1 | SETSSP | USES1 | USES2 }	/* addv rm,rn */
1797 };
1798 
1799 static const struct sh_minor_opcode sh_opcode3[] =
1800 {
1801   { MAP (sh_opcode30), 0xf00f }
1802 };
1803 
1804 static const struct sh_opcode sh_opcode40[] =
1805 {
1806   { 0x4000, SETS1 | SETSSP | USES1 },		/* shll rn */
1807   { 0x4001, SETS1 | SETSSP | USES1 },		/* shlr rn */
1808   { 0x4002, STORE | SETS1 | USES1 | USESSP },	/* sts.l mach,@-rn */
1809   { 0x4004, SETS1 | SETSSP | USES1 },		/* rotl rn */
1810   { 0x4005, SETS1 | SETSSP | USES1 },		/* rotr rn */
1811   { 0x4006, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,mach */
1812   { 0x4008, SETS1 | USES1 },			/* shll2 rn */
1813   { 0x4009, SETS1 | USES1 },			/* shlr2 rn */
1814   { 0x400a, SETSSP | USES1 },			/* lds rm,mach */
1815   { 0x400b, BRANCH | DELAY | USES1 },		/* jsr @rn */
1816   { 0x4010, SETS1 | SETSSP | USES1 },		/* dt rn */
1817   { 0x4011, SETSSP | USES1 },			/* cmp/pz rn */
1818   { 0x4012, STORE | SETS1 | USES1 | USESSP },	/* sts.l macl,@-rn */
1819   { 0x4014, SETSSP | USES1 },			/* setrc rm */
1820   { 0x4015, SETSSP | USES1 },			/* cmp/pl rn */
1821   { 0x4016, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,macl */
1822   { 0x4018, SETS1 | USES1 },			/* shll8 rn */
1823   { 0x4019, SETS1 | USES1 },			/* shlr8 rn */
1824   { 0x401a, SETSSP | USES1 },			/* lds rm,macl */
1825   { 0x401b, LOAD | SETSSP | USES1 },		/* tas.b @rn */
1826   { 0x4020, SETS1 | SETSSP | USES1 },		/* shal rn */
1827   { 0x4021, SETS1 | SETSSP | USES1 },		/* shar rn */
1828   { 0x4022, STORE | SETS1 | USES1 | USESSP },	/* sts.l pr,@-rn */
1829   { 0x4024, SETS1 | SETSSP | USES1 | USESSP },	/* rotcl rn */
1830   { 0x4025, SETS1 | SETSSP | USES1 | USESSP },	/* rotcr rn */
1831   { 0x4026, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,pr */
1832   { 0x4028, SETS1 | USES1 },			/* shll16 rn */
1833   { 0x4029, SETS1 | USES1 },			/* shlr16 rn */
1834   { 0x402a, SETSSP | USES1 },			/* lds rm,pr */
1835   { 0x402b, BRANCH | DELAY | USES1 },		/* jmp @rn */
1836   { 0x4052, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpul,@-rn */
1837   { 0x4056, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpul */
1838   { 0x405a, SETSSP | USES1 },			/* lds.l rm,fpul */
1839   { 0x4062, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpscr / dsr,@-rn */
1840   { 0x4066, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpscr / dsr */
1841   { 0x406a, SETSSP | USES1 },			/* lds rm,fpscr / lds rm,dsr */
1842   { 0x4072, STORE | SETS1 | USES1 | USESSP },	/* sts.l a0,@-rn */
1843   { 0x4076, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,a0 */
1844   { 0x407a, SETSSP | USES1 },			/* lds.l rm,a0 */
1845   { 0x4082, STORE | SETS1 | USES1 | USESSP },	/* sts.l x0,@-rn */
1846   { 0x4086, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x0 */
1847   { 0x408a, SETSSP | USES1 },			/* lds.l rm,x0 */
1848   { 0x4092, STORE | SETS1 | USES1 | USESSP },	/* sts.l x1,@-rn */
1849   { 0x4096, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x1 */
1850   { 0x409a, SETSSP | USES1 },			/* lds.l rm,x1 */
1851   { 0x40a2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y0,@-rn */
1852   { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y0 */
1853   { 0x40aa, SETSSP | USES1 },			/* lds.l rm,y0 */
1854   { 0x40b2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y1,@-rn */
1855   { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y1 */
1856   { 0x40ba, SETSSP | USES1 }			/* lds.l rm,y1 */
1857 #if 0 /* These groups sixteen insns can be
1858          handled with one table entry each below.  */
1859   { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l sr,@-rn */
1860   { 0x4013, STORE | SETS1 | USES1 | USESSP },	/* stc.l gbr,@-rn */
1861   { 0x4023, STORE | SETS1 | USES1 | USESSP },	/* stc.l vbr,@-rn */
1862   { 0x4033, STORE | SETS1 | USES1 | USESSP },	/* stc.l ssr,@-rn */
1863   { 0x4043, STORE | SETS1 | USES1 | USESSP },	/* stc.l spc,@-rn */
1864   { 0x4053, STORE | SETS1 | USES1 | USESSP },	/* stc.l mod,@-rn */
1865   { 0x4063, STORE | SETS1 | USES1 | USESSP },	/* stc.l rs,@-rn */
1866   { 0x4073, STORE | SETS1 | USES1 | USESSP },	/* stc.l re,@-rn */
1867   { 0x4083, STORE | SETS1 | USES1 | USESSP },	/* stc.l r0_bank,@-rn */
1868   ..
1869   { 0x40f3, STORE | SETS1 | USES1 | USESSP },	/* stc.l r7_bank,@-rn */
1870 
1871   { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,sr */
1872   { 0x4017, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,gbr */
1873   { 0x4027, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,vbr */
1874   { 0x4037, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,ssr */
1875   { 0x4047, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,spc */
1876   { 0x4057, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,mod */
1877   { 0x4067, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,rs */
1878   { 0x4077, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,re */
1879   { 0x4087, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,r0_bank */
1880   ..
1881   { 0x40f7, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,r7_bank */
1882 
1883   { 0x400e, SETSSP | USES1 },			/* ldc rm,sr */
1884   { 0x401e, SETSSP | USES1 },			/* ldc rm,gbr */
1885   { 0x402e, SETSSP | USES1 },			/* ldc rm,vbr */
1886   { 0x403e, SETSSP | USES1 },			/* ldc rm,ssr */
1887   { 0x404e, SETSSP | USES1 },			/* ldc rm,spc */
1888   { 0x405e, SETSSP | USES1 },			/* ldc rm,mod */
1889   { 0x406e, SETSSP | USES1 },			/* ldc rm,rs */
1890   { 0x407e, SETSSP | USES1 }			/* ldc rm,re */
1891   { 0x408e, SETSSP | USES1 }			/* ldc rm,r0_bank */
1892   ..
1893   { 0x40fe, SETSSP | USES1 }			/* ldc rm,r7_bank */
1894 #endif
1895 };
1896 
1897 static const struct sh_opcode sh_opcode41[] =
1898 {
1899   { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l <special_reg>,@-rn */
1900   { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,<special_reg> */
1901   { 0x400c, SETS1 | USES1 | USES2 },		/* shad rm,rn */
1902   { 0x400d, SETS1 | USES1 | USES2 },		/* shld rm,rn */
1903   { 0x400e, SETSSP | USES1 },			/* ldc rm,<special_reg> */
1904   { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1905 };
1906 
1907 static const struct sh_minor_opcode sh_opcode4[] =
1908 {
1909   { MAP (sh_opcode40), 0xf0ff },
1910   { MAP (sh_opcode41), 0xf00f }
1911 };
1912 
1913 static const struct sh_opcode sh_opcode50[] =
1914 {
1915   { 0x5000, LOAD | SETS1 | USES2 }	/* mov.l @(disp,rm),rn */
1916 };
1917 
1918 static const struct sh_minor_opcode sh_opcode5[] =
1919 {
1920   { MAP (sh_opcode50), 0xf000 }
1921 };
1922 
1923 static const struct sh_opcode sh_opcode60[] =
1924 {
1925   { 0x6000, LOAD | SETS1 | USES2 },		/* mov.b @rm,rn */
1926   { 0x6001, LOAD | SETS1 | USES2 },		/* mov.w @rm,rn */
1927   { 0x6002, LOAD | SETS1 | USES2 },		/* mov.l @rm,rn */
1928   { 0x6003, SETS1 | USES2 },			/* mov rm,rn */
1929   { 0x6004, LOAD | SETS1 | SETS2 | USES2 },	/* mov.b @rm+,rn */
1930   { 0x6005, LOAD | SETS1 | SETS2 | USES2 },	/* mov.w @rm+,rn */
1931   { 0x6006, LOAD | SETS1 | SETS2 | USES2 },	/* mov.l @rm+,rn */
1932   { 0x6007, SETS1 | USES2 },			/* not rm,rn */
1933   { 0x6008, SETS1 | USES2 },			/* swap.b rm,rn */
1934   { 0x6009, SETS1 | USES2 },			/* swap.w rm,rn */
1935   { 0x600a, SETS1 | SETSSP | USES2 | USESSP },	/* negc rm,rn */
1936   { 0x600b, SETS1 | USES2 },			/* neg rm,rn */
1937   { 0x600c, SETS1 | USES2 },			/* extu.b rm,rn */
1938   { 0x600d, SETS1 | USES2 },			/* extu.w rm,rn */
1939   { 0x600e, SETS1 | USES2 },			/* exts.b rm,rn */
1940   { 0x600f, SETS1 | USES2 }			/* exts.w rm,rn */
1941 };
1942 
1943 static const struct sh_minor_opcode sh_opcode6[] =
1944 {
1945   { MAP (sh_opcode60), 0xf00f }
1946 };
1947 
1948 static const struct sh_opcode sh_opcode70[] =
1949 {
1950   { 0x7000, SETS1 | USES1 }		/* add #imm,rn */
1951 };
1952 
1953 static const struct sh_minor_opcode sh_opcode7[] =
1954 {
1955   { MAP (sh_opcode70), 0xf000 }
1956 };
1957 
1958 static const struct sh_opcode sh_opcode80[] =
1959 {
1960   { 0x8000, STORE | USES2 | USESR0 },	/* mov.b r0,@(disp,rn) */
1961   { 0x8100, STORE | USES2 | USESR0 },	/* mov.w r0,@(disp,rn) */
1962   { 0x8200, SETSSP },			/* setrc #imm */
1963   { 0x8400, LOAD | SETSR0 | USES2 },	/* mov.b @(disp,rm),r0 */
1964   { 0x8500, LOAD | SETSR0 | USES2 },	/* mov.w @(disp,rn),r0 */
1965   { 0x8800, SETSSP | USESR0 },		/* cmp/eq #imm,r0 */
1966   { 0x8900, BRANCH | USESSP },		/* bt label */
1967   { 0x8b00, BRANCH | USESSP },		/* bf label */
1968   { 0x8c00, SETSSP },			/* ldrs @(disp,pc) */
1969   { 0x8d00, BRANCH | DELAY | USESSP },	/* bt/s label */
1970   { 0x8e00, SETSSP },			/* ldre @(disp,pc) */
1971   { 0x8f00, BRANCH | DELAY | USESSP }	/* bf/s label */
1972 };
1973 
1974 static const struct sh_minor_opcode sh_opcode8[] =
1975 {
1976   { MAP (sh_opcode80), 0xff00 }
1977 };
1978 
1979 static const struct sh_opcode sh_opcode90[] =
1980 {
1981   { 0x9000, LOAD | SETS1 }	/* mov.w @(disp,pc),rn */
1982 };
1983 
1984 static const struct sh_minor_opcode sh_opcode9[] =
1985 {
1986   { MAP (sh_opcode90), 0xf000 }
1987 };
1988 
1989 static const struct sh_opcode sh_opcodea0[] =
1990 {
1991   { 0xa000, BRANCH | DELAY }	/* bra label */
1992 };
1993 
1994 static const struct sh_minor_opcode sh_opcodea[] =
1995 {
1996   { MAP (sh_opcodea0), 0xf000 }
1997 };
1998 
1999 static const struct sh_opcode sh_opcodeb0[] =
2000 {
2001   { 0xb000, BRANCH | DELAY }	/* bsr label */
2002 };
2003 
2004 static const struct sh_minor_opcode sh_opcodeb[] =
2005 {
2006   { MAP (sh_opcodeb0), 0xf000 }
2007 };
2008 
2009 static const struct sh_opcode sh_opcodec0[] =
2010 {
2011   { 0xc000, STORE | USESR0 | USESSP },		/* mov.b r0,@(disp,gbr) */
2012   { 0xc100, STORE | USESR0 | USESSP },		/* mov.w r0,@(disp,gbr) */
2013   { 0xc200, STORE | USESR0 | USESSP },		/* mov.l r0,@(disp,gbr) */
2014   { 0xc300, BRANCH | USESSP },			/* trapa #imm */
2015   { 0xc400, LOAD | SETSR0 | USESSP },		/* mov.b @(disp,gbr),r0 */
2016   { 0xc500, LOAD | SETSR0 | USESSP },		/* mov.w @(disp,gbr),r0 */
2017   { 0xc600, LOAD | SETSR0 | USESSP },		/* mov.l @(disp,gbr),r0 */
2018   { 0xc700, SETSR0 },				/* mova @(disp,pc),r0 */
2019   { 0xc800, SETSSP | USESR0 },			/* tst #imm,r0 */
2020   { 0xc900, SETSR0 | USESR0 },			/* and #imm,r0 */
2021   { 0xca00, SETSR0 | USESR0 },			/* xor #imm,r0 */
2022   { 0xcb00, SETSR0 | USESR0 },			/* or #imm,r0 */
2023   { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },	/* tst.b #imm,@(r0,gbr) */
2024   { 0xcd00, LOAD | STORE | USESR0 | USESSP },	/* and.b #imm,@(r0,gbr) */
2025   { 0xce00, LOAD | STORE | USESR0 | USESSP },	/* xor.b #imm,@(r0,gbr) */
2026   { 0xcf00, LOAD | STORE | USESR0 | USESSP }	/* or.b #imm,@(r0,gbr) */
2027 };
2028 
2029 static const struct sh_minor_opcode sh_opcodec[] =
2030 {
2031   { MAP (sh_opcodec0), 0xff00 }
2032 };
2033 
2034 static const struct sh_opcode sh_opcoded0[] =
2035 {
2036   { 0xd000, LOAD | SETS1 }		/* mov.l @(disp,pc),rn */
2037 };
2038 
2039 static const struct sh_minor_opcode sh_opcoded[] =
2040 {
2041   { MAP (sh_opcoded0), 0xf000 }
2042 };
2043 
2044 static const struct sh_opcode sh_opcodee0[] =
2045 {
2046   { 0xe000, SETS1 }		/* mov #imm,rn */
2047 };
2048 
2049 static const struct sh_minor_opcode sh_opcodee[] =
2050 {
2051   { MAP (sh_opcodee0), 0xf000 }
2052 };
2053 
2054 static const struct sh_opcode sh_opcodef0[] =
2055 {
2056   { 0xf000, SETSF1 | USESF1 | USESF2 },		/* fadd fm,fn */
2057   { 0xf001, SETSF1 | USESF1 | USESF2 },		/* fsub fm,fn */
2058   { 0xf002, SETSF1 | USESF1 | USESF2 },		/* fmul fm,fn */
2059   { 0xf003, SETSF1 | USESF1 | USESF2 },		/* fdiv fm,fn */
2060   { 0xf004, SETSSP | USESF1 | USESF2 },		/* fcmp/eq fm,fn */
2061   { 0xf005, SETSSP | USESF1 | USESF2 },		/* fcmp/gt fm,fn */
2062   { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },	/* fmov.s @(r0,rm),fn */
2063   { 0xf007, STORE | USES1 | USESF2 | USESR0 },	/* fmov.s fm,@(r0,rn) */
2064   { 0xf008, LOAD | SETSF1 | USES2 },		/* fmov.s @rm,fn */
2065   { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },	/* fmov.s @rm+,fn */
2066   { 0xf00a, STORE | USES1 | USESF2 },		/* fmov.s fm,@rn */
2067   { 0xf00b, STORE | SETS1 | USES1 | USESF2 },	/* fmov.s fm,@-rn */
2068   { 0xf00c, SETSF1 | USESF2 },			/* fmov fm,fn */
2069   { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 }	/* fmac f0,fm,fn */
2070 };
2071 
2072 static const struct sh_opcode sh_opcodef1[] =
2073 {
2074   { 0xf00d, SETSF1 | USESSP },	/* fsts fpul,fn */
2075   { 0xf01d, SETSSP | USESF1 },	/* flds fn,fpul */
2076   { 0xf02d, SETSF1 | USESSP },	/* float fpul,fn */
2077   { 0xf03d, SETSSP | USESF1 },	/* ftrc fn,fpul */
2078   { 0xf04d, SETSF1 | USESF1 },	/* fneg fn */
2079   { 0xf05d, SETSF1 | USESF1 },	/* fabs fn */
2080   { 0xf06d, SETSF1 | USESF1 },	/* fsqrt fn */
2081   { 0xf07d, SETSSP | USESF1 },	/* ftst/nan fn */
2082   { 0xf08d, SETSF1 },		/* fldi0 fn */
2083   { 0xf09d, SETSF1 }		/* fldi1 fn */
2084 };
2085 
2086 static const struct sh_minor_opcode sh_opcodef[] =
2087 {
2088   { MAP (sh_opcodef0), 0xf00f },
2089   { MAP (sh_opcodef1), 0xf0ff }
2090 };
2091 
2092 static struct sh_major_opcode sh_opcodes[] =
2093 {
2094   { MAP (sh_opcode0) },
2095   { MAP (sh_opcode1) },
2096   { MAP (sh_opcode2) },
2097   { MAP (sh_opcode3) },
2098   { MAP (sh_opcode4) },
2099   { MAP (sh_opcode5) },
2100   { MAP (sh_opcode6) },
2101   { MAP (sh_opcode7) },
2102   { MAP (sh_opcode8) },
2103   { MAP (sh_opcode9) },
2104   { MAP (sh_opcodea) },
2105   { MAP (sh_opcodeb) },
2106   { MAP (sh_opcodec) },
2107   { MAP (sh_opcoded) },
2108   { MAP (sh_opcodee) },
2109   { MAP (sh_opcodef) }
2110 };
2111 
2112 /* The double data transfer / parallel processing insns are not
2113    described here.  This will cause sh_align_load_span to leave them alone.  */
2114 
2115 static const struct sh_opcode sh_dsp_opcodef0[] =
2116 {
2117   { 0xf400, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @-as,ds */
2118   { 0xf401, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@-as */
2119   { 0xf404, USESAS | LOAD | SETSSP },		/* movs.x @as,ds */
2120   { 0xf405, USESAS | STORE | USESSP },		/* movs.x ds,@as */
2121   { 0xf408, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @as+,ds */
2122   { 0xf409, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@as+ */
2123   { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 },	/* movs.x @as+r8,ds */
2124   { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 }	/* movs.x ds,@as+r8 */
2125 };
2126 
2127 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2128 {
2129   { MAP (sh_dsp_opcodef0), 0xfc0d }
2130 };
2131 
2132 /* Given an instruction, return a pointer to the corresponding
2133    sh_opcode structure.  Return NULL if the instruction is not
2134    recognized.  */
2135 
2136 static const struct sh_opcode *
2137 sh_insn_info (insn)
2138      unsigned int insn;
2139 {
2140   const struct sh_major_opcode *maj;
2141   const struct sh_minor_opcode *min, *minend;
2142 
2143   maj = &sh_opcodes[(insn & 0xf000) >> 12];
2144   min = maj->minor_opcodes;
2145   minend = min + maj->count;
2146   for (; min < minend; min++)
2147     {
2148       unsigned int l;
2149       const struct sh_opcode *op, *opend;
2150 
2151       l = insn & min->mask;
2152       op = min->opcodes;
2153       opend = op + min->count;
2154 
2155       /* Since the opcodes tables are sorted, we could use a binary
2156          search here if the count were above some cutoff value.  */
2157       for (; op < opend; op++)
2158 	if (op->opcode == l)
2159 	  return op;
2160     }
2161 
2162   return NULL;
2163 }
2164 
2165 /* See whether an instruction uses or sets a general purpose register */
2166 
2167 static bfd_boolean
2168 sh_insn_uses_or_sets_reg (insn, op, reg)
2169      unsigned int insn;
2170      const struct sh_opcode *op;
2171      unsigned int reg;
2172 {
2173   if (sh_insn_uses_reg (insn, op, reg))
2174     return TRUE;
2175 
2176   return sh_insn_sets_reg (insn, op, reg);
2177 }
2178 
2179 /* See whether an instruction uses a general purpose register.  */
2180 
2181 static bfd_boolean
2182 sh_insn_uses_reg (insn, op, reg)
2183      unsigned int insn;
2184      const struct sh_opcode *op;
2185      unsigned int reg;
2186 {
2187   unsigned int f;
2188 
2189   f = op->flags;
2190 
2191   if ((f & USES1) != 0
2192       && USES1_REG (insn) == reg)
2193     return TRUE;
2194   if ((f & USES2) != 0
2195       && USES2_REG (insn) == reg)
2196     return TRUE;
2197   if ((f & USESR0) != 0
2198       && reg == 0)
2199     return TRUE;
2200   if ((f & USESAS) && reg == USESAS_REG (insn))
2201     return TRUE;
2202   if ((f & USESR8) && reg == 8)
2203     return TRUE;
2204 
2205   return FALSE;
2206 }
2207 
2208 /* See whether an instruction sets a general purpose register.  */
2209 
2210 static bfd_boolean
2211 sh_insn_sets_reg (insn, op, reg)
2212      unsigned int insn;
2213      const struct sh_opcode *op;
2214      unsigned int reg;
2215 {
2216   unsigned int f;
2217 
2218   f = op->flags;
2219 
2220   if ((f & SETS1) != 0
2221       && SETS1_REG (insn) == reg)
2222     return TRUE;
2223   if ((f & SETS2) != 0
2224       && SETS2_REG (insn) == reg)
2225     return TRUE;
2226   if ((f & SETSR0) != 0
2227       && reg == 0)
2228     return TRUE;
2229   if ((f & SETSAS) && reg == SETSAS_REG (insn))
2230     return TRUE;
2231 
2232   return FALSE;
2233 }
2234 
2235 /* See whether an instruction uses or sets a floating point register */
2236 
2237 static bfd_boolean
2238 sh_insn_uses_or_sets_freg (insn, op, reg)
2239      unsigned int insn;
2240      const struct sh_opcode *op;
2241      unsigned int reg;
2242 {
2243   if (sh_insn_uses_freg (insn, op, reg))
2244     return TRUE;
2245 
2246   return sh_insn_sets_freg (insn, op, reg);
2247 }
2248 
2249 /* See whether an instruction uses a floating point register.  */
2250 
2251 static bfd_boolean
2252 sh_insn_uses_freg (insn, op, freg)
2253      unsigned int insn;
2254      const struct sh_opcode *op;
2255      unsigned int freg;
2256 {
2257   unsigned int f;
2258 
2259   f = op->flags;
2260 
2261   /* We can't tell if this is a double-precision insn, so just play safe
2262      and assume that it might be.  So not only have we test FREG against
2263      itself, but also even FREG against FREG+1 - if the using insn uses
2264      just the low part of a double precision value - but also an odd
2265      FREG against FREG-1 -  if the setting insn sets just the low part
2266      of a double precision value.
2267      So what this all boils down to is that we have to ignore the lowest
2268      bit of the register number.  */
2269 
2270   if ((f & USESF1) != 0
2271       && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2272     return TRUE;
2273   if ((f & USESF2) != 0
2274       && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2275     return TRUE;
2276   if ((f & USESF0) != 0
2277       && freg == 0)
2278     return TRUE;
2279 
2280   return FALSE;
2281 }
2282 
2283 /* See whether an instruction sets a floating point register.  */
2284 
2285 static bfd_boolean
2286 sh_insn_sets_freg (insn, op, freg)
2287      unsigned int insn;
2288      const struct sh_opcode *op;
2289      unsigned int freg;
2290 {
2291   unsigned int f;
2292 
2293   f = op->flags;
2294 
2295   /* We can't tell if this is a double-precision insn, so just play safe
2296      and assume that it might be.  So not only have we test FREG against
2297      itself, but also even FREG against FREG+1 - if the using insn uses
2298      just the low part of a double precision value - but also an odd
2299      FREG against FREG-1 -  if the setting insn sets just the low part
2300      of a double precision value.
2301      So what this all boils down to is that we have to ignore the lowest
2302      bit of the register number.  */
2303 
2304   if ((f & SETSF1) != 0
2305       && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2306     return TRUE;
2307 
2308   return FALSE;
2309 }
2310 
2311 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2312    before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
2313    This should return TRUE if there is a conflict, or FALSE if the
2314    instructions can be swapped safely.  */
2315 
2316 static bfd_boolean
2317 sh_insns_conflict (i1, op1, i2, op2)
2318      unsigned int i1;
2319      const struct sh_opcode *op1;
2320      unsigned int i2;
2321      const struct sh_opcode *op2;
2322 {
2323   unsigned int f1, f2;
2324 
2325   f1 = op1->flags;
2326   f2 = op2->flags;
2327 
2328   /* Load of fpscr conflicts with floating point operations.
2329      FIXME: shouldn't test raw opcodes here.  */
2330   if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2331       || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2332     return TRUE;
2333 
2334   if ((f1 & (BRANCH | DELAY)) != 0
2335       || (f2 & (BRANCH | DELAY)) != 0)
2336     return TRUE;
2337 
2338   if (((f1 | f2) & SETSSP)
2339       && (f1 & (SETSSP | USESSP))
2340       && (f2 & (SETSSP | USESSP)))
2341     return TRUE;
2342 
2343   if ((f1 & SETS1) != 0
2344       && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2345     return TRUE;
2346   if ((f1 & SETS2) != 0
2347       && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2348     return TRUE;
2349   if ((f1 & SETSR0) != 0
2350       && sh_insn_uses_or_sets_reg (i2, op2, 0))
2351     return TRUE;
2352   if ((f1 & SETSAS)
2353       && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2354     return TRUE;
2355   if ((f1 & SETSF1) != 0
2356       && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2357     return TRUE;
2358 
2359   if ((f2 & SETS1) != 0
2360       && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2361     return TRUE;
2362   if ((f2 & SETS2) != 0
2363       && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2364     return TRUE;
2365   if ((f2 & SETSR0) != 0
2366       && sh_insn_uses_or_sets_reg (i1, op1, 0))
2367     return TRUE;
2368   if ((f2 & SETSAS)
2369       && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2370     return TRUE;
2371   if ((f2 & SETSF1) != 0
2372       && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2373     return TRUE;
2374 
2375   /* The instructions do not conflict.  */
2376   return FALSE;
2377 }
2378 
2379 /* I1 is a load instruction, and I2 is some other instruction.  Return
2380    TRUE if I1 loads a register which I2 uses.  */
2381 
2382 static bfd_boolean
2383 sh_load_use (i1, op1, i2, op2)
2384      unsigned int i1;
2385      const struct sh_opcode *op1;
2386      unsigned int i2;
2387      const struct sh_opcode *op2;
2388 {
2389   unsigned int f1;
2390 
2391   f1 = op1->flags;
2392 
2393   if ((f1 & LOAD) == 0)
2394     return FALSE;
2395 
2396   /* If both SETS1 and SETSSP are set, that means a load to a special
2397      register using postincrement addressing mode, which we don't care
2398      about here.  */
2399   if ((f1 & SETS1) != 0
2400       && (f1 & SETSSP) == 0
2401       && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2402     return TRUE;
2403 
2404   if ((f1 & SETSR0) != 0
2405       && sh_insn_uses_reg (i2, op2, 0))
2406     return TRUE;
2407 
2408   if ((f1 & SETSF1) != 0
2409       && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2410     return TRUE;
2411 
2412   return FALSE;
2413 }
2414 
2415 /* Try to align loads and stores within a span of memory.  This is
2416    called by both the ELF and the COFF sh targets.  ABFD and SEC are
2417    the BFD and section we are examining.  CONTENTS is the contents of
2418    the section.  SWAP is the routine to call to swap two instructions.
2419    RELOCS is a pointer to the internal relocation information, to be
2420    passed to SWAP.  PLABEL is a pointer to the current label in a
2421    sorted list of labels; LABEL_END is the end of the list.  START and
2422    STOP are the range of memory to examine.  If a swap is made,
2423    *PSWAPPED is set to TRUE.  */
2424 
2425 #ifdef COFF_WITH_PE
2426 static
2427 #endif
2428 bfd_boolean
2429 _bfd_sh_align_load_span (abfd, sec, contents, swap, relocs,
2430 			 plabel, label_end, start, stop, pswapped)
2431      bfd *abfd;
2432      asection *sec;
2433      bfd_byte *contents;
2434      bfd_boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
2435      PTR relocs;
2436      bfd_vma **plabel;
2437      bfd_vma *label_end;
2438      bfd_vma start;
2439      bfd_vma stop;
2440      bfd_boolean *pswapped;
2441 {
2442   int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2443 	     || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2444   bfd_vma i;
2445 
2446   /* The SH4 has a Harvard architecture, hence aligning loads is not
2447      desirable.  In fact, it is counter-productive, since it interferes
2448      with the schedules generated by the compiler.  */
2449   if (abfd->arch_info->mach == bfd_mach_sh4)
2450     return TRUE;
2451 
2452   /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2453      instructions.  */
2454   if (dsp)
2455     {
2456       sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2457       sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2458     }
2459 
2460   /* Instructions should be aligned on 2 byte boundaries.  */
2461   if ((start & 1) == 1)
2462     ++start;
2463 
2464   /* Now look through the unaligned addresses.  */
2465   i = start;
2466   if ((i & 2) == 0)
2467     i += 2;
2468   for (; i < stop; i += 4)
2469     {
2470       unsigned int insn;
2471       const struct sh_opcode *op;
2472       unsigned int prev_insn = 0;
2473       const struct sh_opcode *prev_op = NULL;
2474 
2475       insn = bfd_get_16 (abfd, contents + i);
2476       op = sh_insn_info (insn);
2477       if (op == NULL
2478 	  || (op->flags & (LOAD | STORE)) == 0)
2479 	continue;
2480 
2481       /* This is a load or store which is not on a four byte boundary.  */
2482 
2483       while (*plabel < label_end && **plabel < i)
2484 	++*plabel;
2485 
2486       if (i > start)
2487 	{
2488 	  prev_insn = bfd_get_16 (abfd, contents + i - 2);
2489 	  /* If INSN is the field b of a parallel processing insn, it is not
2490 	     a load / store after all.  Note that the test here might mistake
2491 	     the field_b of a pcopy insn for the starting code of a parallel
2492 	     processing insn; this might miss a swapping opportunity, but at
2493 	     least we're on the safe side.  */
2494 	  if (dsp && (prev_insn & 0xfc00) == 0xf800)
2495 	    continue;
2496 
2497 	  /* Check if prev_insn is actually the field b of a parallel
2498 	     processing insn.  Again, this can give a spurious match
2499 	     after a pcopy.  */
2500 	  if (dsp && i - 2 > start)
2501 	    {
2502 	      unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2503 
2504 	      if ((pprev_insn & 0xfc00) == 0xf800)
2505 		prev_op = NULL;
2506 	      else
2507 		prev_op = sh_insn_info (prev_insn);
2508 	    }
2509 	  else
2510 	    prev_op = sh_insn_info (prev_insn);
2511 
2512 	  /* If the load/store instruction is in a delay slot, we
2513 	     can't swap.  */
2514 	  if (prev_op == NULL
2515 	      || (prev_op->flags & DELAY) != 0)
2516 	    continue;
2517 	}
2518       if (i > start
2519 	  && (*plabel >= label_end || **plabel != i)
2520 	  && prev_op != NULL
2521 	  && (prev_op->flags & (LOAD | STORE)) == 0
2522 	  && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2523 	{
2524 	  bfd_boolean ok;
2525 
2526 	  /* The load/store instruction does not have a label, and
2527 	     there is a previous instruction; PREV_INSN is not
2528 	     itself a load/store instruction, and PREV_INSN and
2529 	     INSN do not conflict.  */
2530 
2531 	  ok = TRUE;
2532 
2533 	  if (i >= start + 4)
2534 	    {
2535 	      unsigned int prev2_insn;
2536 	      const struct sh_opcode *prev2_op;
2537 
2538 	      prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2539 	      prev2_op = sh_insn_info (prev2_insn);
2540 
2541 	      /* If the instruction before PREV_INSN has a delay
2542 		 slot--that is, PREV_INSN is in a delay slot--we
2543 		 can not swap.  */
2544 	      if (prev2_op == NULL
2545 		  || (prev2_op->flags & DELAY) != 0)
2546 		ok = FALSE;
2547 
2548 	      /* If the instruction before PREV_INSN is a load,
2549 		 and it sets a register which INSN uses, then
2550 		 putting INSN immediately after PREV_INSN will
2551 		 cause a pipeline bubble, so there is no point to
2552 		 making the swap.  */
2553 	      if (ok
2554 		  && (prev2_op->flags & LOAD) != 0
2555 		  && sh_load_use (prev2_insn, prev2_op, insn, op))
2556 		ok = FALSE;
2557 	    }
2558 
2559 	  if (ok)
2560 	    {
2561 	      if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2562 		return FALSE;
2563 	      *pswapped = TRUE;
2564 	      continue;
2565 	    }
2566 	}
2567 
2568       while (*plabel < label_end && **plabel < i + 2)
2569 	++*plabel;
2570 
2571       if (i + 2 < stop
2572 	  && (*plabel >= label_end || **plabel != i + 2))
2573 	{
2574 	  unsigned int next_insn;
2575 	  const struct sh_opcode *next_op;
2576 
2577 	  /* There is an instruction after the load/store
2578 	     instruction, and it does not have a label.  */
2579 	  next_insn = bfd_get_16 (abfd, contents + i + 2);
2580 	  next_op = sh_insn_info (next_insn);
2581 	  if (next_op != NULL
2582 	      && (next_op->flags & (LOAD | STORE)) == 0
2583 	      && ! sh_insns_conflict (insn, op, next_insn, next_op))
2584 	    {
2585 	      bfd_boolean ok;
2586 
2587 	      /* NEXT_INSN is not itself a load/store instruction,
2588 		 and it does not conflict with INSN.  */
2589 
2590 	      ok = TRUE;
2591 
2592 	      /* If PREV_INSN is a load, and it sets a register
2593 		 which NEXT_INSN uses, then putting NEXT_INSN
2594 		 immediately after PREV_INSN will cause a pipeline
2595 		 bubble, so there is no reason to make this swap.  */
2596 	      if (prev_op != NULL
2597 		  && (prev_op->flags & LOAD) != 0
2598 		  && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2599 		ok = FALSE;
2600 
2601 	      /* If INSN is a load, and it sets a register which
2602 		 the insn after NEXT_INSN uses, then doing the
2603 		 swap will cause a pipeline bubble, so there is no
2604 		 reason to make the swap.  However, if the insn
2605 		 after NEXT_INSN is itself a load or store
2606 		 instruction, then it is misaligned, so
2607 		 optimistically hope that it will be swapped
2608 		 itself, and just live with the pipeline bubble if
2609 		 it isn't.  */
2610 	      if (ok
2611 		  && i + 4 < stop
2612 		  && (op->flags & LOAD) != 0)
2613 		{
2614 		  unsigned int next2_insn;
2615 		  const struct sh_opcode *next2_op;
2616 
2617 		  next2_insn = bfd_get_16 (abfd, contents + i + 4);
2618 		  next2_op = sh_insn_info (next2_insn);
2619 		  if ((next2_op->flags & (LOAD | STORE)) == 0
2620 		      && sh_load_use (insn, op, next2_insn, next2_op))
2621 		    ok = FALSE;
2622 		}
2623 
2624 	      if (ok)
2625 		{
2626 		  if (! (*swap) (abfd, sec, relocs, contents, i))
2627 		    return FALSE;
2628 		  *pswapped = TRUE;
2629 		  continue;
2630 		}
2631 	    }
2632 	}
2633     }
2634 
2635   return TRUE;
2636 }
2637 #endif /* not COFF_IMAGE_WITH_PE */
2638 
2639 /* Look for loads and stores which we can align to four byte
2640    boundaries.  See the longer comment above sh_relax_section for why
2641    this is desirable.  This sets *PSWAPPED if some instruction was
2642    swapped.  */
2643 
2644 static bfd_boolean
2645 sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
2646      bfd *abfd;
2647      asection *sec;
2648      struct internal_reloc *internal_relocs;
2649      bfd_byte *contents;
2650      bfd_boolean *pswapped;
2651 {
2652   struct internal_reloc *irel, *irelend;
2653   bfd_vma *labels = NULL;
2654   bfd_vma *label, *label_end;
2655   bfd_size_type amt;
2656 
2657   *pswapped = FALSE;
2658 
2659   irelend = internal_relocs + sec->reloc_count;
2660 
2661   /* Get all the addresses with labels on them.  */
2662   amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2663   labels = (bfd_vma *) bfd_malloc (amt);
2664   if (labels == NULL)
2665     goto error_return;
2666   label_end = labels;
2667   for (irel = internal_relocs; irel < irelend; irel++)
2668     {
2669       if (irel->r_type == R_SH_LABEL)
2670 	{
2671 	  *label_end = irel->r_vaddr - sec->vma;
2672 	  ++label_end;
2673 	}
2674     }
2675 
2676   /* Note that the assembler currently always outputs relocs in
2677      address order.  If that ever changes, this code will need to sort
2678      the label values and the relocs.  */
2679 
2680   label = labels;
2681 
2682   for (irel = internal_relocs; irel < irelend; irel++)
2683     {
2684       bfd_vma start, stop;
2685 
2686       if (irel->r_type != R_SH_CODE)
2687 	continue;
2688 
2689       start = irel->r_vaddr - sec->vma;
2690 
2691       for (irel++; irel < irelend; irel++)
2692 	if (irel->r_type == R_SH_DATA)
2693 	  break;
2694       if (irel < irelend)
2695 	stop = irel->r_vaddr - sec->vma;
2696       else
2697 	stop = sec->_cooked_size;
2698 
2699       if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2700 				     (PTR) internal_relocs, &label,
2701 				     label_end, start, stop, pswapped))
2702 	goto error_return;
2703     }
2704 
2705   free (labels);
2706 
2707   return TRUE;
2708 
2709  error_return:
2710   if (labels != NULL)
2711     free (labels);
2712   return FALSE;
2713 }
2714 
2715 /* Swap two SH instructions.  */
2716 
2717 static bfd_boolean
2718 sh_swap_insns (abfd, sec, relocs, contents, addr)
2719      bfd *abfd;
2720      asection *sec;
2721      PTR relocs;
2722      bfd_byte *contents;
2723      bfd_vma addr;
2724 {
2725   struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2726   unsigned short i1, i2;
2727   struct internal_reloc *irel, *irelend;
2728 
2729   /* Swap the instructions themselves.  */
2730   i1 = bfd_get_16 (abfd, contents + addr);
2731   i2 = bfd_get_16 (abfd, contents + addr + 2);
2732   bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2733   bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2734 
2735   /* Adjust all reloc addresses.  */
2736   irelend = internal_relocs + sec->reloc_count;
2737   for (irel = internal_relocs; irel < irelend; irel++)
2738     {
2739       int type, add;
2740 
2741       /* There are a few special types of relocs that we don't want to
2742          adjust.  These relocs do not apply to the instruction itself,
2743          but are only associated with the address.  */
2744       type = irel->r_type;
2745       if (type == R_SH_ALIGN
2746 	  || type == R_SH_CODE
2747 	  || type == R_SH_DATA
2748 	  || type == R_SH_LABEL)
2749 	continue;
2750 
2751       /* If an R_SH_USES reloc points to one of the addresses being
2752          swapped, we must adjust it.  It would be incorrect to do this
2753          for a jump, though, since we want to execute both
2754          instructions after the jump.  (We have avoided swapping
2755          around a label, so the jump will not wind up executing an
2756          instruction it shouldn't).  */
2757       if (type == R_SH_USES)
2758 	{
2759 	  bfd_vma off;
2760 
2761 	  off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2762 	  if (off == addr)
2763 	    irel->r_offset += 2;
2764 	  else if (off == addr + 2)
2765 	    irel->r_offset -= 2;
2766 	}
2767 
2768       if (irel->r_vaddr - sec->vma == addr)
2769 	{
2770 	  irel->r_vaddr += 2;
2771 	  add = -2;
2772 	}
2773       else if (irel->r_vaddr - sec->vma == addr + 2)
2774 	{
2775 	  irel->r_vaddr -= 2;
2776 	  add = 2;
2777 	}
2778       else
2779 	add = 0;
2780 
2781       if (add != 0)
2782 	{
2783 	  bfd_byte *loc;
2784 	  unsigned short insn, oinsn;
2785 	  bfd_boolean overflow;
2786 
2787 	  loc = contents + irel->r_vaddr - sec->vma;
2788 	  overflow = FALSE;
2789 	  switch (type)
2790 	    {
2791 	    default:
2792 	      break;
2793 
2794 	    case R_SH_PCDISP8BY2:
2795 	    case R_SH_PCRELIMM8BY2:
2796 	      insn = bfd_get_16 (abfd, loc);
2797 	      oinsn = insn;
2798 	      insn += add / 2;
2799 	      if ((oinsn & 0xff00) != (insn & 0xff00))
2800 		overflow = TRUE;
2801 	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
2802 	      break;
2803 
2804 	    case R_SH_PCDISP:
2805 	      insn = bfd_get_16 (abfd, loc);
2806 	      oinsn = insn;
2807 	      insn += add / 2;
2808 	      if ((oinsn & 0xf000) != (insn & 0xf000))
2809 		overflow = TRUE;
2810 	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
2811 	      break;
2812 
2813 	    case R_SH_PCRELIMM8BY4:
2814 	      /* This reloc ignores the least significant 3 bits of
2815                  the program counter before adding in the offset.
2816                  This means that if ADDR is at an even address, the
2817                  swap will not affect the offset.  If ADDR is an at an
2818                  odd address, then the instruction will be crossing a
2819                  four byte boundary, and must be adjusted.  */
2820 	      if ((addr & 3) != 0)
2821 		{
2822 		  insn = bfd_get_16 (abfd, loc);
2823 		  oinsn = insn;
2824 		  insn += add / 2;
2825 		  if ((oinsn & 0xff00) != (insn & 0xff00))
2826 		    overflow = TRUE;
2827 		  bfd_put_16 (abfd, (bfd_vma) insn, loc);
2828 		}
2829 
2830 	      break;
2831 	    }
2832 
2833 	  if (overflow)
2834 	    {
2835 	      ((*_bfd_error_handler)
2836 	       ("%s: 0x%lx: fatal: reloc overflow while relaxing",
2837 		bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
2838 	      bfd_set_error (bfd_error_bad_value);
2839 	      return FALSE;
2840 	    }
2841 	}
2842     }
2843 
2844   return TRUE;
2845 }
2846 
2847 /* This is a modification of _bfd_coff_generic_relocate_section, which
2848    will handle SH relaxing.  */
2849 
2850 static bfd_boolean
2851 sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
2852 		     relocs, syms, sections)
2853      bfd *output_bfd ATTRIBUTE_UNUSED;
2854      struct bfd_link_info *info;
2855      bfd *input_bfd;
2856      asection *input_section;
2857      bfd_byte *contents;
2858      struct internal_reloc *relocs;
2859      struct internal_syment *syms;
2860      asection **sections;
2861 {
2862   struct internal_reloc *rel;
2863   struct internal_reloc *relend;
2864 
2865   rel = relocs;
2866   relend = rel + input_section->reloc_count;
2867   for (; rel < relend; rel++)
2868     {
2869       long symndx;
2870       struct coff_link_hash_entry *h;
2871       struct internal_syment *sym;
2872       bfd_vma addend;
2873       bfd_vma val;
2874       reloc_howto_type *howto;
2875       bfd_reloc_status_type rstat;
2876 
2877       /* Almost all relocs have to do with relaxing.  If any work must
2878          be done for them, it has been done in sh_relax_section.  */
2879       if (rel->r_type != R_SH_IMM32
2880 #ifdef COFF_WITH_PE
2881 	  && rel->r_type != R_SH_IMM32CE
2882 	  && rel->r_type != R_SH_IMAGEBASE
2883 #endif
2884 	  && rel->r_type != R_SH_PCDISP)
2885 	continue;
2886 
2887       symndx = rel->r_symndx;
2888 
2889       if (symndx == -1)
2890 	{
2891 	  h = NULL;
2892 	  sym = NULL;
2893 	}
2894       else
2895 	{
2896 	  if (symndx < 0
2897 	      || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2898 	    {
2899 	      (*_bfd_error_handler)
2900 		("%s: illegal symbol index %ld in relocs",
2901 		 bfd_archive_filename (input_bfd), symndx);
2902 	      bfd_set_error (bfd_error_bad_value);
2903 	      return FALSE;
2904 	    }
2905 	  h = obj_coff_sym_hashes (input_bfd)[symndx];
2906 	  sym = syms + symndx;
2907 	}
2908 
2909       if (sym != NULL && sym->n_scnum != 0)
2910 	addend = - sym->n_value;
2911       else
2912 	addend = 0;
2913 
2914       if (rel->r_type == R_SH_PCDISP)
2915 	addend -= 4;
2916 
2917       if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2918 	howto = NULL;
2919       else
2920 	howto = &sh_coff_howtos[rel->r_type];
2921 
2922       if (howto == NULL)
2923 	{
2924 	  bfd_set_error (bfd_error_bad_value);
2925 	  return FALSE;
2926 	}
2927 
2928 #ifdef COFF_WITH_PE
2929       if (rel->r_type == R_SH_IMAGEBASE)
2930 	addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2931 #endif
2932 
2933       val = 0;
2934 
2935       if (h == NULL)
2936 	{
2937 	  asection *sec;
2938 
2939 	  /* There is nothing to do for an internal PCDISP reloc.  */
2940 	  if (rel->r_type == R_SH_PCDISP)
2941 	    continue;
2942 
2943 	  if (symndx == -1)
2944 	    {
2945 	      sec = bfd_abs_section_ptr;
2946 	      val = 0;
2947 	    }
2948 	  else
2949 	    {
2950 	      sec = sections[symndx];
2951               val = (sec->output_section->vma
2952 		     + sec->output_offset
2953 		     + sym->n_value
2954 		     - sec->vma);
2955 	    }
2956 	}
2957       else
2958 	{
2959 	  if (h->root.type == bfd_link_hash_defined
2960 	      || h->root.type == bfd_link_hash_defweak)
2961 	    {
2962 	      asection *sec;
2963 
2964 	      sec = h->root.u.def.section;
2965 	      val = (h->root.u.def.value
2966 		     + sec->output_section->vma
2967 		     + sec->output_offset);
2968 	    }
2969 	  else if (! info->relocatable)
2970 	    {
2971 	      if (! ((*info->callbacks->undefined_symbol)
2972 		     (info, h->root.root.string, input_bfd, input_section,
2973 		      rel->r_vaddr - input_section->vma, TRUE)))
2974 		return FALSE;
2975 	    }
2976 	}
2977 
2978       rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2979 					contents,
2980 					rel->r_vaddr - input_section->vma,
2981 					val, addend);
2982 
2983       switch (rstat)
2984 	{
2985 	default:
2986 	  abort ();
2987 	case bfd_reloc_ok:
2988 	  break;
2989 	case bfd_reloc_overflow:
2990 	  {
2991 	    const char *name;
2992 	    char buf[SYMNMLEN + 1];
2993 
2994 	    if (symndx == -1)
2995 	      name = "*ABS*";
2996 	    else if (h != NULL)
2997 	      name = h->root.root.string;
2998 	    else if (sym->_n._n_n._n_zeroes == 0
2999 		     && sym->_n._n_n._n_offset != 0)
3000 	      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
3001 	    else
3002 	      {
3003  		strncpy (buf, sym->_n._n_name, SYMNMLEN);
3004 		buf[SYMNMLEN] = '\0';
3005 		name = buf;
3006 	      }
3007 
3008 	    if (! ((*info->callbacks->reloc_overflow)
3009 		   (info, name, howto->name, (bfd_vma) 0, input_bfd,
3010 		    input_section, rel->r_vaddr - input_section->vma)))
3011 	      return FALSE;
3012 	  }
3013 	}
3014     }
3015 
3016   return TRUE;
3017 }
3018 
3019 /* This is a version of bfd_generic_get_relocated_section_contents
3020    which uses sh_relocate_section.  */
3021 
3022 static bfd_byte *
3023 sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
3024 					data, relocatable, symbols)
3025      bfd *output_bfd;
3026      struct bfd_link_info *link_info;
3027      struct bfd_link_order *link_order;
3028      bfd_byte *data;
3029      bfd_boolean relocatable;
3030      asymbol **symbols;
3031 {
3032   asection *input_section = link_order->u.indirect.section;
3033   bfd *input_bfd = input_section->owner;
3034   asection **sections = NULL;
3035   struct internal_reloc *internal_relocs = NULL;
3036   struct internal_syment *internal_syms = NULL;
3037 
3038   /* We only need to handle the case of relaxing, or of having a
3039      particular set of section contents, specially.  */
3040   if (relocatable
3041       || coff_section_data (input_bfd, input_section) == NULL
3042       || coff_section_data (input_bfd, input_section)->contents == NULL)
3043     return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3044 						       link_order, data,
3045 						       relocatable,
3046 						       symbols);
3047 
3048   memcpy (data, coff_section_data (input_bfd, input_section)->contents,
3049 	  (size_t) input_section->_raw_size);
3050 
3051   if ((input_section->flags & SEC_RELOC) != 0
3052       && input_section->reloc_count > 0)
3053     {
3054       bfd_size_type symesz = bfd_coff_symesz (input_bfd);
3055       bfd_byte *esym, *esymend;
3056       struct internal_syment *isymp;
3057       asection **secpp;
3058       bfd_size_type amt;
3059 
3060       if (! _bfd_coff_get_external_symbols (input_bfd))
3061 	goto error_return;
3062 
3063       internal_relocs = (_bfd_coff_read_internal_relocs
3064 			 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
3065 			  FALSE, (struct internal_reloc *) NULL));
3066       if (internal_relocs == NULL)
3067 	goto error_return;
3068 
3069       amt = obj_raw_syment_count (input_bfd);
3070       amt *= sizeof (struct internal_syment);
3071       internal_syms = (struct internal_syment *) bfd_malloc (amt);
3072       if (internal_syms == NULL)
3073 	goto error_return;
3074 
3075       amt = obj_raw_syment_count (input_bfd);
3076       amt *= sizeof (asection *);
3077       sections = (asection **) bfd_malloc (amt);
3078       if (sections == NULL)
3079 	goto error_return;
3080 
3081       isymp = internal_syms;
3082       secpp = sections;
3083       esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
3084       esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
3085       while (esym < esymend)
3086 	{
3087 	  bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);
3088 
3089 	  if (isymp->n_scnum != 0)
3090 	    *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
3091 	  else
3092 	    {
3093 	      if (isymp->n_value == 0)
3094 		*secpp = bfd_und_section_ptr;
3095 	      else
3096 		*secpp = bfd_com_section_ptr;
3097 	    }
3098 
3099 	  esym += (isymp->n_numaux + 1) * symesz;
3100 	  secpp += isymp->n_numaux + 1;
3101 	  isymp += isymp->n_numaux + 1;
3102 	}
3103 
3104       if (! sh_relocate_section (output_bfd, link_info, input_bfd,
3105 				 input_section, data, internal_relocs,
3106 				 internal_syms, sections))
3107 	goto error_return;
3108 
3109       free (sections);
3110       sections = NULL;
3111       free (internal_syms);
3112       internal_syms = NULL;
3113       free (internal_relocs);
3114       internal_relocs = NULL;
3115     }
3116 
3117   return data;
3118 
3119  error_return:
3120   if (internal_relocs != NULL)
3121     free (internal_relocs);
3122   if (internal_syms != NULL)
3123     free (internal_syms);
3124   if (sections != NULL)
3125     free (sections);
3126   return NULL;
3127 }
3128 
3129 /* The target vectors.  */
3130 
3131 #ifndef TARGET_SHL_SYM
3132 CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3133 #endif
3134 
3135 #ifdef TARGET_SHL_SYM
3136 #define TARGET_SYM TARGET_SHL_SYM
3137 #else
3138 #define TARGET_SYM shlcoff_vec
3139 #endif
3140 
3141 #ifndef TARGET_SHL_NAME
3142 #define TARGET_SHL_NAME "coff-shl"
3143 #endif
3144 
3145 #ifdef COFF_WITH_PE
3146 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3147 			       SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3148 #else
3149 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3150 			       0, '_', NULL, COFF_SWAP_TABLE)
3151 #endif
3152 
3153 #ifndef TARGET_SHL_SYM
3154 static const bfd_target * coff_small_object_p PARAMS ((bfd *));
3155 static bfd_boolean coff_small_new_section_hook PARAMS ((bfd *, asection *));
3156 /* Some people want versions of the SH COFF target which do not align
3157    to 16 byte boundaries.  We implement that by adding a couple of new
3158    target vectors.  These are just like the ones above, but they
3159    change the default section alignment.  To generate them in the
3160    assembler, use -small.  To use them in the linker, use -b
3161    coff-sh{l}-small and -oformat coff-sh{l}-small.
3162 
3163    Yes, this is a horrible hack.  A general solution for setting
3164    section alignment in COFF is rather complex.  ELF handles this
3165    correctly.  */
3166 
3167 /* Only recognize the small versions if the target was not defaulted.
3168    Otherwise we won't recognize the non default endianness.  */
3169 
3170 static const bfd_target *
3171 coff_small_object_p (abfd)
3172      bfd *abfd;
3173 {
3174   if (abfd->target_defaulted)
3175     {
3176       bfd_set_error (bfd_error_wrong_format);
3177       return NULL;
3178     }
3179   return coff_object_p (abfd);
3180 }
3181 
3182 /* Set the section alignment for the small versions.  */
3183 
3184 static bfd_boolean
3185 coff_small_new_section_hook (abfd, section)
3186      bfd *abfd;
3187      asection *section;
3188 {
3189   if (! coff_new_section_hook (abfd, section))
3190     return FALSE;
3191 
3192   /* We must align to at least a four byte boundary, because longword
3193      accesses must be on a four byte boundary.  */
3194   if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3195     section->alignment_power = 2;
3196 
3197   return TRUE;
3198 }
3199 
3200 /* This is copied from bfd_coff_std_swap_table so that we can change
3201    the default section alignment power.  */
3202 
3203 static const bfd_coff_backend_data bfd_coff_small_swap_table =
3204 {
3205   coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3206   coff_swap_aux_out, coff_swap_sym_out,
3207   coff_swap_lineno_out, coff_swap_reloc_out,
3208   coff_swap_filehdr_out, coff_swap_aouthdr_out,
3209   coff_swap_scnhdr_out,
3210   FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3211 #ifdef COFF_LONG_FILENAMES
3212   TRUE,
3213 #else
3214   FALSE,
3215 #endif
3216 #ifdef COFF_LONG_SECTION_NAMES
3217   TRUE,
3218 #else
3219   FALSE,
3220 #endif
3221   2,
3222 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3223   TRUE,
3224 #else
3225   FALSE,
3226 #endif
3227 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3228   4,
3229 #else
3230   2,
3231 #endif
3232   coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3233   coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3234   coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3235   coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3236   coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3237   coff_classify_symbol, coff_compute_section_file_positions,
3238   coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3239   coff_adjust_symndx, coff_link_add_one_symbol,
3240   coff_link_output_has_begun, coff_final_link_postscript
3241 };
3242 
3243 #define coff_small_close_and_cleanup \
3244   coff_close_and_cleanup
3245 #define coff_small_bfd_free_cached_info \
3246   coff_bfd_free_cached_info
3247 #define coff_small_get_section_contents \
3248   coff_get_section_contents
3249 #define coff_small_get_section_contents_in_window \
3250   coff_get_section_contents_in_window
3251 
3252 extern const bfd_target shlcoff_small_vec;
3253 
3254 const bfd_target shcoff_small_vec =
3255 {
3256   "coff-sh-small",		/* name */
3257   bfd_target_coff_flavour,
3258   BFD_ENDIAN_BIG,		/* data byte order is big */
3259   BFD_ENDIAN_BIG,		/* header byte order is big */
3260 
3261   (HAS_RELOC | EXEC_P |		/* object flags */
3262    HAS_LINENO | HAS_DEBUG |
3263    HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3264 
3265   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3266   '_',				/* leading symbol underscore */
3267   '/',				/* ar_pad_char */
3268   15,				/* ar_max_namelen */
3269   bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3270   bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3271   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3272   bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3273   bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3274   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3275 
3276   {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3277      bfd_generic_archive_p, _bfd_dummy_target},
3278   {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3279      bfd_false},
3280   {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3281      _bfd_write_archive_contents, bfd_false},
3282 
3283   BFD_JUMP_TABLE_GENERIC (coff_small),
3284   BFD_JUMP_TABLE_COPY (coff),
3285   BFD_JUMP_TABLE_CORE (_bfd_nocore),
3286   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3287   BFD_JUMP_TABLE_SYMBOLS (coff),
3288   BFD_JUMP_TABLE_RELOCS (coff),
3289   BFD_JUMP_TABLE_WRITE (coff),
3290   BFD_JUMP_TABLE_LINK (coff),
3291   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3292 
3293   & shlcoff_small_vec,
3294 
3295   (PTR) &bfd_coff_small_swap_table
3296 };
3297 
3298 const bfd_target shlcoff_small_vec =
3299 {
3300   "coff-shl-small",		/* name */
3301   bfd_target_coff_flavour,
3302   BFD_ENDIAN_LITTLE,		/* data byte order is little */
3303   BFD_ENDIAN_LITTLE,		/* header byte order is little endian too*/
3304 
3305   (HAS_RELOC | EXEC_P |		/* object flags */
3306    HAS_LINENO | HAS_DEBUG |
3307    HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3308 
3309   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3310   '_',				/* leading symbol underscore */
3311   '/',				/* ar_pad_char */
3312   15,				/* ar_max_namelen */
3313   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3314   bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3315   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3316   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3317   bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3318   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3319 
3320   {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3321      bfd_generic_archive_p, _bfd_dummy_target},
3322   {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3323      bfd_false},
3324   {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3325      _bfd_write_archive_contents, bfd_false},
3326 
3327   BFD_JUMP_TABLE_GENERIC (coff_small),
3328   BFD_JUMP_TABLE_COPY (coff),
3329   BFD_JUMP_TABLE_CORE (_bfd_nocore),
3330   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3331   BFD_JUMP_TABLE_SYMBOLS (coff),
3332   BFD_JUMP_TABLE_RELOCS (coff),
3333   BFD_JUMP_TABLE_WRITE (coff),
3334   BFD_JUMP_TABLE_LINK (coff),
3335   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3336 
3337   & shcoff_small_vec,
3338 
3339   (PTR) &bfd_coff_small_swap_table
3340 };
3341 #endif
3342