1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3    2002, 2003, 2004 Free Software Foundation, Inc.
4 
5    Original code by
6 	Center for Software Science
7 	Department of Computer Science
8 	University of Utah
9    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
26 
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE		32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37 
38 /* In order to gain some understanding of code in this file without
39    knowing all the intricate details of the linker, note the
40    following:
41 
42    Functions named elf32_hppa_* are called by external routines, other
43    functions are only called locally.  elf32_hppa_* functions appear
44    in this file more or less in the order in which they are called
45    from external routines.  eg. elf32_hppa_check_relocs is called
46    early in the link process, elf32_hppa_finish_dynamic_sections is
47    one of the last functions.  */
48 
49 /* We use two hash tables to hold information for linking PA ELF objects.
50 
51    The first is the elf32_hppa_link_hash_table which is derived
52    from the standard ELF linker hash table.  We use this as a place to
53    attach other hash tables and static information.
54 
55    The second is the stub hash table which is derived from the
56    base BFD hash table.  The stub hash table holds the information
57    necessary to build the linker stubs during a link.
58 
59    There are a number of different stubs generated by the linker.
60 
61    Long branch stub:
62    :		ldil LR'X,%r1
63    :		be,n RR'X(%sr4,%r1)
64 
65    PIC long branch stub:
66    :		b,l .+8,%r1
67    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
68    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69 
70    Import stub to call shared library routine from normal object file
71    (single sub-space version)
72    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
73    :		ldw RR'lt_ptr+ltoff(%r1),%r21
74    :		bv %r0(%r21)
75    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
76 
77    Import stub to call shared library routine from shared library
78    (single sub-space version)
79    :		addil LR'ltoff,%r19		; get procedure entry point
80    :		ldw RR'ltoff(%r1),%r21
81    :		bv %r0(%r21)
82    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
83 
84    Import stub to call shared library routine from normal object file
85    (multiple sub-space support)
86    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
87    :		ldw RR'lt_ptr+ltoff(%r1),%r21
88    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
89    :		ldsid (%r21),%r1
90    :		mtsp %r1,%sr0
91    :		be 0(%sr0,%r21)			; branch to target
92    :		stw %rp,-24(%sp)		; save rp
93 
94    Import stub to call shared library routine from shared library
95    (multiple sub-space support)
96    :		addil LR'ltoff,%r19		; get procedure entry point
97    :		ldw RR'ltoff(%r1),%r21
98    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
99    :		ldsid (%r21),%r1
100    :		mtsp %r1,%sr0
101    :		be 0(%sr0,%r21)			; branch to target
102    :		stw %rp,-24(%sp)		; save rp
103 
104    Export stub to return from shared lib routine (multiple sub-space support)
105    One of these is created for each exported procedure in a shared
106    library (and stored in the shared lib).  Shared lib routines are
107    called via the first instruction in the export stub so that we can
108    do an inter-space return.  Not required for single sub-space.
109    :		bl,n X,%rp			; trap the return
110    :		nop
111    :		ldw -24(%sp),%rp		; restore the original rp
112    :		ldsid (%rp),%r1
113    :		mtsp %r1,%sr0
114    :		be,n 0(%sr0,%rp)		; inter-space return.  */
115 
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119 
120 static const bfd_byte plt_stub[] =
121 {
122   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
123   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
124   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
125 #define PLT_STUB_ENTRY (3*4)
126   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
127   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
128   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
129   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
130 };
131 
132 /* Section name for stubs is the associated section name plus this
133    string.  */
134 #define STUB_SUFFIX ".stub"
135 
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137    into a shared object's dynamic section.  All the relocs of the
138    limited class we are interested in, are absolute.  */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143 
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145    copying dynamic variables from a shared lib into an app's dynbss
146    section, and instead use a dynamic relocation to point into the
147    shared lib.  */
148 #define ELIMINATE_COPY_RELOCS 1
149 
150 enum elf32_hppa_stub_type {
151   hppa_stub_long_branch,
152   hppa_stub_long_branch_shared,
153   hppa_stub_import,
154   hppa_stub_import_shared,
155   hppa_stub_export,
156   hppa_stub_none
157 };
158 
159 struct elf32_hppa_stub_hash_entry {
160 
161   /* Base hash table entry structure.  */
162   struct bfd_hash_entry root;
163 
164   /* The stub section.  */
165   asection *stub_sec;
166 
167   /* Offset within stub_sec of the beginning of this stub.  */
168   bfd_vma stub_offset;
169 
170   /* Given the symbol's value and its section we can determine its final
171      value when building the stubs (so the stub knows where to jump.  */
172   bfd_vma target_value;
173   asection *target_section;
174 
175   enum elf32_hppa_stub_type stub_type;
176 
177   /* The symbol table entry, if any, that this was derived from.  */
178   struct elf32_hppa_link_hash_entry *h;
179 
180   /* Where this stub is being called from, or, in the case of combined
181      stub sections, the first input section in the group.  */
182   asection *id_sec;
183 };
184 
185 struct elf32_hppa_link_hash_entry {
186 
187   struct elf_link_hash_entry elf;
188 
189   /* A pointer to the most recently used stub hash entry against this
190      symbol.  */
191   struct elf32_hppa_stub_hash_entry *stub_cache;
192 
193   /* Used to count relocations for delayed sizing of relocation
194      sections.  */
195   struct elf32_hppa_dyn_reloc_entry {
196 
197     /* Next relocation in the chain.  */
198     struct elf32_hppa_dyn_reloc_entry *next;
199 
200     /* The input section of the reloc.  */
201     asection *sec;
202 
203     /* Number of relocs copied in this section.  */
204     bfd_size_type count;
205 
206 #if RELATIVE_DYNRELOCS
207   /* Number of relative relocs copied for the input section.  */
208     bfd_size_type relative_count;
209 #endif
210   } *dyn_relocs;
211 
212   /* Set if this symbol is used by a plabel reloc.  */
213   unsigned int plabel:1;
214 };
215 
216 struct elf32_hppa_link_hash_table {
217 
218   /* The main hash table.  */
219   struct elf_link_hash_table elf;
220 
221   /* The stub hash table.  */
222   struct bfd_hash_table stub_hash_table;
223 
224   /* Linker stub bfd.  */
225   bfd *stub_bfd;
226 
227   /* Linker call-backs.  */
228   asection * (*add_stub_section) (const char *, asection *);
229   void (*layout_sections_again) (void);
230 
231   /* Array to keep track of which stub sections have been created, and
232      information on stub grouping.  */
233   struct map_stub {
234     /* This is the section to which stubs in the group will be
235        attached.  */
236     asection *link_sec;
237     /* The stub section.  */
238     asection *stub_sec;
239   } *stub_group;
240 
241   /* Assorted information used by elf32_hppa_size_stubs.  */
242   unsigned int bfd_count;
243   int top_index;
244   asection **input_list;
245   Elf_Internal_Sym **all_local_syms;
246 
247   /* Short-cuts to get to dynamic linker sections.  */
248   asection *sgot;
249   asection *srelgot;
250   asection *splt;
251   asection *srelplt;
252   asection *sdynbss;
253   asection *srelbss;
254 
255   /* Used during a final link to store the base of the text and data
256      segments so that we can perform SEGREL relocations.  */
257   bfd_vma text_segment_base;
258   bfd_vma data_segment_base;
259 
260   /* Whether we support multiple sub-spaces for shared libs.  */
261   unsigned int multi_subspace:1;
262 
263   /* Flags set when various size branches are detected.  Used to
264      select suitable defaults for the stub group size.  */
265   unsigned int has_12bit_branch:1;
266   unsigned int has_17bit_branch:1;
267   unsigned int has_22bit_branch:1;
268 
269   /* Set if we need a .plt stub to support lazy dynamic linking.  */
270   unsigned int need_plt_stub:1;
271 
272   /* Small local sym to section mapping cache.  */
273   struct sym_sec_cache sym_sec;
274 };
275 
276 /* Various hash macros and functions.  */
277 #define hppa_link_hash_table(p) \
278   ((struct elf32_hppa_link_hash_table *) ((p)->hash))
279 
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281   ((struct elf32_hppa_stub_hash_entry *) \
282    bfd_hash_lookup ((table), (string), (create), (copy)))
283 
284 /* Assorted hash table functions.  */
285 
286 /* Initialize an entry in the stub hash table.  */
287 
288 static struct bfd_hash_entry *
stub_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 		   struct bfd_hash_table *table,
291 		   const char *string)
292 {
293   /* Allocate the structure if it has not already been allocated by a
294      subclass.  */
295   if (entry == NULL)
296     {
297       entry = bfd_hash_allocate (table,
298 				 sizeof (struct elf32_hppa_stub_hash_entry));
299       if (entry == NULL)
300 	return entry;
301     }
302 
303   /* Call the allocation method of the superclass.  */
304   entry = bfd_hash_newfunc (entry, table, string);
305   if (entry != NULL)
306     {
307       struct elf32_hppa_stub_hash_entry *eh;
308 
309       /* Initialize the local fields.  */
310       eh = (struct elf32_hppa_stub_hash_entry *) entry;
311       eh->stub_sec = NULL;
312       eh->stub_offset = 0;
313       eh->target_value = 0;
314       eh->target_section = NULL;
315       eh->stub_type = hppa_stub_long_branch;
316       eh->h = NULL;
317       eh->id_sec = NULL;
318     }
319 
320   return entry;
321 }
322 
323 /* Initialize an entry in the link hash table.  */
324 
325 static struct bfd_hash_entry *
hppa_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 			struct bfd_hash_table *table,
328 			const char *string)
329 {
330   /* Allocate the structure if it has not already been allocated by a
331      subclass.  */
332   if (entry == NULL)
333     {
334       entry = bfd_hash_allocate (table,
335 				 sizeof (struct elf32_hppa_link_hash_entry));
336       if (entry == NULL)
337 	return entry;
338     }
339 
340   /* Call the allocation method of the superclass.  */
341   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342   if (entry != NULL)
343     {
344       struct elf32_hppa_link_hash_entry *eh;
345 
346       /* Initialize the local fields.  */
347       eh = (struct elf32_hppa_link_hash_entry *) entry;
348       eh->stub_cache = NULL;
349       eh->dyn_relocs = NULL;
350       eh->plabel = 0;
351     }
352 
353   return entry;
354 }
355 
356 /* Create the derived linker hash table.  The PA ELF port uses the derived
357    hash table to keep information specific to the PA ELF linker (without
358    using static variables).  */
359 
360 static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create(bfd * abfd)361 elf32_hppa_link_hash_table_create (bfd *abfd)
362 {
363   struct elf32_hppa_link_hash_table *ret;
364   bfd_size_type amt = sizeof (*ret);
365 
366   ret = bfd_malloc (amt);
367   if (ret == NULL)
368     return NULL;
369 
370   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
371     {
372       free (ret);
373       return NULL;
374     }
375 
376   /* Init the stub hash table too.  */
377   if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378     return NULL;
379 
380   ret->stub_bfd = NULL;
381   ret->add_stub_section = NULL;
382   ret->layout_sections_again = NULL;
383   ret->stub_group = NULL;
384   ret->sgot = NULL;
385   ret->srelgot = NULL;
386   ret->splt = NULL;
387   ret->srelplt = NULL;
388   ret->sdynbss = NULL;
389   ret->srelbss = NULL;
390   ret->text_segment_base = (bfd_vma) -1;
391   ret->data_segment_base = (bfd_vma) -1;
392   ret->multi_subspace = 0;
393   ret->has_12bit_branch = 0;
394   ret->has_17bit_branch = 0;
395   ret->has_22bit_branch = 0;
396   ret->need_plt_stub = 0;
397   ret->sym_sec.abfd = NULL;
398 
399   return &ret->elf.root;
400 }
401 
402 /* Free the derived linker hash table.  */
403 
404 static void
elf32_hppa_link_hash_table_free(struct bfd_link_hash_table * hash)405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
406 {
407   struct elf32_hppa_link_hash_table *ret
408     = (struct elf32_hppa_link_hash_table *) hash;
409 
410   bfd_hash_table_free (&ret->stub_hash_table);
411   _bfd_generic_link_hash_table_free (hash);
412 }
413 
414 /* Build a name for an entry in the stub hash table.  */
415 
416 static char *
hppa_stub_name(const asection * input_section,const asection * sym_sec,const struct elf32_hppa_link_hash_entry * hash,const Elf_Internal_Rela * rel)417 hppa_stub_name (const asection *input_section,
418 		const asection *sym_sec,
419 		const struct elf32_hppa_link_hash_entry *hash,
420 		const Elf_Internal_Rela *rel)
421 {
422   char *stub_name;
423   bfd_size_type len;
424 
425   if (hash)
426     {
427       len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428       stub_name = bfd_malloc (len);
429       if (stub_name != NULL)
430 	{
431 	  sprintf (stub_name, "%08x_%s+%x",
432 		   input_section->id & 0xffffffff,
433 		   hash->elf.root.root.string,
434 		   (int) rel->r_addend & 0xffffffff);
435 	}
436     }
437   else
438     {
439       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440       stub_name = bfd_malloc (len);
441       if (stub_name != NULL)
442 	{
443 	  sprintf (stub_name, "%08x_%x:%x+%x",
444 		   input_section->id & 0xffffffff,
445 		   sym_sec->id & 0xffffffff,
446 		   (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 		   (int) rel->r_addend & 0xffffffff);
448 	}
449     }
450   return stub_name;
451 }
452 
453 /* Look up an entry in the stub hash.  Stub entries are cached because
454    creating the stub name takes a bit of time.  */
455 
456 static struct elf32_hppa_stub_hash_entry *
hppa_get_stub_entry(const asection * input_section,const asection * sym_sec,struct elf32_hppa_link_hash_entry * hash,const Elf_Internal_Rela * rel,struct elf32_hppa_link_hash_table * htab)457 hppa_get_stub_entry (const asection *input_section,
458 		     const asection *sym_sec,
459 		     struct elf32_hppa_link_hash_entry *hash,
460 		     const Elf_Internal_Rela *rel,
461 		     struct elf32_hppa_link_hash_table *htab)
462 {
463   struct elf32_hppa_stub_hash_entry *stub_entry;
464   const asection *id_sec;
465 
466   /* If this input section is part of a group of sections sharing one
467      stub section, then use the id of the first section in the group.
468      Stub names need to include a section id, as there may well be
469      more than one stub used to reach say, printf, and we need to
470      distinguish between them.  */
471   id_sec = htab->stub_group[input_section->id].link_sec;
472 
473   if (hash != NULL && hash->stub_cache != NULL
474       && hash->stub_cache->h == hash
475       && hash->stub_cache->id_sec == id_sec)
476     {
477       stub_entry = hash->stub_cache;
478     }
479   else
480     {
481       char *stub_name;
482 
483       stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484       if (stub_name == NULL)
485 	return NULL;
486 
487       stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 					  stub_name, FALSE, FALSE);
489       if (hash != NULL)
490 	hash->stub_cache = stub_entry;
491 
492       free (stub_name);
493     }
494 
495   return stub_entry;
496 }
497 
498 /* Add a new stub entry to the stub hash.  Not all fields of the new
499    stub entry are initialised.  */
500 
501 static struct elf32_hppa_stub_hash_entry *
hppa_add_stub(const char * stub_name,asection * section,struct elf32_hppa_link_hash_table * htab)502 hppa_add_stub (const char *stub_name,
503 	       asection *section,
504 	       struct elf32_hppa_link_hash_table *htab)
505 {
506   asection *link_sec;
507   asection *stub_sec;
508   struct elf32_hppa_stub_hash_entry *stub_entry;
509 
510   link_sec = htab->stub_group[section->id].link_sec;
511   stub_sec = htab->stub_group[section->id].stub_sec;
512   if (stub_sec == NULL)
513     {
514       stub_sec = htab->stub_group[link_sec->id].stub_sec;
515       if (stub_sec == NULL)
516 	{
517 	  size_t namelen;
518 	  bfd_size_type len;
519 	  char *s_name;
520 
521 	  namelen = strlen (link_sec->name);
522 	  len = namelen + sizeof (STUB_SUFFIX);
523 	  s_name = bfd_alloc (htab->stub_bfd, len);
524 	  if (s_name == NULL)
525 	    return NULL;
526 
527 	  memcpy (s_name, link_sec->name, namelen);
528 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 	  if (stub_sec == NULL)
531 	    return NULL;
532 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
533 	}
534       htab->stub_group[section->id].stub_sec = stub_sec;
535     }
536 
537   /* Enter this entry into the linker stub hash table.  */
538   stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 				      TRUE, FALSE);
540   if (stub_entry == NULL)
541     {
542       (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
543 			     bfd_archive_filename (section->owner),
544 			     stub_name);
545       return NULL;
546     }
547 
548   stub_entry->stub_sec = stub_sec;
549   stub_entry->stub_offset = 0;
550   stub_entry->id_sec = link_sec;
551   return stub_entry;
552 }
553 
554 /* Determine the type of stub needed, if any, for a call.  */
555 
556 static enum elf32_hppa_stub_type
hppa_type_of_stub(asection * input_sec,const Elf_Internal_Rela * rel,struct elf32_hppa_link_hash_entry * hash,bfd_vma destination,struct bfd_link_info * info)557 hppa_type_of_stub (asection *input_sec,
558 		   const Elf_Internal_Rela *rel,
559 		   struct elf32_hppa_link_hash_entry *hash,
560 		   bfd_vma destination,
561 		   struct bfd_link_info *info)
562 {
563   bfd_vma location;
564   bfd_vma branch_offset;
565   bfd_vma max_branch_offset;
566   unsigned int r_type;
567 
568   if (hash != NULL
569       && hash->elf.plt.offset != (bfd_vma) -1
570       && hash->elf.dynindx != -1
571       && !hash->plabel
572       && (info->shared
573 	  || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 	  || hash->elf.root.type == bfd_link_hash_defweak))
575     {
576       /* We need an import stub.  Decide between hppa_stub_import
577 	 and hppa_stub_import_shared later.  */
578       return hppa_stub_import;
579     }
580 
581   /* Determine where the call point is.  */
582   location = (input_sec->output_offset
583 	      + input_sec->output_section->vma
584 	      + rel->r_offset);
585 
586   branch_offset = destination - location - 8;
587   r_type = ELF32_R_TYPE (rel->r_info);
588 
589   /* Determine if a long branch stub is needed.  parisc branch offsets
590      are relative to the second instruction past the branch, ie. +8
591      bytes on from the branch instruction location.  The offset is
592      signed and counts in units of 4 bytes.  */
593   if (r_type == (unsigned int) R_PARISC_PCREL17F)
594     {
595       max_branch_offset = (1 << (17-1)) << 2;
596     }
597   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
598     {
599       max_branch_offset = (1 << (12-1)) << 2;
600     }
601   else /* R_PARISC_PCREL22F.  */
602     {
603       max_branch_offset = (1 << (22-1)) << 2;
604     }
605 
606   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607     return hppa_stub_long_branch;
608 
609   return hppa_stub_none;
610 }
611 
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613    IN_ARG contains the link info pointer.  */
614 
615 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
616 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
617 
618 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
619 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
620 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
621 
622 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
623 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
624 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
625 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
626 
627 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
628 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
629 
630 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
631 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
632 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
633 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
634 
635 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
636 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
637 #define NOP		0x08000240	/* nop				*/
638 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
639 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
640 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
641 
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
645 
646 #if R19_STUBS
647 #define LDW_R1_DLT	LDW_R1_R19
648 #else
649 #define LDW_R1_DLT	LDW_R1_DP
650 #endif
651 
652 static bfd_boolean
hppa_build_one_stub(struct bfd_hash_entry * gen_entry,void * in_arg)653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
654 {
655   struct elf32_hppa_stub_hash_entry *stub_entry;
656   struct bfd_link_info *info;
657   struct elf32_hppa_link_hash_table *htab;
658   asection *stub_sec;
659   bfd *stub_bfd;
660   bfd_byte *loc;
661   bfd_vma sym_value;
662   bfd_vma insn;
663   bfd_vma off;
664   int val;
665   int size;
666 
667   /* Massage our args to the form they really have.  */
668   stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669   info = in_arg;
670 
671   htab = hppa_link_hash_table (info);
672   stub_sec = stub_entry->stub_sec;
673 
674   /* Make a note of the offset within the stubs for this entry.  */
675   stub_entry->stub_offset = stub_sec->_raw_size;
676   loc = stub_sec->contents + stub_entry->stub_offset;
677 
678   stub_bfd = stub_sec->owner;
679 
680   switch (stub_entry->stub_type)
681     {
682     case hppa_stub_long_branch:
683       /* Create the long branch.  A long branch is formed with "ldil"
684 	 loading the upper bits of the target address into a register,
685 	 then branching with "be" which adds in the lower bits.
686 	 The "be" has its delay slot nullified.  */
687       sym_value = (stub_entry->target_value
688 		   + stub_entry->target_section->output_offset
689 		   + stub_entry->target_section->output_section->vma);
690 
691       val = hppa_field_adjust (sym_value, 0, e_lrsel);
692       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693       bfd_put_32 (stub_bfd, insn, loc);
694 
695       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697       bfd_put_32 (stub_bfd, insn, loc + 4);
698 
699       size = 8;
700       break;
701 
702     case hppa_stub_long_branch_shared:
703       /* Branches are relative.  This is where we are going to.  */
704       sym_value = (stub_entry->target_value
705 		   + stub_entry->target_section->output_offset
706 		   + stub_entry->target_section->output_section->vma);
707 
708       /* And this is where we are coming from, more or less.  */
709       sym_value -= (stub_entry->stub_offset
710 		    + stub_sec->output_offset
711 		    + stub_sec->output_section->vma);
712 
713       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716       bfd_put_32 (stub_bfd, insn, loc + 4);
717 
718       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720       bfd_put_32 (stub_bfd, insn, loc + 8);
721       size = 12;
722       break;
723 
724     case hppa_stub_import:
725     case hppa_stub_import_shared:
726       off = stub_entry->h->elf.plt.offset;
727       if (off >= (bfd_vma) -2)
728 	abort ();
729 
730       off &= ~ (bfd_vma) 1;
731       sym_value = (off
732 		   + htab->splt->output_offset
733 		   + htab->splt->output_section->vma
734 		   - elf_gp (htab->splt->output_section->owner));
735 
736       insn = ADDIL_DP;
737 #if R19_STUBS
738       if (stub_entry->stub_type == hppa_stub_import_shared)
739 	insn = ADDIL_R19;
740 #endif
741       val = hppa_field_adjust (sym_value, 0, e_lrsel),
742       insn = hppa_rebuild_insn ((int) insn, val, 21);
743       bfd_put_32 (stub_bfd, insn, loc);
744 
745       /* It is critical to use lrsel/rrsel here because we are using
746 	 two different offsets (+0 and +4) from sym_value.  If we use
747 	 lsel/rsel then with unfortunate sym_values we will round
748 	 sym_value+4 up to the next 2k block leading to a mis-match
749 	 between the lsel and rsel value.  */
750       val = hppa_field_adjust (sym_value, 0, e_rrsel);
751       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752       bfd_put_32 (stub_bfd, insn, loc + 4);
753 
754       if (htab->multi_subspace)
755 	{
756 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 	  bfd_put_32 (stub_bfd, insn, loc + 8);
759 
760 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
762 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
763 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
764 
765 	  size = 28;
766 	}
767       else
768 	{
769 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 	  bfd_put_32 (stub_bfd, insn, loc + 12);
773 
774 	  size = 16;
775 	}
776 
777       break;
778 
779     case hppa_stub_export:
780       /* Branches are relative.  This is where we are going to.  */
781       sym_value = (stub_entry->target_value
782 		   + stub_entry->target_section->output_offset
783 		   + stub_entry->target_section->output_section->vma);
784 
785       /* And this is where we are coming from.  */
786       sym_value -= (stub_entry->stub_offset
787 		    + stub_sec->output_offset
788 		    + stub_sec->output_section->vma);
789 
790       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 	  && (!htab->has_22bit_branch
792 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
793 	{
794 	  (*_bfd_error_handler)
795 	    (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 	     bfd_archive_filename (stub_entry->target_section->owner),
797 	     stub_sec->name,
798 	     (long) stub_entry->stub_offset,
799 	     stub_entry->root.string);
800 	  bfd_set_error (bfd_error_bad_value);
801 	  return FALSE;
802 	}
803 
804       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805       if (!htab->has_22bit_branch)
806 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807       else
808 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809       bfd_put_32 (stub_bfd, insn, loc);
810 
811       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
812       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
813       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
815       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
816 
817       /* Point the function symbol at the stub.  */
818       stub_entry->h->elf.root.u.def.section = stub_sec;
819       stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
820 
821       size = 24;
822       break;
823 
824     default:
825       BFD_FAIL ();
826       return FALSE;
827     }
828 
829   stub_sec->_raw_size += size;
830   return TRUE;
831 }
832 
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
853 
854 /* As above, but don't actually build the stub.  Just bump offset so
855    we know stub section sizes.  */
856 
857 static bfd_boolean
hppa_size_one_stub(struct bfd_hash_entry * gen_entry,void * in_arg)858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
859 {
860   struct elf32_hppa_stub_hash_entry *stub_entry;
861   struct elf32_hppa_link_hash_table *htab;
862   int size;
863 
864   /* Massage our args to the form they really have.  */
865   stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866   htab = in_arg;
867 
868   if (stub_entry->stub_type == hppa_stub_long_branch)
869     size = 8;
870   else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871     size = 12;
872   else if (stub_entry->stub_type == hppa_stub_export)
873     size = 24;
874   else /* hppa_stub_import or hppa_stub_import_shared.  */
875     {
876       if (htab->multi_subspace)
877 	size = 28;
878       else
879 	size = 16;
880     }
881 
882   stub_entry->stub_sec->_raw_size += size;
883   return TRUE;
884 }
885 
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887    Additionally we set the default architecture and machine.  */
888 
889 static bfd_boolean
elf32_hppa_object_p(bfd * abfd)890 elf32_hppa_object_p (bfd *abfd)
891 {
892   Elf_Internal_Ehdr * i_ehdrp;
893   unsigned int flags;
894 
895   i_ehdrp = elf_elfheader (abfd);
896   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
897     {
898       /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 	 but the kernel produces corefiles with OSABI=SysV.  */
900       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 	return FALSE;
903     }
904   else
905     {
906       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
907 	return FALSE;
908     }
909 
910   flags = i_ehdrp->e_flags;
911   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
912     {
913     case EFA_PARISC_1_0:
914       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915     case EFA_PARISC_1_1:
916       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917     case EFA_PARISC_2_0:
918       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
921     }
922   return TRUE;
923 }
924 
925 /* Create the .plt and .got sections, and set up our hash table
926    short-cuts to various dynamic sections.  */
927 
928 static bfd_boolean
elf32_hppa_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)929 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
930 {
931   struct elf32_hppa_link_hash_table *htab;
932 
933   /* Don't try to create the .plt and .got twice.  */
934   htab = hppa_link_hash_table (info);
935   if (htab->splt != NULL)
936     return TRUE;
937 
938   /* Call the generic code to do most of the work.  */
939   if (! _bfd_elf_create_dynamic_sections (abfd, info))
940     return FALSE;
941 
942   htab->splt = bfd_get_section_by_name (abfd, ".plt");
943   htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
944 
945   htab->sgot = bfd_get_section_by_name (abfd, ".got");
946   htab->srelgot = bfd_make_section (abfd, ".rela.got");
947   if (htab->srelgot == NULL
948       || ! bfd_set_section_flags (abfd, htab->srelgot,
949 				  (SEC_ALLOC
950 				   | SEC_LOAD
951 				   | SEC_HAS_CONTENTS
952 				   | SEC_IN_MEMORY
953 				   | SEC_LINKER_CREATED
954 				   | SEC_READONLY))
955       || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
956     return FALSE;
957 
958   htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959   htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
960 
961   return TRUE;
962 }
963 
964 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
965 
966 static void
elf32_hppa_copy_indirect_symbol(const struct elf_backend_data * bed,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)967 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
968 				 struct elf_link_hash_entry *dir,
969 				 struct elf_link_hash_entry *ind)
970 {
971   struct elf32_hppa_link_hash_entry *edir, *eind;
972 
973   edir = (struct elf32_hppa_link_hash_entry *) dir;
974   eind = (struct elf32_hppa_link_hash_entry *) ind;
975 
976   if (eind->dyn_relocs != NULL)
977     {
978       if (edir->dyn_relocs != NULL)
979 	{
980 	  struct elf32_hppa_dyn_reloc_entry **pp;
981 	  struct elf32_hppa_dyn_reloc_entry *p;
982 
983 	  if (ind->root.type == bfd_link_hash_indirect)
984 	    abort ();
985 
986 	  /* Add reloc counts against the weak sym to the strong sym
987 	     list.  Merge any entries against the same section.  */
988 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
989 	    {
990 	      struct elf32_hppa_dyn_reloc_entry *q;
991 
992 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 		if (q->sec == p->sec)
994 		  {
995 #if RELATIVE_DYNRELOCS
996 		    q->relative_count += p->relative_count;
997 #endif
998 		    q->count += p->count;
999 		    *pp = p->next;
1000 		    break;
1001 		  }
1002 	      if (q == NULL)
1003 		pp = &p->next;
1004 	    }
1005 	  *pp = edir->dyn_relocs;
1006 	}
1007 
1008       edir->dyn_relocs = eind->dyn_relocs;
1009       eind->dyn_relocs = NULL;
1010     }
1011 
1012   if (ELIMINATE_COPY_RELOCS
1013       && ind->root.type != bfd_link_hash_indirect
1014       && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015     /* If called to transfer flags for a weakdef during processing
1016        of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017        We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1018     dir->elf_link_hash_flags |=
1019       (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 				   | ELF_LINK_HASH_REF_REGULAR
1021 				   | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 				   | ELF_LINK_HASH_NEEDS_PLT));
1023   else
1024     _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1025 }
1026 
1027 /* Look through the relocs for a section during the first phase, and
1028    calculate needed space in the global offset table, procedure linkage
1029    table, and dynamic reloc sections.  At this point we haven't
1030    necessarily read all the input files.  */
1031 
1032 static bfd_boolean
elf32_hppa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1033 elf32_hppa_check_relocs (bfd *abfd,
1034 			 struct bfd_link_info *info,
1035 			 asection *sec,
1036 			 const Elf_Internal_Rela *relocs)
1037 {
1038   Elf_Internal_Shdr *symtab_hdr;
1039   struct elf_link_hash_entry **sym_hashes;
1040   const Elf_Internal_Rela *rel;
1041   const Elf_Internal_Rela *rel_end;
1042   struct elf32_hppa_link_hash_table *htab;
1043   asection *sreloc;
1044   asection *stubreloc;
1045 
1046   if (info->relocatable)
1047     return TRUE;
1048 
1049   htab = hppa_link_hash_table (info);
1050   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051   sym_hashes = elf_sym_hashes (abfd);
1052   sreloc = NULL;
1053   stubreloc = NULL;
1054 
1055   rel_end = relocs + sec->reloc_count;
1056   for (rel = relocs; rel < rel_end; rel++)
1057     {
1058       enum {
1059 	NEED_GOT = 1,
1060 	NEED_PLT = 2,
1061 	NEED_DYNREL = 4,
1062 	PLT_PLABEL = 8
1063       };
1064 
1065       unsigned int r_symndx, r_type;
1066       struct elf32_hppa_link_hash_entry *h;
1067       int need_entry;
1068 
1069       r_symndx = ELF32_R_SYM (rel->r_info);
1070 
1071       if (r_symndx < symtab_hdr->sh_info)
1072 	h = NULL;
1073       else
1074 	h = ((struct elf32_hppa_link_hash_entry *)
1075 	     sym_hashes[r_symndx - symtab_hdr->sh_info]);
1076 
1077       r_type = ELF32_R_TYPE (rel->r_info);
1078 
1079       switch (r_type)
1080 	{
1081 	case R_PARISC_DLTIND14F:
1082 	case R_PARISC_DLTIND14R:
1083 	case R_PARISC_DLTIND21L:
1084 	  /* This symbol requires a global offset table entry.  */
1085 	  need_entry = NEED_GOT;
1086 	  break;
1087 
1088 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1089 	case R_PARISC_PLABEL21L:
1090 	case R_PARISC_PLABEL32:
1091 	  /* If the addend is non-zero, we break badly.  */
1092 	  if (rel->r_addend != 0)
1093 	    abort ();
1094 
1095 	  /* If we are creating a shared library, then we need to
1096 	     create a PLT entry for all PLABELs, because PLABELs with
1097 	     local symbols may be passed via a pointer to another
1098 	     object.  Additionally, output a dynamic relocation
1099 	     pointing to the PLT entry.
1100 	     For executables, the original 32-bit ABI allowed two
1101 	     different styles of PLABELs (function pointers):  For
1102 	     global functions, the PLABEL word points into the .plt
1103 	     two bytes past a (function address, gp) pair, and for
1104 	     local functions the PLABEL points directly at the
1105 	     function.  The magic +2 for the first type allows us to
1106 	     differentiate between the two.  As you can imagine, this
1107 	     is a real pain when it comes to generating code to call
1108 	     functions indirectly or to compare function pointers.
1109 	     We avoid the mess by always pointing a PLABEL into the
1110 	     .plt, even for local functions.  */
1111 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1112 	  break;
1113 
1114 	case R_PARISC_PCREL12F:
1115 	  htab->has_12bit_branch = 1;
1116 	  goto branch_common;
1117 
1118 	case R_PARISC_PCREL17C:
1119 	case R_PARISC_PCREL17F:
1120 	  htab->has_17bit_branch = 1;
1121 	  goto branch_common;
1122 
1123 	case R_PARISC_PCREL22F:
1124 	  htab->has_22bit_branch = 1;
1125 	branch_common:
1126 	  /* Function calls might need to go through the .plt, and
1127 	     might require long branch stubs.  */
1128 	  if (h == NULL)
1129 	    {
1130 	      /* We know local syms won't need a .plt entry, and if
1131 		 they need a long branch stub we can't guarantee that
1132 		 we can reach the stub.  So just flag an error later
1133 		 if we're doing a shared link and find we need a long
1134 		 branch stub.  */
1135 	      continue;
1136 	    }
1137 	  else
1138 	    {
1139 	      /* Global symbols will need a .plt entry if they remain
1140 		 global, and in most cases won't need a long branch
1141 		 stub.  Unfortunately, we have to cater for the case
1142 		 where a symbol is forced local by versioning, or due
1143 		 to symbolic linking, and we lose the .plt entry.  */
1144 	      need_entry = NEED_PLT;
1145 	      if (h->elf.type == STT_PARISC_MILLI)
1146 		need_entry = 0;
1147 	    }
1148 	  break;
1149 
1150 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1151 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1152 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1153 	case R_PARISC_PCREL14R:
1154 	case R_PARISC_PCREL17R: /* External branches.  */
1155 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1156 	case R_PARISC_PCREL32:
1157 	  /* We don't need to propagate the relocation if linking a
1158 	     shared object since these are section relative.  */
1159 	  continue;
1160 
1161 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1162 	case R_PARISC_DPREL14R:
1163 	case R_PARISC_DPREL21L:
1164 	  if (info->shared)
1165 	    {
1166 	      (*_bfd_error_handler)
1167 		(_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1168 		 bfd_archive_filename (abfd),
1169 		 elf_hppa_howto_table[r_type].name);
1170 	      bfd_set_error (bfd_error_bad_value);
1171 	      return FALSE;
1172 	    }
1173 	  /* Fall through.  */
1174 
1175 	case R_PARISC_DIR17F: /* Used for external branches.  */
1176 	case R_PARISC_DIR17R:
1177 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1178 	case R_PARISC_DIR14R:
1179 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1180 #if 0
1181 	  /* Help debug shared library creation.  Any of the above
1182 	     relocs can be used in shared libs, but they may cause
1183 	     pages to become unshared.  */
1184 	  if (info->shared)
1185 	    {
1186 	      (*_bfd_error_handler)
1187 		(_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1188 		 bfd_archive_filename (abfd),
1189 		 elf_hppa_howto_table[r_type].name);
1190 	    }
1191 	  /* Fall through.  */
1192 #endif
1193 
1194 	case R_PARISC_DIR32: /* .word relocs.  */
1195 	  /* We may want to output a dynamic relocation later.  */
1196 	  need_entry = NEED_DYNREL;
1197 	  break;
1198 
1199 	  /* This relocation describes the C++ object vtable hierarchy.
1200 	     Reconstruct it for later use during GC.  */
1201 	case R_PARISC_GNU_VTINHERIT:
1202 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset))
1203 	    return FALSE;
1204 	  continue;
1205 
1206 	  /* This relocation describes which C++ vtable entries are actually
1207 	     used.  Record for later use during GC.  */
1208 	case R_PARISC_GNU_VTENTRY:
1209 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend))
1210 	    return FALSE;
1211 	  continue;
1212 
1213 	default:
1214 	  continue;
1215 	}
1216 
1217       /* Now carry out our orders.  */
1218       if (need_entry & NEED_GOT)
1219 	{
1220 	  /* Allocate space for a GOT entry, as well as a dynamic
1221 	     relocation for this entry.  */
1222 	  if (htab->sgot == NULL)
1223 	    {
1224 	      if (htab->elf.dynobj == NULL)
1225 		htab->elf.dynobj = abfd;
1226 	      if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1227 		return FALSE;
1228 	    }
1229 
1230 	  if (h != NULL)
1231 	    {
1232 	      h->elf.got.refcount += 1;
1233 	    }
1234 	  else
1235 	    {
1236 	      bfd_signed_vma *local_got_refcounts;
1237 
1238 	      /* This is a global offset table entry for a local symbol.  */
1239 	      local_got_refcounts = elf_local_got_refcounts (abfd);
1240 	      if (local_got_refcounts == NULL)
1241 		{
1242 		  bfd_size_type size;
1243 
1244 		  /* Allocate space for local got offsets and local
1245 		     plt offsets.  Done this way to save polluting
1246 		     elf_obj_tdata with another target specific
1247 		     pointer.  */
1248 		  size = symtab_hdr->sh_info;
1249 		  size *= 2 * sizeof (bfd_signed_vma);
1250 		  local_got_refcounts = bfd_zalloc (abfd, size);
1251 		  if (local_got_refcounts == NULL)
1252 		    return FALSE;
1253 		  elf_local_got_refcounts (abfd) = local_got_refcounts;
1254 		}
1255 	      local_got_refcounts[r_symndx] += 1;
1256 	    }
1257 	}
1258 
1259       if (need_entry & NEED_PLT)
1260 	{
1261 	  /* If we are creating a shared library, and this is a reloc
1262 	     against a weak symbol or a global symbol in a dynamic
1263 	     object, then we will be creating an import stub and a
1264 	     .plt entry for the symbol.  Similarly, on a normal link
1265 	     to symbols defined in a dynamic object we'll need the
1266 	     import stub and a .plt entry.  We don't know yet whether
1267 	     the symbol is defined or not, so make an entry anyway and
1268 	     clean up later in adjust_dynamic_symbol.  */
1269 	  if ((sec->flags & SEC_ALLOC) != 0)
1270 	    {
1271 	      if (h != NULL)
1272 		{
1273 		  h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1274 		  h->elf.plt.refcount += 1;
1275 
1276 		  /* If this .plt entry is for a plabel, mark it so
1277 		     that adjust_dynamic_symbol will keep the entry
1278 		     even if it appears to be local.  */
1279 		  if (need_entry & PLT_PLABEL)
1280 		    h->plabel = 1;
1281 		}
1282 	      else if (need_entry & PLT_PLABEL)
1283 		{
1284 		  bfd_signed_vma *local_got_refcounts;
1285 		  bfd_signed_vma *local_plt_refcounts;
1286 
1287 		  local_got_refcounts = elf_local_got_refcounts (abfd);
1288 		  if (local_got_refcounts == NULL)
1289 		    {
1290 		      bfd_size_type size;
1291 
1292 		      /* Allocate space for local got offsets and local
1293 			 plt offsets.  */
1294 		      size = symtab_hdr->sh_info;
1295 		      size *= 2 * sizeof (bfd_signed_vma);
1296 		      local_got_refcounts = bfd_zalloc (abfd, size);
1297 		      if (local_got_refcounts == NULL)
1298 			return FALSE;
1299 		      elf_local_got_refcounts (abfd) = local_got_refcounts;
1300 		    }
1301 		  local_plt_refcounts = (local_got_refcounts
1302 					 + symtab_hdr->sh_info);
1303 		  local_plt_refcounts[r_symndx] += 1;
1304 		}
1305 	    }
1306 	}
1307 
1308       if (need_entry & NEED_DYNREL)
1309 	{
1310 	  /* Flag this symbol as having a non-got, non-plt reference
1311 	     so that we generate copy relocs if it turns out to be
1312 	     dynamic.  */
1313 	  if (h != NULL && !info->shared)
1314 	    h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1315 
1316 	  /* If we are creating a shared library then we need to copy
1317 	     the reloc into the shared library.  However, if we are
1318 	     linking with -Bsymbolic, we need only copy absolute
1319 	     relocs or relocs against symbols that are not defined in
1320 	     an object we are including in the link.  PC- or DP- or
1321 	     DLT-relative relocs against any local sym or global sym
1322 	     with DEF_REGULAR set, can be discarded.  At this point we
1323 	     have not seen all the input files, so it is possible that
1324 	     DEF_REGULAR is not set now but will be set later (it is
1325 	     never cleared).  We account for that possibility below by
1326 	     storing information in the dyn_relocs field of the
1327 	     hash table entry.
1328 
1329 	     A similar situation to the -Bsymbolic case occurs when
1330 	     creating shared libraries and symbol visibility changes
1331 	     render the symbol local.
1332 
1333 	     As it turns out, all the relocs we will be creating here
1334 	     are absolute, so we cannot remove them on -Bsymbolic
1335 	     links or visibility changes anyway.  A STUB_REL reloc
1336 	     is absolute too, as in that case it is the reloc in the
1337 	     stub we will be creating, rather than copying the PCREL
1338 	     reloc in the branch.
1339 
1340 	     If on the other hand, we are creating an executable, we
1341 	     may need to keep relocations for symbols satisfied by a
1342 	     dynamic library if we manage to avoid copy relocs for the
1343 	     symbol.  */
1344 	  if ((info->shared
1345 	       && (sec->flags & SEC_ALLOC) != 0
1346 	       && (IS_ABSOLUTE_RELOC (r_type)
1347 		   || (h != NULL
1348 		       && (!info->symbolic
1349 			   || h->elf.root.type == bfd_link_hash_defweak
1350 			   || (h->elf.elf_link_hash_flags
1351 			       & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1352 	      || (ELIMINATE_COPY_RELOCS
1353 		  && !info->shared
1354 		  && (sec->flags & SEC_ALLOC) != 0
1355 		  && h != NULL
1356 		  && (h->elf.root.type == bfd_link_hash_defweak
1357 		      || (h->elf.elf_link_hash_flags
1358 			  & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1359 	    {
1360 	      struct elf32_hppa_dyn_reloc_entry *p;
1361 	      struct elf32_hppa_dyn_reloc_entry **head;
1362 
1363 	      /* Create a reloc section in dynobj and make room for
1364 		 this reloc.  */
1365 	      if (sreloc == NULL)
1366 		{
1367 		  char *name;
1368 		  bfd *dynobj;
1369 
1370 		  name = (bfd_elf_string_from_elf_section
1371 			  (abfd,
1372 			   elf_elfheader (abfd)->e_shstrndx,
1373 			   elf_section_data (sec)->rel_hdr.sh_name));
1374 		  if (name == NULL)
1375 		    {
1376 		      (*_bfd_error_handler)
1377 			(_("Could not find relocation section for %s"),
1378 			 sec->name);
1379 		      bfd_set_error (bfd_error_bad_value);
1380 		      return FALSE;
1381 		    }
1382 
1383 		  if (htab->elf.dynobj == NULL)
1384 		    htab->elf.dynobj = abfd;
1385 
1386 		  dynobj = htab->elf.dynobj;
1387 		  sreloc = bfd_get_section_by_name (dynobj, name);
1388 		  if (sreloc == NULL)
1389 		    {
1390 		      flagword flags;
1391 
1392 		      sreloc = bfd_make_section (dynobj, name);
1393 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1394 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1395 		      if ((sec->flags & SEC_ALLOC) != 0)
1396 			flags |= SEC_ALLOC | SEC_LOAD;
1397 		      if (sreloc == NULL
1398 			  || !bfd_set_section_flags (dynobj, sreloc, flags)
1399 			  || !bfd_set_section_alignment (dynobj, sreloc, 2))
1400 			return FALSE;
1401 		    }
1402 
1403 		  elf_section_data (sec)->sreloc = sreloc;
1404 		}
1405 
1406 	      /* If this is a global symbol, we count the number of
1407 		 relocations we need for this symbol.  */
1408 	      if (h != NULL)
1409 		{
1410 		  head = &h->dyn_relocs;
1411 		}
1412 	      else
1413 		{
1414 		  /* Track dynamic relocs needed for local syms too.
1415 		     We really need local syms available to do this
1416 		     easily.  Oh well.  */
1417 
1418 		  asection *s;
1419 		  s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1420 						 sec, r_symndx);
1421 		  if (s == NULL)
1422 		    return FALSE;
1423 
1424 		  head = ((struct elf32_hppa_dyn_reloc_entry **)
1425 			  &elf_section_data (s)->local_dynrel);
1426 		}
1427 
1428 	      p = *head;
1429 	      if (p == NULL || p->sec != sec)
1430 		{
1431 		  p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1432 		  if (p == NULL)
1433 		    return FALSE;
1434 		  p->next = *head;
1435 		  *head = p;
1436 		  p->sec = sec;
1437 		  p->count = 0;
1438 #if RELATIVE_DYNRELOCS
1439 		  p->relative_count = 0;
1440 #endif
1441 		}
1442 
1443 	      p->count += 1;
1444 #if RELATIVE_DYNRELOCS
1445 	      if (!IS_ABSOLUTE_RELOC (rtype))
1446 		p->relative_count += 1;
1447 #endif
1448 	    }
1449 	}
1450     }
1451 
1452   return TRUE;
1453 }
1454 
1455 /* Return the section that should be marked against garbage collection
1456    for a given relocation.  */
1457 
1458 static asection *
elf32_hppa_gc_mark_hook(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)1459 elf32_hppa_gc_mark_hook (asection *sec,
1460 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1461 			 Elf_Internal_Rela *rel,
1462 			 struct elf_link_hash_entry *h,
1463 			 Elf_Internal_Sym *sym)
1464 {
1465   if (h != NULL)
1466     {
1467       switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1468 	{
1469 	case R_PARISC_GNU_VTINHERIT:
1470 	case R_PARISC_GNU_VTENTRY:
1471 	  break;
1472 
1473 	default:
1474 	  switch (h->root.type)
1475 	    {
1476 	    case bfd_link_hash_defined:
1477 	    case bfd_link_hash_defweak:
1478 	      return h->root.u.def.section;
1479 
1480 	    case bfd_link_hash_common:
1481 	      return h->root.u.c.p->section;
1482 
1483 	    default:
1484 	      break;
1485 	    }
1486 	}
1487     }
1488   else
1489     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1490 
1491   return NULL;
1492 }
1493 
1494 /* Update the got and plt entry reference counts for the section being
1495    removed.  */
1496 
1497 static bfd_boolean
elf32_hppa_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,const Elf_Internal_Rela * relocs)1498 elf32_hppa_gc_sweep_hook (bfd *abfd,
1499 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 			  asection *sec,
1501 			  const Elf_Internal_Rela *relocs)
1502 {
1503   Elf_Internal_Shdr *symtab_hdr;
1504   struct elf_link_hash_entry **sym_hashes;
1505   bfd_signed_vma *local_got_refcounts;
1506   bfd_signed_vma *local_plt_refcounts;
1507   const Elf_Internal_Rela *rel, *relend;
1508 
1509   elf_section_data (sec)->local_dynrel = NULL;
1510 
1511   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1512   sym_hashes = elf_sym_hashes (abfd);
1513   local_got_refcounts = elf_local_got_refcounts (abfd);
1514   local_plt_refcounts = local_got_refcounts;
1515   if (local_plt_refcounts != NULL)
1516     local_plt_refcounts += symtab_hdr->sh_info;
1517 
1518   relend = relocs + sec->reloc_count;
1519   for (rel = relocs; rel < relend; rel++)
1520     {
1521       unsigned long r_symndx;
1522       unsigned int r_type;
1523       struct elf_link_hash_entry *h = NULL;
1524 
1525       r_symndx = ELF32_R_SYM (rel->r_info);
1526       if (r_symndx >= symtab_hdr->sh_info)
1527 	{
1528 	  struct elf32_hppa_link_hash_entry *eh;
1529 	  struct elf32_hppa_dyn_reloc_entry **pp;
1530 	  struct elf32_hppa_dyn_reloc_entry *p;
1531 
1532 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1533 	  eh = (struct elf32_hppa_link_hash_entry *) h;
1534 
1535 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1536 	    if (p->sec == sec)
1537 	      {
1538 		/* Everything must go for SEC.  */
1539 		*pp = p->next;
1540 		break;
1541 	      }
1542 	}
1543 
1544       r_type = ELF32_R_TYPE (rel->r_info);
1545       switch (r_type)
1546 	{
1547 	case R_PARISC_DLTIND14F:
1548 	case R_PARISC_DLTIND14R:
1549 	case R_PARISC_DLTIND21L:
1550 	  if (h != NULL)
1551 	    {
1552 	      if (h->got.refcount > 0)
1553 		h->got.refcount -= 1;
1554 	    }
1555 	  else if (local_got_refcounts != NULL)
1556 	    {
1557 	      if (local_got_refcounts[r_symndx] > 0)
1558 		local_got_refcounts[r_symndx] -= 1;
1559 	    }
1560 	  break;
1561 
1562 	case R_PARISC_PCREL12F:
1563 	case R_PARISC_PCREL17C:
1564 	case R_PARISC_PCREL17F:
1565 	case R_PARISC_PCREL22F:
1566 	  if (h != NULL)
1567 	    {
1568 	      if (h->plt.refcount > 0)
1569 		h->plt.refcount -= 1;
1570 	    }
1571 	  break;
1572 
1573 	case R_PARISC_PLABEL14R:
1574 	case R_PARISC_PLABEL21L:
1575 	case R_PARISC_PLABEL32:
1576 	  if (h != NULL)
1577 	    {
1578 	      if (h->plt.refcount > 0)
1579 		h->plt.refcount -= 1;
1580 	    }
1581 	  else if (local_plt_refcounts != NULL)
1582 	    {
1583 	      if (local_plt_refcounts[r_symndx] > 0)
1584 		local_plt_refcounts[r_symndx] -= 1;
1585 	    }
1586 	  break;
1587 
1588 	default:
1589 	  break;
1590 	}
1591     }
1592 
1593   return TRUE;
1594 }
1595 
1596 /* Our own version of hide_symbol, so that we can keep plt entries for
1597    plabels.  */
1598 
1599 static void
elf32_hppa_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h,bfd_boolean force_local)1600 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1601 			struct elf_link_hash_entry *h,
1602 			bfd_boolean force_local)
1603 {
1604   if (force_local)
1605     {
1606       h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1607       if (h->dynindx != -1)
1608 	{
1609 	  h->dynindx = -1;
1610 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1611 				  h->dynstr_index);
1612 	}
1613     }
1614 
1615   if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1616     {
1617       h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1618       h->plt.offset = (bfd_vma) -1;
1619     }
1620 }
1621 
1622 /* Adjust a symbol defined by a dynamic object and referenced by a
1623    regular object.  The current definition is in some section of the
1624    dynamic object, but we're not including those sections.  We have to
1625    change the definition to something the rest of the link can
1626    understand.  */
1627 
1628 static bfd_boolean
elf32_hppa_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)1629 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1630 				  struct elf_link_hash_entry *h)
1631 {
1632   struct elf32_hppa_link_hash_table *htab;
1633   asection *s;
1634   unsigned int power_of_two;
1635 
1636   /* If this is a function, put it in the procedure linkage table.  We
1637      will fill in the contents of the procedure linkage table later.  */
1638   if (h->type == STT_FUNC
1639       || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1640     {
1641       if (h->plt.refcount <= 0
1642 	  || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1643 	      && h->root.type != bfd_link_hash_defweak
1644 	      && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1645 	      && (!info->shared || info->symbolic)))
1646 	{
1647 	  /* The .plt entry is not needed when:
1648 	     a) Garbage collection has removed all references to the
1649 	     symbol, or
1650 	     b) We know for certain the symbol is defined in this
1651 	     object, and it's not a weak definition, nor is the symbol
1652 	     used by a plabel relocation.  Either this object is the
1653 	     application or we are doing a shared symbolic link.  */
1654 
1655 	  h->plt.offset = (bfd_vma) -1;
1656 	  h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1657 	}
1658 
1659       return TRUE;
1660     }
1661   else
1662     h->plt.offset = (bfd_vma) -1;
1663 
1664   /* If this is a weak symbol, and there is a real definition, the
1665      processor independent code will have arranged for us to see the
1666      real definition first, and we can just use the same value.  */
1667   if (h->weakdef != NULL)
1668     {
1669       if (h->weakdef->root.type != bfd_link_hash_defined
1670 	  && h->weakdef->root.type != bfd_link_hash_defweak)
1671 	abort ();
1672       h->root.u.def.section = h->weakdef->root.u.def.section;
1673       h->root.u.def.value = h->weakdef->root.u.def.value;
1674       if (ELIMINATE_COPY_RELOCS)
1675 	h->elf_link_hash_flags
1676 	  = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1677 	     | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1678       return TRUE;
1679     }
1680 
1681   /* This is a reference to a symbol defined by a dynamic object which
1682      is not a function.  */
1683 
1684   /* If we are creating a shared library, we must presume that the
1685      only references to the symbol are via the global offset table.
1686      For such cases we need not do anything here; the relocations will
1687      be handled correctly by relocate_section.  */
1688   if (info->shared)
1689     return TRUE;
1690 
1691   /* If there are no references to this symbol that do not use the
1692      GOT, we don't need to generate a copy reloc.  */
1693   if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1694     return TRUE;
1695 
1696   if (ELIMINATE_COPY_RELOCS)
1697     {
1698       struct elf32_hppa_link_hash_entry *eh;
1699       struct elf32_hppa_dyn_reloc_entry *p;
1700 
1701       eh = (struct elf32_hppa_link_hash_entry *) h;
1702       for (p = eh->dyn_relocs; p != NULL; p = p->next)
1703 	{
1704 	  s = p->sec->output_section;
1705 	  if (s != NULL && (s->flags & SEC_READONLY) != 0)
1706 	    break;
1707 	}
1708 
1709       /* If we didn't find any dynamic relocs in read-only sections, then
1710 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1711       if (p == NULL)
1712 	{
1713 	  h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1714 	  return TRUE;
1715 	}
1716     }
1717 
1718   /* We must allocate the symbol in our .dynbss section, which will
1719      become part of the .bss section of the executable.  There will be
1720      an entry for this symbol in the .dynsym section.  The dynamic
1721      object will contain position independent code, so all references
1722      from the dynamic object to this symbol will go through the global
1723      offset table.  The dynamic linker will use the .dynsym entry to
1724      determine the address it must put in the global offset table, so
1725      both the dynamic object and the regular object will refer to the
1726      same memory location for the variable.  */
1727 
1728   htab = hppa_link_hash_table (info);
1729 
1730   /* We must generate a COPY reloc to tell the dynamic linker to
1731      copy the initial value out of the dynamic object and into the
1732      runtime process image.  */
1733   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1734     {
1735       htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1736       h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1737     }
1738 
1739   /* We need to figure out the alignment required for this symbol.  I
1740      have no idea how other ELF linkers handle this.  */
1741 
1742   power_of_two = bfd_log2 (h->size);
1743   if (power_of_two > 3)
1744     power_of_two = 3;
1745 
1746   /* Apply the required alignment.  */
1747   s = htab->sdynbss;
1748   s->_raw_size = BFD_ALIGN (s->_raw_size,
1749 			    (bfd_size_type) (1 << power_of_two));
1750   if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1751     {
1752       if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1753 	return FALSE;
1754     }
1755 
1756   /* Define the symbol as being at this point in the section.  */
1757   h->root.u.def.section = s;
1758   h->root.u.def.value = s->_raw_size;
1759 
1760   /* Increment the section size to make room for the symbol.  */
1761   s->_raw_size += h->size;
1762 
1763   return TRUE;
1764 }
1765 
1766 /* Allocate space in the .plt for entries that won't have relocations.
1767    ie. plabel entries.  */
1768 
1769 static bfd_boolean
allocate_plt_static(struct elf_link_hash_entry * h,void * inf)1770 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1771 {
1772   struct bfd_link_info *info;
1773   struct elf32_hppa_link_hash_table *htab;
1774   asection *s;
1775 
1776   if (h->root.type == bfd_link_hash_indirect)
1777     return TRUE;
1778 
1779   if (h->root.type == bfd_link_hash_warning)
1780     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1781 
1782   info = inf;
1783   htab = hppa_link_hash_table (info);
1784   if (htab->elf.dynamic_sections_created
1785 	   && h->plt.refcount > 0)
1786     {
1787       /* Make sure this symbol is output as a dynamic symbol.
1788 	 Undefined weak syms won't yet be marked as dynamic.  */
1789       if (h->dynindx == -1
1790 	  && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1791 	  && h->type != STT_PARISC_MILLI)
1792 	{
1793 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1794 	    return FALSE;
1795 	}
1796 
1797       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
1798 	{
1799 	  /* Allocate these later.  From this point on, h->plabel
1800 	     means that the plt entry is only used by a plabel.
1801 	     We'll be using a normal plt entry for this symbol, so
1802 	     clear the plabel indicator.  */
1803 	  ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1804 	}
1805       else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1806 	{
1807 	  /* Make an entry in the .plt section for plabel references
1808 	     that won't have a .plt entry for other reasons.  */
1809 	  s = htab->splt;
1810 	  h->plt.offset = s->_raw_size;
1811 	  s->_raw_size += PLT_ENTRY_SIZE;
1812 	}
1813       else
1814 	{
1815 	  /* No .plt entry needed.  */
1816 	  h->plt.offset = (bfd_vma) -1;
1817 	  h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1818 	}
1819     }
1820   else
1821     {
1822       h->plt.offset = (bfd_vma) -1;
1823       h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1824     }
1825 
1826   return TRUE;
1827 }
1828 
1829 /* Allocate space in .plt, .got and associated reloc sections for
1830    global syms.  */
1831 
1832 static bfd_boolean
allocate_dynrelocs(struct elf_link_hash_entry * h,void * inf)1833 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1834 {
1835   struct bfd_link_info *info;
1836   struct elf32_hppa_link_hash_table *htab;
1837   asection *s;
1838   struct elf32_hppa_link_hash_entry *eh;
1839   struct elf32_hppa_dyn_reloc_entry *p;
1840 
1841   if (h->root.type == bfd_link_hash_indirect)
1842     return TRUE;
1843 
1844   if (h->root.type == bfd_link_hash_warning)
1845     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1846 
1847   info = inf;
1848   htab = hppa_link_hash_table (info);
1849   if (htab->elf.dynamic_sections_created
1850       && h->plt.offset != (bfd_vma) -1
1851       && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1852     {
1853       /* Make an entry in the .plt section.  */
1854       s = htab->splt;
1855       h->plt.offset = s->_raw_size;
1856       s->_raw_size += PLT_ENTRY_SIZE;
1857 
1858       /* We also need to make an entry in the .rela.plt section.  */
1859       htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1860       htab->need_plt_stub = 1;
1861     }
1862 
1863   if (h->got.refcount > 0)
1864     {
1865       /* Make sure this symbol is output as a dynamic symbol.
1866 	 Undefined weak syms won't yet be marked as dynamic.  */
1867       if (h->dynindx == -1
1868 	  && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1869 	  && h->type != STT_PARISC_MILLI)
1870 	{
1871 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1872 	    return FALSE;
1873 	}
1874 
1875       s = htab->sgot;
1876       h->got.offset = s->_raw_size;
1877       s->_raw_size += GOT_ENTRY_SIZE;
1878       if (htab->elf.dynamic_sections_created
1879 	  && (info->shared
1880 	      || (h->dynindx != -1
1881 		  && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1882 	{
1883 	  htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1884 	}
1885     }
1886   else
1887     h->got.offset = (bfd_vma) -1;
1888 
1889   eh = (struct elf32_hppa_link_hash_entry *) h;
1890   if (eh->dyn_relocs == NULL)
1891     return TRUE;
1892 
1893   /* If this is a -Bsymbolic shared link, then we need to discard all
1894      space allocated for dynamic pc-relative relocs against symbols
1895      defined in a regular object.  For the normal shared case, discard
1896      space for relocs that have become local due to symbol visibility
1897      changes.  */
1898   if (info->shared)
1899     {
1900 #if RELATIVE_DYNRELOCS
1901       if (SYMBOL_CALLS_LOCAL (info, h))
1902 	{
1903 	  struct elf32_hppa_dyn_reloc_entry **pp;
1904 
1905 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1906 	    {
1907 	      p->count -= p->relative_count;
1908 	      p->relative_count = 0;
1909 	      if (p->count == 0)
1910 		*pp = p->next;
1911 	      else
1912 		pp = &p->next;
1913 	    }
1914 	}
1915 #endif
1916 
1917       /* Also discard relocs on undefined weak syms with non-default
1918 	 visibility.  */
1919       if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1920 	  && h->root.type == bfd_link_hash_undefweak)
1921 	eh->dyn_relocs = NULL;
1922     }
1923   else
1924     {
1925       /* For the non-shared case, discard space for relocs against
1926 	 symbols which turn out to need copy relocs or are not
1927 	 dynamic.  */
1928       if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1929 	  && ((ELIMINATE_COPY_RELOCS
1930 	       && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1931 	       && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1932 	      || (htab->elf.dynamic_sections_created
1933 		  && (h->root.type == bfd_link_hash_undefweak
1934 		      || h->root.type == bfd_link_hash_undefined))))
1935 	{
1936 	  /* Make sure this symbol is output as a dynamic symbol.
1937 	     Undefined weak syms won't yet be marked as dynamic.  */
1938 	  if (h->dynindx == -1
1939 	      && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1940 	      && h->type != STT_PARISC_MILLI)
1941 	    {
1942 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
1943 		return FALSE;
1944 	    }
1945 
1946 	  /* If that succeeded, we know we'll be keeping all the
1947 	     relocs.  */
1948 	  if (h->dynindx != -1)
1949 	    goto keep;
1950 	}
1951 
1952       eh->dyn_relocs = NULL;
1953       return TRUE;
1954 
1955     keep: ;
1956     }
1957 
1958   /* Finally, allocate space.  */
1959   for (p = eh->dyn_relocs; p != NULL; p = p->next)
1960     {
1961       asection *sreloc = elf_section_data (p->sec)->sreloc;
1962       sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1963     }
1964 
1965   return TRUE;
1966 }
1967 
1968 /* This function is called via elf_link_hash_traverse to force
1969    millicode symbols local so they do not end up as globals in the
1970    dynamic symbol table.  We ought to be able to do this in
1971    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1972    for all dynamic symbols.  Arguably, this is a bug in
1973    elf_adjust_dynamic_symbol.  */
1974 
1975 static bfd_boolean
clobber_millicode_symbols(struct elf_link_hash_entry * h,struct bfd_link_info * info)1976 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1977 			   struct bfd_link_info *info)
1978 {
1979   if (h->root.type == bfd_link_hash_warning)
1980     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1981 
1982   if (h->type == STT_PARISC_MILLI
1983       && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1984     {
1985       elf32_hppa_hide_symbol (info, h, TRUE);
1986     }
1987   return TRUE;
1988 }
1989 
1990 /* Find any dynamic relocs that apply to read-only sections.  */
1991 
1992 static bfd_boolean
readonly_dynrelocs(struct elf_link_hash_entry * h,void * inf)1993 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1994 {
1995   struct elf32_hppa_link_hash_entry *eh;
1996   struct elf32_hppa_dyn_reloc_entry *p;
1997 
1998   if (h->root.type == bfd_link_hash_warning)
1999     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2000 
2001   eh = (struct elf32_hppa_link_hash_entry *) h;
2002   for (p = eh->dyn_relocs; p != NULL; p = p->next)
2003     {
2004       asection *s = p->sec->output_section;
2005 
2006       if (s != NULL && (s->flags & SEC_READONLY) != 0)
2007 	{
2008 	  struct bfd_link_info *info = inf;
2009 
2010 	  info->flags |= DF_TEXTREL;
2011 
2012 	  /* Not an error, just cut short the traversal.  */
2013 	  return FALSE;
2014 	}
2015     }
2016   return TRUE;
2017 }
2018 
2019 /* Set the sizes of the dynamic sections.  */
2020 
2021 static bfd_boolean
elf32_hppa_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)2022 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2023 				  struct bfd_link_info *info)
2024 {
2025   struct elf32_hppa_link_hash_table *htab;
2026   bfd *dynobj;
2027   bfd *ibfd;
2028   asection *s;
2029   bfd_boolean relocs;
2030 
2031   htab = hppa_link_hash_table (info);
2032   dynobj = htab->elf.dynobj;
2033   if (dynobj == NULL)
2034     abort ();
2035 
2036   if (htab->elf.dynamic_sections_created)
2037     {
2038       /* Set the contents of the .interp section to the interpreter.  */
2039       if (info->executable)
2040 	{
2041 	  s = bfd_get_section_by_name (dynobj, ".interp");
2042 	  if (s == NULL)
2043 	    abort ();
2044 	  s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2045 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2046 	}
2047 
2048       /* Force millicode symbols local.  */
2049       elf_link_hash_traverse (&htab->elf,
2050 			      clobber_millicode_symbols,
2051 			      info);
2052     }
2053 
2054   /* Set up .got and .plt offsets for local syms, and space for local
2055      dynamic relocs.  */
2056   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2057     {
2058       bfd_signed_vma *local_got;
2059       bfd_signed_vma *end_local_got;
2060       bfd_signed_vma *local_plt;
2061       bfd_signed_vma *end_local_plt;
2062       bfd_size_type locsymcount;
2063       Elf_Internal_Shdr *symtab_hdr;
2064       asection *srel;
2065 
2066       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2067 	continue;
2068 
2069       for (s = ibfd->sections; s != NULL; s = s->next)
2070 	{
2071 	  struct elf32_hppa_dyn_reloc_entry *p;
2072 
2073 	  for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2074 		    elf_section_data (s)->local_dynrel);
2075 	       p != NULL;
2076 	       p = p->next)
2077 	    {
2078 	      if (!bfd_is_abs_section (p->sec)
2079 		  && bfd_is_abs_section (p->sec->output_section))
2080 		{
2081 		  /* Input section has been discarded, either because
2082 		     it is a copy of a linkonce section or due to
2083 		     linker script /DISCARD/, so we'll be discarding
2084 		     the relocs too.  */
2085 		}
2086 	      else if (p->count != 0)
2087 		{
2088 		  srel = elf_section_data (p->sec)->sreloc;
2089 		  srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2090 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2091 		    info->flags |= DF_TEXTREL;
2092 		}
2093 	    }
2094 	}
2095 
2096       local_got = elf_local_got_refcounts (ibfd);
2097       if (!local_got)
2098 	continue;
2099 
2100       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2101       locsymcount = symtab_hdr->sh_info;
2102       end_local_got = local_got + locsymcount;
2103       s = htab->sgot;
2104       srel = htab->srelgot;
2105       for (; local_got < end_local_got; ++local_got)
2106 	{
2107 	  if (*local_got > 0)
2108 	    {
2109 	      *local_got = s->_raw_size;
2110 	      s->_raw_size += GOT_ENTRY_SIZE;
2111 	      if (info->shared)
2112 		srel->_raw_size += sizeof (Elf32_External_Rela);
2113 	    }
2114 	  else
2115 	    *local_got = (bfd_vma) -1;
2116 	}
2117 
2118       local_plt = end_local_got;
2119       end_local_plt = local_plt + locsymcount;
2120       if (! htab->elf.dynamic_sections_created)
2121 	{
2122 	  /* Won't be used, but be safe.  */
2123 	  for (; local_plt < end_local_plt; ++local_plt)
2124 	    *local_plt = (bfd_vma) -1;
2125 	}
2126       else
2127 	{
2128 	  s = htab->splt;
2129 	  srel = htab->srelplt;
2130 	  for (; local_plt < end_local_plt; ++local_plt)
2131 	    {
2132 	      if (*local_plt > 0)
2133 		{
2134 		  *local_plt = s->_raw_size;
2135 		  s->_raw_size += PLT_ENTRY_SIZE;
2136 		  if (info->shared)
2137 		    srel->_raw_size += sizeof (Elf32_External_Rela);
2138 		}
2139 	      else
2140 		*local_plt = (bfd_vma) -1;
2141 	    }
2142 	}
2143     }
2144 
2145   /* Do all the .plt entries without relocs first.  The dynamic linker
2146      uses the last .plt reloc to find the end of the .plt (and hence
2147      the start of the .got) for lazy linking.  */
2148   elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2149 
2150   /* Allocate global sym .plt and .got entries, and space for global
2151      sym dynamic relocs.  */
2152   elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2153 
2154   /* The check_relocs and adjust_dynamic_symbol entry points have
2155      determined the sizes of the various dynamic sections.  Allocate
2156      memory for them.  */
2157   relocs = FALSE;
2158   for (s = dynobj->sections; s != NULL; s = s->next)
2159     {
2160       if ((s->flags & SEC_LINKER_CREATED) == 0)
2161 	continue;
2162 
2163       if (s == htab->splt)
2164 	{
2165 	  if (htab->need_plt_stub)
2166 	    {
2167 	      /* Make space for the plt stub at the end of the .plt
2168 		 section.  We want this stub right at the end, up
2169 		 against the .got section.  */
2170 	      int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2171 	      int pltalign = bfd_section_alignment (dynobj, s);
2172 	      bfd_size_type mask;
2173 
2174 	      if (gotalign > pltalign)
2175 		bfd_set_section_alignment (dynobj, s, gotalign);
2176 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2177 	      s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2178 	    }
2179 	}
2180       else if (s == htab->sgot)
2181 	;
2182       else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2183 	{
2184 	  if (s->_raw_size != 0)
2185 	    {
2186 	      /* Remember whether there are any reloc sections other
2187 		 than .rela.plt.  */
2188 	      if (s != htab->srelplt)
2189 		relocs = TRUE;
2190 
2191 	      /* We use the reloc_count field as a counter if we need
2192 		 to copy relocs into the output file.  */
2193 	      s->reloc_count = 0;
2194 	    }
2195 	}
2196       else
2197 	{
2198 	  /* It's not one of our sections, so don't allocate space.  */
2199 	  continue;
2200 	}
2201 
2202       if (s->_raw_size == 0)
2203 	{
2204 	  /* If we don't need this section, strip it from the
2205 	     output file.  This is mostly to handle .rela.bss and
2206 	     .rela.plt.  We must create both sections in
2207 	     create_dynamic_sections, because they must be created
2208 	     before the linker maps input sections to output
2209 	     sections.  The linker does that before
2210 	     adjust_dynamic_symbol is called, and it is that
2211 	     function which decides whether anything needs to go
2212 	     into these sections.  */
2213 	  _bfd_strip_section_from_output (info, s);
2214 	  continue;
2215 	}
2216 
2217       /* Allocate memory for the section contents.  Zero it, because
2218 	 we may not fill in all the reloc sections.  */
2219       s->contents = bfd_zalloc (dynobj, s->_raw_size);
2220       if (s->contents == NULL && s->_raw_size != 0)
2221 	return FALSE;
2222     }
2223 
2224   if (htab->elf.dynamic_sections_created)
2225     {
2226       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2227 	 actually has nothing to do with the PLT, it is how we
2228 	 communicate the LTP value of a load module to the dynamic
2229 	 linker.  */
2230 #define add_dynamic_entry(TAG, VAL) \
2231   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2232 
2233       if (!add_dynamic_entry (DT_PLTGOT, 0))
2234 	return FALSE;
2235 
2236       /* Add some entries to the .dynamic section.  We fill in the
2237 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2238 	 must add the entries now so that we get the correct size for
2239 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2240 	 dynamic linker and used by the debugger.  */
2241       if (!info->shared)
2242 	{
2243 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2244 	    return FALSE;
2245 	}
2246 
2247       if (htab->srelplt->_raw_size != 0)
2248 	{
2249 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2250 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2251 	      || !add_dynamic_entry (DT_JMPREL, 0))
2252 	    return FALSE;
2253 	}
2254 
2255       if (relocs)
2256 	{
2257 	  if (!add_dynamic_entry (DT_RELA, 0)
2258 	      || !add_dynamic_entry (DT_RELASZ, 0)
2259 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2260 	    return FALSE;
2261 
2262 	  /* If any dynamic relocs apply to a read-only section,
2263 	     then we need a DT_TEXTREL entry.  */
2264 	  if ((info->flags & DF_TEXTREL) == 0)
2265 	    elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2266 
2267 	  if ((info->flags & DF_TEXTREL) != 0)
2268 	    {
2269 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2270 		return FALSE;
2271 	    }
2272 	}
2273     }
2274 #undef add_dynamic_entry
2275 
2276   return TRUE;
2277 }
2278 
2279 /* External entry points for sizing and building linker stubs.  */
2280 
2281 /* Set up various things so that we can make a list of input sections
2282    for each output section included in the link.  Returns -1 on error,
2283    0 when no stubs will be needed, and 1 on success.  */
2284 
2285 int
elf32_hppa_setup_section_lists(bfd * output_bfd,struct bfd_link_info * info)2286 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2287 {
2288   bfd *input_bfd;
2289   unsigned int bfd_count;
2290   int top_id, top_index;
2291   asection *section;
2292   asection **input_list, **list;
2293   bfd_size_type amt;
2294   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2295 
2296   /* Count the number of input BFDs and find the top input section id.  */
2297   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2298        input_bfd != NULL;
2299        input_bfd = input_bfd->link_next)
2300     {
2301       bfd_count += 1;
2302       for (section = input_bfd->sections;
2303 	   section != NULL;
2304 	   section = section->next)
2305 	{
2306 	  if (top_id < section->id)
2307 	    top_id = section->id;
2308 	}
2309     }
2310   htab->bfd_count = bfd_count;
2311 
2312   amt = sizeof (struct map_stub) * (top_id + 1);
2313   htab->stub_group = bfd_zmalloc (amt);
2314   if (htab->stub_group == NULL)
2315     return -1;
2316 
2317   /* We can't use output_bfd->section_count here to find the top output
2318      section index as some sections may have been removed, and
2319      _bfd_strip_section_from_output doesn't renumber the indices.  */
2320   for (section = output_bfd->sections, top_index = 0;
2321        section != NULL;
2322        section = section->next)
2323     {
2324       if (top_index < section->index)
2325 	top_index = section->index;
2326     }
2327 
2328   htab->top_index = top_index;
2329   amt = sizeof (asection *) * (top_index + 1);
2330   input_list = bfd_malloc (amt);
2331   htab->input_list = input_list;
2332   if (input_list == NULL)
2333     return -1;
2334 
2335   /* For sections we aren't interested in, mark their entries with a
2336      value we can check later.  */
2337   list = input_list + top_index;
2338   do
2339     *list = bfd_abs_section_ptr;
2340   while (list-- != input_list);
2341 
2342   for (section = output_bfd->sections;
2343        section != NULL;
2344        section = section->next)
2345     {
2346       if ((section->flags & SEC_CODE) != 0)
2347 	input_list[section->index] = NULL;
2348     }
2349 
2350   return 1;
2351 }
2352 
2353 /* The linker repeatedly calls this function for each input section,
2354    in the order that input sections are linked into output sections.
2355    Build lists of input sections to determine groupings between which
2356    we may insert linker stubs.  */
2357 
2358 void
elf32_hppa_next_input_section(struct bfd_link_info * info,asection * isec)2359 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2360 {
2361   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2362 
2363   if (isec->output_section->index <= htab->top_index)
2364     {
2365       asection **list = htab->input_list + isec->output_section->index;
2366       if (*list != bfd_abs_section_ptr)
2367 	{
2368 	  /* Steal the link_sec pointer for our list.  */
2369 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2370 	  /* This happens to make the list in reverse order,
2371 	     which is what we want.  */
2372 	  PREV_SEC (isec) = *list;
2373 	  *list = isec;
2374 	}
2375     }
2376 }
2377 
2378 /* See whether we can group stub sections together.  Grouping stub
2379    sections may result in fewer stubs.  More importantly, we need to
2380    put all .init* and .fini* stubs at the beginning of the .init or
2381    .fini output sections respectively, because glibc splits the
2382    _init and _fini functions into multiple parts.  Putting a stub in
2383    the middle of a function is not a good idea.  */
2384 
2385 static void
group_sections(struct elf32_hppa_link_hash_table * htab,bfd_size_type stub_group_size,bfd_boolean stubs_always_before_branch)2386 group_sections (struct elf32_hppa_link_hash_table *htab,
2387 		bfd_size_type stub_group_size,
2388 		bfd_boolean stubs_always_before_branch)
2389 {
2390   asection **list = htab->input_list + htab->top_index;
2391   do
2392     {
2393       asection *tail = *list;
2394       if (tail == bfd_abs_section_ptr)
2395 	continue;
2396       while (tail != NULL)
2397 	{
2398 	  asection *curr;
2399 	  asection *prev;
2400 	  bfd_size_type total;
2401 	  bfd_boolean big_sec;
2402 
2403 	  curr = tail;
2404 	  if (tail->_cooked_size)
2405 	    total = tail->_cooked_size;
2406 	  else
2407 	    total = tail->_raw_size;
2408 	  big_sec = total >= stub_group_size;
2409 
2410 	  while ((prev = PREV_SEC (curr)) != NULL
2411 		 && ((total += curr->output_offset - prev->output_offset)
2412 		     < stub_group_size))
2413 	    curr = prev;
2414 
2415 	  /* OK, the size from the start of CURR to the end is less
2416 	     than 240000 bytes and thus can be handled by one stub
2417 	     section.  (or the tail section is itself larger than
2418 	     240000 bytes, in which case we may be toast.)
2419 	     We should really be keeping track of the total size of
2420 	     stubs added here, as stubs contribute to the final output
2421 	     section size.  That's a little tricky, and this way will
2422 	     only break if stubs added total more than 22144 bytes, or
2423 	     2768 long branch stubs.  It seems unlikely for more than
2424 	     2768 different functions to be called, especially from
2425 	     code only 240000 bytes long.  This limit used to be
2426 	     250000, but c++ code tends to generate lots of little
2427 	     functions, and sometimes violated the assumption.  */
2428 	  do
2429 	    {
2430 	      prev = PREV_SEC (tail);
2431 	      /* Set up this stub group.  */
2432 	      htab->stub_group[tail->id].link_sec = curr;
2433 	    }
2434 	  while (tail != curr && (tail = prev) != NULL);
2435 
2436 	  /* But wait, there's more!  Input sections up to 240000
2437 	     bytes before the stub section can be handled by it too.
2438 	     Don't do this if we have a really large section after the
2439 	     stubs, as adding more stubs increases the chance that
2440 	     branches may not reach into the stub section.  */
2441 	  if (!stubs_always_before_branch && !big_sec)
2442 	    {
2443 	      total = 0;
2444 	      while (prev != NULL
2445 		     && ((total += tail->output_offset - prev->output_offset)
2446 			 < stub_group_size))
2447 		{
2448 		  tail = prev;
2449 		  prev = PREV_SEC (tail);
2450 		  htab->stub_group[tail->id].link_sec = curr;
2451 		}
2452 	    }
2453 	  tail = prev;
2454 	}
2455     }
2456   while (list-- != htab->input_list);
2457   free (htab->input_list);
2458 #undef PREV_SEC
2459 }
2460 
2461 /* Read in all local syms for all input bfds, and create hash entries
2462    for export stubs if we are building a multi-subspace shared lib.
2463    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2464 
2465 static int
get_local_syms(bfd * output_bfd,bfd * input_bfd,struct bfd_link_info * info)2466 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2467 {
2468   unsigned int bfd_indx;
2469   Elf_Internal_Sym *local_syms, **all_local_syms;
2470   int stub_changed = 0;
2471   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2472 
2473   /* We want to read in symbol extension records only once.  To do this
2474      we need to read in the local symbols in parallel and save them for
2475      later use; so hold pointers to the local symbols in an array.  */
2476   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2477   all_local_syms = bfd_zmalloc (amt);
2478   htab->all_local_syms = all_local_syms;
2479   if (all_local_syms == NULL)
2480     return -1;
2481 
2482   /* Walk over all the input BFDs, swapping in local symbols.
2483      If we are creating a shared library, create hash entries for the
2484      export stubs.  */
2485   for (bfd_indx = 0;
2486        input_bfd != NULL;
2487        input_bfd = input_bfd->link_next, bfd_indx++)
2488     {
2489       Elf_Internal_Shdr *symtab_hdr;
2490 
2491       /* We'll need the symbol table in a second.  */
2492       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2493       if (symtab_hdr->sh_info == 0)
2494 	continue;
2495 
2496       /* We need an array of the local symbols attached to the input bfd.  */
2497       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2498       if (local_syms == NULL)
2499 	{
2500 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2501 					     symtab_hdr->sh_info, 0,
2502 					     NULL, NULL, NULL);
2503 	  /* Cache them for elf_link_input_bfd.  */
2504 	  symtab_hdr->contents = (unsigned char *) local_syms;
2505 	}
2506       if (local_syms == NULL)
2507 	return -1;
2508 
2509       all_local_syms[bfd_indx] = local_syms;
2510 
2511       if (info->shared && htab->multi_subspace)
2512 	{
2513 	  struct elf_link_hash_entry **sym_hashes;
2514 	  struct elf_link_hash_entry **end_hashes;
2515 	  unsigned int symcount;
2516 
2517 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2518 		      - symtab_hdr->sh_info);
2519 	  sym_hashes = elf_sym_hashes (input_bfd);
2520 	  end_hashes = sym_hashes + symcount;
2521 
2522 	  /* Look through the global syms for functions;  We need to
2523 	     build export stubs for all globally visible functions.  */
2524 	  for (; sym_hashes < end_hashes; sym_hashes++)
2525 	    {
2526 	      struct elf32_hppa_link_hash_entry *hash;
2527 
2528 	      hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2529 
2530 	      while (hash->elf.root.type == bfd_link_hash_indirect
2531 		     || hash->elf.root.type == bfd_link_hash_warning)
2532 		hash = ((struct elf32_hppa_link_hash_entry *)
2533 			hash->elf.root.u.i.link);
2534 
2535 	      /* At this point in the link, undefined syms have been
2536 		 resolved, so we need to check that the symbol was
2537 		 defined in this BFD.  */
2538 	      if ((hash->elf.root.type == bfd_link_hash_defined
2539 		   || hash->elf.root.type == bfd_link_hash_defweak)
2540 		  && hash->elf.type == STT_FUNC
2541 		  && hash->elf.root.u.def.section->output_section != NULL
2542 		  && (hash->elf.root.u.def.section->output_section->owner
2543 		      == output_bfd)
2544 		  && hash->elf.root.u.def.section->owner == input_bfd
2545 		  && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2546 		  && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2547 		  && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2548 		{
2549 		  asection *sec;
2550 		  const char *stub_name;
2551 		  struct elf32_hppa_stub_hash_entry *stub_entry;
2552 
2553 		  sec = hash->elf.root.u.def.section;
2554 		  stub_name = hash->elf.root.root.string;
2555 		  stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2556 						      stub_name,
2557 						      FALSE, FALSE);
2558 		  if (stub_entry == NULL)
2559 		    {
2560 		      stub_entry = hppa_add_stub (stub_name, sec, htab);
2561 		      if (!stub_entry)
2562 			return -1;
2563 
2564 		      stub_entry->target_value = hash->elf.root.u.def.value;
2565 		      stub_entry->target_section = hash->elf.root.u.def.section;
2566 		      stub_entry->stub_type = hppa_stub_export;
2567 		      stub_entry->h = hash;
2568 		      stub_changed = 1;
2569 		    }
2570 		  else
2571 		    {
2572 		      (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2573 					     bfd_archive_filename (input_bfd),
2574 					     stub_name);
2575 		    }
2576 		}
2577 	    }
2578 	}
2579     }
2580 
2581   return stub_changed;
2582 }
2583 
2584 /* Determine and set the size of the stub section for a final link.
2585 
2586    The basic idea here is to examine all the relocations looking for
2587    PC-relative calls to a target that is unreachable with a "bl"
2588    instruction.  */
2589 
2590 bfd_boolean
elf32_hppa_size_stubs(bfd * output_bfd,bfd * stub_bfd,struct bfd_link_info * info,bfd_boolean multi_subspace,bfd_signed_vma group_size,asection * (* add_stub_section)(const char *,asection *),void (* layout_sections_again)(void))2591 elf32_hppa_size_stubs
2592   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2593    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2594    asection * (*add_stub_section) (const char *, asection *),
2595    void (*layout_sections_again) (void))
2596 {
2597   bfd_size_type stub_group_size;
2598   bfd_boolean stubs_always_before_branch;
2599   bfd_boolean stub_changed;
2600   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2601 
2602   /* Stash our params away.  */
2603   htab->stub_bfd = stub_bfd;
2604   htab->multi_subspace = multi_subspace;
2605   htab->add_stub_section = add_stub_section;
2606   htab->layout_sections_again = layout_sections_again;
2607   stubs_always_before_branch = group_size < 0;
2608   if (group_size < 0)
2609     stub_group_size = -group_size;
2610   else
2611     stub_group_size = group_size;
2612   if (stub_group_size == 1)
2613     {
2614       /* Default values.  */
2615       if (stubs_always_before_branch)
2616 	{
2617 	  stub_group_size = 7680000;
2618 	  if (htab->has_17bit_branch || htab->multi_subspace)
2619 	    stub_group_size = 240000;
2620 	  if (htab->has_12bit_branch)
2621 	    stub_group_size = 7500;
2622 	}
2623       else
2624 	{
2625 	  stub_group_size = 6971392;
2626 	  if (htab->has_17bit_branch || htab->multi_subspace)
2627 	    stub_group_size = 217856;
2628 	  if (htab->has_12bit_branch)
2629 	    stub_group_size = 6808;
2630 	}
2631     }
2632 
2633   group_sections (htab, stub_group_size, stubs_always_before_branch);
2634 
2635   switch (get_local_syms (output_bfd, info->input_bfds, info))
2636     {
2637     default:
2638       if (htab->all_local_syms)
2639 	goto error_ret_free_local;
2640       return FALSE;
2641 
2642     case 0:
2643       stub_changed = FALSE;
2644       break;
2645 
2646     case 1:
2647       stub_changed = TRUE;
2648       break;
2649     }
2650 
2651   while (1)
2652     {
2653       bfd *input_bfd;
2654       unsigned int bfd_indx;
2655       asection *stub_sec;
2656 
2657       for (input_bfd = info->input_bfds, bfd_indx = 0;
2658 	   input_bfd != NULL;
2659 	   input_bfd = input_bfd->link_next, bfd_indx++)
2660 	{
2661 	  Elf_Internal_Shdr *symtab_hdr;
2662 	  asection *section;
2663 	  Elf_Internal_Sym *local_syms;
2664 
2665 	  /* We'll need the symbol table in a second.  */
2666 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2667 	  if (symtab_hdr->sh_info == 0)
2668 	    continue;
2669 
2670 	  local_syms = htab->all_local_syms[bfd_indx];
2671 
2672 	  /* Walk over each section attached to the input bfd.  */
2673 	  for (section = input_bfd->sections;
2674 	       section != NULL;
2675 	       section = section->next)
2676 	    {
2677 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2678 
2679 	      /* If there aren't any relocs, then there's nothing more
2680 		 to do.  */
2681 	      if ((section->flags & SEC_RELOC) == 0
2682 		  || section->reloc_count == 0)
2683 		continue;
2684 
2685 	      /* If this section is a link-once section that will be
2686 		 discarded, then don't create any stubs.  */
2687 	      if (section->output_section == NULL
2688 		  || section->output_section->owner != output_bfd)
2689 		continue;
2690 
2691 	      /* Get the relocs.  */
2692 	      internal_relocs
2693 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2694 					     info->keep_memory);
2695 	      if (internal_relocs == NULL)
2696 		goto error_ret_free_local;
2697 
2698 	      /* Now examine each relocation.  */
2699 	      irela = internal_relocs;
2700 	      irelaend = irela + section->reloc_count;
2701 	      for (; irela < irelaend; irela++)
2702 		{
2703 		  unsigned int r_type, r_indx;
2704 		  enum elf32_hppa_stub_type stub_type;
2705 		  struct elf32_hppa_stub_hash_entry *stub_entry;
2706 		  asection *sym_sec;
2707 		  bfd_vma sym_value;
2708 		  bfd_vma destination;
2709 		  struct elf32_hppa_link_hash_entry *hash;
2710 		  char *stub_name;
2711 		  const asection *id_sec;
2712 
2713 		  r_type = ELF32_R_TYPE (irela->r_info);
2714 		  r_indx = ELF32_R_SYM (irela->r_info);
2715 
2716 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2717 		    {
2718 		      bfd_set_error (bfd_error_bad_value);
2719 		    error_ret_free_internal:
2720 		      if (elf_section_data (section)->relocs == NULL)
2721 			free (internal_relocs);
2722 		      goto error_ret_free_local;
2723 		    }
2724 
2725 		  /* Only look for stubs on call instructions.  */
2726 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2727 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2728 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2729 		    continue;
2730 
2731 		  /* Now determine the call target, its name, value,
2732 		     section.  */
2733 		  sym_sec = NULL;
2734 		  sym_value = 0;
2735 		  destination = 0;
2736 		  hash = NULL;
2737 		  if (r_indx < symtab_hdr->sh_info)
2738 		    {
2739 		      /* It's a local symbol.  */
2740 		      Elf_Internal_Sym *sym;
2741 		      Elf_Internal_Shdr *hdr;
2742 
2743 		      sym = local_syms + r_indx;
2744 		      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2745 		      sym_sec = hdr->bfd_section;
2746 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2747 			sym_value = sym->st_value;
2748 		      destination = (sym_value + irela->r_addend
2749 				     + sym_sec->output_offset
2750 				     + sym_sec->output_section->vma);
2751 		    }
2752 		  else
2753 		    {
2754 		      /* It's an external symbol.  */
2755 		      int e_indx;
2756 
2757 		      e_indx = r_indx - symtab_hdr->sh_info;
2758 		      hash = ((struct elf32_hppa_link_hash_entry *)
2759 			      elf_sym_hashes (input_bfd)[e_indx]);
2760 
2761 		      while (hash->elf.root.type == bfd_link_hash_indirect
2762 			     || hash->elf.root.type == bfd_link_hash_warning)
2763 			hash = ((struct elf32_hppa_link_hash_entry *)
2764 				hash->elf.root.u.i.link);
2765 
2766 		      if (hash->elf.root.type == bfd_link_hash_defined
2767 			  || hash->elf.root.type == bfd_link_hash_defweak)
2768 			{
2769 			  sym_sec = hash->elf.root.u.def.section;
2770 			  sym_value = hash->elf.root.u.def.value;
2771 			  if (sym_sec->output_section != NULL)
2772 			    destination = (sym_value + irela->r_addend
2773 					   + sym_sec->output_offset
2774 					   + sym_sec->output_section->vma);
2775 			}
2776 		      else if (hash->elf.root.type == bfd_link_hash_undefweak)
2777 			{
2778 			  if (! info->shared)
2779 			    continue;
2780 			}
2781 		      else if (hash->elf.root.type == bfd_link_hash_undefined)
2782 			{
2783 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
2784 				 && (ELF_ST_VISIBILITY (hash->elf.other)
2785 				     == STV_DEFAULT)
2786 				 && hash->elf.type != STT_PARISC_MILLI))
2787 			    continue;
2788 			}
2789 		      else
2790 			{
2791 			  bfd_set_error (bfd_error_bad_value);
2792 			  goto error_ret_free_internal;
2793 			}
2794 		    }
2795 
2796 		  /* Determine what (if any) linker stub is needed.  */
2797 		  stub_type = hppa_type_of_stub (section, irela, hash,
2798 						 destination, info);
2799 		  if (stub_type == hppa_stub_none)
2800 		    continue;
2801 
2802 		  /* Support for grouping stub sections.  */
2803 		  id_sec = htab->stub_group[section->id].link_sec;
2804 
2805 		  /* Get the name of this stub.  */
2806 		  stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2807 		  if (!stub_name)
2808 		    goto error_ret_free_internal;
2809 
2810 		  stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2811 						      stub_name,
2812 						      FALSE, FALSE);
2813 		  if (stub_entry != NULL)
2814 		    {
2815 		      /* The proper stub has already been created.  */
2816 		      free (stub_name);
2817 		      continue;
2818 		    }
2819 
2820 		  stub_entry = hppa_add_stub (stub_name, section, htab);
2821 		  if (stub_entry == NULL)
2822 		    {
2823 		      free (stub_name);
2824 		      goto error_ret_free_internal;
2825 		    }
2826 
2827 		  stub_entry->target_value = sym_value;
2828 		  stub_entry->target_section = sym_sec;
2829 		  stub_entry->stub_type = stub_type;
2830 		  if (info->shared)
2831 		    {
2832 		      if (stub_type == hppa_stub_import)
2833 			stub_entry->stub_type = hppa_stub_import_shared;
2834 		      else if (stub_type == hppa_stub_long_branch)
2835 			stub_entry->stub_type = hppa_stub_long_branch_shared;
2836 		    }
2837 		  stub_entry->h = hash;
2838 		  stub_changed = TRUE;
2839 		}
2840 
2841 	      /* We're done with the internal relocs, free them.  */
2842 	      if (elf_section_data (section)->relocs == NULL)
2843 		free (internal_relocs);
2844 	    }
2845 	}
2846 
2847       if (!stub_changed)
2848 	break;
2849 
2850       /* OK, we've added some stubs.  Find out the new size of the
2851 	 stub sections.  */
2852       for (stub_sec = htab->stub_bfd->sections;
2853 	   stub_sec != NULL;
2854 	   stub_sec = stub_sec->next)
2855 	{
2856 	  stub_sec->_raw_size = 0;
2857 	  stub_sec->_cooked_size = 0;
2858 	}
2859 
2860       bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2861 
2862       /* Ask the linker to do its stuff.  */
2863       (*htab->layout_sections_again) ();
2864       stub_changed = FALSE;
2865     }
2866 
2867   free (htab->all_local_syms);
2868   return TRUE;
2869 
2870  error_ret_free_local:
2871   free (htab->all_local_syms);
2872   return FALSE;
2873 }
2874 
2875 /* For a final link, this function is called after we have sized the
2876    stubs to provide a value for __gp.  */
2877 
2878 bfd_boolean
elf32_hppa_set_gp(bfd * abfd,struct bfd_link_info * info)2879 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2880 {
2881   struct bfd_link_hash_entry *h;
2882   asection *sec = NULL;
2883   bfd_vma gp_val = 0;
2884   struct elf32_hppa_link_hash_table *htab;
2885 
2886   htab = hppa_link_hash_table (info);
2887   h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2888 
2889   if (h != NULL
2890       && (h->type == bfd_link_hash_defined
2891 	  || h->type == bfd_link_hash_defweak))
2892     {
2893       gp_val = h->u.def.value;
2894       sec = h->u.def.section;
2895     }
2896   else
2897     {
2898       asection *splt = bfd_get_section_by_name (abfd, ".plt");
2899       asection *sgot = bfd_get_section_by_name (abfd, ".got");
2900 
2901       /* Choose to point our LTP at, in this order, one of .plt, .got,
2902 	 or .data, if these sections exist.  In the case of choosing
2903 	 .plt try to make the LTP ideal for addressing anywhere in the
2904 	 .plt or .got with a 14 bit signed offset.  Typically, the end
2905 	 of the .plt is the start of the .got, so choose .plt + 0x2000
2906 	 if either the .plt or .got is larger than 0x2000.  If both
2907 	 the .plt and .got are smaller than 0x2000, choose the end of
2908 	 the .plt section.  */
2909       sec = splt;
2910       if (sec != NULL)
2911 	{
2912 	  gp_val = sec->_raw_size;
2913 	  if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
2914 	    {
2915 	      gp_val = 0x2000;
2916 	    }
2917 	}
2918       else
2919 	{
2920 	  sec = sgot;
2921 	  if (sec != NULL)
2922 	    {
2923 	      /* We know we don't have a .plt.  If .got is large,
2924 		 offset our LTP.  */
2925 	      if (sec->_raw_size > 0x2000)
2926 		gp_val = 0x2000;
2927 	    }
2928 	  else
2929 	    {
2930 	      /* No .plt or .got.  Who cares what the LTP is?  */
2931 	      sec = bfd_get_section_by_name (abfd, ".data");
2932 	    }
2933 	}
2934 
2935       if (h != NULL)
2936 	{
2937 	  h->type = bfd_link_hash_defined;
2938 	  h->u.def.value = gp_val;
2939 	  if (sec != NULL)
2940 	    h->u.def.section = sec;
2941 	  else
2942 	    h->u.def.section = bfd_abs_section_ptr;
2943 	}
2944     }
2945 
2946   if (sec != NULL && sec->output_section != NULL)
2947     gp_val += sec->output_section->vma + sec->output_offset;
2948 
2949   elf_gp (abfd) = gp_val;
2950   return TRUE;
2951 }
2952 
2953 /* Build all the stubs associated with the current output file.  The
2954    stubs are kept in a hash table attached to the main linker hash
2955    table.  We also set up the .plt entries for statically linked PIC
2956    functions here.  This function is called via hppaelf_finish in the
2957    linker.  */
2958 
2959 bfd_boolean
elf32_hppa_build_stubs(struct bfd_link_info * info)2960 elf32_hppa_build_stubs (struct bfd_link_info *info)
2961 {
2962   asection *stub_sec;
2963   struct bfd_hash_table *table;
2964   struct elf32_hppa_link_hash_table *htab;
2965 
2966   htab = hppa_link_hash_table (info);
2967 
2968   for (stub_sec = htab->stub_bfd->sections;
2969        stub_sec != NULL;
2970        stub_sec = stub_sec->next)
2971     {
2972       bfd_size_type size;
2973 
2974       /* Allocate memory to hold the linker stubs.  */
2975       size = stub_sec->_raw_size;
2976       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2977       if (stub_sec->contents == NULL && size != 0)
2978 	return FALSE;
2979       stub_sec->_raw_size = 0;
2980     }
2981 
2982   /* Build the stubs as directed by the stub hash table.  */
2983   table = &htab->stub_hash_table;
2984   bfd_hash_traverse (table, hppa_build_one_stub, info);
2985 
2986   return TRUE;
2987 }
2988 
2989 /* Perform a final link.  */
2990 
2991 static bfd_boolean
elf32_hppa_final_link(bfd * abfd,struct bfd_link_info * info)2992 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2993 {
2994   /* Invoke the regular ELF linker to do all the work.  */
2995   if (!bfd_elf_final_link (abfd, info))
2996     return FALSE;
2997 
2998   /* If we're producing a final executable, sort the contents of the
2999      unwind section.  */
3000   return elf_hppa_sort_unwind (abfd);
3001 }
3002 
3003 /* Record the lowest address for the data and text segments.  */
3004 
3005 static void
hppa_record_segment_addr(bfd * abfd ATTRIBUTE_UNUSED,asection * section,void * data)3006 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3007 			  asection *section,
3008 			  void *data)
3009 {
3010   struct elf32_hppa_link_hash_table *htab;
3011 
3012   htab = (struct elf32_hppa_link_hash_table *) data;
3013 
3014   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3015     {
3016       bfd_vma value = section->vma - section->filepos;
3017 
3018       if ((section->flags & SEC_READONLY) != 0)
3019 	{
3020 	  if (value < htab->text_segment_base)
3021 	    htab->text_segment_base = value;
3022 	}
3023       else
3024 	{
3025 	  if (value < htab->data_segment_base)
3026 	    htab->data_segment_base = value;
3027 	}
3028     }
3029 }
3030 
3031 /* Perform a relocation as part of a final link.  */
3032 
3033 static bfd_reloc_status_type
final_link_relocate(asection * input_section,bfd_byte * contents,const Elf_Internal_Rela * rel,bfd_vma value,struct elf32_hppa_link_hash_table * htab,asection * sym_sec,struct elf32_hppa_link_hash_entry * h,struct bfd_link_info * info)3034 final_link_relocate (asection *input_section,
3035 		     bfd_byte *contents,
3036 		     const Elf_Internal_Rela *rel,
3037 		     bfd_vma value,
3038 		     struct elf32_hppa_link_hash_table *htab,
3039 		     asection *sym_sec,
3040 		     struct elf32_hppa_link_hash_entry *h,
3041 		     struct bfd_link_info *info)
3042 {
3043   int insn;
3044   unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3045   unsigned int orig_r_type = r_type;
3046   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3047   int r_format = howto->bitsize;
3048   enum hppa_reloc_field_selector_type_alt r_field;
3049   bfd *input_bfd = input_section->owner;
3050   bfd_vma offset = rel->r_offset;
3051   bfd_vma max_branch_offset = 0;
3052   bfd_byte *hit_data = contents + offset;
3053   bfd_signed_vma addend = rel->r_addend;
3054   bfd_vma location;
3055   struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3056   int val;
3057 
3058   if (r_type == R_PARISC_NONE)
3059     return bfd_reloc_ok;
3060 
3061   insn = bfd_get_32 (input_bfd, hit_data);
3062 
3063   /* Find out where we are and where we're going.  */
3064   location = (offset +
3065 	      input_section->output_offset +
3066 	      input_section->output_section->vma);
3067 
3068   /* If we are not building a shared library, convert DLTIND relocs to
3069      DPREL relocs.  */
3070   if (!info->shared)
3071     {
3072       switch (r_type)
3073 	{
3074 	  case R_PARISC_DLTIND21L:
3075 	    r_type = R_PARISC_DPREL21L;
3076 	    break;
3077 
3078 	  case R_PARISC_DLTIND14R:
3079 	    r_type = R_PARISC_DPREL14R;
3080 	    break;
3081 
3082 	  case R_PARISC_DLTIND14F:
3083 	    r_type = R_PARISC_DPREL14F;
3084 	    break;
3085 	}
3086     }
3087 
3088   switch (r_type)
3089     {
3090     case R_PARISC_PCREL12F:
3091     case R_PARISC_PCREL17F:
3092     case R_PARISC_PCREL22F:
3093       /* If this call should go via the plt, find the import stub in
3094 	 the stub hash.  */
3095       if (sym_sec == NULL
3096 	  || sym_sec->output_section == NULL
3097 	  || (h != NULL
3098 	      && h->elf.plt.offset != (bfd_vma) -1
3099 	      && h->elf.dynindx != -1
3100 	      && !h->plabel
3101 	      && (info->shared
3102 		  || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3103 		  || h->elf.root.type == bfd_link_hash_defweak)))
3104 	{
3105 	  stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3106 					    h, rel, htab);
3107 	  if (stub_entry != NULL)
3108 	    {
3109 	      value = (stub_entry->stub_offset
3110 		       + stub_entry->stub_sec->output_offset
3111 		       + stub_entry->stub_sec->output_section->vma);
3112 	      addend = 0;
3113 	    }
3114 	  else if (sym_sec == NULL && h != NULL
3115 		   && h->elf.root.type == bfd_link_hash_undefweak)
3116 	    {
3117 	      /* It's OK if undefined weak.  Calls to undefined weak
3118 		 symbols behave as if the "called" function
3119 		 immediately returns.  We can thus call to a weak
3120 		 function without first checking whether the function
3121 		 is defined.  */
3122 	      value = location;
3123 	      addend = 8;
3124 	    }
3125 	  else
3126 	    return bfd_reloc_undefined;
3127 	}
3128       /* Fall thru.  */
3129 
3130     case R_PARISC_PCREL21L:
3131     case R_PARISC_PCREL17C:
3132     case R_PARISC_PCREL17R:
3133     case R_PARISC_PCREL14R:
3134     case R_PARISC_PCREL14F:
3135     case R_PARISC_PCREL32:
3136       /* Make it a pc relative offset.  */
3137       value -= location;
3138       addend -= 8;
3139       break;
3140 
3141     case R_PARISC_DPREL21L:
3142     case R_PARISC_DPREL14R:
3143     case R_PARISC_DPREL14F:
3144       /* Convert instructions that use the linkage table pointer (r19) to
3145 	 instructions that use the global data pointer (dp).  This is the
3146 	 most efficient way of using PIC code in an incomplete executable,
3147 	 but the user must follow the standard runtime conventions for
3148 	 accessing data for this to work.  */
3149       if (orig_r_type == R_PARISC_DLTIND21L)
3150 	{
3151 	  /* Convert addil instructions if the original reloc was a
3152 	     DLTIND21L.  GCC sometimes uses a register other than r19 for
3153 	     the operation, so we must convert any addil instruction
3154 	     that uses this relocation.  */
3155 	  if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3156 	    insn = ADDIL_DP;
3157 	  else
3158 	    /* We must have a ldil instruction.  It's too hard to find
3159 	       and convert the associated add instruction, so issue an
3160 	       error.  */
3161 	    (*_bfd_error_handler)
3162 	      (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3163 	       bfd_archive_filename (input_bfd),
3164 	       input_section->name,
3165 	       (long) rel->r_offset,
3166 	       howto->name,
3167 	       insn);
3168 	}
3169       else if (orig_r_type == R_PARISC_DLTIND14F)
3170 	{
3171 	  /* This must be a format 1 load/store.  Change the base
3172 	     register to dp.  */
3173 	  insn = (insn & 0xfc1ffff) | (27 << 21);
3174 	}
3175 
3176     /* For all the DP relative relocations, we need to examine the symbol's
3177        section.  If it has no section or if it's a code section, then
3178        "data pointer relative" makes no sense.  In that case we don't
3179        adjust the "value", and for 21 bit addil instructions, we change the
3180        source addend register from %dp to %r0.  This situation commonly
3181        arises for undefined weak symbols and when a variable's "constness"
3182        is declared differently from the way the variable is defined.  For
3183        instance: "extern int foo" with foo defined as "const int foo".  */
3184       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3185 	{
3186 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3187 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3188 	    {
3189 	      insn &= ~ (0x1f << 21);
3190 #if 0 /* debug them.  */
3191 	      (*_bfd_error_handler)
3192 		(_("%s(%s+0x%lx): fixing %s"),
3193 		 bfd_archive_filename (input_bfd),
3194 		 input_section->name,
3195 		 (long) rel->r_offset,
3196 		 howto->name);
3197 #endif
3198 	    }
3199 	  /* Now try to make things easy for the dynamic linker.  */
3200 
3201 	  break;
3202 	}
3203       /* Fall thru.  */
3204 
3205     case R_PARISC_DLTIND21L:
3206     case R_PARISC_DLTIND14R:
3207     case R_PARISC_DLTIND14F:
3208       value -= elf_gp (input_section->output_section->owner);
3209       break;
3210 
3211     case R_PARISC_SEGREL32:
3212       if ((sym_sec->flags & SEC_CODE) != 0)
3213 	value -= htab->text_segment_base;
3214       else
3215 	value -= htab->data_segment_base;
3216       break;
3217 
3218     default:
3219       break;
3220     }
3221 
3222   switch (r_type)
3223     {
3224     case R_PARISC_DIR32:
3225     case R_PARISC_DIR14F:
3226     case R_PARISC_DIR17F:
3227     case R_PARISC_PCREL17C:
3228     case R_PARISC_PCREL14F:
3229     case R_PARISC_PCREL32:
3230     case R_PARISC_DPREL14F:
3231     case R_PARISC_PLABEL32:
3232     case R_PARISC_DLTIND14F:
3233     case R_PARISC_SEGBASE:
3234     case R_PARISC_SEGREL32:
3235       r_field = e_fsel;
3236       break;
3237 
3238     case R_PARISC_DLTIND21L:
3239     case R_PARISC_PCREL21L:
3240     case R_PARISC_PLABEL21L:
3241       r_field = e_lsel;
3242       break;
3243 
3244     case R_PARISC_DIR21L:
3245     case R_PARISC_DPREL21L:
3246       r_field = e_lrsel;
3247       break;
3248 
3249     case R_PARISC_PCREL17R:
3250     case R_PARISC_PCREL14R:
3251     case R_PARISC_PLABEL14R:
3252     case R_PARISC_DLTIND14R:
3253       r_field = e_rsel;
3254       break;
3255 
3256     case R_PARISC_DIR17R:
3257     case R_PARISC_DIR14R:
3258     case R_PARISC_DPREL14R:
3259       r_field = e_rrsel;
3260       break;
3261 
3262     case R_PARISC_PCREL12F:
3263     case R_PARISC_PCREL17F:
3264     case R_PARISC_PCREL22F:
3265       r_field = e_fsel;
3266 
3267       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3268 	{
3269 	  max_branch_offset = (1 << (17-1)) << 2;
3270 	}
3271       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3272 	{
3273 	  max_branch_offset = (1 << (12-1)) << 2;
3274 	}
3275       else
3276 	{
3277 	  max_branch_offset = (1 << (22-1)) << 2;
3278 	}
3279 
3280       /* sym_sec is NULL on undefined weak syms or when shared on
3281 	 undefined syms.  We've already checked for a stub for the
3282 	 shared undefined case.  */
3283       if (sym_sec == NULL)
3284 	break;
3285 
3286       /* If the branch is out of reach, then redirect the
3287 	 call to the local stub for this function.  */
3288       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3289 	{
3290 	  stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3291 					    h, rel, htab);
3292 	  if (stub_entry == NULL)
3293 	    return bfd_reloc_undefined;
3294 
3295 	  /* Munge up the value and addend so that we call the stub
3296 	     rather than the procedure directly.  */
3297 	  value = (stub_entry->stub_offset
3298 		   + stub_entry->stub_sec->output_offset
3299 		   + stub_entry->stub_sec->output_section->vma
3300 		   - location);
3301 	  addend = -8;
3302 	}
3303       break;
3304 
3305     /* Something we don't know how to handle.  */
3306     default:
3307       return bfd_reloc_notsupported;
3308     }
3309 
3310   /* Make sure we can reach the stub.  */
3311   if (max_branch_offset != 0
3312       && value + addend + max_branch_offset >= 2*max_branch_offset)
3313     {
3314       (*_bfd_error_handler)
3315 	(_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3316 	 bfd_archive_filename (input_bfd),
3317 	 input_section->name,
3318 	 (long) rel->r_offset,
3319 	 stub_entry->root.string);
3320       bfd_set_error (bfd_error_bad_value);
3321       return bfd_reloc_notsupported;
3322     }
3323 
3324   val = hppa_field_adjust (value, addend, r_field);
3325 
3326   switch (r_type)
3327     {
3328     case R_PARISC_PCREL12F:
3329     case R_PARISC_PCREL17C:
3330     case R_PARISC_PCREL17F:
3331     case R_PARISC_PCREL17R:
3332     case R_PARISC_PCREL22F:
3333     case R_PARISC_DIR17F:
3334     case R_PARISC_DIR17R:
3335       /* This is a branch.  Divide the offset by four.
3336 	 Note that we need to decide whether it's a branch or
3337 	 otherwise by inspecting the reloc.  Inspecting insn won't
3338 	 work as insn might be from a .word directive.  */
3339       val >>= 2;
3340       break;
3341 
3342     default:
3343       break;
3344     }
3345 
3346   insn = hppa_rebuild_insn (insn, val, r_format);
3347 
3348   /* Update the instruction word.  */
3349   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3350   return bfd_reloc_ok;
3351 }
3352 
3353 /* Relocate an HPPA ELF section.  */
3354 
3355 static bfd_boolean
elf32_hppa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)3356 elf32_hppa_relocate_section (bfd *output_bfd,
3357 			     struct bfd_link_info *info,
3358 			     bfd *input_bfd,
3359 			     asection *input_section,
3360 			     bfd_byte *contents,
3361 			     Elf_Internal_Rela *relocs,
3362 			     Elf_Internal_Sym *local_syms,
3363 			     asection **local_sections)
3364 {
3365   bfd_vma *local_got_offsets;
3366   struct elf32_hppa_link_hash_table *htab;
3367   Elf_Internal_Shdr *symtab_hdr;
3368   Elf_Internal_Rela *rel;
3369   Elf_Internal_Rela *relend;
3370 
3371   if (info->relocatable)
3372     return TRUE;
3373 
3374   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3375 
3376   htab = hppa_link_hash_table (info);
3377   local_got_offsets = elf_local_got_offsets (input_bfd);
3378 
3379   rel = relocs;
3380   relend = relocs + input_section->reloc_count;
3381   for (; rel < relend; rel++)
3382     {
3383       unsigned int r_type;
3384       reloc_howto_type *howto;
3385       unsigned int r_symndx;
3386       struct elf32_hppa_link_hash_entry *h;
3387       Elf_Internal_Sym *sym;
3388       asection *sym_sec;
3389       bfd_vma relocation;
3390       bfd_reloc_status_type r;
3391       const char *sym_name;
3392       bfd_boolean plabel;
3393       bfd_boolean warned_undef;
3394 
3395       r_type = ELF32_R_TYPE (rel->r_info);
3396       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3397 	{
3398 	  bfd_set_error (bfd_error_bad_value);
3399 	  return FALSE;
3400 	}
3401       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3402 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3403 	continue;
3404 
3405       /* This is a final link.  */
3406       r_symndx = ELF32_R_SYM (rel->r_info);
3407       h = NULL;
3408       sym = NULL;
3409       sym_sec = NULL;
3410       warned_undef = FALSE;
3411       if (r_symndx < symtab_hdr->sh_info)
3412 	{
3413 	  /* This is a local symbol, h defaults to NULL.  */
3414 	  sym = local_syms + r_symndx;
3415 	  sym_sec = local_sections[r_symndx];
3416 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3417 	}
3418       else
3419 	{
3420 	  struct elf_link_hash_entry *hh;
3421 	  bfd_boolean unresolved_reloc;
3422 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3423 
3424 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3425 				   r_symndx, symtab_hdr, sym_hashes,
3426 				   hh, sym_sec, relocation,
3427 				   unresolved_reloc, warned_undef);
3428 
3429 	  if (relocation == 0
3430 	      && hh->root.type != bfd_link_hash_defined
3431 	      && hh->root.type != bfd_link_hash_defweak
3432 	      && hh->root.type != bfd_link_hash_undefweak)
3433 	    {
3434 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3435 		  && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3436 		  && hh->type == STT_PARISC_MILLI)
3437 		{
3438 		  if (! info->callbacks->undefined_symbol
3439 		      (info, hh->root.root.string, input_bfd,
3440 		       input_section, rel->r_offset, FALSE))
3441 		    return FALSE;
3442 		  warned_undef = TRUE;
3443 		}
3444 	    }
3445 	  h = (struct elf32_hppa_link_hash_entry *) hh;
3446 	}
3447 
3448       /* Do any required modifications to the relocation value, and
3449 	 determine what types of dynamic info we need to output, if
3450 	 any.  */
3451       plabel = 0;
3452       switch (r_type)
3453 	{
3454 	case R_PARISC_DLTIND14F:
3455 	case R_PARISC_DLTIND14R:
3456 	case R_PARISC_DLTIND21L:
3457 	  {
3458 	    bfd_vma off;
3459 	    bfd_boolean do_got = 0;
3460 
3461 	    /* Relocation is to the entry for this symbol in the
3462 	       global offset table.  */
3463 	    if (h != NULL)
3464 	      {
3465 		bfd_boolean dyn;
3466 
3467 		off = h->elf.got.offset;
3468 		dyn = htab->elf.dynamic_sections_created;
3469 		if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3470 						       &h->elf))
3471 		  {
3472 		    /* If we aren't going to call finish_dynamic_symbol,
3473 		       then we need to handle initialisation of the .got
3474 		       entry and create needed relocs here.  Since the
3475 		       offset must always be a multiple of 4, we use the
3476 		       least significant bit to record whether we have
3477 		       initialised it already.  */
3478 		    if ((off & 1) != 0)
3479 		      off &= ~1;
3480 		    else
3481 		      {
3482 			h->elf.got.offset |= 1;
3483 			do_got = 1;
3484 		      }
3485 		  }
3486 	      }
3487 	    else
3488 	      {
3489 		/* Local symbol case.  */
3490 		if (local_got_offsets == NULL)
3491 		  abort ();
3492 
3493 		off = local_got_offsets[r_symndx];
3494 
3495 		/* The offset must always be a multiple of 4.  We use
3496 		   the least significant bit to record whether we have
3497 		   already generated the necessary reloc.  */
3498 		if ((off & 1) != 0)
3499 		  off &= ~1;
3500 		else
3501 		  {
3502 		    local_got_offsets[r_symndx] |= 1;
3503 		    do_got = 1;
3504 		  }
3505 	      }
3506 
3507 	    if (do_got)
3508 	      {
3509 		if (info->shared)
3510 		  {
3511 		    /* Output a dynamic relocation for this GOT entry.
3512 		       In this case it is relative to the base of the
3513 		       object because the symbol index is zero.  */
3514 		    Elf_Internal_Rela outrel;
3515 		    bfd_byte *loc;
3516 		    asection *s = htab->srelgot;
3517 
3518 		    outrel.r_offset = (off
3519 				       + htab->sgot->output_offset
3520 				       + htab->sgot->output_section->vma);
3521 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3522 		    outrel.r_addend = relocation;
3523 		    loc = s->contents;
3524 		    loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3525 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3526 		  }
3527 		else
3528 		  bfd_put_32 (output_bfd, relocation,
3529 			      htab->sgot->contents + off);
3530 	      }
3531 
3532 	    if (off >= (bfd_vma) -2)
3533 	      abort ();
3534 
3535 	    /* Add the base of the GOT to the relocation value.  */
3536 	    relocation = (off
3537 			  + htab->sgot->output_offset
3538 			  + htab->sgot->output_section->vma);
3539 	  }
3540 	  break;
3541 
3542 	case R_PARISC_SEGREL32:
3543 	  /* If this is the first SEGREL relocation, then initialize
3544 	     the segment base values.  */
3545 	  if (htab->text_segment_base == (bfd_vma) -1)
3546 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3547 	  break;
3548 
3549 	case R_PARISC_PLABEL14R:
3550 	case R_PARISC_PLABEL21L:
3551 	case R_PARISC_PLABEL32:
3552 	  if (htab->elf.dynamic_sections_created)
3553 	    {
3554 	      bfd_vma off;
3555 	      bfd_boolean do_plt = 0;
3556 
3557 	      /* If we have a global symbol with a PLT slot, then
3558 		 redirect this relocation to it.  */
3559 	      if (h != NULL)
3560 		{
3561 		  off = h->elf.plt.offset;
3562 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3563 							 &h->elf))
3564 		    {
3565 		      /* In a non-shared link, adjust_dynamic_symbols
3566 			 isn't called for symbols forced local.  We
3567 			 need to write out the plt entry here.  */
3568 		      if ((off & 1) != 0)
3569 			off &= ~1;
3570 		      else
3571 			{
3572 			  h->elf.plt.offset |= 1;
3573 			  do_plt = 1;
3574 			}
3575 		    }
3576 		}
3577 	      else
3578 		{
3579 		  bfd_vma *local_plt_offsets;
3580 
3581 		  if (local_got_offsets == NULL)
3582 		    abort ();
3583 
3584 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3585 		  off = local_plt_offsets[r_symndx];
3586 
3587 		  /* As for the local .got entry case, we use the last
3588 		     bit to record whether we've already initialised
3589 		     this local .plt entry.  */
3590 		  if ((off & 1) != 0)
3591 		    off &= ~1;
3592 		  else
3593 		    {
3594 		      local_plt_offsets[r_symndx] |= 1;
3595 		      do_plt = 1;
3596 		    }
3597 		}
3598 
3599 	      if (do_plt)
3600 		{
3601 		  if (info->shared)
3602 		    {
3603 		      /* Output a dynamic IPLT relocation for this
3604 			 PLT entry.  */
3605 		      Elf_Internal_Rela outrel;
3606 		      bfd_byte *loc;
3607 		      asection *s = htab->srelplt;
3608 
3609 		      outrel.r_offset = (off
3610 					 + htab->splt->output_offset
3611 					 + htab->splt->output_section->vma);
3612 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3613 		      outrel.r_addend = relocation;
3614 		      loc = s->contents;
3615 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3616 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3617 		    }
3618 		  else
3619 		    {
3620 		      bfd_put_32 (output_bfd,
3621 				  relocation,
3622 				  htab->splt->contents + off);
3623 		      bfd_put_32 (output_bfd,
3624 				  elf_gp (htab->splt->output_section->owner),
3625 				  htab->splt->contents + off + 4);
3626 		    }
3627 		}
3628 
3629 	      if (off >= (bfd_vma) -2)
3630 		abort ();
3631 
3632 	      /* PLABELs contain function pointers.  Relocation is to
3633 		 the entry for the function in the .plt.  The magic +2
3634 		 offset signals to $$dyncall that the function pointer
3635 		 is in the .plt and thus has a gp pointer too.
3636 		 Exception:  Undefined PLABELs should have a value of
3637 		 zero.  */
3638 	      if (h == NULL
3639 		  || (h->elf.root.type != bfd_link_hash_undefweak
3640 		      && h->elf.root.type != bfd_link_hash_undefined))
3641 		{
3642 		  relocation = (off
3643 				+ htab->splt->output_offset
3644 				+ htab->splt->output_section->vma
3645 				+ 2);
3646 		}
3647 	      plabel = 1;
3648 	    }
3649 	  /* Fall through and possibly emit a dynamic relocation.  */
3650 
3651 	case R_PARISC_DIR17F:
3652 	case R_PARISC_DIR17R:
3653 	case R_PARISC_DIR14F:
3654 	case R_PARISC_DIR14R:
3655 	case R_PARISC_DIR21L:
3656 	case R_PARISC_DPREL14F:
3657 	case R_PARISC_DPREL14R:
3658 	case R_PARISC_DPREL21L:
3659 	case R_PARISC_DIR32:
3660 	  /* r_symndx will be zero only for relocs against symbols
3661 	     from removed linkonce sections, or sections discarded by
3662 	     a linker script.  */
3663 	  if (r_symndx == 0
3664 	      || (input_section->flags & SEC_ALLOC) == 0)
3665 	    break;
3666 
3667 	  /* The reloc types handled here and this conditional
3668 	     expression must match the code in ..check_relocs and
3669 	     allocate_dynrelocs.  ie. We need exactly the same condition
3670 	     as in ..check_relocs, with some extra conditions (dynindx
3671 	     test in this case) to cater for relocs removed by
3672 	     allocate_dynrelocs.  If you squint, the non-shared test
3673 	     here does indeed match the one in ..check_relocs, the
3674 	     difference being that here we test DEF_DYNAMIC as well as
3675 	     !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3676 	     which is why we can't use just that test here.
3677 	     Conversely, DEF_DYNAMIC can't be used in check_relocs as
3678 	     there all files have not been loaded.  */
3679 	  if ((info->shared
3680 	       && (h == NULL
3681 		   || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3682 		   || h->elf.root.type != bfd_link_hash_undefweak)
3683 	       && (IS_ABSOLUTE_RELOC (r_type)
3684 		   || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3685 	      || (!info->shared
3686 		  && h != NULL
3687 		  && h->elf.dynindx != -1
3688 		  && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3689 		  && ((ELIMINATE_COPY_RELOCS
3690 		       && (h->elf.elf_link_hash_flags
3691 			   & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3692 		       && (h->elf.elf_link_hash_flags
3693 			   & ELF_LINK_HASH_DEF_REGULAR) == 0)
3694 		      || h->elf.root.type == bfd_link_hash_undefweak
3695 		      || h->elf.root.type == bfd_link_hash_undefined)))
3696 	    {
3697 	      Elf_Internal_Rela outrel;
3698 	      bfd_boolean skip;
3699 	      asection *sreloc;
3700 	      bfd_byte *loc;
3701 
3702 	      /* When generating a shared object, these relocations
3703 		 are copied into the output file to be resolved at run
3704 		 time.  */
3705 
3706 	      outrel.r_addend = rel->r_addend;
3707 	      outrel.r_offset =
3708 		_bfd_elf_section_offset (output_bfd, info, input_section,
3709 					 rel->r_offset);
3710 	      skip = (outrel.r_offset == (bfd_vma) -1
3711 		      || outrel.r_offset == (bfd_vma) -2);
3712 	      outrel.r_offset += (input_section->output_offset
3713 				  + input_section->output_section->vma);
3714 
3715 	      if (skip)
3716 		{
3717 		  memset (&outrel, 0, sizeof (outrel));
3718 		}
3719 	      else if (h != NULL
3720 		       && h->elf.dynindx != -1
3721 		       && (plabel
3722 			   || !IS_ABSOLUTE_RELOC (r_type)
3723 			   || !info->shared
3724 			   || !info->symbolic
3725 			   || (h->elf.elf_link_hash_flags
3726 			       & ELF_LINK_HASH_DEF_REGULAR) == 0))
3727 		{
3728 		  outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3729 		}
3730 	      else /* It's a local symbol, or one marked to become local.  */
3731 		{
3732 		  int indx = 0;
3733 
3734 		  /* Add the absolute offset of the symbol.  */
3735 		  outrel.r_addend += relocation;
3736 
3737 		  /* Global plabels need to be processed by the
3738 		     dynamic linker so that functions have at most one
3739 		     fptr.  For this reason, we need to differentiate
3740 		     between global and local plabels, which we do by
3741 		     providing the function symbol for a global plabel
3742 		     reloc, and no symbol for local plabels.  */
3743 		  if (! plabel
3744 		      && sym_sec != NULL
3745 		      && sym_sec->output_section != NULL
3746 		      && ! bfd_is_abs_section (sym_sec))
3747 		    {
3748 		      /* Skip this relocation if the output section has
3749 			 been discarded.  */
3750 		      if (bfd_is_abs_section (sym_sec->output_section))
3751 			break;
3752 
3753 		      indx = elf_section_data (sym_sec->output_section)->dynindx;
3754 		      /* We are turning this relocation into one
3755 			 against a section symbol, so subtract out the
3756 			 output section's address but not the offset
3757 			 of the input section in the output section.  */
3758 		      outrel.r_addend -= sym_sec->output_section->vma;
3759 		    }
3760 
3761 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
3762 		}
3763 #if 0
3764 	      /* EH info can cause unaligned DIR32 relocs.
3765 		 Tweak the reloc type for the dynamic linker.  */
3766 	      if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3767 		outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3768 					      R_PARISC_DIR32U);
3769 #endif
3770 	      sreloc = elf_section_data (input_section)->sreloc;
3771 	      if (sreloc == NULL)
3772 		abort ();
3773 
3774 	      loc = sreloc->contents;
3775 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3776 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3777 	    }
3778 	  break;
3779 
3780 	default:
3781 	  break;
3782 	}
3783 
3784       r = final_link_relocate (input_section, contents, rel, relocation,
3785 			       htab, sym_sec, h, info);
3786 
3787       if (r == bfd_reloc_ok)
3788 	continue;
3789 
3790       if (h != NULL)
3791 	sym_name = h->elf.root.root.string;
3792       else
3793 	{
3794 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
3795 						      symtab_hdr->sh_link,
3796 						      sym->st_name);
3797 	  if (sym_name == NULL)
3798 	    return FALSE;
3799 	  if (*sym_name == '\0')
3800 	    sym_name = bfd_section_name (input_bfd, sym_sec);
3801 	}
3802 
3803       howto = elf_hppa_howto_table + r_type;
3804 
3805       if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3806 	{
3807 	  if (r == bfd_reloc_notsupported || !warned_undef)
3808 	    {
3809 	      (*_bfd_error_handler)
3810 		(_("%s(%s+0x%lx): cannot handle %s for %s"),
3811 		 bfd_archive_filename (input_bfd),
3812 		 input_section->name,
3813 		 (long) rel->r_offset,
3814 		 howto->name,
3815 		 sym_name);
3816 	      bfd_set_error (bfd_error_bad_value);
3817 	      return FALSE;
3818 	    }
3819 	}
3820       else
3821 	{
3822 	  if (!((*info->callbacks->reloc_overflow)
3823 		(info, sym_name, howto->name, 0, input_bfd, input_section,
3824 		 rel->r_offset)))
3825 	    return FALSE;
3826 	}
3827     }
3828 
3829   return TRUE;
3830 }
3831 
3832 /* Finish up dynamic symbol handling.  We set the contents of various
3833    dynamic sections here.  */
3834 
3835 static bfd_boolean
elf32_hppa_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)3836 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3837 				  struct bfd_link_info *info,
3838 				  struct elf_link_hash_entry *h,
3839 				  Elf_Internal_Sym *sym)
3840 {
3841   struct elf32_hppa_link_hash_table *htab;
3842   Elf_Internal_Rela rel;
3843   bfd_byte *loc;
3844 
3845   htab = hppa_link_hash_table (info);
3846 
3847   if (h->plt.offset != (bfd_vma) -1)
3848     {
3849       bfd_vma value;
3850 
3851       if (h->plt.offset & 1)
3852 	abort ();
3853 
3854       /* This symbol has an entry in the procedure linkage table.  Set
3855 	 it up.
3856 
3857 	 The format of a plt entry is
3858 	 <funcaddr>
3859 	 <__gp>
3860       */
3861       value = 0;
3862       if (h->root.type == bfd_link_hash_defined
3863 	  || h->root.type == bfd_link_hash_defweak)
3864 	{
3865 	  value = h->root.u.def.value;
3866 	  if (h->root.u.def.section->output_section != NULL)
3867 	    value += (h->root.u.def.section->output_offset
3868 		      + h->root.u.def.section->output_section->vma);
3869 	}
3870 
3871       /* Create a dynamic IPLT relocation for this entry.  */
3872       rel.r_offset = (h->plt.offset
3873 		      + htab->splt->output_offset
3874 		      + htab->splt->output_section->vma);
3875       if (h->dynindx != -1)
3876 	{
3877 	  rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3878 	  rel.r_addend = 0;
3879 	}
3880       else
3881 	{
3882 	  /* This symbol has been marked to become local, and is
3883 	     used by a plabel so must be kept in the .plt.  */
3884 	  rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3885 	  rel.r_addend = value;
3886 	}
3887 
3888       loc = htab->srelplt->contents;
3889       loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3890       bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3891 
3892       if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3893 	{
3894 	  /* Mark the symbol as undefined, rather than as defined in
3895 	     the .plt section.  Leave the value alone.  */
3896 	  sym->st_shndx = SHN_UNDEF;
3897 	}
3898     }
3899 
3900   if (h->got.offset != (bfd_vma) -1)
3901     {
3902       /* This symbol has an entry in the global offset table.  Set it
3903 	 up.  */
3904 
3905       rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3906 		      + htab->sgot->output_offset
3907 		      + htab->sgot->output_section->vma);
3908 
3909       /* If this is a -Bsymbolic link and the symbol is defined
3910 	 locally or was forced to be local because of a version file,
3911 	 we just want to emit a RELATIVE reloc.  The entry in the
3912 	 global offset table will already have been initialized in the
3913 	 relocate_section function.  */
3914       if (info->shared
3915 	  && (info->symbolic || h->dynindx == -1)
3916 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3917 	{
3918 	  rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3919 	  rel.r_addend = (h->root.u.def.value
3920 			  + h->root.u.def.section->output_offset
3921 			  + h->root.u.def.section->output_section->vma);
3922 	}
3923       else
3924 	{
3925 	  if ((h->got.offset & 1) != 0)
3926 	    abort ();
3927 	  bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3928 	  rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3929 	  rel.r_addend = 0;
3930 	}
3931 
3932       loc = htab->srelgot->contents;
3933       loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3934       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3935     }
3936 
3937   if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3938     {
3939       asection *s;
3940 
3941       /* This symbol needs a copy reloc.  Set it up.  */
3942 
3943       if (! (h->dynindx != -1
3944 	     && (h->root.type == bfd_link_hash_defined
3945 		 || h->root.type == bfd_link_hash_defweak)))
3946 	abort ();
3947 
3948       s = htab->srelbss;
3949 
3950       rel.r_offset = (h->root.u.def.value
3951 		      + h->root.u.def.section->output_offset
3952 		      + h->root.u.def.section->output_section->vma);
3953       rel.r_addend = 0;
3954       rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3955       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3956       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3957     }
3958 
3959   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
3960   if (h->root.root.string[0] == '_'
3961       && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3962 	  || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3963     {
3964       sym->st_shndx = SHN_ABS;
3965     }
3966 
3967   return TRUE;
3968 }
3969 
3970 /* Used to decide how to sort relocs in an optimal manner for the
3971    dynamic linker, before writing them out.  */
3972 
3973 static enum elf_reloc_type_class
elf32_hppa_reloc_type_class(const Elf_Internal_Rela * rela)3974 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
3975 {
3976   if (ELF32_R_SYM (rela->r_info) == 0)
3977     return reloc_class_relative;
3978 
3979   switch ((int) ELF32_R_TYPE (rela->r_info))
3980     {
3981     case R_PARISC_IPLT:
3982       return reloc_class_plt;
3983     case R_PARISC_COPY:
3984       return reloc_class_copy;
3985     default:
3986       return reloc_class_normal;
3987     }
3988 }
3989 
3990 /* Finish up the dynamic sections.  */
3991 
3992 static bfd_boolean
elf32_hppa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)3993 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
3994 				    struct bfd_link_info *info)
3995 {
3996   bfd *dynobj;
3997   struct elf32_hppa_link_hash_table *htab;
3998   asection *sdyn;
3999 
4000   htab = hppa_link_hash_table (info);
4001   dynobj = htab->elf.dynobj;
4002 
4003   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4004 
4005   if (htab->elf.dynamic_sections_created)
4006     {
4007       Elf32_External_Dyn *dyncon, *dynconend;
4008 
4009       if (sdyn == NULL)
4010 	abort ();
4011 
4012       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4013       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4014       for (; dyncon < dynconend; dyncon++)
4015 	{
4016 	  Elf_Internal_Dyn dyn;
4017 	  asection *s;
4018 
4019 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4020 
4021 	  switch (dyn.d_tag)
4022 	    {
4023 	    default:
4024 	      continue;
4025 
4026 	    case DT_PLTGOT:
4027 	      /* Use PLTGOT to set the GOT register.  */
4028 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4029 	      break;
4030 
4031 	    case DT_JMPREL:
4032 	      s = htab->srelplt;
4033 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4034 	      break;
4035 
4036 	    case DT_PLTRELSZ:
4037 	      s = htab->srelplt;
4038 	      dyn.d_un.d_val = s->_raw_size;
4039 	      break;
4040 
4041 	    case DT_RELASZ:
4042 	      /* Don't count procedure linkage table relocs in the
4043 		 overall reloc count.  */
4044 	      s = htab->srelplt;
4045 	      if (s == NULL)
4046 		continue;
4047 	      dyn.d_un.d_val -= s->_raw_size;
4048 	      break;
4049 
4050 	    case DT_RELA:
4051 	      /* We may not be using the standard ELF linker script.
4052 		 If .rela.plt is the first .rela section, we adjust
4053 		 DT_RELA to not include it.  */
4054 	      s = htab->srelplt;
4055 	      if (s == NULL)
4056 		continue;
4057 	      if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4058 		continue;
4059 	      dyn.d_un.d_ptr += s->_raw_size;
4060 	      break;
4061 	    }
4062 
4063 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4064 	}
4065     }
4066 
4067   if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4068     {
4069       /* Fill in the first entry in the global offset table.
4070 	 We use it to point to our dynamic section, if we have one.  */
4071       bfd_put_32 (output_bfd,
4072 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4073 		  htab->sgot->contents);
4074 
4075       /* The second entry is reserved for use by the dynamic linker.  */
4076       memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4077 
4078       /* Set .got entry size.  */
4079       elf_section_data (htab->sgot->output_section)
4080 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4081     }
4082 
4083   if (htab->splt != NULL && htab->splt->_raw_size != 0)
4084     {
4085       /* Set plt entry size.  */
4086       elf_section_data (htab->splt->output_section)
4087 	->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4088 
4089       if (htab->need_plt_stub)
4090 	{
4091 	  /* Set up the .plt stub.  */
4092 	  memcpy (htab->splt->contents
4093 		  + htab->splt->_raw_size - sizeof (plt_stub),
4094 		  plt_stub, sizeof (plt_stub));
4095 
4096 	  if ((htab->splt->output_offset
4097 	       + htab->splt->output_section->vma
4098 	       + htab->splt->_raw_size)
4099 	      != (htab->sgot->output_offset
4100 		  + htab->sgot->output_section->vma))
4101 	    {
4102 	      (*_bfd_error_handler)
4103 		(_(".got section not immediately after .plt section"));
4104 	      return FALSE;
4105 	    }
4106 	}
4107     }
4108 
4109   return TRUE;
4110 }
4111 
4112 /* Tweak the OSABI field of the elf header.  */
4113 
4114 static void
elf32_hppa_post_process_headers(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)4115 elf32_hppa_post_process_headers (bfd *abfd,
4116 				 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4117 {
4118   Elf_Internal_Ehdr * i_ehdrp;
4119 
4120   i_ehdrp = elf_elfheader (abfd);
4121 
4122   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4123     {
4124       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4125     }
4126   else
4127     {
4128       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4129     }
4130 }
4131 
4132 /* Called when writing out an object file to decide the type of a
4133    symbol.  */
4134 static int
elf32_hppa_elf_get_symbol_type(Elf_Internal_Sym * elf_sym,int type)4135 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4136 {
4137   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4138     return STT_PARISC_MILLI;
4139   else
4140     return type;
4141 }
4142 
4143 /* Misc BFD support code.  */
4144 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4145 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4146 #define elf_info_to_howto		     elf_hppa_info_to_howto
4147 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4148 
4149 /* Stuff for the BFD linker.  */
4150 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4151 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4152 #define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
4153 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4154 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4155 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4156 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4157 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4158 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4159 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4160 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4161 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4162 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4163 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4164 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4165 #define elf_backend_object_p		     elf32_hppa_object_p
4166 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4167 #define elf_backend_post_process_headers     elf32_hppa_post_process_headers
4168 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4169 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4170 
4171 #define elf_backend_can_gc_sections	     1
4172 #define elf_backend_can_refcount	     1
4173 #define elf_backend_plt_alignment	     2
4174 #define elf_backend_want_got_plt	     0
4175 #define elf_backend_plt_readonly	     0
4176 #define elf_backend_want_plt_sym	     0
4177 #define elf_backend_got_header_size	     8
4178 #define elf_backend_rela_normal		     1
4179 
4180 #define TARGET_BIG_SYM		bfd_elf32_hppa_vec
4181 #define TARGET_BIG_NAME		"elf32-hppa"
4182 #define ELF_ARCH		bfd_arch_hppa
4183 #define ELF_MACHINE_CODE	EM_PARISC
4184 #define ELF_MAXPAGESIZE		0x1000
4185 
4186 #include "elf32-target.h"
4187 
4188 #undef TARGET_BIG_SYM
4189 #define TARGET_BIG_SYM			bfd_elf32_hppa_linux_vec
4190 #undef TARGET_BIG_NAME
4191 #define TARGET_BIG_NAME			"elf32-hppa-linux"
4192 
4193 #define INCLUDED_TARGET_FILE 1
4194 #include "elf32-target.h"
4195