1 /* SPARC-specific support for 64-bit ELF
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004 Free Software Foundation, Inc.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20 
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26 
27 /* This is defined if one wants to build upward compatible binaries
28    with the original sparc64-elf toolchain.  The support is kept in for
29    now but is turned off by default.  dje 970930  */
30 /*#define SPARC64_OLD_RELOCS*/
31 
32 #include "elf/sparc.h"
33 
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36 
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38   PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 	   bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43   PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45   PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46 
47 static void sparc64_elf_build_plt
48   PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50   PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52   PARAMS ((bfd_vma, bfd_vma));
53 
54 static bfd_boolean sparc64_elf_check_relocs
55   PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 	   const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58   PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60   PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62   PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64   PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 	   const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67   PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 	   bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 			    asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71   PARAMS ((bfd *, asymbol *));
72 
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74   PARAMS ((bfd *, bfd *));
75 
76 static bfd_boolean sparc64_elf_fake_sections
77   PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
78 
79 static const char *sparc64_elf_print_symbol_all
80   PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82   PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84   PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86   PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89   PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 	   Elf_Internal_Sym *));
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92   PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97   PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99   PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101   PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103   PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106   PARAMS ((const Elf_Internal_Rela *));
107 
108 /* The relocation "howto" table.  */
109 
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118 
119 static reloc_howto_type sparc64_elf_howto_table[] =
120 {
121   HOWTO(R_SPARC_NONE,      0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_NONE",    FALSE,0,0x00000000,TRUE),
122   HOWTO(R_SPARC_8,         0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_8",       FALSE,0,0x000000ff,TRUE),
123   HOWTO(R_SPARC_16,        0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_16",      FALSE,0,0x0000ffff,TRUE),
124   HOWTO(R_SPARC_32,        0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_32",      FALSE,0,0xffffffff,TRUE),
125   HOWTO(R_SPARC_DISP8,     0,0, 8,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP8",   FALSE,0,0x000000ff,TRUE),
126   HOWTO(R_SPARC_DISP16,    0,1,16,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP16",  FALSE,0,0x0000ffff,TRUE),
127   HOWTO(R_SPARC_DISP32,    0,2,32,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP32",  FALSE,0,0xffffffff,TRUE),
128   HOWTO(R_SPARC_WDISP30,   2,2,30,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129   HOWTO(R_SPARC_WDISP22,   2,2,22,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130   HOWTO(R_SPARC_HI22,     10,2,22,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HI22",    FALSE,0,0x003fffff,TRUE),
131   HOWTO(R_SPARC_22,        0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_22",      FALSE,0,0x003fffff,TRUE),
132   HOWTO(R_SPARC_13,        0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_13",      FALSE,0,0x00001fff,TRUE),
133   HOWTO(R_SPARC_LO10,      0,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LO10",    FALSE,0,0x000003ff,TRUE),
134   HOWTO(R_SPARC_GOT10,     0,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT10",   FALSE,0,0x000003ff,TRUE),
135   HOWTO(R_SPARC_GOT13,     0,2,13,FALSE,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_GOT13",   FALSE,0,0x00001fff,TRUE),
136   HOWTO(R_SPARC_GOT22,    10,2,22,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT22",   FALSE,0,0x003fffff,TRUE),
137   HOWTO(R_SPARC_PC10,      0,2,10,TRUE, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC10",    FALSE,0,0x000003ff,TRUE),
138   HOWTO(R_SPARC_PC22,     10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PC22",    FALSE,0,0x003fffff,TRUE),
139   HOWTO(R_SPARC_WPLT30,    2,2,30,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WPLT30",  FALSE,0,0x3fffffff,TRUE),
140   HOWTO(R_SPARC_COPY,      0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_COPY",    FALSE,0,0x00000000,TRUE),
141   HOWTO(R_SPARC_GLOB_DAT,  0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142   HOWTO(R_SPARC_JMP_SLOT,  0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143   HOWTO(R_SPARC_RELATIVE,  0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144   HOWTO(R_SPARC_UA32,      0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA32",    FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146   HOWTO(R_SPARC_PLT32,     0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT32",   FALSE,0,0xffffffff,TRUE),
147   /* These aren't implemented yet.  */
148   HOWTO(R_SPARC_HIPLT22,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_HIPLT22",  FALSE,0,0x00000000,TRUE),
149   HOWTO(R_SPARC_LOPLT10,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_LOPLT10",  FALSE,0,0x00000000,TRUE),
150   HOWTO(R_SPARC_PCPLT32,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT32",  FALSE,0,0x00000000,TRUE),
151   HOWTO(R_SPARC_PCPLT22,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT22",  FALSE,0,0x00000000,TRUE),
152   HOWTO(R_SPARC_PCPLT10,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT10",  FALSE,0,0x00000000,TRUE),
153 #endif
154   HOWTO(R_SPARC_10,        0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_10",      FALSE,0,0x000003ff,TRUE),
155   HOWTO(R_SPARC_11,        0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_11",      FALSE,0,0x000007ff,TRUE),
156   HOWTO(R_SPARC_64,        0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_64",      FALSE,0,MINUS_ONE, TRUE),
157   HOWTO(R_SPARC_OLO10,     0,2,13,FALSE,0,complain_overflow_signed,  sparc_elf_notsup_reloc, "R_SPARC_OLO10",   FALSE,0,0x00001fff,TRUE),
158   HOWTO(R_SPARC_HH22,     42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_HH22",    FALSE,0,0x003fffff,TRUE),
159   HOWTO(R_SPARC_HM10,     32,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HM10",    FALSE,0,0x000003ff,TRUE),
160   HOWTO(R_SPARC_LM22,     10,2,22,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LM22",    FALSE,0,0x003fffff,TRUE),
161   HOWTO(R_SPARC_PC_HH22,  42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_PC_HH22",    FALSE,0,0x003fffff,TRUE),
162   HOWTO(R_SPARC_PC_HM10,  32,2,10,TRUE, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_HM10",    FALSE,0,0x000003ff,TRUE),
163   HOWTO(R_SPARC_PC_LM22,  10,2,22,TRUE, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_LM22",    FALSE,0,0x003fffff,TRUE),
164   HOWTO(R_SPARC_WDISP16,   2,2,16,TRUE, 0,complain_overflow_signed,  sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165   HOWTO(R_SPARC_WDISP19,   2,2,19,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166   HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167   HOWTO(R_SPARC_7,         0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_7",       FALSE,0,0x0000007f,TRUE),
168   HOWTO(R_SPARC_5,         0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_5",       FALSE,0,0x0000001f,TRUE),
169   HOWTO(R_SPARC_6,         0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_6",       FALSE,0,0x0000003f,TRUE),
170   HOWTO(R_SPARC_DISP64,    0,4,64,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP64",  FALSE,0,MINUS_ONE, TRUE),
171   HOWTO(R_SPARC_PLT64,     0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT64",   FALSE,0,MINUS_ONE, TRUE),
172   HOWTO(R_SPARC_HIX22,     0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,  "R_SPARC_HIX22",   FALSE,0,MINUS_ONE, FALSE),
173   HOWTO(R_SPARC_LOX10,     0,4, 0,FALSE,0,complain_overflow_dont,    sparc_elf_lox10_reloc,  "R_SPARC_LOX10",   FALSE,0,MINUS_ONE, FALSE),
174   HOWTO(R_SPARC_H44,      22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_H44",     FALSE,0,0x003fffff,FALSE),
175   HOWTO(R_SPARC_M44,      12,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_M44",     FALSE,0,0x000003ff,FALSE),
176   HOWTO(R_SPARC_L44,       0,2,13,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_L44",     FALSE,0,0x00000fff,FALSE),
177   HOWTO(R_SPARC_REGISTER,  0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178   HOWTO(R_SPARC_UA64,        0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA64",      FALSE,0,MINUS_ONE, TRUE),
179   HOWTO(R_SPARC_UA16,        0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA16",      FALSE,0,0x0000ffff,TRUE),
180   HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181   HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182   HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183   HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184   HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185   HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186   HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187   HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188   HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189   HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont,  sparc_elf_lox10_reloc,  "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190   HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191   HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192   HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193   HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont,     bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194   HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195   HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196   HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197   HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont,   sparc_elf_lox10_reloc,  "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198   HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199   HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200   HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201   HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202   HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203   HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
204 };
205 
206 struct elf_reloc_map {
207   bfd_reloc_code_real_type bfd_reloc_val;
208   unsigned char elf_reloc_val;
209 };
210 
211 static const struct elf_reloc_map sparc_reloc_map[] =
212 {
213   { BFD_RELOC_NONE, R_SPARC_NONE, },
214   { BFD_RELOC_16, R_SPARC_16, },
215   { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216   { BFD_RELOC_8, R_SPARC_8 },
217   { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218   { BFD_RELOC_CTOR, R_SPARC_64 },
219   { BFD_RELOC_32, R_SPARC_32 },
220   { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221   { BFD_RELOC_HI22, R_SPARC_HI22 },
222   { BFD_RELOC_LO10, R_SPARC_LO10, },
223   { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224   { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225   { BFD_RELOC_SPARC22, R_SPARC_22 },
226   { BFD_RELOC_SPARC13, R_SPARC_13 },
227   { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228   { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229   { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230   { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231   { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232   { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233   { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234   { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235   { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236   { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237   { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238   { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239   { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240   { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241   { BFD_RELOC_SPARC_10, R_SPARC_10 },
242   { BFD_RELOC_SPARC_11, R_SPARC_11 },
243   { BFD_RELOC_SPARC_64, R_SPARC_64 },
244   { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245   { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246   { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247   { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248   { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249   { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250   { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251   { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252   { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253   { BFD_RELOC_SPARC_7, R_SPARC_7 },
254   { BFD_RELOC_SPARC_5, R_SPARC_5 },
255   { BFD_RELOC_SPARC_6, R_SPARC_6 },
256   { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257   { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258   { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259   { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260   { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261   { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262   { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263   { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264   { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265   { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266   { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267   { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268   { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269   { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270   { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271   { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272   { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273   { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274   { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275   { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276   { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277   { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278   { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279   { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280   { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282   { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283 #endif
284   { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285   { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286   { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287   { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288   { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289   { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290   { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
291 };
292 
293 static reloc_howto_type *
sparc64_elf_reloc_type_lookup(abfd,code)294 sparc64_elf_reloc_type_lookup (abfd, code)
295      bfd *abfd ATTRIBUTE_UNUSED;
296      bfd_reloc_code_real_type code;
297 {
298   unsigned int i;
299   for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
300     {
301       if (sparc_reloc_map[i].bfd_reloc_val == code)
302 	return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
303     }
304   return 0;
305 }
306 
307 static void
sparc64_elf_info_to_howto(abfd,cache_ptr,dst)308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309      bfd *abfd ATTRIBUTE_UNUSED;
310      arelent *cache_ptr;
311      Elf_Internal_Rela *dst;
312 {
313   BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314   cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
315 }
316 
317 struct sparc64_elf_section_data
318 {
319   struct bfd_elf_section_data elf;
320   unsigned int do_relax, reloc_count;
321 };
322 
323 #define sec_do_relax(sec) \
324   ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326   ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
327 
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329    section can represent up to two relocs, we must tell the user to allocate
330    more space.  */
331 
332 static long
sparc64_elf_get_reloc_upper_bound(abfd,sec)333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334      bfd *abfd ATTRIBUTE_UNUSED;
335      asection *sec;
336 {
337   return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
338 }
339 
340 static long
sparc64_elf_get_dynamic_reloc_upper_bound(abfd)341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342      bfd *abfd;
343 {
344   return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
345 }
346 
347 /* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
348    them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
349    has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
350    for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
351 
352 static bfd_boolean
sparc64_elf_slurp_one_reloc_table(abfd,asect,rel_hdr,symbols,dynamic)353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354      bfd *abfd;
355      asection *asect;
356      Elf_Internal_Shdr *rel_hdr;
357      asymbol **symbols;
358      bfd_boolean dynamic;
359 {
360   PTR allocated = NULL;
361   bfd_byte *native_relocs;
362   arelent *relent;
363   unsigned int i;
364   int entsize;
365   bfd_size_type count;
366   arelent *relents;
367 
368   allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369   if (allocated == NULL)
370     goto error_return;
371 
372   if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373       || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
374     goto error_return;
375 
376   native_relocs = (bfd_byte *) allocated;
377 
378   relents = asect->relocation + canon_reloc_count (asect);
379 
380   entsize = rel_hdr->sh_entsize;
381   BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
382 
383   count = rel_hdr->sh_size / entsize;
384 
385   for (i = 0, relent = relents; i < count;
386        i++, relent++, native_relocs += entsize)
387     {
388       Elf_Internal_Rela rela;
389 
390       bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
391 
392       /* The address of an ELF reloc is section relative for an object
393 	 file, and absolute for an executable file or shared library.
394 	 The address of a normal BFD reloc is always section relative,
395 	 and the address of a dynamic reloc is absolute..  */
396       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 	relent->address = rela.r_offset;
398       else
399 	relent->address = rela.r_offset - asect->vma;
400 
401       if (ELF64_R_SYM (rela.r_info) == 0)
402 	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403       else
404 	{
405 	  asymbol **ps, *s;
406 
407 	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 	  s = *ps;
409 
410 	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
411 	  if ((s->flags & BSF_SECTION_SYM) == 0)
412 	    relent->sym_ptr_ptr = ps;
413 	  else
414 	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
415 	}
416 
417       relent->addend = rela.r_addend;
418 
419       BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420       if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
421 	{
422 	  relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 	  relent[1].address = relent->address;
424 	  relent++;
425 	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 	  relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
428 	}
429       else
430 	relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
431     }
432 
433   canon_reloc_count (asect) += relent - relents;
434 
435   if (allocated != NULL)
436     free (allocated);
437 
438   return TRUE;
439 
440  error_return:
441   if (allocated != NULL)
442     free (allocated);
443   return FALSE;
444 }
445 
446 /* Read in and swap the external relocs.  */
447 
448 static bfd_boolean
sparc64_elf_slurp_reloc_table(abfd,asect,symbols,dynamic)449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450      bfd *abfd;
451      asection *asect;
452      asymbol **symbols;
453      bfd_boolean dynamic;
454 {
455   struct bfd_elf_section_data * const d = elf_section_data (asect);
456   Elf_Internal_Shdr *rel_hdr;
457   Elf_Internal_Shdr *rel_hdr2;
458   bfd_size_type amt;
459 
460   if (asect->relocation != NULL)
461     return TRUE;
462 
463   if (! dynamic)
464     {
465       if ((asect->flags & SEC_RELOC) == 0
466 	  || asect->reloc_count == 0)
467 	return TRUE;
468 
469       rel_hdr = &d->rel_hdr;
470       rel_hdr2 = d->rel_hdr2;
471 
472       BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
474     }
475   else
476     {
477       /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 	 case because relocations against this section may use the
479 	 dynamic symbol table, and in that case bfd_section_from_shdr
480 	 in elf.c does not update the RELOC_COUNT.  */
481       if (asect->_raw_size == 0)
482 	return TRUE;
483 
484       rel_hdr = &d->this_hdr;
485       asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
486       rel_hdr2 = NULL;
487     }
488 
489   amt = asect->reloc_count;
490   amt *= 2 * sizeof (arelent);
491   asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492   if (asect->relocation == NULL)
493     return FALSE;
494 
495   /* The sparc64_elf_slurp_one_reloc_table routine increments
496      canon_reloc_count.  */
497   canon_reloc_count (asect) = 0;
498 
499   if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 					  dynamic))
501     return FALSE;
502 
503   if (rel_hdr2
504       && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 					     dynamic))
506     return FALSE;
507 
508   return TRUE;
509 }
510 
511 /* Canonicalize the relocs.  */
512 
513 static long
sparc64_elf_canonicalize_reloc(abfd,section,relptr,symbols)514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515      bfd *abfd;
516      sec_ptr section;
517      arelent **relptr;
518      asymbol **symbols;
519 {
520   arelent *tblptr;
521   unsigned int i;
522   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
523 
524   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525     return -1;
526 
527   tblptr = section->relocation;
528   for (i = 0; i < canon_reloc_count (section); i++)
529     *relptr++ = tblptr++;
530 
531   *relptr = NULL;
532 
533   return canon_reloc_count (section);
534 }
535 
536 
537 /* Canonicalize the dynamic relocation entries.  Note that we return
538    the dynamic relocations as a single block, although they are
539    actually associated with particular sections; the interface, which
540    was designed for SunOS style shared libraries, expects that there
541    is only one set of dynamic relocs.  Any section that was actually
542    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543    the dynamic symbol table, is considered to be a dynamic reloc
544    section.  */
545 
546 static long
sparc64_elf_canonicalize_dynamic_reloc(abfd,storage,syms)547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548      bfd *abfd;
549      arelent **storage;
550      asymbol **syms;
551 {
552   asection *s;
553   long ret;
554 
555   if (elf_dynsymtab (abfd) == 0)
556     {
557       bfd_set_error (bfd_error_invalid_operation);
558       return -1;
559     }
560 
561   ret = 0;
562   for (s = abfd->sections; s != NULL; s = s->next)
563     {
564       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
566 	{
567 	  arelent *p;
568 	  long count, i;
569 
570 	  if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
571 	    return -1;
572 	  count = canon_reloc_count (s);
573 	  p = s->relocation;
574 	  for (i = 0; i < count; i++)
575 	    *storage++ = p++;
576 	  ret += count;
577 	}
578     }
579 
580   *storage = NULL;
581 
582   return ret;
583 }
584 
585 /* Write out the relocs.  */
586 
587 static void
sparc64_elf_write_relocs(abfd,sec,data)588 sparc64_elf_write_relocs (abfd, sec, data)
589      bfd *abfd;
590      asection *sec;
591      PTR data;
592 {
593   bfd_boolean *failedp = (bfd_boolean *) data;
594   Elf_Internal_Shdr *rela_hdr;
595   Elf64_External_Rela *outbound_relocas, *src_rela;
596   unsigned int idx, count;
597   asymbol *last_sym = 0;
598   int last_sym_idx = 0;
599 
600   /* If we have already failed, don't do anything.  */
601   if (*failedp)
602     return;
603 
604   if ((sec->flags & SEC_RELOC) == 0)
605     return;
606 
607   /* The linker backend writes the relocs out itself, and sets the
608      reloc_count field to zero to inhibit writing them here.  Also,
609      sometimes the SEC_RELOC flag gets set even when there aren't any
610      relocs.  */
611   if (sec->reloc_count == 0)
612     return;
613 
614   /* We can combine two relocs that refer to the same address
615      into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616      latter is R_SPARC_13 with no associated symbol.  */
617   count = 0;
618   for (idx = 0; idx < sec->reloc_count; idx++)
619     {
620       bfd_vma addr;
621 
622       ++count;
623 
624       addr = sec->orelocation[idx]->address;
625       if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 	  && idx < sec->reloc_count - 1)
627 	{
628 	  arelent *r = sec->orelocation[idx + 1];
629 
630 	  if (r->howto->type == R_SPARC_13
631 	      && r->address == addr
632 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 	      && (*r->sym_ptr_ptr)->value == 0)
634 	    ++idx;
635 	}
636     }
637 
638   rela_hdr = &elf_section_data (sec)->rel_hdr;
639 
640   rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641   rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642   if (rela_hdr->contents == NULL)
643     {
644       *failedp = TRUE;
645       return;
646     }
647 
648   /* Figure out whether the relocations are RELA or REL relocations.  */
649   if (rela_hdr->sh_type != SHT_RELA)
650     abort ();
651 
652   /* orelocation has the data, reloc_count has the count...  */
653   outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654   src_rela = outbound_relocas;
655 
656   for (idx = 0; idx < sec->reloc_count; idx++)
657     {
658       Elf_Internal_Rela dst_rela;
659       arelent *ptr;
660       asymbol *sym;
661       int n;
662 
663       ptr = sec->orelocation[idx];
664 
665       /* The address of an ELF reloc is section relative for an object
666 	 file, and absolute for an executable file or shared library.
667 	 The address of a BFD reloc is always section relative.  */
668       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 	dst_rela.r_offset = ptr->address;
670       else
671 	dst_rela.r_offset = ptr->address + sec->vma;
672 
673       sym = *ptr->sym_ptr_ptr;
674       if (sym == last_sym)
675 	n = last_sym_idx;
676       else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 	n = STN_UNDEF;
678       else
679 	{
680 	  last_sym = sym;
681 	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 	  if (n < 0)
683 	    {
684 	      *failedp = TRUE;
685 	      return;
686 	    }
687 	  last_sym_idx = n;
688 	}
689 
690       if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 	  && ! _bfd_elf_validate_reloc (abfd, ptr))
693 	{
694 	  *failedp = TRUE;
695 	  return;
696 	}
697 
698       if (ptr->howto->type == R_SPARC_LO10
699 	  && idx < sec->reloc_count - 1)
700 	{
701 	  arelent *r = sec->orelocation[idx + 1];
702 
703 	  if (r->howto->type == R_SPARC_13
704 	      && r->address == ptr->address
705 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 	      && (*r->sym_ptr_ptr)->value == 0)
707 	    {
708 	      idx++;
709 	      dst_rela.r_info
710 		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 						      R_SPARC_OLO10));
712 	    }
713 	  else
714 	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
715 	}
716       else
717 	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
718 
719       dst_rela.r_addend = ptr->addend;
720       bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
721       ++src_rela;
722     }
723 }
724 
725 /* Sparc64 ELF linker hash table.  */
726 
727 struct sparc64_elf_app_reg
728 {
729   unsigned char bind;
730   unsigned short shndx;
731   bfd *abfd;
732   char *name;
733 };
734 
735 struct sparc64_elf_link_hash_table
736 {
737   struct elf_link_hash_table root;
738 
739   struct sparc64_elf_app_reg app_regs [4];
740 };
741 
742 /* Get the Sparc64 ELF linker hash table from a link_info structure.  */
743 
744 #define sparc64_elf_hash_table(p) \
745   ((struct sparc64_elf_link_hash_table *) ((p)->hash))
746 
747 /* Create a Sparc64 ELF linker hash table.  */
748 
749 static struct bfd_link_hash_table *
sparc64_elf_bfd_link_hash_table_create(abfd)750 sparc64_elf_bfd_link_hash_table_create (abfd)
751      bfd *abfd;
752 {
753   struct sparc64_elf_link_hash_table *ret;
754   bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
755 
756   ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757   if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758     return NULL;
759 
760   if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 				       _bfd_elf_link_hash_newfunc))
762     {
763       free (ret);
764       return NULL;
765     }
766 
767   return &ret->root.root;
768 }
769 
770 /* Utility for performing the standard initial work of an instruction
771    relocation.
772    *PRELOCATION will contain the relocated item.
773    *PINSN will contain the instruction from the input stream.
774    If the result is `bfd_reloc_other' the caller can continue with
775    performing the relocation.  Otherwise it must stop and return the
776    value to its caller.  */
777 
778 static bfd_reloc_status_type
init_insn_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,prelocation,pinsn)779 init_insn_reloc (abfd,
780 		 reloc_entry,
781 		 symbol,
782 		 data,
783 		 input_section,
784 		 output_bfd,
785 		 prelocation,
786 		 pinsn)
787      bfd *abfd;
788      arelent *reloc_entry;
789      asymbol *symbol;
790      PTR data;
791      asection *input_section;
792      bfd *output_bfd;
793      bfd_vma *prelocation;
794      bfd_vma *pinsn;
795 {
796   bfd_vma relocation;
797   reloc_howto_type *howto = reloc_entry->howto;
798 
799   if (output_bfd != (bfd *) NULL
800       && (symbol->flags & BSF_SECTION_SYM) == 0
801       && (! howto->partial_inplace
802 	  || reloc_entry->addend == 0))
803     {
804       reloc_entry->address += input_section->output_offset;
805       return bfd_reloc_ok;
806     }
807 
808   /* This works because partial_inplace is FALSE.  */
809   if (output_bfd != NULL)
810     return bfd_reloc_continue;
811 
812   if (reloc_entry->address > input_section->_cooked_size)
813     return bfd_reloc_outofrange;
814 
815   relocation = (symbol->value
816 		+ symbol->section->output_section->vma
817 		+ symbol->section->output_offset);
818   relocation += reloc_entry->addend;
819   if (howto->pc_relative)
820     {
821       relocation -= (input_section->output_section->vma
822 		     + input_section->output_offset);
823       relocation -= reloc_entry->address;
824     }
825 
826   *prelocation = relocation;
827   *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
828   return bfd_reloc_other;
829 }
830 
831 /* For unsupported relocs.  */
832 
833 static bfd_reloc_status_type
sparc_elf_notsup_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)834 sparc_elf_notsup_reloc (abfd,
835 			reloc_entry,
836 			symbol,
837 			data,
838 			input_section,
839 			output_bfd,
840 			error_message)
841      bfd *abfd ATTRIBUTE_UNUSED;
842      arelent *reloc_entry ATTRIBUTE_UNUSED;
843      asymbol *symbol ATTRIBUTE_UNUSED;
844      PTR data ATTRIBUTE_UNUSED;
845      asection *input_section ATTRIBUTE_UNUSED;
846      bfd *output_bfd ATTRIBUTE_UNUSED;
847      char **error_message ATTRIBUTE_UNUSED;
848 {
849   return bfd_reloc_notsupported;
850 }
851 
852 /* Handle the WDISP16 reloc.  */
853 
854 static bfd_reloc_status_type
sparc_elf_wdisp16_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)855 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
856 			 output_bfd, error_message)
857      bfd *abfd;
858      arelent *reloc_entry;
859      asymbol *symbol;
860      PTR data;
861      asection *input_section;
862      bfd *output_bfd;
863      char **error_message ATTRIBUTE_UNUSED;
864 {
865   bfd_vma relocation;
866   bfd_vma insn;
867   bfd_reloc_status_type status;
868 
869   status = init_insn_reloc (abfd, reloc_entry, symbol, data,
870 			    input_section, output_bfd, &relocation, &insn);
871   if (status != bfd_reloc_other)
872     return status;
873 
874   insn &= ~ (bfd_vma) 0x303fff;
875   insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
876   bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
877 
878   if ((bfd_signed_vma) relocation < - 0x40000
879       || (bfd_signed_vma) relocation > 0x3ffff)
880     return bfd_reloc_overflow;
881   else
882     return bfd_reloc_ok;
883 }
884 
885 /* Handle the HIX22 reloc.  */
886 
887 static bfd_reloc_status_type
sparc_elf_hix22_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)888 sparc_elf_hix22_reloc (abfd,
889 		       reloc_entry,
890 		       symbol,
891 		       data,
892 		       input_section,
893 		       output_bfd,
894 		       error_message)
895      bfd *abfd;
896      arelent *reloc_entry;
897      asymbol *symbol;
898      PTR data;
899      asection *input_section;
900      bfd *output_bfd;
901      char **error_message ATTRIBUTE_UNUSED;
902 {
903   bfd_vma relocation;
904   bfd_vma insn;
905   bfd_reloc_status_type status;
906 
907   status = init_insn_reloc (abfd, reloc_entry, symbol, data,
908 			    input_section, output_bfd, &relocation, &insn);
909   if (status != bfd_reloc_other)
910     return status;
911 
912   relocation ^= MINUS_ONE;
913   insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
914   bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
915 
916   if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
917     return bfd_reloc_overflow;
918   else
919     return bfd_reloc_ok;
920 }
921 
922 /* Handle the LOX10 reloc.  */
923 
924 static bfd_reloc_status_type
sparc_elf_lox10_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)925 sparc_elf_lox10_reloc (abfd,
926 		       reloc_entry,
927 		       symbol,
928 		       data,
929 		       input_section,
930 		       output_bfd,
931 		       error_message)
932      bfd *abfd;
933      arelent *reloc_entry;
934      asymbol *symbol;
935      PTR data;
936      asection *input_section;
937      bfd *output_bfd;
938      char **error_message ATTRIBUTE_UNUSED;
939 {
940   bfd_vma relocation;
941   bfd_vma insn;
942   bfd_reloc_status_type status;
943 
944   status = init_insn_reloc (abfd, reloc_entry, symbol, data,
945 			    input_section, output_bfd, &relocation, &insn);
946   if (status != bfd_reloc_other)
947     return status;
948 
949   insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
950   bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
951 
952   return bfd_reloc_ok;
953 }
954 
955 /* PLT/GOT stuff */
956 
957 /* Both the headers and the entries are icache aligned.  */
958 #define PLT_ENTRY_SIZE		32
959 #define PLT_HEADER_SIZE		(4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD	32768
961 #define GOT_RESERVED_ENTRIES	1
962 
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
964 
965 /* Fill in the .plt section.  */
966 
967 static void
sparc64_elf_build_plt(output_bfd,contents,nentries)968 sparc64_elf_build_plt (output_bfd, contents, nentries)
969      bfd *output_bfd;
970      unsigned char *contents;
971      int nentries;
972 {
973   const unsigned int nop = 0x01000000;
974   int i, j;
975 
976   /* The first four entries are reserved, and are initially undefined.
977      We fill them with `illtrap 0' to force ld.so to do something.  */
978 
979   for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
980     bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
981 
982   /* The first 32768 entries are close enough to plt1 to get there via
983      a straight branch.  */
984 
985   for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
986     {
987       unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
988       unsigned int sethi, ba;
989 
990       /* sethi (. - plt0), %g1 */
991       sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
992 
993       /* ba,a,pt %xcc, plt1 */
994       ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
995 
996       bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
997       bfd_put_32 (output_bfd, (bfd_vma) ba,    entry + 4);
998       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 8);
999       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 12);
1000       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 16);
1001       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 20);
1002       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 24);
1003       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 28);
1004     }
1005 
1006   /* Now the tricky bit.  Entries 32768 and higher are grouped in blocks of
1007      160: 160 entries and 160 pointers.  This is to separate code from data,
1008      which is much friendlier on the cache.  */
1009 
1010   for (; i < nentries; i += 160)
1011     {
1012       int block = (i + 160 <= nentries ? 160 : nentries - i);
1013       for (j = 0; j < block; ++j)
1014 	{
1015 	  unsigned char *entry, *ptr;
1016 	  unsigned int ldx;
1017 
1018 	  entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1019 	  ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1020 
1021 	  /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 	  ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1023 
1024 	  /* mov %o7,%g5
1025 	     call .+8
1026 	     nop
1027 	     ldx [%o7+P],%g1
1028 	     jmpl %o7+%g1,%g1
1029 	     mov %g5,%o7  */
1030 	  bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1031 	  bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1032 	  bfd_put_32 (output_bfd, (bfd_vma) nop,        entry + 8);
1033 	  bfd_put_32 (output_bfd, (bfd_vma) ldx,        entry + 12);
1034 	  bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1035 	  bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1036 
1037 	  bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1038 	}
1039     }
1040 }
1041 
1042 /* Return the offset of a particular plt entry within the .plt section.  */
1043 
1044 static bfd_vma
sparc64_elf_plt_entry_offset(index)1045 sparc64_elf_plt_entry_offset (index)
1046      bfd_vma index;
1047 {
1048   bfd_vma block, ofs;
1049 
1050   if (index < LARGE_PLT_THRESHOLD)
1051     return index * PLT_ENTRY_SIZE;
1052 
1053   /* See above for details.  */
1054 
1055   block = (index - LARGE_PLT_THRESHOLD) / 160;
1056   ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1057 
1058   return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1059 }
1060 
1061 static bfd_vma
sparc64_elf_plt_ptr_offset(index,max)1062 sparc64_elf_plt_ptr_offset (index, max)
1063      bfd_vma index;
1064      bfd_vma max;
1065 {
1066   bfd_vma block, ofs, last;
1067 
1068   BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1069 
1070   /* See above for details.  */
1071 
1072   block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1073   ofs = index - block;
1074   if (block + 160 > max)
1075     last = (max - LARGE_PLT_THRESHOLD) % 160;
1076   else
1077     last = 160;
1078 
1079   return (block * PLT_ENTRY_SIZE
1080 	  + last * 6*4
1081 	  + ofs * 8);
1082 }
1083 
1084 /* Look through the relocs for a section during the first phase, and
1085    allocate space in the global offset table or procedure linkage
1086    table.  */
1087 
1088 static bfd_boolean
sparc64_elf_check_relocs(abfd,info,sec,relocs)1089 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1090      bfd *abfd;
1091      struct bfd_link_info *info;
1092      asection *sec;
1093      const Elf_Internal_Rela *relocs;
1094 {
1095   bfd *dynobj;
1096   Elf_Internal_Shdr *symtab_hdr;
1097   struct elf_link_hash_entry **sym_hashes;
1098   bfd_vma *local_got_offsets;
1099   const Elf_Internal_Rela *rel;
1100   const Elf_Internal_Rela *rel_end;
1101   asection *sgot;
1102   asection *srelgot;
1103   asection *sreloc;
1104 
1105   if (info->relocatable || !(sec->flags & SEC_ALLOC))
1106     return TRUE;
1107 
1108   dynobj = elf_hash_table (info)->dynobj;
1109   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1110   sym_hashes = elf_sym_hashes (abfd);
1111   local_got_offsets = elf_local_got_offsets (abfd);
1112 
1113   sgot = NULL;
1114   srelgot = NULL;
1115   sreloc = NULL;
1116 
1117   rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1118   for (rel = relocs; rel < rel_end; rel++)
1119     {
1120       unsigned long r_symndx;
1121       struct elf_link_hash_entry *h;
1122 
1123       r_symndx = ELF64_R_SYM (rel->r_info);
1124       if (r_symndx < symtab_hdr->sh_info)
1125 	h = NULL;
1126       else
1127 	h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1128 
1129       switch (ELF64_R_TYPE_ID (rel->r_info))
1130 	{
1131 	case R_SPARC_GOT10:
1132 	case R_SPARC_GOT13:
1133 	case R_SPARC_GOT22:
1134 	  /* This symbol requires a global offset table entry.  */
1135 
1136 	  if (dynobj == NULL)
1137 	    {
1138 	      /* Create the .got section.  */
1139 	      elf_hash_table (info)->dynobj = dynobj = abfd;
1140 	      if (! _bfd_elf_create_got_section (dynobj, info))
1141 		return FALSE;
1142 	    }
1143 
1144 	  if (sgot == NULL)
1145 	    {
1146 	      sgot = bfd_get_section_by_name (dynobj, ".got");
1147 	      BFD_ASSERT (sgot != NULL);
1148 	    }
1149 
1150 	  if (srelgot == NULL && (h != NULL || info->shared))
1151 	    {
1152 	      srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1153 	      if (srelgot == NULL)
1154 		{
1155 		  srelgot = bfd_make_section (dynobj, ".rela.got");
1156 		  if (srelgot == NULL
1157 		      || ! bfd_set_section_flags (dynobj, srelgot,
1158 						  (SEC_ALLOC
1159 						   | SEC_LOAD
1160 						   | SEC_HAS_CONTENTS
1161 						   | SEC_IN_MEMORY
1162 						   | SEC_LINKER_CREATED
1163 						   | SEC_READONLY))
1164 		      || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1165 		    return FALSE;
1166 		}
1167 	    }
1168 
1169 	  if (h != NULL)
1170 	    {
1171 	      if (h->got.offset != (bfd_vma) -1)
1172 		{
1173 		  /* We have already allocated space in the .got.  */
1174 		  break;
1175 		}
1176 	      h->got.offset = sgot->_raw_size;
1177 
1178 	      /* Make sure this symbol is output as a dynamic symbol.  */
1179 	      if (h->dynindx == -1)
1180 		{
1181 		  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1182 		    return FALSE;
1183 		}
1184 
1185 	      srelgot->_raw_size += sizeof (Elf64_External_Rela);
1186 	    }
1187 	  else
1188 	    {
1189 	      /* This is a global offset table entry for a local
1190                  symbol.  */
1191 	      if (local_got_offsets == NULL)
1192 		{
1193 		  bfd_size_type size;
1194 		  register unsigned int i;
1195 
1196 		  size = symtab_hdr->sh_info;
1197 		  size *= sizeof (bfd_vma);
1198 		  local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1199 		  if (local_got_offsets == NULL)
1200 		    return FALSE;
1201 		  elf_local_got_offsets (abfd) = local_got_offsets;
1202 		  for (i = 0; i < symtab_hdr->sh_info; i++)
1203 		    local_got_offsets[i] = (bfd_vma) -1;
1204 		}
1205 	      if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1206 		{
1207 		  /* We have already allocated space in the .got.  */
1208 		  break;
1209 		}
1210 	      local_got_offsets[r_symndx] = sgot->_raw_size;
1211 
1212 	      if (info->shared)
1213 		{
1214 		  /* If we are generating a shared object, we need to
1215                      output a R_SPARC_RELATIVE reloc so that the
1216                      dynamic linker can adjust this GOT entry.  */
1217 		  srelgot->_raw_size += sizeof (Elf64_External_Rela);
1218 		}
1219 	    }
1220 
1221 	  sgot->_raw_size += 8;
1222 
1223 #if 0
1224 	  /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 	     unsigned numbers.  If we permit ourselves to modify
1226 	     code so we get sethi/xor, this could work.
1227 	     Question: do we consider conditionally re-enabling
1228              this for -fpic, once we know about object code models?  */
1229 	  /* If the .got section is more than 0x1000 bytes, we add
1230 	     0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 	     bit relocations have a greater chance of working.  */
1232 	  if (sgot->_raw_size >= 0x1000
1233 	      && elf_hash_table (info)->hgot->root.u.def.value == 0)
1234 	    elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1235 #endif
1236 
1237 	  break;
1238 
1239 	case R_SPARC_WPLT30:
1240 	case R_SPARC_PLT32:
1241 	case R_SPARC_HIPLT22:
1242 	case R_SPARC_LOPLT10:
1243 	case R_SPARC_PCPLT32:
1244 	case R_SPARC_PCPLT22:
1245 	case R_SPARC_PCPLT10:
1246 	case R_SPARC_PLT64:
1247 	  /* This symbol requires a procedure linkage table entry.  We
1248              actually build the entry in adjust_dynamic_symbol,
1249              because this might be a case of linking PIC code without
1250              linking in any dynamic objects, in which case we don't
1251              need to generate a procedure linkage table after all.  */
1252 
1253 	  if (h == NULL)
1254 	    {
1255 	      /* It does not make sense to have a procedure linkage
1256                  table entry for a local symbol.  */
1257 	      bfd_set_error (bfd_error_bad_value);
1258 	      return FALSE;
1259 	    }
1260 
1261 	  /* Make sure this symbol is output as a dynamic symbol.  */
1262 	  if (h->dynindx == -1)
1263 	    {
1264 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
1265 		return FALSE;
1266 	    }
1267 
1268 	  h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1269 	  if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1270 	      && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1271 	    break;
1272 	  /* Fall through.  */
1273 	case R_SPARC_PC10:
1274 	case R_SPARC_PC22:
1275 	case R_SPARC_PC_HH22:
1276 	case R_SPARC_PC_HM10:
1277 	case R_SPARC_PC_LM22:
1278 	  if (h != NULL
1279 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1280 	    break;
1281 	  /* Fall through.  */
1282 	case R_SPARC_DISP8:
1283 	case R_SPARC_DISP16:
1284 	case R_SPARC_DISP32:
1285 	case R_SPARC_DISP64:
1286 	case R_SPARC_WDISP30:
1287 	case R_SPARC_WDISP22:
1288 	case R_SPARC_WDISP19:
1289 	case R_SPARC_WDISP16:
1290 	  if (h == NULL)
1291 	    break;
1292 	  /* Fall through.  */
1293 	case R_SPARC_8:
1294 	case R_SPARC_16:
1295 	case R_SPARC_32:
1296 	case R_SPARC_HI22:
1297 	case R_SPARC_22:
1298 	case R_SPARC_13:
1299 	case R_SPARC_LO10:
1300 	case R_SPARC_UA32:
1301 	case R_SPARC_10:
1302 	case R_SPARC_11:
1303 	case R_SPARC_64:
1304 	case R_SPARC_OLO10:
1305 	case R_SPARC_HH22:
1306 	case R_SPARC_HM10:
1307 	case R_SPARC_LM22:
1308 	case R_SPARC_7:
1309 	case R_SPARC_5:
1310 	case R_SPARC_6:
1311 	case R_SPARC_HIX22:
1312 	case R_SPARC_LOX10:
1313 	case R_SPARC_H44:
1314 	case R_SPARC_M44:
1315 	case R_SPARC_L44:
1316 	case R_SPARC_UA64:
1317 	case R_SPARC_UA16:
1318 	  /* When creating a shared object, we must copy these relocs
1319 	     into the output file.  We create a reloc section in
1320 	     dynobj and make room for the reloc.
1321 
1322 	     But don't do this for debugging sections -- this shows up
1323 	     with DWARF2 -- first because they are not loaded, and
1324 	     second because DWARF sez the debug info is not to be
1325 	     biased by the load address.  */
1326 	  if (info->shared && (sec->flags & SEC_ALLOC))
1327 	    {
1328 	      if (sreloc == NULL)
1329 		{
1330 		  const char *name;
1331 
1332 		  name = (bfd_elf_string_from_elf_section
1333 			  (abfd,
1334 			   elf_elfheader (abfd)->e_shstrndx,
1335 			   elf_section_data (sec)->rel_hdr.sh_name));
1336 		  if (name == NULL)
1337 		    return FALSE;
1338 
1339 		  BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1340 			      && strcmp (bfd_get_section_name (abfd, sec),
1341 					 name + 5) == 0);
1342 
1343 		  sreloc = bfd_get_section_by_name (dynobj, name);
1344 		  if (sreloc == NULL)
1345 		    {
1346 		      flagword flags;
1347 
1348 		      sreloc = bfd_make_section (dynobj, name);
1349 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1350 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1351 		      if ((sec->flags & SEC_ALLOC) != 0)
1352 			flags |= SEC_ALLOC | SEC_LOAD;
1353 		      if (sreloc == NULL
1354 			  || ! bfd_set_section_flags (dynobj, sreloc, flags)
1355 			  || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1356 			return FALSE;
1357 		    }
1358 		  if (sec->flags & SEC_READONLY)
1359 		    info->flags |= DF_TEXTREL;
1360 		}
1361 
1362 	      sreloc->_raw_size += sizeof (Elf64_External_Rela);
1363 	    }
1364 	  break;
1365 
1366 	case R_SPARC_REGISTER:
1367 	  /* Nothing to do.  */
1368 	  break;
1369 
1370 	default:
1371 	  (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1372 				bfd_archive_filename (abfd),
1373 				ELF64_R_TYPE_ID (rel->r_info));
1374 	  return FALSE;
1375 	}
1376     }
1377 
1378   return TRUE;
1379 }
1380 
1381 /* Hook called by the linker routine which adds symbols from an object
1382    file.  We use it for STT_REGISTER symbols.  */
1383 
1384 static bfd_boolean
sparc64_elf_add_symbol_hook(abfd,info,sym,namep,flagsp,secp,valp)1385 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1386      bfd *abfd;
1387      struct bfd_link_info *info;
1388      Elf_Internal_Sym *sym;
1389      const char **namep;
1390      flagword *flagsp ATTRIBUTE_UNUSED;
1391      asection **secp ATTRIBUTE_UNUSED;
1392      bfd_vma *valp ATTRIBUTE_UNUSED;
1393 {
1394   static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1395 
1396   if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1397     {
1398       int reg;
1399       struct sparc64_elf_app_reg *p;
1400 
1401       reg = (int)sym->st_value;
1402       switch (reg & ~1)
1403 	{
1404 	case 2: reg -= 2; break;
1405 	case 6: reg -= 4; break;
1406 	default:
1407           (*_bfd_error_handler)
1408             (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1409              bfd_archive_filename (abfd));
1410 	  return FALSE;
1411 	}
1412 
1413       if (info->hash->creator != abfd->xvec
1414 	  || (abfd->flags & DYNAMIC) != 0)
1415         {
1416 	  /* STT_REGISTER only works when linking an elf64_sparc object.
1417 	     If STT_REGISTER comes from a dynamic object, don't put it into
1418 	     the output bfd.  The dynamic linker will recheck it.  */
1419 	  *namep = NULL;
1420 	  return TRUE;
1421         }
1422 
1423       p = sparc64_elf_hash_table(info)->app_regs + reg;
1424 
1425       if (p->name != NULL && strcmp (p->name, *namep))
1426 	{
1427           (*_bfd_error_handler)
1428             (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1429              (int) sym->st_value,
1430              **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1431              *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1432 	  return FALSE;
1433 	}
1434 
1435       if (p->name == NULL)
1436 	{
1437 	  if (**namep)
1438 	    {
1439 	      struct elf_link_hash_entry *h;
1440 
1441 	      h = (struct elf_link_hash_entry *)
1442 		bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1443 
1444 	      if (h != NULL)
1445 		{
1446 		  unsigned char type = h->type;
1447 
1448 		  if (type > STT_FUNC)
1449 		    type = 0;
1450 		  (*_bfd_error_handler)
1451 		    (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1452 		     *namep, bfd_archive_filename (abfd),
1453 		     stt_types[type], bfd_archive_filename (p->abfd));
1454 		  return FALSE;
1455 		}
1456 
1457 	      p->name = bfd_hash_allocate (&info->hash->table,
1458 					   strlen (*namep) + 1);
1459 	      if (!p->name)
1460 		return FALSE;
1461 
1462 	      strcpy (p->name, *namep);
1463 	    }
1464 	  else
1465 	    p->name = "";
1466 	  p->bind = ELF_ST_BIND (sym->st_info);
1467 	  p->abfd = abfd;
1468 	  p->shndx = sym->st_shndx;
1469 	}
1470       else
1471 	{
1472 	  if (p->bind == STB_WEAK
1473 	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1474 	    {
1475 	      p->bind = STB_GLOBAL;
1476 	      p->abfd = abfd;
1477 	    }
1478 	}
1479       *namep = NULL;
1480       return TRUE;
1481     }
1482   else if (*namep && **namep
1483 	   && info->hash->creator == abfd->xvec)
1484     {
1485       int i;
1486       struct sparc64_elf_app_reg *p;
1487 
1488       p = sparc64_elf_hash_table(info)->app_regs;
1489       for (i = 0; i < 4; i++, p++)
1490 	if (p->name != NULL && ! strcmp (p->name, *namep))
1491 	  {
1492 	    unsigned char type = ELF_ST_TYPE (sym->st_info);
1493 
1494 	    if (type > STT_FUNC)
1495 	      type = 0;
1496 	    (*_bfd_error_handler)
1497 	      (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1498 	       *namep, stt_types[type], bfd_archive_filename (abfd),
1499 	       bfd_archive_filename (p->abfd));
1500 	    return FALSE;
1501 	  }
1502     }
1503   return TRUE;
1504 }
1505 
1506 /* This function takes care of emitting STT_REGISTER symbols
1507    which we cannot easily keep in the symbol hash table.  */
1508 
1509 static bfd_boolean
sparc64_elf_output_arch_syms(output_bfd,info,finfo,func)1510 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1511      bfd *output_bfd ATTRIBUTE_UNUSED;
1512      struct bfd_link_info *info;
1513      PTR finfo;
1514      bfd_boolean (*func)
1515        PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1516 		struct elf_link_hash_entry *));
1517 {
1518   int reg;
1519   struct sparc64_elf_app_reg *app_regs =
1520     sparc64_elf_hash_table(info)->app_regs;
1521   Elf_Internal_Sym sym;
1522 
1523   /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1524      at the end of the dynlocal list, so they came at the end of the local
1525      symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
1526      to back up symtab->sh_info.  */
1527   if (elf_hash_table (info)->dynlocal)
1528     {
1529       bfd * dynobj = elf_hash_table (info)->dynobj;
1530       asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1531       struct elf_link_local_dynamic_entry *e;
1532 
1533       for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1534 	if (e->input_indx == -1)
1535 	  break;
1536       if (e)
1537 	{
1538 	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1539 	    = e->dynindx;
1540 	}
1541     }
1542 
1543   if (info->strip == strip_all)
1544     return TRUE;
1545 
1546   for (reg = 0; reg < 4; reg++)
1547     if (app_regs [reg].name != NULL)
1548       {
1549 	if (info->strip == strip_some
1550 	    && bfd_hash_lookup (info->keep_hash,
1551 				app_regs [reg].name,
1552 				FALSE, FALSE) == NULL)
1553 	  continue;
1554 
1555 	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1556 	sym.st_size = 0;
1557 	sym.st_other = 0;
1558 	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1559 	sym.st_shndx = app_regs [reg].shndx;
1560 	if (! (*func) (finfo, app_regs [reg].name, &sym,
1561 		       sym.st_shndx == SHN_ABS
1562 			 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1563 		       NULL))
1564 	  return FALSE;
1565       }
1566 
1567   return TRUE;
1568 }
1569 
1570 static int
sparc64_elf_get_symbol_type(elf_sym,type)1571 sparc64_elf_get_symbol_type (elf_sym, type)
1572      Elf_Internal_Sym * elf_sym;
1573      int type;
1574 {
1575   if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1576     return STT_REGISTER;
1577   else
1578     return type;
1579 }
1580 
1581 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1582    even in SHN_UNDEF section.  */
1583 
1584 static void
sparc64_elf_symbol_processing(abfd,asym)1585 sparc64_elf_symbol_processing (abfd, asym)
1586      bfd *abfd ATTRIBUTE_UNUSED;
1587      asymbol *asym;
1588 {
1589   elf_symbol_type *elfsym;
1590 
1591   elfsym = (elf_symbol_type *) asym;
1592   if (elfsym->internal_elf_sym.st_info
1593       == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1594     {
1595       asym->flags |= BSF_GLOBAL;
1596     }
1597 }
1598 
1599 /* Adjust a symbol defined by a dynamic object and referenced by a
1600    regular object.  The current definition is in some section of the
1601    dynamic object, but we're not including those sections.  We have to
1602    change the definition to something the rest of the link can
1603    understand.  */
1604 
1605 static bfd_boolean
sparc64_elf_adjust_dynamic_symbol(info,h)1606 sparc64_elf_adjust_dynamic_symbol (info, h)
1607      struct bfd_link_info *info;
1608      struct elf_link_hash_entry *h;
1609 {
1610   bfd *dynobj;
1611   asection *s;
1612   unsigned int power_of_two;
1613 
1614   dynobj = elf_hash_table (info)->dynobj;
1615 
1616   /* Make sure we know what is going on here.  */
1617   BFD_ASSERT (dynobj != NULL
1618 	      && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1619 		  || h->weakdef != NULL
1620 		  || ((h->elf_link_hash_flags
1621 		       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1622 		      && (h->elf_link_hash_flags
1623 			  & ELF_LINK_HASH_REF_REGULAR) != 0
1624 		      && (h->elf_link_hash_flags
1625 			  & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1626 
1627   /* If this is a function, put it in the procedure linkage table.  We
1628      will fill in the contents of the procedure linkage table later
1629      (although we could actually do it here).  The STT_NOTYPE
1630      condition is a hack specifically for the Oracle libraries
1631      delivered for Solaris; for some inexplicable reason, they define
1632      some of their functions as STT_NOTYPE when they really should be
1633      STT_FUNC.  */
1634   if (h->type == STT_FUNC
1635       || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1636       || (h->type == STT_NOTYPE
1637 	  && (h->root.type == bfd_link_hash_defined
1638 	      || h->root.type == bfd_link_hash_defweak)
1639 	  && (h->root.u.def.section->flags & SEC_CODE) != 0))
1640     {
1641       if (! elf_hash_table (info)->dynamic_sections_created)
1642 	{
1643 	  /* This case can occur if we saw a WPLT30 reloc in an input
1644              file, but none of the input files were dynamic objects.
1645              In such a case, we don't actually need to build a
1646              procedure linkage table, and we can just do a WDISP30
1647              reloc instead.  */
1648 	  BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1649 	  return TRUE;
1650 	}
1651 
1652       s = bfd_get_section_by_name (dynobj, ".plt");
1653       BFD_ASSERT (s != NULL);
1654 
1655       /* The first four bit in .plt is reserved.  */
1656       if (s->_raw_size == 0)
1657 	s->_raw_size = PLT_HEADER_SIZE;
1658 
1659       /* To simplify matters later, just store the plt index here.  */
1660       h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1661 
1662       /* If this symbol is not defined in a regular file, and we are
1663 	 not generating a shared library, then set the symbol to this
1664 	 location in the .plt.  This is required to make function
1665 	 pointers compare as equal between the normal executable and
1666 	 the shared library.  */
1667       if (! info->shared
1668 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1669 	{
1670 	  h->root.u.def.section = s;
1671 	  h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1672 	}
1673 
1674       /* Make room for this entry.  */
1675       s->_raw_size += PLT_ENTRY_SIZE;
1676 
1677       /* We also need to make an entry in the .rela.plt section.  */
1678 
1679       s = bfd_get_section_by_name (dynobj, ".rela.plt");
1680       BFD_ASSERT (s != NULL);
1681 
1682       s->_raw_size += sizeof (Elf64_External_Rela);
1683 
1684       /* The procedure linkage table size is bounded by the magnitude
1685 	 of the offset we can describe in the entry.  */
1686       if (s->_raw_size >= (bfd_vma)1 << 32)
1687 	{
1688 	  bfd_set_error (bfd_error_bad_value);
1689 	  return FALSE;
1690 	}
1691 
1692       return TRUE;
1693     }
1694 
1695   /* If this is a weak symbol, and there is a real definition, the
1696      processor independent code will have arranged for us to see the
1697      real definition first, and we can just use the same value.  */
1698   if (h->weakdef != NULL)
1699     {
1700       BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1701 		  || h->weakdef->root.type == bfd_link_hash_defweak);
1702       h->root.u.def.section = h->weakdef->root.u.def.section;
1703       h->root.u.def.value = h->weakdef->root.u.def.value;
1704       return TRUE;
1705     }
1706 
1707   /* This is a reference to a symbol defined by a dynamic object which
1708      is not a function.  */
1709 
1710   /* If we are creating a shared library, we must presume that the
1711      only references to the symbol are via the global offset table.
1712      For such cases we need not do anything here; the relocations will
1713      be handled correctly by relocate_section.  */
1714   if (info->shared)
1715     return TRUE;
1716 
1717   /* We must allocate the symbol in our .dynbss section, which will
1718      become part of the .bss section of the executable.  There will be
1719      an entry for this symbol in the .dynsym section.  The dynamic
1720      object will contain position independent code, so all references
1721      from the dynamic object to this symbol will go through the global
1722      offset table.  The dynamic linker will use the .dynsym entry to
1723      determine the address it must put in the global offset table, so
1724      both the dynamic object and the regular object will refer to the
1725      same memory location for the variable.  */
1726 
1727   s = bfd_get_section_by_name (dynobj, ".dynbss");
1728   BFD_ASSERT (s != NULL);
1729 
1730   /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1731      to copy the initial value out of the dynamic object and into the
1732      runtime process image.  We need to remember the offset into the
1733      .rel.bss section we are going to use.  */
1734   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1735     {
1736       asection *srel;
1737 
1738       srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1739       BFD_ASSERT (srel != NULL);
1740       srel->_raw_size += sizeof (Elf64_External_Rela);
1741       h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1742     }
1743 
1744   /* We need to figure out the alignment required for this symbol.  I
1745      have no idea how ELF linkers handle this.  16-bytes is the size
1746      of the largest type that requires hard alignment -- long double.  */
1747   power_of_two = bfd_log2 (h->size);
1748   if (power_of_two > 4)
1749     power_of_two = 4;
1750 
1751   /* Apply the required alignment.  */
1752   s->_raw_size = BFD_ALIGN (s->_raw_size,
1753 			    (bfd_size_type) (1 << power_of_two));
1754   if (power_of_two > bfd_get_section_alignment (dynobj, s))
1755     {
1756       if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1757 	return FALSE;
1758     }
1759 
1760   /* Define the symbol as being at this point in the section.  */
1761   h->root.u.def.section = s;
1762   h->root.u.def.value = s->_raw_size;
1763 
1764   /* Increment the section size to make room for the symbol.  */
1765   s->_raw_size += h->size;
1766 
1767   return TRUE;
1768 }
1769 
1770 /* Set the sizes of the dynamic sections.  */
1771 
1772 static bfd_boolean
sparc64_elf_size_dynamic_sections(output_bfd,info)1773 sparc64_elf_size_dynamic_sections (output_bfd, info)
1774      bfd *output_bfd;
1775      struct bfd_link_info *info;
1776 {
1777   bfd *dynobj;
1778   asection *s;
1779   bfd_boolean relplt;
1780 
1781   dynobj = elf_hash_table (info)->dynobj;
1782   BFD_ASSERT (dynobj != NULL);
1783 
1784   if (elf_hash_table (info)->dynamic_sections_created)
1785     {
1786       /* Set the contents of the .interp section to the interpreter.  */
1787       if (info->executable)
1788 	{
1789 	  s = bfd_get_section_by_name (dynobj, ".interp");
1790 	  BFD_ASSERT (s != NULL);
1791 	  s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1792 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1793 	}
1794     }
1795   else
1796     {
1797       /* We may have created entries in the .rela.got section.
1798          However, if we are not creating the dynamic sections, we will
1799          not actually use these entries.  Reset the size of .rela.got,
1800          which will cause it to get stripped from the output file
1801          below.  */
1802       s = bfd_get_section_by_name (dynobj, ".rela.got");
1803       if (s != NULL)
1804 	s->_raw_size = 0;
1805     }
1806 
1807   /* The check_relocs and adjust_dynamic_symbol entry points have
1808      determined the sizes of the various dynamic sections.  Allocate
1809      memory for them.  */
1810   relplt = FALSE;
1811   for (s = dynobj->sections; s != NULL; s = s->next)
1812     {
1813       const char *name;
1814       bfd_boolean strip;
1815 
1816       if ((s->flags & SEC_LINKER_CREATED) == 0)
1817 	continue;
1818 
1819       /* It's OK to base decisions on the section name, because none
1820 	 of the dynobj section names depend upon the input files.  */
1821       name = bfd_get_section_name (dynobj, s);
1822 
1823       strip = FALSE;
1824 
1825       if (strncmp (name, ".rela", 5) == 0)
1826 	{
1827 	  if (s->_raw_size == 0)
1828 	    {
1829 	      /* If we don't need this section, strip it from the
1830 		 output file.  This is to handle .rela.bss and
1831 		 .rel.plt.  We must create it in
1832 		 create_dynamic_sections, because it must be created
1833 		 before the linker maps input sections to output
1834 		 sections.  The linker does that before
1835 		 adjust_dynamic_symbol is called, and it is that
1836 		 function which decides whether anything needs to go
1837 		 into these sections.  */
1838 	      strip = TRUE;
1839 	    }
1840 	  else
1841 	    {
1842 	      if (strcmp (name, ".rela.plt") == 0)
1843 		relplt = TRUE;
1844 
1845 	      /* We use the reloc_count field as a counter if we need
1846 		 to copy relocs into the output file.  */
1847 	      s->reloc_count = 0;
1848 	    }
1849 	}
1850       else if (strcmp (name, ".plt") != 0
1851 	       && strncmp (name, ".got", 4) != 0)
1852 	{
1853 	  /* It's not one of our sections, so don't allocate space.  */
1854 	  continue;
1855 	}
1856 
1857       if (strip)
1858 	{
1859 	  _bfd_strip_section_from_output (info, s);
1860 	  continue;
1861 	}
1862 
1863       /* Allocate memory for the section contents.  Zero the memory
1864 	 for the benefit of .rela.plt, which has 4 unused entries
1865 	 at the beginning, and we don't want garbage.  */
1866       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1867       if (s->contents == NULL && s->_raw_size != 0)
1868 	return FALSE;
1869     }
1870 
1871   if (elf_hash_table (info)->dynamic_sections_created)
1872     {
1873       /* Add some entries to the .dynamic section.  We fill in the
1874 	 values later, in sparc64_elf_finish_dynamic_sections, but we
1875 	 must add the entries now so that we get the correct size for
1876 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1877 	 dynamic linker and used by the debugger.  */
1878 #define add_dynamic_entry(TAG, VAL) \
1879   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1880 
1881       int reg;
1882       struct sparc64_elf_app_reg * app_regs;
1883       struct elf_strtab_hash *dynstr;
1884       struct elf_link_hash_table *eht = elf_hash_table (info);
1885 
1886       if (info->executable)
1887 	{
1888 	  if (!add_dynamic_entry (DT_DEBUG, 0))
1889 	    return FALSE;
1890 	}
1891 
1892       if (relplt)
1893 	{
1894 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
1895 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
1896 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1897 	      || !add_dynamic_entry (DT_JMPREL, 0))
1898 	    return FALSE;
1899 	}
1900 
1901       if (!add_dynamic_entry (DT_RELA, 0)
1902 	  || !add_dynamic_entry (DT_RELASZ, 0)
1903 	  || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1904 	return FALSE;
1905 
1906       if (info->flags & DF_TEXTREL)
1907 	{
1908 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1909 	    return FALSE;
1910 	}
1911 
1912       /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1913 	 entries if needed.  */
1914       app_regs = sparc64_elf_hash_table (info)->app_regs;
1915       dynstr = eht->dynstr;
1916 
1917       for (reg = 0; reg < 4; reg++)
1918 	if (app_regs [reg].name != NULL)
1919 	  {
1920 	    struct elf_link_local_dynamic_entry *entry, *e;
1921 
1922 	    if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1923 	      return FALSE;
1924 
1925 	    entry = (struct elf_link_local_dynamic_entry *)
1926 	      bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1927 	    if (entry == NULL)
1928 	      return FALSE;
1929 
1930 	    /* We cheat here a little bit: the symbol will not be local, so we
1931 	       put it at the end of the dynlocal linked list.  We will fix it
1932 	       later on, as we have to fix other fields anyway.  */
1933 	    entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1934 	    entry->isym.st_size = 0;
1935 	    if (*app_regs [reg].name != '\0')
1936 	      entry->isym.st_name
1937 		= _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1938 	    else
1939 	      entry->isym.st_name = 0;
1940 	    entry->isym.st_other = 0;
1941 	    entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1942 					       STT_REGISTER);
1943 	    entry->isym.st_shndx = app_regs [reg].shndx;
1944 	    entry->next = NULL;
1945 	    entry->input_bfd = output_bfd;
1946 	    entry->input_indx = -1;
1947 
1948 	    if (eht->dynlocal == NULL)
1949 	      eht->dynlocal = entry;
1950 	    else
1951 	      {
1952 		for (e = eht->dynlocal; e->next; e = e->next)
1953 		  ;
1954 		e->next = entry;
1955 	      }
1956 	    eht->dynsymcount++;
1957 	  }
1958     }
1959 #undef add_dynamic_entry
1960 
1961   return TRUE;
1962 }
1963 
1964 static bfd_boolean
sparc64_elf_new_section_hook(abfd,sec)1965 sparc64_elf_new_section_hook (abfd, sec)
1966      bfd *abfd;
1967      asection *sec;
1968 {
1969   struct sparc64_elf_section_data *sdata;
1970   bfd_size_type amt = sizeof (*sdata);
1971 
1972   sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1973   if (sdata == NULL)
1974     return FALSE;
1975   sec->used_by_bfd = (PTR) sdata;
1976 
1977   return _bfd_elf_new_section_hook (abfd, sec);
1978 }
1979 
1980 static bfd_boolean
sparc64_elf_relax_section(abfd,section,link_info,again)1981 sparc64_elf_relax_section (abfd, section, link_info, again)
1982      bfd *abfd ATTRIBUTE_UNUSED;
1983      asection *section ATTRIBUTE_UNUSED;
1984      struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1985      bfd_boolean *again;
1986 {
1987   *again = FALSE;
1988   sec_do_relax (section) = 1;
1989   return TRUE;
1990 }
1991 
1992 /* Relocate a SPARC64 ELF section.  */
1993 
1994 static bfd_boolean
sparc64_elf_relocate_section(output_bfd,info,input_bfd,input_section,contents,relocs,local_syms,local_sections)1995 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1996 			      contents, relocs, local_syms, local_sections)
1997      bfd *output_bfd;
1998      struct bfd_link_info *info;
1999      bfd *input_bfd;
2000      asection *input_section;
2001      bfd_byte *contents;
2002      Elf_Internal_Rela *relocs;
2003      Elf_Internal_Sym *local_syms;
2004      asection **local_sections;
2005 {
2006   bfd *dynobj;
2007   Elf_Internal_Shdr *symtab_hdr;
2008   struct elf_link_hash_entry **sym_hashes;
2009   bfd_vma *local_got_offsets;
2010   bfd_vma got_base;
2011   asection *sgot;
2012   asection *splt;
2013   asection *sreloc;
2014   Elf_Internal_Rela *rel;
2015   Elf_Internal_Rela *relend;
2016 
2017   if (info->relocatable)
2018     return TRUE;
2019 
2020   dynobj = elf_hash_table (info)->dynobj;
2021   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2022   sym_hashes = elf_sym_hashes (input_bfd);
2023   local_got_offsets = elf_local_got_offsets (input_bfd);
2024 
2025   if (elf_hash_table(info)->hgot == NULL)
2026     got_base = 0;
2027   else
2028     got_base = elf_hash_table (info)->hgot->root.u.def.value;
2029 
2030   sgot = splt = sreloc = NULL;
2031   if (dynobj != NULL)
2032     splt = bfd_get_section_by_name (dynobj, ".plt");
2033 
2034   rel = relocs;
2035   relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2036   for (; rel < relend; rel++)
2037     {
2038       int r_type;
2039       reloc_howto_type *howto;
2040       unsigned long r_symndx;
2041       struct elf_link_hash_entry *h;
2042       Elf_Internal_Sym *sym;
2043       asection *sec;
2044       bfd_vma relocation, off;
2045       bfd_reloc_status_type r;
2046       bfd_boolean is_plt = FALSE;
2047       bfd_boolean unresolved_reloc;
2048 
2049       r_type = ELF64_R_TYPE_ID (rel->r_info);
2050       if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2051 	{
2052 	  bfd_set_error (bfd_error_bad_value);
2053 	  return FALSE;
2054 	}
2055       howto = sparc64_elf_howto_table + r_type;
2056 
2057       /* This is a final link.  */
2058       r_symndx = ELF64_R_SYM (rel->r_info);
2059       h = NULL;
2060       sym = NULL;
2061       sec = NULL;
2062       unresolved_reloc = FALSE;
2063       if (r_symndx < symtab_hdr->sh_info)
2064 	{
2065 	  sym = local_syms + r_symndx;
2066 	  sec = local_sections[r_symndx];
2067 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2068 	}
2069       else
2070 	{
2071 	  bfd_boolean warned;
2072 
2073 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2074 				   r_symndx, symtab_hdr, sym_hashes,
2075 				   h, sec, relocation,
2076 				   unresolved_reloc, warned);
2077 	  if (warned)
2078 	    {
2079 	      /* To avoid generating warning messages about truncated
2080 		 relocations, set the relocation's address to be the same as
2081 		 the start of this section.  */
2082 	      if (input_section->output_section != NULL)
2083 		relocation = input_section->output_section->vma;
2084 	      else
2085 		relocation = 0;
2086 	    }
2087 	}
2088 
2089  do_dynreloc:
2090       /* When generating a shared object, these relocations are copied
2091 	 into the output file to be resolved at run time.  */
2092       if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2093 	{
2094 	  switch (r_type)
2095 	    {
2096 	    case R_SPARC_PC10:
2097 	    case R_SPARC_PC22:
2098 	    case R_SPARC_PC_HH22:
2099 	    case R_SPARC_PC_HM10:
2100 	    case R_SPARC_PC_LM22:
2101 	      if (h != NULL
2102 		  && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2103 		break;
2104 	      /* Fall through.  */
2105 	    case R_SPARC_DISP8:
2106 	    case R_SPARC_DISP16:
2107 	    case R_SPARC_DISP32:
2108 	    case R_SPARC_DISP64:
2109 	    case R_SPARC_WDISP30:
2110 	    case R_SPARC_WDISP22:
2111 	    case R_SPARC_WDISP19:
2112 	    case R_SPARC_WDISP16:
2113 	      if (h == NULL)
2114 		break;
2115 	      /* Fall through.  */
2116 	    case R_SPARC_8:
2117 	    case R_SPARC_16:
2118 	    case R_SPARC_32:
2119 	    case R_SPARC_HI22:
2120 	    case R_SPARC_22:
2121 	    case R_SPARC_13:
2122 	    case R_SPARC_LO10:
2123 	    case R_SPARC_UA32:
2124 	    case R_SPARC_10:
2125 	    case R_SPARC_11:
2126 	    case R_SPARC_64:
2127 	    case R_SPARC_OLO10:
2128 	    case R_SPARC_HH22:
2129 	    case R_SPARC_HM10:
2130 	    case R_SPARC_LM22:
2131 	    case R_SPARC_7:
2132 	    case R_SPARC_5:
2133 	    case R_SPARC_6:
2134 	    case R_SPARC_HIX22:
2135 	    case R_SPARC_LOX10:
2136 	    case R_SPARC_H44:
2137 	    case R_SPARC_M44:
2138 	    case R_SPARC_L44:
2139 	    case R_SPARC_UA64:
2140 	    case R_SPARC_UA16:
2141 	      {
2142 		Elf_Internal_Rela outrel;
2143 		bfd_byte *loc;
2144 		bfd_boolean skip, relocate;
2145 
2146 		if (sreloc == NULL)
2147 		  {
2148 		    const char *name =
2149 		      (bfd_elf_string_from_elf_section
2150 		       (input_bfd,
2151 			elf_elfheader (input_bfd)->e_shstrndx,
2152 			elf_section_data (input_section)->rel_hdr.sh_name));
2153 
2154 		    if (name == NULL)
2155 		      return FALSE;
2156 
2157 		    BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2158 				&& strcmp (bfd_get_section_name(input_bfd,
2159 								input_section),
2160 					   name + 5) == 0);
2161 
2162 		    sreloc = bfd_get_section_by_name (dynobj, name);
2163 		    BFD_ASSERT (sreloc != NULL);
2164 		  }
2165 
2166 		skip = FALSE;
2167 		relocate = FALSE;
2168 
2169 		outrel.r_offset =
2170 		  _bfd_elf_section_offset (output_bfd, info, input_section,
2171 					   rel->r_offset);
2172 		if (outrel.r_offset == (bfd_vma) -1)
2173 		  skip = TRUE;
2174 		else if (outrel.r_offset == (bfd_vma) -2)
2175 		  skip = TRUE, relocate = TRUE;
2176 
2177 		outrel.r_offset += (input_section->output_section->vma
2178 				    + input_section->output_offset);
2179 
2180 		/* Optimize unaligned reloc usage now that we know where
2181 		   it finally resides.  */
2182 		switch (r_type)
2183 		  {
2184 		  case R_SPARC_16:
2185 		    if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2186 		    break;
2187 		  case R_SPARC_UA16:
2188 		    if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2189 		    break;
2190 		  case R_SPARC_32:
2191 		    if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2192 		    break;
2193 		  case R_SPARC_UA32:
2194 		    if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2195 		    break;
2196 		  case R_SPARC_64:
2197 		    if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2198 		    break;
2199 		  case R_SPARC_UA64:
2200 		    if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2201 		    break;
2202 		  case R_SPARC_DISP8:
2203 		  case R_SPARC_DISP16:
2204 		  case R_SPARC_DISP32:
2205 		  case R_SPARC_DISP64:
2206 		    /* If the symbol is not dynamic, we should not keep
2207 		       a dynamic relocation.  But an .rela.* slot has been
2208 		       allocated for it, output R_SPARC_NONE.
2209 		       FIXME: Add code tracking needed dynamic relocs as
2210 		       e.g. i386 has.  */
2211 		    if (h->dynindx == -1)
2212 		      skip = TRUE, relocate = TRUE;
2213 		    break;
2214 		  }
2215 
2216 		if (skip)
2217 		  memset (&outrel, 0, sizeof outrel);
2218 		/* h->dynindx may be -1 if the symbol was marked to
2219 		   become local.  */
2220 		else if (h != NULL && ! is_plt
2221 			 && ((! info->symbolic && h->dynindx != -1)
2222 			     || (h->elf_link_hash_flags
2223 				 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2224 		  {
2225 		    BFD_ASSERT (h->dynindx != -1);
2226 		    outrel.r_info
2227 		      = ELF64_R_INFO (h->dynindx,
2228 				      ELF64_R_TYPE_INFO (
2229 					ELF64_R_TYPE_DATA (rel->r_info),
2230 							   r_type));
2231 		    outrel.r_addend = rel->r_addend;
2232 		  }
2233 		else
2234 		  {
2235 		    outrel.r_addend = relocation + rel->r_addend;
2236 		    if (r_type == R_SPARC_64)
2237 		      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2238 		    else
2239 		      {
2240 			long indx;
2241 
2242 			if (is_plt)
2243 			  sec = splt;
2244 
2245 			if (bfd_is_abs_section (sec))
2246 			  indx = 0;
2247 			else if (sec == NULL || sec->owner == NULL)
2248 			  {
2249 			    bfd_set_error (bfd_error_bad_value);
2250 			    return FALSE;
2251 			  }
2252 			else
2253 			  {
2254 			    asection *osec;
2255 
2256 			    osec = sec->output_section;
2257 			    indx = elf_section_data (osec)->dynindx;
2258 
2259 			    /* We are turning this relocation into one
2260 			       against a section symbol, so subtract out
2261 			       the output section's address but not the
2262 			       offset of the input section in the output
2263 			       section.  */
2264 			    outrel.r_addend -= osec->vma;
2265 
2266 			    /* FIXME: we really should be able to link non-pic
2267 			       shared libraries.  */
2268 			    if (indx == 0)
2269 			      {
2270 				BFD_FAIL ();
2271 				(*_bfd_error_handler)
2272 				  (_("%s: probably compiled without -fPIC?"),
2273 				   bfd_archive_filename (input_bfd));
2274 				bfd_set_error (bfd_error_bad_value);
2275 				return FALSE;
2276 			      }
2277 			  }
2278 
2279 			outrel.r_info
2280 			  = ELF64_R_INFO (indx,
2281 					  ELF64_R_TYPE_INFO (
2282 					    ELF64_R_TYPE_DATA (rel->r_info),
2283 							       r_type));
2284 		      }
2285 		  }
2286 
2287 		loc = sreloc->contents;
2288 		loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2289 		bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2290 
2291 		/* This reloc will be computed at runtime, so there's no
2292 		   need to do anything now.  */
2293 		if (! relocate)
2294 		  continue;
2295 	      }
2296 	    break;
2297 	    }
2298 	}
2299 
2300       switch (r_type)
2301 	{
2302 	case R_SPARC_GOT10:
2303 	case R_SPARC_GOT13:
2304 	case R_SPARC_GOT22:
2305 	  /* Relocation is to the entry for this symbol in the global
2306 	     offset table.  */
2307 	  if (sgot == NULL)
2308 	    {
2309 	      sgot = bfd_get_section_by_name (dynobj, ".got");
2310 	      BFD_ASSERT (sgot != NULL);
2311 	    }
2312 
2313 	  if (h != NULL)
2314 	    {
2315 	      bfd_boolean dyn;
2316 
2317 	      off = h->got.offset;
2318 	      BFD_ASSERT (off != (bfd_vma) -1);
2319 	      dyn = elf_hash_table (info)->dynamic_sections_created;
2320 
2321 	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2322 		  || (info->shared
2323 		      && (info->symbolic
2324 			  || h->dynindx == -1
2325 			  || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2326 		      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2327 		{
2328 		  /* This is actually a static link, or it is a -Bsymbolic
2329 		     link and the symbol is defined locally, or the symbol
2330 		     was forced to be local because of a version file.  We
2331 		     must initialize this entry in the global offset table.
2332 		     Since the offset must always be a multiple of 8, we
2333 		     use the least significant bit to record whether we
2334 		     have initialized it already.
2335 
2336 		     When doing a dynamic link, we create a .rela.got
2337 		     relocation entry to initialize the value.  This is
2338 		     done in the finish_dynamic_symbol routine.  */
2339 
2340 		  if ((off & 1) != 0)
2341 		    off &= ~1;
2342 		  else
2343 		    {
2344 		      bfd_put_64 (output_bfd, relocation,
2345 				  sgot->contents + off);
2346 		      h->got.offset |= 1;
2347 		    }
2348 		}
2349 	      else
2350 		unresolved_reloc = FALSE;
2351 	    }
2352 	  else
2353 	    {
2354 	      BFD_ASSERT (local_got_offsets != NULL);
2355 	      off = local_got_offsets[r_symndx];
2356 	      BFD_ASSERT (off != (bfd_vma) -1);
2357 
2358 	      /* The offset must always be a multiple of 8.  We use
2359 		 the least significant bit to record whether we have
2360 		 already processed this entry.  */
2361 	      if ((off & 1) != 0)
2362 		off &= ~1;
2363 	      else
2364 		{
2365 		  local_got_offsets[r_symndx] |= 1;
2366 
2367 		  if (info->shared)
2368 		    {
2369 		      asection *s;
2370 		      Elf_Internal_Rela outrel;
2371 		      bfd_byte *loc;
2372 
2373 		      /* The Solaris 2.7 64-bit linker adds the contents
2374 			 of the location to the value of the reloc.
2375 			 Note this is different behaviour to the
2376 			 32-bit linker, which both adds the contents
2377 			 and ignores the addend.  So clear the location.  */
2378 		      bfd_put_64 (output_bfd, (bfd_vma) 0,
2379 				  sgot->contents + off);
2380 
2381 		      /* We need to generate a R_SPARC_RELATIVE reloc
2382 			 for the dynamic linker.  */
2383 		      s = bfd_get_section_by_name(dynobj, ".rela.got");
2384 		      BFD_ASSERT (s != NULL);
2385 
2386 		      outrel.r_offset = (sgot->output_section->vma
2387 					 + sgot->output_offset
2388 					 + off);
2389 		      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2390 		      outrel.r_addend = relocation;
2391 		      loc = s->contents;
2392 		      loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2393 		      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2394 		    }
2395 		  else
2396 		    bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2397 		}
2398 	    }
2399 	  relocation = sgot->output_offset + off - got_base;
2400 	  goto do_default;
2401 
2402 	case R_SPARC_WPLT30:
2403 	case R_SPARC_PLT32:
2404 	case R_SPARC_HIPLT22:
2405 	case R_SPARC_LOPLT10:
2406 	case R_SPARC_PCPLT32:
2407 	case R_SPARC_PCPLT22:
2408 	case R_SPARC_PCPLT10:
2409 	case R_SPARC_PLT64:
2410 	  /* Relocation is to the entry for this symbol in the
2411              procedure linkage table.  */
2412 	  BFD_ASSERT (h != NULL);
2413 
2414 	  if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2415 	    {
2416 	      /* We didn't make a PLT entry for this symbol.  This
2417 		 happens when statically linking PIC code, or when
2418 		 using -Bsymbolic.  */
2419 	      goto do_default;
2420 	    }
2421 
2422 	  relocation = (splt->output_section->vma
2423 			+ splt->output_offset
2424 			+ sparc64_elf_plt_entry_offset (h->plt.offset));
2425 	  unresolved_reloc = FALSE;
2426 	  if (r_type == R_SPARC_WPLT30)
2427 	    goto do_wplt30;
2428 	  if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2429 	    {
2430 	      r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2431 	      is_plt = TRUE;
2432 	      goto do_dynreloc;
2433 	    }
2434 	  goto do_default;
2435 
2436 	case R_SPARC_OLO10:
2437 	  {
2438 	    bfd_vma x;
2439 
2440 	    relocation += rel->r_addend;
2441 	    relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2442 
2443 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2444 	    x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2445 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2446 
2447 	    r = bfd_check_overflow (howto->complain_on_overflow,
2448 				    howto->bitsize, howto->rightshift,
2449 				    bfd_arch_bits_per_address (input_bfd),
2450 				    relocation);
2451 	  }
2452 	  break;
2453 
2454 	case R_SPARC_WDISP16:
2455 	  {
2456 	    bfd_vma x;
2457 
2458 	    relocation += rel->r_addend;
2459 	    /* Adjust for pc-relative-ness.  */
2460 	    relocation -= (input_section->output_section->vma
2461 			   + input_section->output_offset);
2462 	    relocation -= rel->r_offset;
2463 
2464 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2465 	    x &= ~(bfd_vma) 0x303fff;
2466 	    x |= ((((relocation >> 2) & 0xc000) << 6)
2467 		  | ((relocation >> 2) & 0x3fff));
2468 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2469 
2470 	    r = bfd_check_overflow (howto->complain_on_overflow,
2471 				    howto->bitsize, howto->rightshift,
2472 				    bfd_arch_bits_per_address (input_bfd),
2473 				    relocation);
2474 	  }
2475 	  break;
2476 
2477 	case R_SPARC_HIX22:
2478 	  {
2479 	    bfd_vma x;
2480 
2481 	    relocation += rel->r_addend;
2482 	    relocation = relocation ^ MINUS_ONE;
2483 
2484 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2485 	    x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2486 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2487 
2488 	    r = bfd_check_overflow (howto->complain_on_overflow,
2489 				    howto->bitsize, howto->rightshift,
2490 				    bfd_arch_bits_per_address (input_bfd),
2491 				    relocation);
2492 	  }
2493 	  break;
2494 
2495 	case R_SPARC_LOX10:
2496 	  {
2497 	    bfd_vma x;
2498 
2499 	    relocation += rel->r_addend;
2500 	    relocation = (relocation & 0x3ff) | 0x1c00;
2501 
2502 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2503 	    x = (x & ~(bfd_vma) 0x1fff) | relocation;
2504 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2505 
2506 	    r = bfd_reloc_ok;
2507 	  }
2508 	  break;
2509 
2510 	case R_SPARC_WDISP30:
2511 	do_wplt30:
2512 	  if (sec_do_relax (input_section)
2513 	      && rel->r_offset + 4 < input_section->_raw_size)
2514 	    {
2515 #define G0		0
2516 #define O7		15
2517 #define XCC		(2 << 20)
2518 #define COND(x)		(((x)&0xf)<<25)
2519 #define CONDA		COND(0x8)
2520 #define INSN_BPA	(F2(0,1) | CONDA | BPRED | XCC)
2521 #define INSN_BA		(F2(0,2) | CONDA)
2522 #define INSN_OR		F3(2, 0x2, 0)
2523 #define INSN_NOP	F2(0,4)
2524 
2525 	      bfd_vma x, y;
2526 
2527 	      /* If the instruction is a call with either:
2528 		 restore
2529 		 arithmetic instruction with rd == %o7
2530 		 where rs1 != %o7 and rs2 if it is register != %o7
2531 		 then we can optimize if the call destination is near
2532 		 by changing the call into a branch always.  */
2533 	      x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2534 	      y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2535 	      if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2536 		{
2537 		  if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2538 		       || ((y & OP3(0x28)) == 0 /* arithmetic */
2539 			   && (y & RD(~0)) == RD(O7)))
2540 		      && (y & RS1(~0)) != RS1(O7)
2541 		      && ((y & F3I(~0))
2542 			  || (y & RS2(~0)) != RS2(O7)))
2543 		    {
2544 		      bfd_vma reloc;
2545 
2546 		      reloc = relocation + rel->r_addend - rel->r_offset;
2547 		      reloc -= (input_section->output_section->vma
2548 				+ input_section->output_offset);
2549 		      if (reloc & 3)
2550 			goto do_default;
2551 
2552 		      /* Ensure the branch fits into simm22.  */
2553 		      if ((reloc & ~(bfd_vma)0x7fffff)
2554 			   && ((reloc | 0x7fffff) != MINUS_ONE))
2555 			goto do_default;
2556 		      reloc >>= 2;
2557 
2558 		      /* Check whether it fits into simm19.  */
2559 		      if ((reloc & 0x3c0000) == 0
2560 			  || (reloc & 0x3c0000) == 0x3c0000)
2561 			x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2562 		      else
2563 			x = INSN_BA | (reloc & 0x3fffff); /* ba */
2564 		      bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2565 		      r = bfd_reloc_ok;
2566 		      if (rel->r_offset >= 4
2567 			  && (y & (0xffffffff ^ RS1(~0)))
2568 			     == (INSN_OR | RD(O7) | RS2(G0)))
2569 			{
2570 			  bfd_vma z;
2571 			  unsigned int reg;
2572 
2573 			  z = bfd_get_32 (input_bfd,
2574 					  contents + rel->r_offset - 4);
2575 			  if ((z & (0xffffffff ^ RD(~0)))
2576 			      != (INSN_OR | RS1(O7) | RS2(G0)))
2577 			    break;
2578 
2579 			  /* The sequence was
2580 			     or %o7, %g0, %rN
2581 			     call foo
2582 			     or %rN, %g0, %o7
2583 
2584 			     If call foo was replaced with ba, replace
2585 			     or %rN, %g0, %o7 with nop.  */
2586 
2587 			  reg = (y & RS1(~0)) >> 14;
2588 			  if (reg != ((z & RD(~0)) >> 25)
2589 			      || reg == G0 || reg == O7)
2590 			    break;
2591 
2592 			  bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2593 				      contents + rel->r_offset + 4);
2594 			}
2595 		      break;
2596 		    }
2597 		}
2598 	    }
2599 	  /* Fall through.  */
2600 
2601 	default:
2602 	do_default:
2603 	  r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2604 					contents, rel->r_offset,
2605 					relocation, rel->r_addend);
2606 	  break;
2607 	}
2608 
2609       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2610 	 because such sections are not SEC_ALLOC and thus ld.so will
2611 	 not process them.  */
2612       if (unresolved_reloc
2613 	  && !((input_section->flags & SEC_DEBUGGING) != 0
2614 	       && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2615 	(*_bfd_error_handler)
2616 	  (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2617 	   bfd_archive_filename (input_bfd),
2618 	   bfd_get_section_name (input_bfd, input_section),
2619 	   (long) rel->r_offset,
2620 	   h->root.root.string);
2621 
2622       switch (r)
2623 	{
2624 	case bfd_reloc_ok:
2625 	  break;
2626 
2627 	default:
2628 	case bfd_reloc_outofrange:
2629 	  abort ();
2630 
2631 	case bfd_reloc_overflow:
2632 	  {
2633 	    const char *name;
2634 
2635 	    /* The Solaris native linker silently disregards
2636 	       overflows.  We don't, but this breaks stabs debugging
2637 	       info, whose relocations are only 32-bits wide.  Ignore
2638 	       overflows for discarded entries.  */
2639 	    if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2640 		&& _bfd_elf_section_offset (output_bfd, info, input_section,
2641 					    rel->r_offset) == (bfd_vma) -1)
2642 	      break;
2643 
2644 	    if (h != NULL)
2645 	      {
2646 		if (h->root.type == bfd_link_hash_undefweak
2647 		    && howto->pc_relative)
2648 		  {
2649 		    /* Assume this is a call protected by other code that
2650 		       detect the symbol is undefined.  If this is the case,
2651 		       we can safely ignore the overflow.  If not, the
2652 		       program is hosed anyway, and a little warning isn't
2653 		       going to help.  */
2654 		    break;
2655 		  }
2656 
2657 	        name = h->root.root.string;
2658 	      }
2659 	    else
2660 	      {
2661 		name = (bfd_elf_string_from_elf_section
2662 			(input_bfd,
2663 			 symtab_hdr->sh_link,
2664 			 sym->st_name));
2665 		if (name == NULL)
2666 		  return FALSE;
2667 		if (*name == '\0')
2668 		  name = bfd_section_name (input_bfd, sec);
2669 	      }
2670 	    if (! ((*info->callbacks->reloc_overflow)
2671 		   (info, name, howto->name, (bfd_vma) 0,
2672 		    input_bfd, input_section, rel->r_offset)))
2673 	      return FALSE;
2674 	  }
2675 	break;
2676 	}
2677     }
2678 
2679   return TRUE;
2680 }
2681 
2682 /* Finish up dynamic symbol handling.  We set the contents of various
2683    dynamic sections here.  */
2684 
2685 static bfd_boolean
sparc64_elf_finish_dynamic_symbol(output_bfd,info,h,sym)2686 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2687      bfd *output_bfd;
2688      struct bfd_link_info *info;
2689      struct elf_link_hash_entry *h;
2690      Elf_Internal_Sym *sym;
2691 {
2692   bfd *dynobj;
2693 
2694   dynobj = elf_hash_table (info)->dynobj;
2695 
2696   if (h->plt.offset != (bfd_vma) -1)
2697     {
2698       asection *splt;
2699       asection *srela;
2700       Elf_Internal_Rela rela;
2701       bfd_byte *loc;
2702 
2703       /* This symbol has an entry in the PLT.  Set it up.  */
2704 
2705       BFD_ASSERT (h->dynindx != -1);
2706 
2707       splt = bfd_get_section_by_name (dynobj, ".plt");
2708       srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2709       BFD_ASSERT (splt != NULL && srela != NULL);
2710 
2711       /* Fill in the entry in the .rela.plt section.  */
2712 
2713       if (h->plt.offset < LARGE_PLT_THRESHOLD)
2714 	{
2715 	  rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2716 	  rela.r_addend = 0;
2717 	}
2718       else
2719 	{
2720 	  bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2721 	  rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2722 	  rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2723 			  -(splt->output_section->vma + splt->output_offset);
2724 	}
2725       rela.r_offset += (splt->output_section->vma + splt->output_offset);
2726       rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2727 
2728       /* Adjust for the first 4 reserved elements in the .plt section
2729 	 when setting the offset in the .rela.plt section.
2730 	 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2731 	 thus .plt[4] has corresponding .rela.plt[0] and so on.  */
2732 
2733       loc = srela->contents;
2734       loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2735       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2736 
2737       if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2738 	{
2739 	  /* Mark the symbol as undefined, rather than as defined in
2740 	     the .plt section.  Leave the value alone.  */
2741 	  sym->st_shndx = SHN_UNDEF;
2742 	  /* If the symbol is weak, we do need to clear the value.
2743 	     Otherwise, the PLT entry would provide a definition for
2744 	     the symbol even if the symbol wasn't defined anywhere,
2745 	     and so the symbol would never be NULL.  */
2746 	  if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2747 	      == 0)
2748 	    sym->st_value = 0;
2749 	}
2750     }
2751 
2752   if (h->got.offset != (bfd_vma) -1)
2753     {
2754       asection *sgot;
2755       asection *srela;
2756       Elf_Internal_Rela rela;
2757       bfd_byte *loc;
2758 
2759       /* This symbol has an entry in the GOT.  Set it up.  */
2760 
2761       sgot = bfd_get_section_by_name (dynobj, ".got");
2762       srela = bfd_get_section_by_name (dynobj, ".rela.got");
2763       BFD_ASSERT (sgot != NULL && srela != NULL);
2764 
2765       rela.r_offset = (sgot->output_section->vma
2766 		       + sgot->output_offset
2767 		       + (h->got.offset &~ (bfd_vma) 1));
2768 
2769       /* If this is a -Bsymbolic link, and the symbol is defined
2770 	 locally, we just want to emit a RELATIVE reloc.  Likewise if
2771 	 the symbol was forced to be local because of a version file.
2772 	 The entry in the global offset table will already have been
2773 	 initialized in the relocate_section function.  */
2774       if (info->shared
2775 	  && (info->symbolic || h->dynindx == -1)
2776 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2777 	{
2778 	  asection *sec = h->root.u.def.section;
2779 	  rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2780 	  rela.r_addend = (h->root.u.def.value
2781 			   + sec->output_section->vma
2782 			   + sec->output_offset);
2783 	}
2784       else
2785 	{
2786 	  rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2787 	  rela.r_addend = 0;
2788 	}
2789 
2790       bfd_put_64 (output_bfd, (bfd_vma) 0,
2791 		  sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2792       loc = srela->contents;
2793       loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2794       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2795     }
2796 
2797   if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2798     {
2799       asection *s;
2800       Elf_Internal_Rela rela;
2801       bfd_byte *loc;
2802 
2803       /* This symbols needs a copy reloc.  Set it up.  */
2804       BFD_ASSERT (h->dynindx != -1);
2805 
2806       s = bfd_get_section_by_name (h->root.u.def.section->owner,
2807 				   ".rela.bss");
2808       BFD_ASSERT (s != NULL);
2809 
2810       rela.r_offset = (h->root.u.def.value
2811 		       + h->root.u.def.section->output_section->vma
2812 		       + h->root.u.def.section->output_offset);
2813       rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2814       rela.r_addend = 0;
2815       loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2816       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2817     }
2818 
2819   /* Mark some specially defined symbols as absolute.  */
2820   if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2821       || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2822       || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2823     sym->st_shndx = SHN_ABS;
2824 
2825   return TRUE;
2826 }
2827 
2828 /* Finish up the dynamic sections.  */
2829 
2830 static bfd_boolean
sparc64_elf_finish_dynamic_sections(output_bfd,info)2831 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2832      bfd *output_bfd;
2833      struct bfd_link_info *info;
2834 {
2835   bfd *dynobj;
2836   int stt_regidx = -1;
2837   asection *sdyn;
2838   asection *sgot;
2839 
2840   dynobj = elf_hash_table (info)->dynobj;
2841 
2842   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2843 
2844   if (elf_hash_table (info)->dynamic_sections_created)
2845     {
2846       asection *splt;
2847       Elf64_External_Dyn *dyncon, *dynconend;
2848 
2849       splt = bfd_get_section_by_name (dynobj, ".plt");
2850       BFD_ASSERT (splt != NULL && sdyn != NULL);
2851 
2852       dyncon = (Elf64_External_Dyn *) sdyn->contents;
2853       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2854       for (; dyncon < dynconend; dyncon++)
2855 	{
2856 	  Elf_Internal_Dyn dyn;
2857 	  const char *name;
2858 	  bfd_boolean size;
2859 
2860 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2861 
2862 	  switch (dyn.d_tag)
2863 	    {
2864 	    case DT_PLTGOT:   name = ".plt"; size = FALSE; break;
2865 	    case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2866 	    case DT_JMPREL:   name = ".rela.plt"; size = FALSE; break;
2867 	    case DT_SPARC_REGISTER:
2868 	      if (stt_regidx == -1)
2869 		{
2870 		  stt_regidx =
2871 		    _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2872 		  if (stt_regidx == -1)
2873 		    return FALSE;
2874 		}
2875 	      dyn.d_un.d_val = stt_regidx++;
2876 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2877 	      /* fallthrough */
2878 	    default:	      name = NULL; size = FALSE; break;
2879 	    }
2880 
2881 	  if (name != NULL)
2882 	    {
2883 	      asection *s;
2884 
2885 	      s = bfd_get_section_by_name (output_bfd, name);
2886 	      if (s == NULL)
2887 		dyn.d_un.d_val = 0;
2888 	      else
2889 		{
2890 		  if (! size)
2891 		    dyn.d_un.d_ptr = s->vma;
2892 		  else
2893 		    {
2894 		      if (s->_cooked_size != 0)
2895 			dyn.d_un.d_val = s->_cooked_size;
2896 		      else
2897 			dyn.d_un.d_val = s->_raw_size;
2898 		    }
2899 		}
2900 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2901 	    }
2902 	}
2903 
2904       /* Initialize the contents of the .plt section.  */
2905       if (splt->_raw_size > 0)
2906 	sparc64_elf_build_plt (output_bfd, splt->contents,
2907 			       (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2908 
2909       elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2910 	PLT_ENTRY_SIZE;
2911     }
2912 
2913   /* Set the first entry in the global offset table to the address of
2914      the dynamic section.  */
2915   sgot = bfd_get_section_by_name (dynobj, ".got");
2916   BFD_ASSERT (sgot != NULL);
2917   if (sgot->_raw_size > 0)
2918     {
2919       if (sdyn == NULL)
2920 	bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2921       else
2922 	bfd_put_64 (output_bfd,
2923 		    sdyn->output_section->vma + sdyn->output_offset,
2924 		    sgot->contents);
2925     }
2926 
2927   elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2928 
2929   return TRUE;
2930 }
2931 
2932 static enum elf_reloc_type_class
sparc64_elf_reloc_type_class(rela)2933 sparc64_elf_reloc_type_class (rela)
2934      const Elf_Internal_Rela *rela;
2935 {
2936   switch ((int) ELF64_R_TYPE (rela->r_info))
2937     {
2938     case R_SPARC_RELATIVE:
2939       return reloc_class_relative;
2940     case R_SPARC_JMP_SLOT:
2941       return reloc_class_plt;
2942     case R_SPARC_COPY:
2943       return reloc_class_copy;
2944     default:
2945       return reloc_class_normal;
2946     }
2947 }
2948 
2949 /* Functions for dealing with the e_flags field.  */
2950 
2951 /* Merge backend specific data from an object file to the output
2952    object file when linking.  */
2953 
2954 static bfd_boolean
sparc64_elf_merge_private_bfd_data(ibfd,obfd)2955 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2956      bfd *ibfd;
2957      bfd *obfd;
2958 {
2959   bfd_boolean error;
2960   flagword new_flags, old_flags;
2961   int new_mm, old_mm;
2962 
2963   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2964       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2965     return TRUE;
2966 
2967   new_flags = elf_elfheader (ibfd)->e_flags;
2968   old_flags = elf_elfheader (obfd)->e_flags;
2969 
2970   if (!elf_flags_init (obfd))   /* First call, no flags set */
2971     {
2972       elf_flags_init (obfd) = TRUE;
2973       elf_elfheader (obfd)->e_flags = new_flags;
2974     }
2975 
2976   else if (new_flags == old_flags)      /* Compatible flags are ok */
2977     ;
2978 
2979   else                                  /* Incompatible flags */
2980     {
2981       error = FALSE;
2982 
2983 #define EF_SPARC_ISA_EXTENSIONS \
2984   (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2985 
2986       if ((ibfd->flags & DYNAMIC) != 0)
2987 	{
2988 	  /* We don't want dynamic objects memory ordering and
2989 	     architecture to have any role. That's what dynamic linker
2990 	     should do.  */
2991 	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2992 	  new_flags |= (old_flags
2993 			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2994 	}
2995       else
2996 	{
2997 	  /* Choose the highest architecture requirements.  */
2998 	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2999 	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3000 	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3001 	      && (old_flags & EF_SPARC_HAL_R1))
3002 	    {
3003 	      error = TRUE;
3004 	      (*_bfd_error_handler)
3005 		(_("%s: linking UltraSPARC specific with HAL specific code"),
3006 		 bfd_archive_filename (ibfd));
3007 	    }
3008 	  /* Choose the most restrictive memory ordering.  */
3009 	  old_mm = (old_flags & EF_SPARCV9_MM);
3010 	  new_mm = (new_flags & EF_SPARCV9_MM);
3011 	  old_flags &= ~EF_SPARCV9_MM;
3012 	  new_flags &= ~EF_SPARCV9_MM;
3013 	  if (new_mm < old_mm)
3014 	    old_mm = new_mm;
3015 	  old_flags |= old_mm;
3016 	  new_flags |= old_mm;
3017 	}
3018 
3019       /* Warn about any other mismatches */
3020       if (new_flags != old_flags)
3021         {
3022           error = TRUE;
3023           (*_bfd_error_handler)
3024             (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3025              bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3026         }
3027 
3028       elf_elfheader (obfd)->e_flags = old_flags;
3029 
3030       if (error)
3031         {
3032           bfd_set_error (bfd_error_bad_value);
3033           return FALSE;
3034         }
3035     }
3036   return TRUE;
3037 }
3038 
3039 /* MARCO: Set the correct entry size for the .stab section.  */
3040 
3041 static bfd_boolean
sparc64_elf_fake_sections(abfd,hdr,sec)3042 sparc64_elf_fake_sections (abfd, hdr, sec)
3043      bfd *abfd ATTRIBUTE_UNUSED;
3044      Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3045      asection *sec;
3046 {
3047   const char *name;
3048 
3049   name = bfd_get_section_name (abfd, sec);
3050 
3051   if (strcmp (name, ".stab") == 0)
3052     {
3053       /* Even in the 64bit case the stab entries are only 12 bytes long.  */
3054       elf_section_data (sec)->this_hdr.sh_entsize = 12;
3055     }
3056 
3057   return TRUE;
3058 }
3059 
3060 /* Print a STT_REGISTER symbol to file FILE.  */
3061 
3062 static const char *
sparc64_elf_print_symbol_all(abfd,filep,symbol)3063 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3064      bfd *abfd ATTRIBUTE_UNUSED;
3065      PTR filep;
3066      asymbol *symbol;
3067 {
3068   FILE *file = (FILE *) filep;
3069   int reg, type;
3070 
3071   if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3072       != STT_REGISTER)
3073     return NULL;
3074 
3075   reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3076   type = symbol->flags;
3077   fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3078 		 ((type & BSF_LOCAL)
3079 		  ? (type & BSF_GLOBAL) ? '!' : 'l'
3080 	          : (type & BSF_GLOBAL) ? 'g' : ' '),
3081 	         (type & BSF_WEAK) ? 'w' : ' ');
3082   if (symbol->name == NULL || symbol->name [0] == '\0')
3083     return "#scratch";
3084   else
3085     return symbol->name;
3086 }
3087 
3088 /* Set the right machine number for a SPARC64 ELF file.  */
3089 
3090 static bfd_boolean
sparc64_elf_object_p(abfd)3091 sparc64_elf_object_p (abfd)
3092      bfd *abfd;
3093 {
3094   unsigned long mach = bfd_mach_sparc_v9;
3095 
3096   if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3097     mach = bfd_mach_sparc_v9b;
3098   else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3099     mach = bfd_mach_sparc_v9a;
3100   return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3101 }
3102 
3103 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3104    standard ELF, because R_SPARC_OLO10 has secondary addend in
3105    ELF64_R_TYPE_DATA field.  This structure is used to redirect the
3106    relocation handling routines.  */
3107 
3108 const struct elf_size_info sparc64_elf_size_info =
3109 {
3110   sizeof (Elf64_External_Ehdr),
3111   sizeof (Elf64_External_Phdr),
3112   sizeof (Elf64_External_Shdr),
3113   sizeof (Elf64_External_Rel),
3114   sizeof (Elf64_External_Rela),
3115   sizeof (Elf64_External_Sym),
3116   sizeof (Elf64_External_Dyn),
3117   sizeof (Elf_External_Note),
3118   4,		/* hash-table entry size.  */
3119   /* Internal relocations per external relocations.
3120      For link purposes we use just 1 internal per
3121      1 external, for assembly and slurp symbol table
3122      we use 2.  */
3123   1,
3124   64,		/* arch_size.  */
3125   3,		/* log_file_align.  */
3126   ELFCLASS64,
3127   EV_CURRENT,
3128   bfd_elf64_write_out_phdrs,
3129   bfd_elf64_write_shdrs_and_ehdr,
3130   sparc64_elf_write_relocs,
3131   bfd_elf64_swap_symbol_in,
3132   bfd_elf64_swap_symbol_out,
3133   sparc64_elf_slurp_reloc_table,
3134   bfd_elf64_slurp_symbol_table,
3135   bfd_elf64_swap_dyn_in,
3136   bfd_elf64_swap_dyn_out,
3137   bfd_elf64_swap_reloc_in,
3138   bfd_elf64_swap_reloc_out,
3139   bfd_elf64_swap_reloca_in,
3140   bfd_elf64_swap_reloca_out
3141 };
3142 
3143 #define TARGET_BIG_SYM	bfd_elf64_sparc_vec
3144 #define TARGET_BIG_NAME	"elf64-sparc"
3145 #define ELF_ARCH	bfd_arch_sparc
3146 #define ELF_MAXPAGESIZE 0x100000
3147 
3148 /* This is the official ABI value.  */
3149 #define ELF_MACHINE_CODE EM_SPARCV9
3150 
3151 /* This is the value that we used before the ABI was released.  */
3152 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3153 
3154 #define bfd_elf64_bfd_link_hash_table_create \
3155   sparc64_elf_bfd_link_hash_table_create
3156 
3157 #define elf_info_to_howto \
3158   sparc64_elf_info_to_howto
3159 #define bfd_elf64_get_reloc_upper_bound \
3160   sparc64_elf_get_reloc_upper_bound
3161 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3162   sparc64_elf_get_dynamic_reloc_upper_bound
3163 #define bfd_elf64_canonicalize_reloc \
3164   sparc64_elf_canonicalize_reloc
3165 #define bfd_elf64_canonicalize_dynamic_reloc \
3166   sparc64_elf_canonicalize_dynamic_reloc
3167 #define bfd_elf64_bfd_reloc_type_lookup \
3168   sparc64_elf_reloc_type_lookup
3169 #define bfd_elf64_bfd_relax_section \
3170   sparc64_elf_relax_section
3171 #define bfd_elf64_new_section_hook \
3172   sparc64_elf_new_section_hook
3173 
3174 #define elf_backend_create_dynamic_sections \
3175   _bfd_elf_create_dynamic_sections
3176 #define elf_backend_add_symbol_hook \
3177   sparc64_elf_add_symbol_hook
3178 #define elf_backend_get_symbol_type \
3179   sparc64_elf_get_symbol_type
3180 #define elf_backend_symbol_processing \
3181   sparc64_elf_symbol_processing
3182 #define elf_backend_check_relocs \
3183   sparc64_elf_check_relocs
3184 #define elf_backend_adjust_dynamic_symbol \
3185   sparc64_elf_adjust_dynamic_symbol
3186 #define elf_backend_size_dynamic_sections \
3187   sparc64_elf_size_dynamic_sections
3188 #define elf_backend_relocate_section \
3189   sparc64_elf_relocate_section
3190 #define elf_backend_finish_dynamic_symbol \
3191   sparc64_elf_finish_dynamic_symbol
3192 #define elf_backend_finish_dynamic_sections \
3193   sparc64_elf_finish_dynamic_sections
3194 #define elf_backend_print_symbol_all \
3195   sparc64_elf_print_symbol_all
3196 #define elf_backend_output_arch_syms \
3197   sparc64_elf_output_arch_syms
3198 #define bfd_elf64_bfd_merge_private_bfd_data \
3199   sparc64_elf_merge_private_bfd_data
3200 #define elf_backend_fake_sections \
3201   sparc64_elf_fake_sections
3202 
3203 #define elf_backend_size_info \
3204   sparc64_elf_size_info
3205 #define elf_backend_object_p \
3206   sparc64_elf_object_p
3207 #define elf_backend_reloc_type_class \
3208   sparc64_elf_reloc_type_class
3209 
3210 #define elf_backend_want_got_plt 0
3211 #define elf_backend_plt_readonly 0
3212 #define elf_backend_want_plt_sym 1
3213 #define elf_backend_rela_normal 1
3214 
3215 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
3216 #define elf_backend_plt_alignment 8
3217 
3218 #define elf_backend_got_header_size 8
3219 
3220 #include "elf64-target.h"
3221