1 /*
2  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3  * Copyright (c) 1991-1994 by Xerox Corporation.  All rights reserved.
4  * Copyright (c) 2000 by Hewlett-Packard Company.  All rights reserved.
5  *
6  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
8  *
9  * Permission is hereby granted to use or copy this program
10  * for any purpose,  provided the above notices are retained on all copies.
11  * Permission to modify the code and to distribute modified code is granted,
12  * provided the above notices are retained, and a notice that the code was
13  * modified is included with the above copyright notice.
14  */
15 /* Boehm, February 7, 1996 4:32 pm PST */
16 
17 #include <stdio.h>
18 #include "private/gc_priv.h"
19 
20 extern ptr_t GC_clear_stack();	/* in misc.c, behaves like identity */
21 void GC_extend_size_map();	/* in misc.c. */
22 
23 /* Allocate reclaim list for kind:	*/
24 /* Return TRUE on success		*/
GC_alloc_reclaim_list(kind)25 GC_bool GC_alloc_reclaim_list(kind)
26 register struct obj_kind * kind;
27 {
28     struct hblk ** result = (struct hblk **)
29     		GC_scratch_alloc((MAXOBJSZ+1) * sizeof(struct hblk *));
30     if (result == 0) return(FALSE);
31     BZERO(result, (MAXOBJSZ+1)*sizeof(struct hblk *));
32     kind -> ok_reclaim_list = result;
33     return(TRUE);
34 }
35 
36 /* Allocate a large block of size lw words.	*/
37 /* The block is not cleared.			*/
38 /* Flags is 0 or IGNORE_OFF_PAGE.		*/
GC_alloc_large(lw,k,flags)39 ptr_t GC_alloc_large(lw, k, flags)
40 word lw;
41 int k;
42 unsigned flags;
43 {
44     struct hblk * h;
45     word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
46     ptr_t result;
47 
48     if (!GC_is_initialized) GC_init_inner();
49     /* Do our share of marking work */
50         if(GC_incremental && !GC_dont_gc)
51 	    GC_collect_a_little_inner((int)n_blocks);
52     h = GC_allochblk(lw, k, flags);
53 #   ifdef USE_MUNMAP
54 	if (0 == h) {
55 	    GC_merge_unmapped();
56 	    h = GC_allochblk(lw, k, flags);
57 	}
58 #   endif
59     while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) {
60 	h = GC_allochblk(lw, k, flags);
61     }
62     if (h == 0) {
63 	result = 0;
64     } else {
65 	int total_bytes = BYTES_TO_WORDS(n_blocks * HBLKSIZE);
66 	if (n_blocks > 1) {
67 	    GC_large_allocd_bytes += n_blocks * HBLKSIZE;
68 	    if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
69 	        GC_max_large_allocd_bytes = GC_large_allocd_bytes;
70 	}
71 	result = (ptr_t) (h -> hb_body);
72 	GC_words_wasted += total_bytes - lw;
73     }
74     return result;
75 }
76 
77 
78 /* Allocate a large block of size lb bytes.  Clear if appropriate.	*/
GC_alloc_large_and_clear(lw,k,flags)79 ptr_t GC_alloc_large_and_clear(lw, k, flags)
80 word lw;
81 int k;
82 unsigned flags;
83 {
84     ptr_t result = GC_alloc_large(lw, k, flags);
85     word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
86 
87     if (0 == result) return 0;
88     if (GC_debugging_started || GC_obj_kinds[k].ok_init) {
89 	/* Clear the whole block, in case of GC_realloc call. */
90 	BZERO(result, n_blocks * HBLKSIZE);
91     }
92     return result;
93 }
94 
95 /* allocate lb bytes for an object of kind k.	*/
96 /* Should not be used to directly to allocate	*/
97 /* objects such as STUBBORN objects that	*/
98 /* require special handling on allocation.	*/
99 /* First a version that assumes we already	*/
100 /* hold lock:					*/
GC_generic_malloc_inner(lb,k)101 ptr_t GC_generic_malloc_inner(lb, k)
102 register word lb;
103 register int k;
104 {
105 register word lw;
106 register ptr_t op;
107 register ptr_t *opp;
108 
109     if( SMALL_OBJ(lb) ) {
110         register struct obj_kind * kind = GC_obj_kinds + k;
111 #       ifdef MERGE_SIZES
112 	  lw = GC_size_map[lb];
113 #	else
114 	  lw = ALIGNED_WORDS(lb);
115 	  if (lw == 0) lw = MIN_WORDS;
116 #       endif
117 	opp = &(kind -> ok_freelist[lw]);
118         if( (op = *opp) == 0 ) {
119 #	    ifdef MERGE_SIZES
120 	      if (GC_size_map[lb] == 0) {
121 	        if (!GC_is_initialized)  GC_init_inner();
122 	        if (GC_size_map[lb] == 0) GC_extend_size_map(lb);
123 	        return(GC_generic_malloc_inner(lb, k));
124 	      }
125 #	    else
126 	      if (!GC_is_initialized) {
127 	        GC_init_inner();
128 	        return(GC_generic_malloc_inner(lb, k));
129 	      }
130 #	    endif
131 	    if (kind -> ok_reclaim_list == 0) {
132 	    	if (!GC_alloc_reclaim_list(kind)) goto out;
133 	    }
134 	    op = GC_allocobj(lw, k);
135 	    if (op == 0) goto out;
136         }
137         /* Here everything is in a consistent state.	*/
138         /* We assume the following assignment is	*/
139         /* atomic.  If we get aborted			*/
140         /* after the assignment, we lose an object,	*/
141         /* but that's benign.				*/
142         /* Volatile declarations may need to be added	*/
143         /* to prevent the compiler from breaking things.*/
144 	/* If we only execute the second of the 	*/
145 	/* following assignments, we lose the free	*/
146 	/* list, but that should still be OK, at least	*/
147 	/* for garbage collected memory.		*/
148         *opp = obj_link(op);
149         obj_link(op) = 0;
150     } else {
151 	lw = ROUNDED_UP_WORDS(lb);
152 	op = (ptr_t)GC_alloc_large_and_clear(lw, k, 0);
153     }
154     GC_words_allocd += lw;
155 
156 out:
157     return op;
158 }
159 
160 /* Allocate a composite object of size n bytes.  The caller guarantees  */
161 /* that pointers past the first page are not relevant.  Caller holds    */
162 /* allocation lock.                                                     */
GC_generic_malloc_inner_ignore_off_page(lb,k)163 ptr_t GC_generic_malloc_inner_ignore_off_page(lb, k)
164 register size_t lb;
165 register int k;
166 {
167     register word lw;
168     ptr_t op;
169 
170     if (lb <= HBLKSIZE)
171         return(GC_generic_malloc_inner((word)lb, k));
172     lw = ROUNDED_UP_WORDS(lb);
173     op = (ptr_t)GC_alloc_large_and_clear(lw, k, IGNORE_OFF_PAGE);
174     GC_words_allocd += lw;
175     return op;
176 }
177 
GC_generic_malloc(lb,k)178 ptr_t GC_generic_malloc(lb, k)
179 register word lb;
180 register int k;
181 {
182     ptr_t result;
183     DCL_LOCK_STATE;
184 
185     if (GC_have_errors) GC_print_all_errors();
186     GC_INVOKE_FINALIZERS();
187     if (SMALL_OBJ(lb)) {
188     	DISABLE_SIGNALS();
189 	LOCK();
190         result = GC_generic_malloc_inner((word)lb, k);
191 	UNLOCK();
192 	ENABLE_SIGNALS();
193     } else {
194 	word lw;
195 	word n_blocks;
196 	GC_bool init;
197 	lw = ROUNDED_UP_WORDS(lb);
198 	n_blocks = OBJ_SZ_TO_BLOCKS(lw);
199 	init = GC_obj_kinds[k].ok_init;
200 	DISABLE_SIGNALS();
201 	LOCK();
202 	result = (ptr_t)GC_alloc_large(lw, k, 0);
203 	if (0 != result) {
204 	  if (GC_debugging_started) {
205 	    BZERO(result, n_blocks * HBLKSIZE);
206 	  } else {
207 #           ifdef THREADS
208 	      /* Clear any memory that might be used for GC descriptors */
209 	      /* before we release the lock.			      */
210 	        ((word *)result)[0] = 0;
211 	        ((word *)result)[1] = 0;
212 	        ((word *)result)[lw-1] = 0;
213 	        ((word *)result)[lw-2] = 0;
214 #	    endif
215 	  }
216 	}
217 	GC_words_allocd += lw;
218 	UNLOCK();
219 	ENABLE_SIGNALS();
220     	if (init && !GC_debugging_started && 0 != result) {
221 	    BZERO(result, n_blocks * HBLKSIZE);
222         }
223     }
224     if (0 == result) {
225         return((*GC_oom_fn)(lb));
226     } else {
227         return(result);
228     }
229 }
230 
231 
232 #define GENERAL_MALLOC(lb,k) \
233     (GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))
234 /* We make the GC_clear_stack_call a tail call, hoping to get more of	*/
235 /* the stack.								*/
236 
237 /* Allocate lb bytes of atomic (pointerfree) data */
238 # ifdef __STDC__
GC_malloc_atomic(size_t lb)239     GC_PTR GC_malloc_atomic(size_t lb)
240 # else
241     GC_PTR GC_malloc_atomic(lb)
242     size_t lb;
243 # endif
244 {
245 register ptr_t op;
246 register ptr_t * opp;
247 register word lw;
248 DCL_LOCK_STATE;
249 
250     if( EXPECT(SMALL_OBJ(lb), 1) ) {
251 #       ifdef MERGE_SIZES
252 	  lw = GC_size_map[lb];
253 #	else
254 	  lw = ALIGNED_WORDS(lb);
255 #       endif
256 	opp = &(GC_aobjfreelist[lw]);
257 	FASTLOCK();
258         if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
259             FASTUNLOCK();
260             return(GENERAL_MALLOC((word)lb, PTRFREE));
261         }
262         /* See above comment on signals.	*/
263         *opp = obj_link(op);
264         GC_words_allocd += lw;
265         FASTUNLOCK();
266         return((GC_PTR) op);
267    } else {
268        return(GENERAL_MALLOC((word)lb, PTRFREE));
269    }
270 }
271 
272 /* Allocate lb bytes of composite (pointerful) data */
273 # ifdef __STDC__
GC_malloc(size_t lb)274     GC_PTR GC_malloc(size_t lb)
275 # else
276     GC_PTR GC_malloc(lb)
277     size_t lb;
278 # endif
279 {
280 register ptr_t op;
281 register ptr_t *opp;
282 register word lw;
283 DCL_LOCK_STATE;
284 
285     if( EXPECT(SMALL_OBJ(lb), 1) ) {
286 #       ifdef MERGE_SIZES
287 	  lw = GC_size_map[lb];
288 #	else
289 	  lw = ALIGNED_WORDS(lb);
290 #       endif
291 	opp = &(GC_objfreelist[lw]);
292 	FASTLOCK();
293         if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
294             FASTUNLOCK();
295             return(GENERAL_MALLOC((word)lb, NORMAL));
296         }
297         /* See above comment on signals.	*/
298 	GC_ASSERT(0 == obj_link(op)
299 		  || (word)obj_link(op)
300 		  	<= (word)GC_greatest_plausible_heap_addr
301 		     && (word)obj_link(op)
302 		     	>= (word)GC_least_plausible_heap_addr);
303         *opp = obj_link(op);
304         obj_link(op) = 0;
305         GC_words_allocd += lw;
306         FASTUNLOCK();
307         return((GC_PTR) op);
308    } else {
309        return(GENERAL_MALLOC((word)lb, NORMAL));
310    }
311 }
312 
313 # ifdef REDIRECT_MALLOC
314 # ifdef __STDC__
malloc(size_t lb)315     GC_PTR malloc(size_t lb)
316 # else
317     GC_PTR malloc(lb)
318     size_t lb;
319 # endif
320   {
321     /* It might help to manually inline the GC_malloc call here.	*/
322     /* But any decent compiler should reduce the extra procedure call	*/
323     /* to at most a jump instruction in this case.			*/
324 #   if defined(I386) && defined(GC_SOLARIS_THREADS)
325       /*
326        * Thread initialisation can call malloc before
327        * we're ready for it.
328        * It's not clear that this is enough to help matters.
329        * The thread implementation may well call malloc at other
330        * inopportune times.
331        */
332       if (!GC_is_initialized) return sbrk(lb);
333 #   endif /* I386 && GC_SOLARIS_THREADS */
334     return((GC_PTR)REDIRECT_MALLOC(lb));
335   }
336 
337 # ifdef __STDC__
calloc(size_t n,size_t lb)338     GC_PTR calloc(size_t n, size_t lb)
339 # else
340     GC_PTR calloc(n, lb)
341     size_t n, lb;
342 # endif
343   {
344     return((GC_PTR)REDIRECT_MALLOC(n*lb));
345   }
346 
347 #ifndef strdup
348 # include <string.h>
349 # ifdef __STDC__
strdup(const char * s)350     char *strdup(const char *s)
351 # else
352     char *strdup(s)
353     char *s;
354 # endif
355   {
356     size_t len = strlen(s) + 1;
357     char * result = ((char *)REDIRECT_MALLOC(len+1));
358     BCOPY(s, result, len+1);
359     return result;
360   }
361 #endif /* !defined(strdup) */
362  /* If strdup is macro defined, we assume that it actually calls malloc, */
363  /* and thus the right thing will happen even without overriding it.	 */
364  /* This seems to be true on most Linux systems.			 */
365 
366 # endif /* REDIRECT_MALLOC */
367 
368 /* Explicitly deallocate an object p.				*/
369 # ifdef __STDC__
GC_free(GC_PTR p)370     void GC_free(GC_PTR p)
371 # else
372     void GC_free(p)
373     GC_PTR p;
374 # endif
375 {
376     register struct hblk *h;
377     register hdr *hhdr;
378     register signed_word sz;
379     register ptr_t * flh;
380     register int knd;
381     register struct obj_kind * ok;
382     DCL_LOCK_STATE;
383 
384     if (p == 0) return;
385     	/* Required by ANSI.  It's not my fault ...	*/
386     h = HBLKPTR(p);
387     hhdr = HDR(h);
388     GC_ASSERT(GC_base(p) == p);
389 #   if defined(REDIRECT_MALLOC) && \
390 	(defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \
391 	 || defined(__MINGW32__)) /* Should this be MSWIN32 in general? */
392 	/* For Solaris, we have to redirect malloc calls during		*/
393 	/* initialization.  For the others, this seems to happen 	*/
394  	/* implicitly.							*/
395 	/* Don't try to deallocate that memory.				*/
396 	if (0 == hhdr) return;
397 #   endif
398     knd = hhdr -> hb_obj_kind;
399     sz = hhdr -> hb_sz;
400     ok = &GC_obj_kinds[knd];
401     if (EXPECT((sz <= MAXOBJSZ), 1)) {
402 #	ifdef THREADS
403 	    DISABLE_SIGNALS();
404 	    LOCK();
405 #	endif
406 	GC_mem_freed += sz;
407 	/* A signal here can make GC_mem_freed and GC_non_gc_bytes	*/
408 	/* inconsistent.  We claim this is benign.			*/
409 	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
410 		/* Its unnecessary to clear the mark bit.  If the 	*/
411 		/* object is reallocated, it doesn't matter.  O.w. the	*/
412 		/* collector will do it, since it's on a free list.	*/
413 	if (ok -> ok_init) {
414 	    BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
415 	}
416 	flh = &(ok -> ok_freelist[sz]);
417 	obj_link(p) = *flh;
418 	*flh = (ptr_t)p;
419 #	ifdef THREADS
420 	    UNLOCK();
421 	    ENABLE_SIGNALS();
422 #	endif
423     } else {
424     	DISABLE_SIGNALS();
425         LOCK();
426         GC_mem_freed += sz;
427 	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
428         GC_freehblk(h);
429         UNLOCK();
430         ENABLE_SIGNALS();
431     }
432 }
433 
434 /* Explicitly deallocate an object p when we already hold lock.		*/
435 /* Only used for internally allocated objects, so we can take some 	*/
436 /* shortcuts.								*/
437 #ifdef THREADS
GC_free_inner(GC_PTR p)438 void GC_free_inner(GC_PTR p)
439 {
440     register struct hblk *h;
441     register hdr *hhdr;
442     register signed_word sz;
443     register ptr_t * flh;
444     register int knd;
445     register struct obj_kind * ok;
446     DCL_LOCK_STATE;
447 
448     h = HBLKPTR(p);
449     hhdr = HDR(h);
450     knd = hhdr -> hb_obj_kind;
451     sz = hhdr -> hb_sz;
452     ok = &GC_obj_kinds[knd];
453     if (sz <= MAXOBJSZ) {
454 	GC_mem_freed += sz;
455 	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
456 	if (ok -> ok_init) {
457 	    BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
458 	}
459 	flh = &(ok -> ok_freelist[sz]);
460 	obj_link(p) = *flh;
461 	*flh = (ptr_t)p;
462     } else {
463         GC_mem_freed += sz;
464 	if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
465         GC_freehblk(h);
466     }
467 }
468 #endif /* THREADS */
469 
470 # if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)
471 #   define REDIRECT_FREE GC_free
472 # endif
473 # ifdef REDIRECT_FREE
474 #   ifdef __STDC__
free(GC_PTR p)475       void free(GC_PTR p)
476 #   else
477       void free(p)
478       GC_PTR p;
479 #   endif
480   {
481 #   ifndef IGNORE_FREE
482       REDIRECT_FREE(p);
483 #   endif
484   }
485 # endif  /* REDIRECT_MALLOC */
486