1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ U T I L                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2004, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
19-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
20-- MA 02111-1307, USA.                                                      --
21--                                                                          --
22-- GNAT was originally developed  by the GNAT team at  New York University. --
23-- Extensive contributions were provided by Ada Core Technologies Inc.      --
24--                                                                          --
25------------------------------------------------------------------------------
26
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Exp_Ch7;  use Exp_Ch7;
33with Exp_Ch11; use Exp_Ch11;
34with Exp_Tss;  use Exp_Tss;
35with Hostparm; use Hostparm;
36with Inline;   use Inline;
37with Itypes;   use Itypes;
38with Lib;      use Lib;
39with Namet;    use Namet;
40with Nlists;   use Nlists;
41with Nmake;    use Nmake;
42with Opt;      use Opt;
43with Restrict; use Restrict;
44with Sem;      use Sem;
45with Sem_Ch8;  use Sem_Ch8;
46with Sem_Eval; use Sem_Eval;
47with Sem_Res;  use Sem_Res;
48with Sem_Util; use Sem_Util;
49with Sinfo;    use Sinfo;
50with Snames;   use Snames;
51with Stand;    use Stand;
52with Stringt;  use Stringt;
53with Targparm; use Targparm;
54with Tbuild;   use Tbuild;
55with Ttypes;   use Ttypes;
56with Uintp;    use Uintp;
57with Urealp;   use Urealp;
58with Validsw;  use Validsw;
59
60package body Exp_Util is
61
62   -----------------------
63   -- Local Subprograms --
64   -----------------------
65
66   function Build_Task_Array_Image
67     (Loc    : Source_Ptr;
68      Id_Ref : Node_Id;
69      A_Type : Entity_Id;
70      Dyn    : Boolean := False)
71      return   Node_Id;
72   --  Build function to generate the image string for a task that is an
73   --  array component, concatenating the images of each index. To avoid
74   --  storage leaks, the string is built with successive slice assignments.
75   --  The flag Dyn indicates whether this is called for the initialization
76   --  procedure of an array of tasks, or for the name of a dynamically
77   --  created task that is assigned to an indexed component.
78
79   function Build_Task_Image_Function
80     (Loc   : Source_Ptr;
81      Decls : List_Id;
82      Stats : List_Id;
83      Res   : Entity_Id)
84      return  Node_Id;
85   --  Common processing for Task_Array_Image and Task_Record_Image.
86   --  Build function body that computes image.
87
88   procedure Build_Task_Image_Prefix
89      (Loc    : Source_Ptr;
90       Len    : out Entity_Id;
91       Res    : out Entity_Id;
92       Pos    : out Entity_Id;
93       Prefix : Entity_Id;
94       Sum    : Node_Id;
95       Decls  : in out List_Id;
96       Stats  : in out List_Id);
97   --  Common processing for Task_Array_Image and Task_Record_Image.
98   --  Create local variables and assign prefix of name to result string.
99
100   function Build_Task_Record_Image
101     (Loc    : Source_Ptr;
102      Id_Ref : Node_Id;
103      Dyn    : Boolean := False)
104      return   Node_Id;
105   --  Build function to generate the image string for a task that is a
106   --  record component. Concatenate name of variable with that of selector.
107   --  The flag Dyn indicates whether this is called for the initialization
108   --  procedure of record with task components, or for a dynamically
109   --  created task that is assigned to a selected component.
110
111   function Make_CW_Equivalent_Type
112     (T    : Entity_Id;
113      E    : Node_Id)
114      return Entity_Id;
115   --  T is a class-wide type entity, E is the initial expression node that
116   --  constrains T in case such as: " X: T := E" or "new T'(E)"
117   --  This function returns the entity of the Equivalent type and inserts
118   --  on the fly the necessary declaration such as:
119   --
120   --    type anon is record
121   --       _parent : Root_Type (T); constrained with E discriminants (if any)
122   --       Extension : String (1 .. expr to match size of E);
123   --    end record;
124   --
125   --  This record is compatible with any object of the class of T thanks
126   --  to the first field and has the same size as E thanks to the second.
127
128   function Make_Literal_Range
129     (Loc         : Source_Ptr;
130      Literal_Typ : Entity_Id)
131      return        Node_Id;
132   --  Produce a Range node whose bounds are:
133   --    Low_Bound (Literal_Type) ..
134   --        Low_Bound (Literal_Type) + Length (Literal_Typ) - 1
135   --  this is used for expanding declarations like X : String := "sdfgdfg";
136
137   function New_Class_Wide_Subtype
138     (CW_Typ : Entity_Id;
139      N      : Node_Id)
140      return   Entity_Id;
141   --  Create an implicit subtype of CW_Typ attached to node N.
142
143   ----------------------
144   -- Adjust_Condition --
145   ----------------------
146
147   procedure Adjust_Condition (N : Node_Id) is
148   begin
149      if No (N) then
150         return;
151      end if;
152
153      declare
154         Loc : constant Source_Ptr := Sloc (N);
155         T   : constant Entity_Id  := Etype (N);
156         Ti  : Entity_Id;
157
158      begin
159         --  For now, we simply ignore a call where the argument has no
160         --  type (probably case of unanalyzed condition), or has a type
161         --  that is not Boolean. This is because this is a pretty marginal
162         --  piece of functionality, and violations of these rules are
163         --  likely to be truly marginal (how much code uses Fortran Logical
164         --  as the barrier to a protected entry?) and we do not want to
165         --  blow up existing programs. We can change this to an assertion
166         --  after 3.12a is released ???
167
168         if No (T) or else not Is_Boolean_Type (T) then
169            return;
170         end if;
171
172         --  Apply validity checking if needed
173
174         if Validity_Checks_On and Validity_Check_Tests then
175            Ensure_Valid (N);
176         end if;
177
178         --  Immediate return if standard boolean, the most common case,
179         --  where nothing needs to be done.
180
181         if Base_Type (T) = Standard_Boolean then
182            return;
183         end if;
184
185         --  Case of zero/non-zero semantics or non-standard enumeration
186         --  representation. In each case, we rewrite the node as:
187
188         --      ityp!(N) /= False'Enum_Rep
189
190         --  where ityp is an integer type with large enough size to hold
191         --  any value of type T.
192
193         if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
194            if Esize (T) <= Esize (Standard_Integer) then
195               Ti := Standard_Integer;
196            else
197               Ti := Standard_Long_Long_Integer;
198            end if;
199
200            Rewrite (N,
201              Make_Op_Ne (Loc,
202                Left_Opnd  => Unchecked_Convert_To (Ti, N),
203                Right_Opnd =>
204                  Make_Attribute_Reference (Loc,
205                    Attribute_Name => Name_Enum_Rep,
206                    Prefix         =>
207                      New_Occurrence_Of (First_Literal (T), Loc))));
208            Analyze_And_Resolve (N, Standard_Boolean);
209
210         else
211            Rewrite (N, Convert_To (Standard_Boolean, N));
212            Analyze_And_Resolve (N, Standard_Boolean);
213         end if;
214      end;
215   end Adjust_Condition;
216
217   ------------------------
218   -- Adjust_Result_Type --
219   ------------------------
220
221   procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
222   begin
223      --  Ignore call if current type is not Standard.Boolean
224
225      if Etype (N) /= Standard_Boolean then
226         return;
227      end if;
228
229      --  If result is already of correct type, nothing to do. Note that
230      --  this will get the most common case where everything has a type
231      --  of Standard.Boolean.
232
233      if Base_Type (T) = Standard_Boolean then
234         return;
235
236      else
237         declare
238            KP : constant Node_Kind := Nkind (Parent (N));
239
240         begin
241            --  If result is to be used as a Condition in the syntax, no need
242            --  to convert it back, since if it was changed to Standard.Boolean
243            --  using Adjust_Condition, that is just fine for this usage.
244
245            if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
246               return;
247
248            --  If result is an operand of another logical operation, no need
249            --  to reset its type, since Standard.Boolean is just fine, and
250            --  such operations always do Adjust_Condition on their operands.
251
252            elsif KP in N_Op_Boolean
253              or else KP = N_And_Then
254              or else KP = N_Or_Else
255              or else KP = N_Op_Not
256            then
257               return;
258
259            --  Otherwise we perform a conversion from the current type,
260            --  which must be Standard.Boolean, to the desired type.
261
262            else
263               Set_Analyzed (N);
264               Rewrite (N, Convert_To (T, N));
265               Analyze_And_Resolve (N, T);
266            end if;
267         end;
268      end if;
269   end Adjust_Result_Type;
270
271   --------------------------
272   -- Append_Freeze_Action --
273   --------------------------
274
275   procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
276      Fnode : Node_Id := Freeze_Node (T);
277
278   begin
279      Ensure_Freeze_Node (T);
280      Fnode := Freeze_Node (T);
281
282      if not Present (Actions (Fnode)) then
283         Set_Actions (Fnode, New_List);
284      end if;
285
286      Append (N, Actions (Fnode));
287   end Append_Freeze_Action;
288
289   ---------------------------
290   -- Append_Freeze_Actions --
291   ---------------------------
292
293   procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
294      Fnode : constant Node_Id := Freeze_Node (T);
295
296   begin
297      if No (L) then
298         return;
299
300      else
301         if No (Actions (Fnode)) then
302            Set_Actions (Fnode, L);
303
304         else
305            Append_List (L, Actions (Fnode));
306         end if;
307
308      end if;
309   end Append_Freeze_Actions;
310
311   ------------------------
312   -- Build_Runtime_Call --
313   ------------------------
314
315   function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
316   begin
317      --  If entity is not available, we can skip making the call (this avoids
318      --  junk duplicated error messages in a number of cases).
319
320      if not RTE_Available (RE) then
321         return Make_Null_Statement (Loc);
322      else
323         return
324           Make_Procedure_Call_Statement (Loc,
325             Name => New_Reference_To (RTE (RE), Loc));
326      end if;
327   end Build_Runtime_Call;
328
329   -----------------------------
330   --  Build_Task_Array_Image --
331   -----------------------------
332
333   --  This function generates the body for a function that constructs the
334   --  image string for a task that is an array component. The function is
335   --  local to the init proc for the array type, and is called for each one
336   --  of the components. The constructed image has the form of an indexed
337   --  component, whose prefix is the outer variable of the array type.
338   --  The n-dimensional array type has known indices Index, Index2...
339   --  Id_Ref is an indexed component form created by the enclosing init proc.
340   --  Its successive indices are Val1, Val2,.. which are the loop variables
341   --  in the loops that call the individual task init proc on each component.
342
343   --  The generated function has the following structure:
344
345   --  function F return String is
346   --     Pref : string renames Task_Name;
347   --     T1   : String := Index1'Image (Val1);
348   --     ...
349   --     Tn   : String := indexn'image (Valn);
350   --     Len  : Integer := T1'Length + ... + Tn'Length + n + 1;
351   --     --  Len includes commas and the end parentheses.
352   --     Res  : String (1..Len);
353   --     Pos  : Integer := Pref'Length;
354   --
355   --  begin
356   --     Res (1 .. Pos) := Pref;
357   --     Pos := Pos + 1;
358   --     Res (Pos)    := '(';
359   --     Pos := Pos + 1;
360   --     Res (Pos .. Pos + T1'Length - 1) := T1;
361   --     Pos := Pos + T1'Length;
362   --     Res (Pos) := '.';
363   --     Pos := Pos + 1;
364   --     ...
365   --     Res (Pos .. Pos + Tn'Length - 1) := Tn;
366   --     Res (Len) := ')';
367   --
368   --     return Res;
369   --  end F;
370   --
371   --  Needless to say, multidimensional arrays of tasks are rare enough
372   --  that the bulkiness of this code is not really a concern.
373
374   function Build_Task_Array_Image
375     (Loc    : Source_Ptr;
376      Id_Ref : Node_Id;
377      A_Type : Entity_Id;
378      Dyn    : Boolean := False)
379      return   Node_Id
380   is
381      Dims : constant Nat := Number_Dimensions (A_Type);
382      --  Number of dimensions for array of tasks.
383
384      Temps : array (1 .. Dims) of Entity_Id;
385      --  Array of temporaries to hold string for each index.
386
387      Indx : Node_Id;
388      --  Index expression
389
390      Len : Entity_Id;
391      --  Total length of generated name
392
393      Pos : Entity_Id;
394      --  Running index for substring assignments
395
396      Pref : Entity_Id;
397      --  Name of enclosing variable, prefix of resulting name
398
399      Res : Entity_Id;
400      --  String to hold result
401
402      Val : Node_Id;
403      --  Value of successive indices
404
405      Sum : Node_Id;
406      --  Expression to compute total size of string
407
408      T : Entity_Id;
409      --  Entity for name at one index position
410
411      Decls : List_Id := New_List;
412      Stats : List_Id := New_List;
413
414   begin
415      Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
416
417      --  For a dynamic task, the name comes from the target variable.
418      --  For a static one it is a formal of the enclosing init proc.
419
420      if Dyn then
421         Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
422         Append_To (Decls,
423           Make_Object_Declaration (Loc,
424             Defining_Identifier => Pref,
425             Object_Definition => New_Occurrence_Of (Standard_String, Loc),
426             Expression =>
427               Make_String_Literal (Loc, Strval => String_From_Name_Buffer)));
428
429      else
430         Append_To (Decls,
431           Make_Object_Renaming_Declaration (Loc,
432             Defining_Identifier => Pref,
433             Subtype_Mark        => New_Occurrence_Of (Standard_String, Loc),
434             Name                => Make_Identifier (Loc, Name_uTask_Name)));
435      end if;
436
437      Indx := First_Index (A_Type);
438      Val  := First (Expressions (Id_Ref));
439
440      for J in 1 .. Dims loop
441         T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
442         Temps (J) := T;
443
444         Append_To (Decls,
445            Make_Object_Declaration (Loc,
446               Defining_Identifier => T,
447               Object_Definition => New_Occurrence_Of (Standard_String, Loc),
448               Expression =>
449                 Make_Attribute_Reference (Loc,
450                   Attribute_Name => Name_Image,
451                   Prefix =>
452                     New_Occurrence_Of (Etype (Indx), Loc),
453                   Expressions => New_List (
454                     New_Copy_Tree (Val)))));
455
456         Next_Index (Indx);
457         Next (Val);
458      end loop;
459
460      Sum := Make_Integer_Literal (Loc, Dims + 1);
461
462      Sum :=
463        Make_Op_Add (Loc,
464          Left_Opnd => Sum,
465          Right_Opnd =>
466           Make_Attribute_Reference (Loc,
467             Attribute_Name => Name_Length,
468             Prefix =>
469               New_Occurrence_Of (Pref, Loc),
470             Expressions => New_List (Make_Integer_Literal (Loc, 1))));
471
472      for J in 1 .. Dims loop
473         Sum :=
474            Make_Op_Add (Loc,
475             Left_Opnd => Sum,
476             Right_Opnd =>
477              Make_Attribute_Reference (Loc,
478                Attribute_Name => Name_Length,
479                Prefix =>
480                  New_Occurrence_Of (Temps (J), Loc),
481                Expressions => New_List (Make_Integer_Literal (Loc, 1))));
482      end loop;
483
484      Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
485
486      Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
487
488      Append_To (Stats,
489         Make_Assignment_Statement (Loc,
490           Name => Make_Indexed_Component (Loc,
491              Prefix => New_Occurrence_Of (Res, Loc),
492              Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
493           Expression =>
494             Make_Character_Literal (Loc,
495               Chars => Name_Find,
496               Char_Literal_Value =>
497                 Char_Code (Character'Pos ('(')))));
498
499      Append_To (Stats,
500         Make_Assignment_Statement (Loc,
501            Name => New_Occurrence_Of (Pos, Loc),
502            Expression =>
503              Make_Op_Add (Loc,
504                Left_Opnd => New_Occurrence_Of (Pos, Loc),
505                Right_Opnd => Make_Integer_Literal (Loc, 1))));
506
507      for J in 1 .. Dims loop
508
509         Append_To (Stats,
510            Make_Assignment_Statement (Loc,
511              Name => Make_Slice (Loc,
512                 Prefix => New_Occurrence_Of (Res, Loc),
513                 Discrete_Range  =>
514                   Make_Range (Loc,
515                      Low_Bound => New_Occurrence_Of  (Pos, Loc),
516                      High_Bound => Make_Op_Subtract (Loc,
517                        Left_Opnd =>
518                          Make_Op_Add (Loc,
519                            Left_Opnd => New_Occurrence_Of (Pos, Loc),
520                            Right_Opnd =>
521                              Make_Attribute_Reference (Loc,
522                                Attribute_Name => Name_Length,
523                                Prefix =>
524                                  New_Occurrence_Of (Temps (J), Loc),
525                                Expressions =>
526                                  New_List (Make_Integer_Literal (Loc, 1)))),
527                         Right_Opnd => Make_Integer_Literal (Loc, 1)))),
528
529              Expression => New_Occurrence_Of (Temps (J), Loc)));
530
531         if J < Dims then
532            Append_To (Stats,
533               Make_Assignment_Statement (Loc,
534                  Name => New_Occurrence_Of (Pos, Loc),
535                  Expression =>
536                    Make_Op_Add (Loc,
537                      Left_Opnd => New_Occurrence_Of (Pos, Loc),
538                      Right_Opnd =>
539                        Make_Attribute_Reference (Loc,
540                          Attribute_Name => Name_Length,
541                            Prefix => New_Occurrence_Of (Temps (J), Loc),
542                            Expressions =>
543                              New_List (Make_Integer_Literal (Loc, 1))))));
544
545            Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
546
547            Append_To (Stats,
548               Make_Assignment_Statement (Loc,
549                 Name => Make_Indexed_Component (Loc,
550                    Prefix => New_Occurrence_Of (Res, Loc),
551                    Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
552                 Expression =>
553                   Make_Character_Literal (Loc,
554                     Chars => Name_Find,
555                     Char_Literal_Value =>
556                       Char_Code (Character'Pos (',')))));
557
558            Append_To (Stats,
559              Make_Assignment_Statement (Loc,
560                Name => New_Occurrence_Of (Pos, Loc),
561                  Expression =>
562                    Make_Op_Add (Loc,
563                      Left_Opnd => New_Occurrence_Of (Pos, Loc),
564                      Right_Opnd => Make_Integer_Literal (Loc, 1))));
565         end if;
566      end loop;
567
568      Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
569
570      Append_To (Stats,
571         Make_Assignment_Statement (Loc,
572           Name => Make_Indexed_Component (Loc,
573              Prefix => New_Occurrence_Of (Res, Loc),
574              Expressions => New_List (New_Occurrence_Of (Len, Loc))),
575           Expression =>
576             Make_Character_Literal (Loc,
577               Chars => Name_Find,
578               Char_Literal_Value =>
579                 Char_Code (Character'Pos (')')))));
580      return Build_Task_Image_Function (Loc, Decls, Stats, Res);
581   end Build_Task_Array_Image;
582
583   ----------------------------
584   -- Build_Task_Image_Decls --
585   ----------------------------
586
587   function Build_Task_Image_Decls
588     (Loc    : Source_Ptr;
589      Id_Ref : Node_Id;
590      A_Type : Entity_Id)
591      return   List_Id
592   is
593      Decls  : constant List_Id   := New_List;
594      T_Id   : Entity_Id := Empty;
595      Decl   : Node_Id;
596      Expr   : Node_Id   := Empty;
597      Fun    : Node_Id   := Empty;
598      Is_Dyn : constant Boolean :=
599                 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
600                   and then
601                 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
602
603   begin
604      --  If Discard_Names or No_Implicit_Heap_Allocations are in effect,
605      --  generate a dummy declaration only.
606
607      if Restrictions (No_Implicit_Heap_Allocations)
608        or else Global_Discard_Names
609      then
610         T_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
611         Name_Len := 0;
612
613         return
614           New_List (
615             Make_Object_Declaration (Loc,
616               Defining_Identifier => T_Id,
617               Object_Definition => New_Occurrence_Of (Standard_String, Loc),
618               Expression =>
619                 Make_String_Literal
620                   (Loc, Strval => String_From_Name_Buffer)));
621
622      else
623         if Nkind (Id_Ref) = N_Identifier
624           or else Nkind (Id_Ref) = N_Defining_Identifier
625         then
626            --  For a simple variable, the image of the task is the name
627            --  of the variable.
628
629            T_Id :=
630              Make_Defining_Identifier (Loc,
631                New_External_Name (Chars (Id_Ref), 'T'));
632
633            Get_Name_String (Chars (Id_Ref));
634
635            Expr := Make_String_Literal
636              (Loc, Strval => String_From_Name_Buffer);
637
638         elsif Nkind (Id_Ref) = N_Selected_Component then
639            T_Id :=
640              Make_Defining_Identifier (Loc,
641                New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
642            Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
643
644         elsif Nkind (Id_Ref) = N_Indexed_Component then
645            T_Id :=
646              Make_Defining_Identifier (Loc,
647                New_External_Name (Chars (A_Type), 'N'));
648
649            Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
650         end if;
651      end if;
652
653      if Present (Fun) then
654         Append (Fun, Decls);
655         Expr := Make_Function_Call (Loc,
656           Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
657      end if;
658
659      Decl := Make_Object_Declaration (Loc,
660        Defining_Identifier => T_Id,
661        Object_Definition   => New_Occurrence_Of (Standard_String, Loc),
662        Constant_Present    => True,
663        Expression          => Expr);
664
665      Append (Decl, Decls);
666      return Decls;
667   end Build_Task_Image_Decls;
668
669   -------------------------------
670   -- Build_Task_Image_Function --
671   -------------------------------
672
673   function Build_Task_Image_Function
674     (Loc   : Source_Ptr;
675      Decls : List_Id;
676      Stats : List_Id;
677      Res   : Entity_Id)
678      return  Node_Id
679   is
680      Spec : Node_Id;
681
682   begin
683      Append_To (Stats,
684        Make_Return_Statement (Loc,
685          Expression => New_Occurrence_Of (Res, Loc)));
686
687      Spec := Make_Function_Specification (Loc,
688        Defining_Unit_Name =>
689          Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
690        Subtype_Mark => New_Occurrence_Of (Standard_String, Loc));
691
692      --  Calls to 'Image use the secondary stack, which must be cleaned
693      --  up after the task name is built.
694
695      Set_Uses_Sec_Stack (Defining_Unit_Name (Spec));
696
697      return Make_Subprogram_Body (Loc,
698         Specification => Spec,
699         Declarations => Decls,
700         Handled_Statement_Sequence =>
701           Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
702   end Build_Task_Image_Function;
703
704   -----------------------------
705   -- Build_Task_Image_Prefix --
706   -----------------------------
707
708   procedure Build_Task_Image_Prefix
709      (Loc    : Source_Ptr;
710       Len    : out Entity_Id;
711       Res    : out Entity_Id;
712       Pos    : out Entity_Id;
713       Prefix : Entity_Id;
714       Sum    : Node_Id;
715       Decls  : in out List_Id;
716       Stats  : in out List_Id)
717   is
718   begin
719      Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
720
721      Append_To (Decls,
722        Make_Object_Declaration (Loc,
723          Defining_Identifier => Len,
724          Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
725          Expression        => Sum));
726
727      Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
728
729      Append_To (Decls,
730         Make_Object_Declaration (Loc,
731            Defining_Identifier => Res,
732            Object_Definition =>
733               Make_Subtype_Indication (Loc,
734                  Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
735               Constraint =>
736                 Make_Index_Or_Discriminant_Constraint (Loc,
737                   Constraints =>
738                     New_List (
739                       Make_Range (Loc,
740                         Low_Bound => Make_Integer_Literal (Loc, 1),
741                         High_Bound => New_Occurrence_Of (Len, Loc)))))));
742
743      Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
744
745      Append_To (Decls,
746         Make_Object_Declaration (Loc,
747            Defining_Identifier => Pos,
748            Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
749
750      --  Pos := Prefix'Length;
751
752      Append_To (Stats,
753         Make_Assignment_Statement (Loc,
754            Name => New_Occurrence_Of (Pos, Loc),
755            Expression =>
756              Make_Attribute_Reference (Loc,
757                Attribute_Name => Name_Length,
758                Prefix => New_Occurrence_Of (Prefix, Loc),
759                Expressions =>
760                    New_List (Make_Integer_Literal (Loc, 1)))));
761
762      --  Res (1 .. Pos) := Prefix;
763
764      Append_To (Stats,
765         Make_Assignment_Statement (Loc,
766           Name => Make_Slice (Loc,
767              Prefix => New_Occurrence_Of (Res, Loc),
768              Discrete_Range  =>
769                Make_Range (Loc,
770                   Low_Bound => Make_Integer_Literal (Loc, 1),
771                   High_Bound => New_Occurrence_Of (Pos, Loc))),
772
773           Expression => New_Occurrence_Of (Prefix, Loc)));
774
775      Append_To (Stats,
776         Make_Assignment_Statement (Loc,
777            Name => New_Occurrence_Of (Pos, Loc),
778            Expression =>
779              Make_Op_Add (Loc,
780                Left_Opnd => New_Occurrence_Of (Pos, Loc),
781                Right_Opnd => Make_Integer_Literal (Loc, 1))));
782   end Build_Task_Image_Prefix;
783
784   -----------------------------
785   -- Build_Task_Record_Image --
786   -----------------------------
787
788   function Build_Task_Record_Image
789     (Loc    : Source_Ptr;
790      Id_Ref : Node_Id;
791      Dyn    : Boolean := False)
792      return   Node_Id
793   is
794      Len : Entity_Id;
795      --  Total length of generated name
796
797      Pos : Entity_Id;
798      --  Index into result
799
800      Res : Entity_Id;
801      --  String to hold result
802
803      Pref : Entity_Id;
804      --  Name of enclosing variable, prefix of resulting name
805
806      Sum : Node_Id;
807      --  Expression to compute total size of string.
808
809      Sel : Entity_Id;
810      --  Entity for selector name
811
812      Decls : List_Id := New_List;
813      Stats : List_Id := New_List;
814
815   begin
816      Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
817
818      --  For a dynamic task, the name comes from the target variable.
819      --  For a static one it is a formal of the enclosing init proc.
820
821      if Dyn then
822         Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
823         Append_To (Decls,
824           Make_Object_Declaration (Loc,
825             Defining_Identifier => Pref,
826             Object_Definition => New_Occurrence_Of (Standard_String, Loc),
827             Expression =>
828               Make_String_Literal (Loc, Strval => String_From_Name_Buffer)));
829
830      else
831         Append_To (Decls,
832           Make_Object_Renaming_Declaration (Loc,
833             Defining_Identifier => Pref,
834             Subtype_Mark        => New_Occurrence_Of (Standard_String, Loc),
835             Name                => Make_Identifier (Loc, Name_uTask_Name)));
836      end if;
837
838      Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
839
840      Get_Name_String (Chars (Selector_Name (Id_Ref)));
841
842      Append_To (Decls,
843         Make_Object_Declaration (Loc,
844           Defining_Identifier => Sel,
845           Object_Definition => New_Occurrence_Of (Standard_String, Loc),
846           Expression =>
847              Make_String_Literal (Loc, Strval => String_From_Name_Buffer)));
848
849      Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
850
851      Sum :=
852        Make_Op_Add (Loc,
853          Left_Opnd => Sum,
854          Right_Opnd =>
855           Make_Attribute_Reference (Loc,
856             Attribute_Name => Name_Length,
857             Prefix =>
858               New_Occurrence_Of (Pref, Loc),
859             Expressions => New_List (Make_Integer_Literal (Loc, 1))));
860
861      Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
862
863      Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
864
865      --  Res (Pos) := '.';
866
867      Append_To (Stats,
868         Make_Assignment_Statement (Loc,
869           Name => Make_Indexed_Component (Loc,
870              Prefix => New_Occurrence_Of (Res, Loc),
871              Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
872           Expression =>
873             Make_Character_Literal (Loc,
874               Chars => Name_Find,
875               Char_Literal_Value =>
876                 Char_Code (Character'Pos ('.')))));
877
878      Append_To (Stats,
879        Make_Assignment_Statement (Loc,
880          Name => New_Occurrence_Of (Pos, Loc),
881          Expression =>
882            Make_Op_Add (Loc,
883              Left_Opnd => New_Occurrence_Of (Pos, Loc),
884              Right_Opnd => Make_Integer_Literal (Loc, 1))));
885
886      --  Res (Pos .. Len) := Selector;
887
888      Append_To (Stats,
889        Make_Assignment_Statement (Loc,
890          Name => Make_Slice (Loc,
891             Prefix => New_Occurrence_Of (Res, Loc),
892             Discrete_Range  =>
893               Make_Range (Loc,
894                 Low_Bound  => New_Occurrence_Of (Pos, Loc),
895                 High_Bound => New_Occurrence_Of (Len, Loc))),
896          Expression => New_Occurrence_Of (Sel, Loc)));
897
898      return Build_Task_Image_Function (Loc, Decls, Stats, Res);
899   end Build_Task_Record_Image;
900
901   ----------------------------------
902   -- Component_May_Be_Bit_Aligned --
903   ----------------------------------
904
905   function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
906   begin
907      --  If no component clause, then everything is fine, since the
908      --  back end never bit-misaligns by default, even if there is
909      --  a pragma Packed for the record.
910
911      if No (Component_Clause (Comp)) then
912         return False;
913      end if;
914
915      --  It is only array and record types that cause trouble
916
917      if not Is_Record_Type (Etype (Comp))
918        and then not Is_Array_Type (Etype (Comp))
919      then
920         return False;
921
922      --  If we know that we have a small (64 bits or less) record
923      --  or bit-packed array, then everything is fine, since the
924      --  back end can handle these cases correctly.
925
926      elsif Esize (Comp) <= 64
927        and then (Is_Record_Type (Etype (Comp))
928                   or else Is_Bit_Packed_Array (Etype (Comp)))
929      then
930         return False;
931
932      --  Otherwise if the component is not byte aligned, we
933      --  know we have the nasty unaligned case.
934
935      elsif Normalized_First_Bit (Comp) /= Uint_0
936        or else Esize (Comp) mod System_Storage_Unit /= Uint_0
937      then
938         return True;
939
940      --  If we are large and byte aligned, then OK at this level
941
942      else
943         return False;
944      end if;
945   end Component_May_Be_Bit_Aligned;
946
947   -------------------------------
948   -- Convert_To_Actual_Subtype --
949   -------------------------------
950
951   procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
952      Act_ST : Entity_Id;
953
954   begin
955      Act_ST := Get_Actual_Subtype (Exp);
956
957      if Act_ST = Etype (Exp) then
958         return;
959
960      else
961         Rewrite (Exp,
962           Convert_To (Act_ST, Relocate_Node (Exp)));
963         Analyze_And_Resolve (Exp, Act_ST);
964      end if;
965   end Convert_To_Actual_Subtype;
966
967   -----------------------------------
968   -- Current_Sem_Unit_Declarations --
969   -----------------------------------
970
971   function Current_Sem_Unit_Declarations return List_Id is
972      U     : Node_Id := Unit (Cunit (Current_Sem_Unit));
973      Decls : List_Id;
974
975   begin
976      --  If the current unit is a package body, locate the visible
977      --  declarations of the package spec.
978
979      if Nkind (U) = N_Package_Body then
980         U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
981      end if;
982
983      if Nkind (U) = N_Package_Declaration then
984         U := Specification (U);
985         Decls := Visible_Declarations (U);
986
987         if No (Decls) then
988            Decls := New_List;
989            Set_Visible_Declarations (U, Decls);
990         end if;
991
992      else
993         Decls := Declarations (U);
994
995         if No (Decls) then
996            Decls := New_List;
997            Set_Declarations (U, Decls);
998         end if;
999      end if;
1000
1001      return Decls;
1002   end Current_Sem_Unit_Declarations;
1003
1004   -----------------------
1005   -- Duplicate_Subexpr --
1006   -----------------------
1007
1008   function Duplicate_Subexpr
1009     (Exp      : Node_Id;
1010      Name_Req : Boolean := False)
1011      return     Node_Id
1012   is
1013   begin
1014      Remove_Side_Effects (Exp, Name_Req);
1015      return New_Copy_Tree (Exp);
1016   end Duplicate_Subexpr;
1017
1018   ---------------------------------
1019   -- Duplicate_Subexpr_No_Checks --
1020   ---------------------------------
1021
1022   function Duplicate_Subexpr_No_Checks
1023     (Exp      : Node_Id;
1024      Name_Req : Boolean := False)
1025      return     Node_Id
1026   is
1027      New_Exp : Node_Id;
1028
1029   begin
1030      Remove_Side_Effects (Exp, Name_Req);
1031      New_Exp := New_Copy_Tree (Exp);
1032      Remove_Checks (New_Exp);
1033      return New_Exp;
1034   end Duplicate_Subexpr_No_Checks;
1035
1036   -----------------------------------
1037   -- Duplicate_Subexpr_Move_Checks --
1038   -----------------------------------
1039
1040   function Duplicate_Subexpr_Move_Checks
1041     (Exp      : Node_Id;
1042      Name_Req : Boolean := False)
1043      return     Node_Id
1044   is
1045      New_Exp : Node_Id;
1046
1047   begin
1048      Remove_Side_Effects (Exp, Name_Req);
1049      New_Exp := New_Copy_Tree (Exp);
1050      Remove_Checks (Exp);
1051      return New_Exp;
1052   end Duplicate_Subexpr_Move_Checks;
1053
1054   --------------------
1055   -- Ensure_Defined --
1056   --------------------
1057
1058   procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
1059      IR : Node_Id;
1060      P  : Node_Id;
1061
1062   begin
1063      if Is_Itype (Typ) then
1064         IR := Make_Itype_Reference (Sloc (N));
1065         Set_Itype (IR, Typ);
1066
1067         if not In_Open_Scopes (Scope (Typ))
1068           and then Is_Subprogram (Current_Scope)
1069           and then Scope (Current_Scope) /= Standard_Standard
1070         then
1071            --  Insert node in front of subprogram, to avoid scope anomalies
1072            --  in gigi.
1073
1074            P := Parent (N);
1075
1076            while Present (P)
1077              and then Nkind (P) /= N_Subprogram_Body
1078            loop
1079               P := Parent (P);
1080            end loop;
1081
1082            if Present (P) then
1083               Insert_Action (P, IR);
1084            else
1085               Insert_Action (N, IR);
1086            end if;
1087
1088         else
1089            Insert_Action (N, IR);
1090         end if;
1091      end if;
1092   end Ensure_Defined;
1093
1094   ---------------------
1095   -- Evolve_And_Then --
1096   ---------------------
1097
1098   procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
1099   begin
1100      if No (Cond) then
1101         Cond := Cond1;
1102      else
1103         Cond :=
1104           Make_And_Then (Sloc (Cond1),
1105             Left_Opnd  => Cond,
1106             Right_Opnd => Cond1);
1107      end if;
1108   end Evolve_And_Then;
1109
1110   --------------------
1111   -- Evolve_Or_Else --
1112   --------------------
1113
1114   procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
1115   begin
1116      if No (Cond) then
1117         Cond := Cond1;
1118      else
1119         Cond :=
1120           Make_Or_Else (Sloc (Cond1),
1121             Left_Opnd  => Cond,
1122             Right_Opnd => Cond1);
1123      end if;
1124   end Evolve_Or_Else;
1125
1126   ------------------------------
1127   -- Expand_Subtype_From_Expr --
1128   ------------------------------
1129
1130   --  This function is applicable for both static and dynamic allocation of
1131   --  objects which are constrained by an initial expression. Basically it
1132   --  transforms an unconstrained subtype indication into a constrained one.
1133   --  The expression may also be transformed in certain cases in order to
1134   --  avoid multiple evaulation. In the static allocation case, the general
1135   --  scheme is :
1136
1137   --     Val : T := Expr;
1138
1139   --        is transformed into
1140
1141   --     Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
1142   --
1143   --  Here are the main cases :
1144   --
1145   --  <if Expr is a Slice>
1146   --    Val : T ([Index_Subtype (Expr)]) := Expr;
1147   --
1148   --  <elsif Expr is a String Literal>
1149   --    Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
1150   --
1151   --  <elsif Expr is Constrained>
1152   --    subtype T is Type_Of_Expr
1153   --    Val : T := Expr;
1154   --
1155   --  <elsif Expr is an entity_name>
1156   --    Val : T (constraints taken from Expr) := Expr;
1157   --
1158   --  <else>
1159   --    type Axxx is access all T;
1160   --    Rval : Axxx := Expr'ref;
1161   --    Val  : T (constraints taken from Rval) := Rval.all;
1162
1163   --    ??? note: when the Expression is allocated in the secondary stack
1164   --              we could use it directly instead of copying it by declaring
1165   --              Val : T (...) renames Rval.all
1166
1167   procedure Expand_Subtype_From_Expr
1168     (N             : Node_Id;
1169      Unc_Type      : Entity_Id;
1170      Subtype_Indic : Node_Id;
1171      Exp           : Node_Id)
1172   is
1173      Loc     : constant Source_Ptr := Sloc (N);
1174      Exp_Typ : constant Entity_Id  := Etype (Exp);
1175      T       : Entity_Id;
1176
1177   begin
1178      --  In general we cannot build the subtype if expansion is disabled,
1179      --  because internal entities may not have been defined. However, to
1180      --  avoid some cascaded errors, we try to continue when the expression
1181      --  is an array (or string), because it is safe to compute the bounds.
1182      --  It is in fact required to do so even in a generic context, because
1183      --  there may be constants that depend on bounds of string literal.
1184
1185      if not Expander_Active
1186        and then (No (Etype (Exp))
1187                   or else Base_Type (Etype (Exp)) /= Standard_String)
1188      then
1189         return;
1190      end if;
1191
1192      if Nkind (Exp) = N_Slice then
1193         declare
1194            Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
1195
1196         begin
1197            Rewrite (Subtype_Indic,
1198              Make_Subtype_Indication (Loc,
1199                Subtype_Mark => New_Reference_To (Unc_Type, Loc),
1200                Constraint =>
1201                  Make_Index_Or_Discriminant_Constraint (Loc,
1202                    Constraints => New_List
1203                      (New_Reference_To (Slice_Type, Loc)))));
1204
1205            --  This subtype indication may be used later for contraint checks
1206            --  we better make sure that if a variable was used as a bound of
1207            --  of the original slice, its value is frozen.
1208
1209            Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
1210            Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
1211         end;
1212
1213      elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
1214         Rewrite (Subtype_Indic,
1215           Make_Subtype_Indication (Loc,
1216             Subtype_Mark => New_Reference_To (Unc_Type, Loc),
1217             Constraint =>
1218               Make_Index_Or_Discriminant_Constraint (Loc,
1219                 Constraints => New_List (
1220                   Make_Literal_Range (Loc,
1221                     Literal_Typ => Exp_Typ)))));
1222
1223      elsif Is_Constrained (Exp_Typ)
1224        and then not Is_Class_Wide_Type (Unc_Type)
1225      then
1226         if Is_Itype (Exp_Typ) then
1227
1228            --  No need to generate a new one.
1229
1230            T := Exp_Typ;
1231
1232         else
1233            T :=
1234              Make_Defining_Identifier (Loc,
1235                Chars => New_Internal_Name ('T'));
1236
1237            Insert_Action (N,
1238              Make_Subtype_Declaration (Loc,
1239                Defining_Identifier => T,
1240                Subtype_Indication  => New_Reference_To (Exp_Typ, Loc)));
1241
1242            --  This type is marked as an itype even though it has an
1243            --  explicit declaration because otherwise it can be marked
1244            --  with Is_Generic_Actual_Type and generate spurious errors.
1245            --  (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
1246
1247            Set_Is_Itype (T);
1248            Set_Associated_Node_For_Itype (T, Exp);
1249         end if;
1250
1251         Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
1252
1253      --  nothing needs to be done for private types with unknown discriminants
1254      --  if the underlying type is not an unconstrained composite type.
1255
1256      elsif Is_Private_Type (Unc_Type)
1257        and then Has_Unknown_Discriminants (Unc_Type)
1258        and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
1259                    or else Is_Constrained (Underlying_Type (Unc_Type)))
1260      then
1261         null;
1262
1263      else
1264         Remove_Side_Effects (Exp);
1265         Rewrite (Subtype_Indic,
1266           Make_Subtype_From_Expr (Exp, Unc_Type));
1267      end if;
1268   end Expand_Subtype_From_Expr;
1269
1270   ------------------
1271   -- Find_Prim_Op --
1272   ------------------
1273
1274   function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
1275      Prim : Elmt_Id;
1276      Typ  : Entity_Id := T;
1277
1278   begin
1279      if Is_Class_Wide_Type (Typ) then
1280         Typ := Root_Type (Typ);
1281      end if;
1282
1283      Typ := Underlying_Type (Typ);
1284
1285      Prim := First_Elmt (Primitive_Operations (Typ));
1286      while Chars (Node (Prim)) /= Name loop
1287         Next_Elmt (Prim);
1288         pragma Assert (Present (Prim));
1289      end loop;
1290
1291      return Node (Prim);
1292   end Find_Prim_Op;
1293
1294   function Find_Prim_Op
1295     (T    : Entity_Id;
1296      Name : TSS_Name_Type) return Entity_Id
1297   is
1298      Prim : Elmt_Id;
1299      Typ  : Entity_Id := T;
1300
1301   begin
1302      if Is_Class_Wide_Type (Typ) then
1303         Typ := Root_Type (Typ);
1304      end if;
1305
1306      Typ := Underlying_Type (Typ);
1307
1308      Prim := First_Elmt (Primitive_Operations (Typ));
1309      while not Is_TSS (Node (Prim), Name) loop
1310         Next_Elmt (Prim);
1311         pragma Assert (Present (Prim));
1312      end loop;
1313
1314      return Node (Prim);
1315   end Find_Prim_Op;
1316
1317   ----------------------
1318   -- Force_Evaluation --
1319   ----------------------
1320
1321   procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
1322   begin
1323      Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
1324   end Force_Evaluation;
1325
1326   ------------------------
1327   -- Generate_Poll_Call --
1328   ------------------------
1329
1330   procedure Generate_Poll_Call (N : Node_Id) is
1331   begin
1332      --  No poll call if polling not active
1333
1334      if not Polling_Required then
1335         return;
1336
1337      --  Otherwise generate require poll call
1338
1339      else
1340         Insert_Before_And_Analyze (N,
1341           Make_Procedure_Call_Statement (Sloc (N),
1342             Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
1343      end if;
1344   end Generate_Poll_Call;
1345
1346   ---------------------------------
1347   -- Get_Current_Value_Condition --
1348   ---------------------------------
1349
1350   procedure Get_Current_Value_Condition
1351     (Var : Node_Id;
1352      Op  : out Node_Kind;
1353      Val : out Node_Id)
1354   is
1355      Loc  : constant Source_Ptr := Sloc (Var);
1356      CV   : constant Node_Id    := Current_Value (Entity (Var));
1357      Sens : Boolean;
1358      Stm  : Node_Id;
1359      Cond : Node_Id;
1360
1361   begin
1362      Op  := N_Empty;
1363      Val := Empty;
1364
1365      --  If statement. Condition is known true in THEN section, known False
1366      --  in any ELSIF or ELSE part, and unknown outside the IF statement.
1367
1368      if Nkind (CV) = N_If_Statement then
1369
1370         --  Before start of IF statement
1371
1372         if Loc < Sloc (CV) then
1373            return;
1374
1375         --  After end of IF statement
1376
1377         elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
1378            return;
1379         end if;
1380
1381         --  At this stage we know that we are within the IF statement, but
1382         --  unfortunately, the tree does not record the SLOC of the ELSE so
1383         --  we cannot use a simple SLOC comparison to distinguish between
1384         --  the then/else statements, so we have to climb the tree.
1385
1386         declare
1387            N : Node_Id;
1388
1389         begin
1390            N := Parent (Var);
1391            while Parent (N) /= CV loop
1392               N := Parent (N);
1393
1394               --  If we fall off the top of the tree, then that's odd, but
1395               --  perhaps it could occur in some error situation, and the
1396               --  safest response is simply to assume that the outcome of
1397               --  the condition is unknown. No point in bombing during an
1398               --  attempt to optimize things.
1399
1400               if No (N) then
1401                  return;
1402               end if;
1403            end loop;
1404
1405            --  Now we have N pointing to a node whose parent is the IF
1406            --  statement in question, so now we can tell if we are within
1407            --  the THEN statements.
1408
1409            if Is_List_Member (N)
1410              and then List_Containing (N) = Then_Statements (CV)
1411            then
1412               Sens := True;
1413
1414            --  Otherwise we must be in ELSIF or ELSE part
1415
1416            else
1417               Sens := False;
1418            end if;
1419         end;
1420
1421      --  ELSIF part. Condition is known true within the referenced
1422      --  ELSIF, known False in any subsequent ELSIF or ELSE part,
1423      --  and unknown before the ELSE part or after the IF statement.
1424
1425      elsif Nkind (CV) = N_Elsif_Part then
1426         Stm := Parent (CV);
1427
1428         --  Before start of ELSIF part
1429
1430         if Loc < Sloc (CV) then
1431            return;
1432
1433         --  After end of IF statement
1434
1435         elsif Loc >= Sloc (Stm) +
1436                        Text_Ptr (UI_To_Int (End_Span (Stm)))
1437         then
1438            return;
1439         end if;
1440
1441         --  Again we lack the SLOC of the ELSE, so we need to climb the
1442         --  tree to see if we are within the ELSIF part in question.
1443
1444         declare
1445            N : Node_Id;
1446
1447         begin
1448            N := Parent (Var);
1449            while Parent (N) /= Stm loop
1450               N := Parent (N);
1451
1452               --  If we fall off the top of the tree, then that's odd, but
1453               --  perhaps it could occur in some error situation, and the
1454               --  safest response is simply to assume that the outcome of
1455               --  the condition is unknown. No point in bombing during an
1456               --  attempt to optimize things.
1457
1458               if No (N) then
1459                  return;
1460               end if;
1461            end loop;
1462
1463            --  Now we have N pointing to a node whose parent is the IF
1464            --  statement in question, so see if is the ELSIF part we want.
1465            --  the THEN statements.
1466
1467            if N = CV then
1468               Sens := True;
1469
1470            --  Otherwise we must be in susbequent ELSIF or ELSE part
1471
1472            else
1473               Sens := False;
1474            end if;
1475         end;
1476
1477      --  All other cases of Current_Value settings
1478
1479      else
1480         return;
1481      end if;
1482
1483      --  If we fall through here, then we have a reportable
1484      --  condition, Sens is True if the condition is true and
1485      --  False if it needs inverting.
1486
1487      Cond := Condition (CV);
1488
1489      --  Deal with NOT operators, inverting sense
1490
1491      while Nkind (Cond) = N_Op_Not loop
1492         Cond := Right_Opnd (Cond);
1493         Sens := not Sens;
1494      end loop;
1495
1496      --  Now we must have a relational operator
1497
1498      pragma Assert (Entity (Var) = Entity (Left_Opnd (Cond)));
1499      Val := Right_Opnd (Cond);
1500      Op  := Nkind (Cond);
1501
1502      if Sens = False then
1503         case Op is
1504            when N_Op_Eq => Op := N_Op_Ne;
1505            when N_Op_Ne => Op := N_Op_Eq;
1506            when N_Op_Lt => Op := N_Op_Ge;
1507            when N_Op_Gt => Op := N_Op_Le;
1508            when N_Op_Le => Op := N_Op_Gt;
1509            when N_Op_Ge => Op := N_Op_Lt;
1510
1511            --  No other entry should be possible
1512
1513            when others =>
1514               raise Program_Error;
1515         end case;
1516      end if;
1517   end Get_Current_Value_Condition;
1518
1519   --------------------
1520   -- Homonym_Number --
1521   --------------------
1522
1523   function Homonym_Number (Subp : Entity_Id) return Nat is
1524      Count : Nat;
1525      Hom   : Entity_Id;
1526
1527   begin
1528      Count := 1;
1529      Hom := Homonym (Subp);
1530      while Present (Hom) loop
1531         if Scope (Hom) = Scope (Subp) then
1532            Count := Count + 1;
1533         end if;
1534
1535         Hom := Homonym (Hom);
1536      end loop;
1537
1538      return Count;
1539   end Homonym_Number;
1540
1541   ------------------------------
1542   -- In_Unconditional_Context --
1543   ------------------------------
1544
1545   function In_Unconditional_Context (Node : Node_Id) return Boolean is
1546      P : Node_Id;
1547
1548   begin
1549      P := Node;
1550      while Present (P) loop
1551         case Nkind (P) is
1552            when N_Subprogram_Body =>
1553               return True;
1554
1555            when N_If_Statement =>
1556               return False;
1557
1558            when N_Loop_Statement =>
1559               return False;
1560
1561            when N_Case_Statement =>
1562               return False;
1563
1564            when others =>
1565               P := Parent (P);
1566         end case;
1567      end loop;
1568
1569      return False;
1570   end In_Unconditional_Context;
1571
1572   -------------------
1573   -- Insert_Action --
1574   -------------------
1575
1576   procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
1577   begin
1578      if Present (Ins_Action) then
1579         Insert_Actions (Assoc_Node, New_List (Ins_Action));
1580      end if;
1581   end Insert_Action;
1582
1583   --  Version with check(s) suppressed
1584
1585   procedure Insert_Action
1586     (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
1587   is
1588   begin
1589      Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
1590   end Insert_Action;
1591
1592   --------------------
1593   -- Insert_Actions --
1594   --------------------
1595
1596   procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
1597      N : Node_Id;
1598      P : Node_Id;
1599
1600      Wrapped_Node : Node_Id := Empty;
1601
1602   begin
1603      if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
1604         return;
1605      end if;
1606
1607      --  Ignore insert of actions from inside default expression in the
1608      --  special preliminary analyze mode. Any insertions at this point
1609      --  have no relevance, since we are only doing the analyze to freeze
1610      --  the types of any static expressions. See section "Handling of
1611      --  Default Expressions" in the spec of package Sem for further details.
1612
1613      if In_Default_Expression then
1614         return;
1615      end if;
1616
1617      --  If the action derives from stuff inside a record, then the actions
1618      --  are attached to the current scope, to be inserted and analyzed on
1619      --  exit from the scope. The reason for this is that we may also
1620      --  be generating freeze actions at the same time, and they must
1621      --  eventually be elaborated in the correct order.
1622
1623      if Is_Record_Type (Current_Scope)
1624        and then not Is_Frozen (Current_Scope)
1625      then
1626         if No (Scope_Stack.Table
1627           (Scope_Stack.Last).Pending_Freeze_Actions)
1628         then
1629            Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
1630              Ins_Actions;
1631         else
1632            Append_List
1633              (Ins_Actions,
1634               Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
1635         end if;
1636
1637         return;
1638      end if;
1639
1640      --  We now intend to climb up the tree to find the right point to
1641      --  insert the actions. We start at Assoc_Node, unless this node is
1642      --  a subexpression in which case we start with its parent. We do this
1643      --  for two reasons. First it speeds things up. Second, if Assoc_Node
1644      --  is itself one of the special nodes like N_And_Then, then we assume
1645      --  that an initial request to insert actions for such a node does not
1646      --  expect the actions to get deposited in the node for later handling
1647      --  when the node is expanded, since clearly the node is being dealt
1648      --  with by the caller. Note that in the subexpression case, N is
1649      --  always the child we came from.
1650
1651      --  N_Raise_xxx_Error is an annoying special case, it is a statement
1652      --  if it has type Standard_Void_Type, and a subexpression otherwise.
1653      --  otherwise. Procedure attribute references are also statements.
1654
1655      if Nkind (Assoc_Node) in N_Subexpr
1656        and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
1657                   or else Etype (Assoc_Node) /= Standard_Void_Type)
1658        and then (Nkind (Assoc_Node) /= N_Attribute_Reference
1659                   or else
1660                     not Is_Procedure_Attribute_Name
1661                           (Attribute_Name (Assoc_Node)))
1662      then
1663         P := Assoc_Node;             -- ??? does not agree with above!
1664         N := Parent (Assoc_Node);
1665
1666      --  Non-subexpression case. Note that N is initially Empty in this
1667      --  case (N is only guaranteed Non-Empty in the subexpr case).
1668
1669      else
1670         P := Assoc_Node;
1671         N := Empty;
1672      end if;
1673
1674      --  Capture root of the transient scope
1675
1676      if Scope_Is_Transient then
1677         Wrapped_Node  := Node_To_Be_Wrapped;
1678      end if;
1679
1680      loop
1681         pragma Assert (Present (P));
1682
1683         case Nkind (P) is
1684
1685            --  Case of right operand of AND THEN or OR ELSE. Put the actions
1686            --  in the Actions field of the right operand. They will be moved
1687            --  out further when the AND THEN or OR ELSE operator is expanded.
1688            --  Nothing special needs to be done for the left operand since
1689            --  in that case the actions are executed unconditionally.
1690
1691            when N_And_Then | N_Or_Else =>
1692               if N = Right_Opnd (P) then
1693                  if Present (Actions (P)) then
1694                     Insert_List_After_And_Analyze
1695                      (Last (Actions (P)), Ins_Actions);
1696                  else
1697                     Set_Actions (P, Ins_Actions);
1698                     Analyze_List (Actions (P));
1699                  end if;
1700
1701                  return;
1702               end if;
1703
1704            --  Then or Else operand of conditional expression. Add actions to
1705            --  Then_Actions or Else_Actions field as appropriate. The actions
1706            --  will be moved further out when the conditional is expanded.
1707
1708            when N_Conditional_Expression =>
1709               declare
1710                  ThenX : constant Node_Id := Next (First (Expressions (P)));
1711                  ElseX : constant Node_Id := Next (ThenX);
1712
1713               begin
1714                  --  Actions belong to the then expression, temporarily
1715                  --  place them as Then_Actions of the conditional expr.
1716                  --  They will be moved to the proper place later when
1717                  --  the conditional expression is expanded.
1718
1719                  if N = ThenX then
1720                     if Present (Then_Actions (P)) then
1721                        Insert_List_After_And_Analyze
1722                          (Last (Then_Actions (P)), Ins_Actions);
1723                     else
1724                        Set_Then_Actions (P, Ins_Actions);
1725                        Analyze_List (Then_Actions (P));
1726                     end if;
1727
1728                     return;
1729
1730                  --  Actions belong to the else expression, temporarily
1731                  --  place them as Else_Actions of the conditional expr.
1732                  --  They will be moved to the proper place later when
1733                  --  the conditional expression is expanded.
1734
1735                  elsif N = ElseX then
1736                     if Present (Else_Actions (P)) then
1737                        Insert_List_After_And_Analyze
1738                          (Last (Else_Actions (P)), Ins_Actions);
1739                     else
1740                        Set_Else_Actions (P, Ins_Actions);
1741                        Analyze_List (Else_Actions (P));
1742                     end if;
1743
1744                     return;
1745
1746                  --  Actions belong to the condition. In this case they are
1747                  --  unconditionally executed, and so we can continue the
1748                  --  search for the proper insert point.
1749
1750                  else
1751                     null;
1752                  end if;
1753               end;
1754
1755            --  Case of appearing in the condition of a while expression or
1756            --  elsif. We insert the actions into the Condition_Actions field.
1757            --  They will be moved further out when the while loop or elsif
1758            --  is analyzed.
1759
1760            when N_Iteration_Scheme |
1761                 N_Elsif_Part
1762            =>
1763               if N = Condition (P) then
1764                  if Present (Condition_Actions (P)) then
1765                     Insert_List_After_And_Analyze
1766                       (Last (Condition_Actions (P)), Ins_Actions);
1767                  else
1768                     Set_Condition_Actions (P, Ins_Actions);
1769
1770                     --  Set the parent of the insert actions explicitly.
1771                     --  This is not a syntactic field, but we need the
1772                     --  parent field set, in particular so that freeze
1773                     --  can understand that it is dealing with condition
1774                     --  actions, and properly insert the freezing actions.
1775
1776                     Set_Parent (Ins_Actions, P);
1777                     Analyze_List (Condition_Actions (P));
1778                  end if;
1779
1780                  return;
1781               end if;
1782
1783            --  Statements, declarations, pragmas, representation clauses.
1784
1785            when
1786               --  Statements
1787
1788               N_Procedure_Call_Statement               |
1789               N_Statement_Other_Than_Procedure_Call    |
1790
1791               --  Pragmas
1792
1793               N_Pragma                                 |
1794
1795               --  Representation_Clause
1796
1797               N_At_Clause                              |
1798               N_Attribute_Definition_Clause            |
1799               N_Enumeration_Representation_Clause      |
1800               N_Record_Representation_Clause           |
1801
1802               --  Declarations
1803
1804               N_Abstract_Subprogram_Declaration        |
1805               N_Entry_Body                             |
1806               N_Exception_Declaration                  |
1807               N_Exception_Renaming_Declaration         |
1808               N_Formal_Object_Declaration              |
1809               N_Formal_Subprogram_Declaration          |
1810               N_Formal_Type_Declaration                |
1811               N_Full_Type_Declaration                  |
1812               N_Function_Instantiation                 |
1813               N_Generic_Function_Renaming_Declaration  |
1814               N_Generic_Package_Declaration            |
1815               N_Generic_Package_Renaming_Declaration   |
1816               N_Generic_Procedure_Renaming_Declaration |
1817               N_Generic_Subprogram_Declaration         |
1818               N_Implicit_Label_Declaration             |
1819               N_Incomplete_Type_Declaration            |
1820               N_Number_Declaration                     |
1821               N_Object_Declaration                     |
1822               N_Object_Renaming_Declaration            |
1823               N_Package_Body                           |
1824               N_Package_Body_Stub                      |
1825               N_Package_Declaration                    |
1826               N_Package_Instantiation                  |
1827               N_Package_Renaming_Declaration           |
1828               N_Private_Extension_Declaration          |
1829               N_Private_Type_Declaration               |
1830               N_Procedure_Instantiation                |
1831               N_Protected_Body_Stub                    |
1832               N_Protected_Type_Declaration             |
1833               N_Single_Task_Declaration                |
1834               N_Subprogram_Body                        |
1835               N_Subprogram_Body_Stub                   |
1836               N_Subprogram_Declaration                 |
1837               N_Subprogram_Renaming_Declaration        |
1838               N_Subtype_Declaration                    |
1839               N_Task_Body                              |
1840               N_Task_Body_Stub                         |
1841               N_Task_Type_Declaration                  |
1842
1843               --  Freeze entity behaves like a declaration or statement
1844
1845               N_Freeze_Entity
1846            =>
1847               --  Do not insert here if the item is not a list member (this
1848               --  happens for example with a triggering statement, and the
1849               --  proper approach is to insert before the entire select).
1850
1851               if not Is_List_Member (P) then
1852                  null;
1853
1854               --  Do not insert if parent of P is an N_Component_Association
1855               --  node (i.e. we are in the context of an N_Aggregate node.
1856               --  In this case we want to insert before the entire aggregate.
1857
1858               elsif Nkind (Parent (P)) = N_Component_Association then
1859                  null;
1860
1861               --  Do not insert if the parent of P is either an N_Variant
1862               --  node or an N_Record_Definition node, meaning in either
1863               --  case that P is a member of a component list, and that
1864               --  therefore the actions should be inserted outside the
1865               --  complete record declaration.
1866
1867               elsif Nkind (Parent (P)) = N_Variant
1868                 or else Nkind (Parent (P)) = N_Record_Definition
1869               then
1870                  null;
1871
1872               --  Do not insert freeze nodes within the loop generated for
1873               --  an aggregate, because they may be elaborated too late for
1874               --  subsequent use in the back end: within a package spec the
1875               --  loop is part of the elaboration procedure and is only
1876               --  elaborated during the second pass.
1877               --  If the loop comes from source, or the entity is local to
1878               --  the loop itself it must remain within.
1879
1880               elsif Nkind (Parent (P)) = N_Loop_Statement
1881                 and then not Comes_From_Source (Parent (P))
1882                 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
1883                 and then
1884                   Scope (Entity (First (Ins_Actions))) /= Current_Scope
1885               then
1886                  null;
1887
1888               --  Otherwise we can go ahead and do the insertion
1889
1890               elsif  P = Wrapped_Node then
1891                  Store_Before_Actions_In_Scope (Ins_Actions);
1892                  return;
1893
1894               else
1895                  Insert_List_Before_And_Analyze (P, Ins_Actions);
1896                  return;
1897               end if;
1898
1899            --  A special case, N_Raise_xxx_Error can act either as a
1900            --  statement or a subexpression. We tell the difference
1901            --  by looking at the Etype. It is set to Standard_Void_Type
1902            --  in the statement case.
1903
1904            when
1905               N_Raise_xxx_Error =>
1906                  if Etype (P) = Standard_Void_Type then
1907                     if  P = Wrapped_Node then
1908                        Store_Before_Actions_In_Scope (Ins_Actions);
1909                     else
1910                        Insert_List_Before_And_Analyze (P, Ins_Actions);
1911                     end if;
1912
1913                     return;
1914
1915                  --  In the subexpression case, keep climbing
1916
1917                  else
1918                     null;
1919                  end if;
1920
1921            --  If a component association appears within a loop created for
1922            --  an array aggregate, attach the actions to the association so
1923            --  they can be subsequently inserted within the loop. For other
1924            --  component associations insert outside of the aggregate. For
1925            --  an association that will generate a loop, its Loop_Actions
1926            --  attribute is already initialized (see exp_aggr.adb).
1927
1928            --  The list of loop_actions can in turn generate additional ones,
1929            --  that are inserted before the associated node. If the associated
1930            --  node is outside the aggregate, the new actions are collected
1931            --  at the end of the loop actions, to respect the order in which
1932            --  they are to be elaborated.
1933
1934            when
1935               N_Component_Association =>
1936                  if Nkind (Parent (P)) = N_Aggregate
1937                    and then Present (Loop_Actions (P))
1938                  then
1939                     if Is_Empty_List (Loop_Actions (P)) then
1940                        Set_Loop_Actions (P, Ins_Actions);
1941                        Analyze_List (Ins_Actions);
1942
1943                     else
1944                        declare
1945                           Decl : Node_Id := Assoc_Node;
1946
1947                        begin
1948                           --  Check whether these actions were generated
1949                           --  by a declaration that is part of the loop_
1950                           --  actions for the component_association.
1951
1952                           while Present (Decl) loop
1953                              exit when Parent (Decl) = P
1954                                and then Is_List_Member (Decl)
1955                                and then
1956                                  List_Containing (Decl) = Loop_Actions (P);
1957                              Decl := Parent (Decl);
1958                           end loop;
1959
1960                           if Present (Decl) then
1961                              Insert_List_Before_And_Analyze
1962                                (Decl, Ins_Actions);
1963                           else
1964                              Insert_List_After_And_Analyze
1965                                (Last (Loop_Actions (P)), Ins_Actions);
1966                           end if;
1967                        end;
1968                     end if;
1969
1970                     return;
1971
1972                  else
1973                     null;
1974                  end if;
1975
1976            --  Another special case, an attribute denoting a procedure call
1977
1978            when
1979               N_Attribute_Reference =>
1980                  if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
1981                     if P = Wrapped_Node then
1982                        Store_Before_Actions_In_Scope (Ins_Actions);
1983                     else
1984                        Insert_List_Before_And_Analyze (P, Ins_Actions);
1985                     end if;
1986
1987                     return;
1988
1989                  --  In the subexpression case, keep climbing
1990
1991                  else
1992                     null;
1993                  end if;
1994
1995            --  For all other node types, keep climbing tree
1996
1997            when
1998               N_Abortable_Part                         |
1999               N_Accept_Alternative                     |
2000               N_Access_Definition                      |
2001               N_Access_Function_Definition             |
2002               N_Access_Procedure_Definition            |
2003               N_Access_To_Object_Definition            |
2004               N_Aggregate                              |
2005               N_Allocator                              |
2006               N_Case_Statement_Alternative             |
2007               N_Character_Literal                      |
2008               N_Compilation_Unit                       |
2009               N_Compilation_Unit_Aux                   |
2010               N_Component_Clause                       |
2011               N_Component_Declaration                  |
2012               N_Component_Definition                   |
2013               N_Component_List                         |
2014               N_Constrained_Array_Definition           |
2015               N_Decimal_Fixed_Point_Definition         |
2016               N_Defining_Character_Literal             |
2017               N_Defining_Identifier                    |
2018               N_Defining_Operator_Symbol               |
2019               N_Defining_Program_Unit_Name             |
2020               N_Delay_Alternative                      |
2021               N_Delta_Constraint                       |
2022               N_Derived_Type_Definition                |
2023               N_Designator                             |
2024               N_Digits_Constraint                      |
2025               N_Discriminant_Association               |
2026               N_Discriminant_Specification             |
2027               N_Empty                                  |
2028               N_Entry_Body_Formal_Part                 |
2029               N_Entry_Call_Alternative                 |
2030               N_Entry_Declaration                      |
2031               N_Entry_Index_Specification              |
2032               N_Enumeration_Type_Definition            |
2033               N_Error                                  |
2034               N_Exception_Handler                      |
2035               N_Expanded_Name                          |
2036               N_Explicit_Dereference                   |
2037               N_Extension_Aggregate                    |
2038               N_Floating_Point_Definition              |
2039               N_Formal_Decimal_Fixed_Point_Definition  |
2040               N_Formal_Derived_Type_Definition         |
2041               N_Formal_Discrete_Type_Definition        |
2042               N_Formal_Floating_Point_Definition       |
2043               N_Formal_Modular_Type_Definition         |
2044               N_Formal_Ordinary_Fixed_Point_Definition |
2045               N_Formal_Package_Declaration             |
2046               N_Formal_Private_Type_Definition         |
2047               N_Formal_Signed_Integer_Type_Definition  |
2048               N_Function_Call                          |
2049               N_Function_Specification                 |
2050               N_Generic_Association                    |
2051               N_Handled_Sequence_Of_Statements         |
2052               N_Identifier                             |
2053               N_In                                     |
2054               N_Index_Or_Discriminant_Constraint       |
2055               N_Indexed_Component                      |
2056               N_Integer_Literal                        |
2057               N_Itype_Reference                        |
2058               N_Label                                  |
2059               N_Loop_Parameter_Specification           |
2060               N_Mod_Clause                             |
2061               N_Modular_Type_Definition                |
2062               N_Not_In                                 |
2063               N_Null                                   |
2064               N_Op_Abs                                 |
2065               N_Op_Add                                 |
2066               N_Op_And                                 |
2067               N_Op_Concat                              |
2068               N_Op_Divide                              |
2069               N_Op_Eq                                  |
2070               N_Op_Expon                               |
2071               N_Op_Ge                                  |
2072               N_Op_Gt                                  |
2073               N_Op_Le                                  |
2074               N_Op_Lt                                  |
2075               N_Op_Minus                               |
2076               N_Op_Mod                                 |
2077               N_Op_Multiply                            |
2078               N_Op_Ne                                  |
2079               N_Op_Not                                 |
2080               N_Op_Or                                  |
2081               N_Op_Plus                                |
2082               N_Op_Rem                                 |
2083               N_Op_Rotate_Left                         |
2084               N_Op_Rotate_Right                        |
2085               N_Op_Shift_Left                          |
2086               N_Op_Shift_Right                         |
2087               N_Op_Shift_Right_Arithmetic              |
2088               N_Op_Subtract                            |
2089               N_Op_Xor                                 |
2090               N_Operator_Symbol                        |
2091               N_Ordinary_Fixed_Point_Definition        |
2092               N_Others_Choice                          |
2093               N_Package_Specification                  |
2094               N_Parameter_Association                  |
2095               N_Parameter_Specification                |
2096               N_Pragma_Argument_Association            |
2097               N_Procedure_Specification                |
2098               N_Protected_Body                         |
2099               N_Protected_Definition                   |
2100               N_Qualified_Expression                   |
2101               N_Range                                  |
2102               N_Range_Constraint                       |
2103               N_Real_Literal                           |
2104               N_Real_Range_Specification               |
2105               N_Record_Definition                      |
2106               N_Reference                              |
2107               N_Selected_Component                     |
2108               N_Signed_Integer_Type_Definition         |
2109               N_Single_Protected_Declaration           |
2110               N_Slice                                  |
2111               N_String_Literal                         |
2112               N_Subprogram_Info                        |
2113               N_Subtype_Indication                     |
2114               N_Subunit                                |
2115               N_Task_Definition                        |
2116               N_Terminate_Alternative                  |
2117               N_Triggering_Alternative                 |
2118               N_Type_Conversion                        |
2119               N_Unchecked_Expression                   |
2120               N_Unchecked_Type_Conversion              |
2121               N_Unconstrained_Array_Definition         |
2122               N_Unused_At_End                          |
2123               N_Unused_At_Start                        |
2124               N_Use_Package_Clause                     |
2125               N_Use_Type_Clause                        |
2126               N_Variant                                |
2127               N_Variant_Part                           |
2128               N_Validate_Unchecked_Conversion          |
2129               N_With_Clause                            |
2130               N_With_Type_Clause
2131            =>
2132               null;
2133
2134         end case;
2135
2136         --  Make sure that inserted actions stay in the transient scope
2137
2138         if P = Wrapped_Node then
2139            Store_Before_Actions_In_Scope (Ins_Actions);
2140            return;
2141         end if;
2142
2143         --  If we fall through above tests, keep climbing tree
2144
2145         N := P;
2146
2147         if Nkind (Parent (N)) = N_Subunit then
2148
2149            --  This is the proper body corresponding to a stub. Insertion
2150            --  must be done at the point of the stub, which is in the decla-
2151            --  tive part of the parent unit.
2152
2153            P := Corresponding_Stub (Parent (N));
2154
2155         else
2156            P := Parent (N);
2157         end if;
2158      end loop;
2159
2160   end Insert_Actions;
2161
2162   --  Version with check(s) suppressed
2163
2164   procedure Insert_Actions
2165     (Assoc_Node : Node_Id; Ins_Actions : List_Id; Suppress : Check_Id)
2166   is
2167   begin
2168      if Suppress = All_Checks then
2169         declare
2170            Svg : constant Suppress_Array := Scope_Suppress;
2171
2172         begin
2173            Scope_Suppress := (others => True);
2174            Insert_Actions (Assoc_Node, Ins_Actions);
2175            Scope_Suppress := Svg;
2176         end;
2177
2178      else
2179         declare
2180            Svg : constant Boolean := Scope_Suppress (Suppress);
2181
2182         begin
2183            Scope_Suppress (Suppress) := True;
2184            Insert_Actions (Assoc_Node, Ins_Actions);
2185            Scope_Suppress (Suppress) := Svg;
2186         end;
2187      end if;
2188   end Insert_Actions;
2189
2190   --------------------------
2191   -- Insert_Actions_After --
2192   --------------------------
2193
2194   procedure Insert_Actions_After
2195     (Assoc_Node  : Node_Id;
2196      Ins_Actions : List_Id)
2197   is
2198   begin
2199      if Scope_Is_Transient
2200        and then Assoc_Node = Node_To_Be_Wrapped
2201      then
2202         Store_After_Actions_In_Scope (Ins_Actions);
2203      else
2204         Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
2205      end if;
2206   end Insert_Actions_After;
2207
2208   ---------------------------------
2209   -- Insert_Library_Level_Action --
2210   ---------------------------------
2211
2212   procedure Insert_Library_Level_Action (N : Node_Id) is
2213      Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
2214
2215   begin
2216      New_Scope (Cunit_Entity (Main_Unit));
2217
2218      if No (Actions (Aux)) then
2219         Set_Actions (Aux, New_List (N));
2220      else
2221         Append (N, Actions (Aux));
2222      end if;
2223
2224      Analyze (N);
2225      Pop_Scope;
2226   end Insert_Library_Level_Action;
2227
2228   ----------------------------------
2229   -- Insert_Library_Level_Actions --
2230   ----------------------------------
2231
2232   procedure Insert_Library_Level_Actions (L : List_Id) is
2233      Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
2234
2235   begin
2236      if Is_Non_Empty_List (L) then
2237         New_Scope (Cunit_Entity (Main_Unit));
2238
2239         if No (Actions (Aux)) then
2240            Set_Actions (Aux, L);
2241            Analyze_List (L);
2242         else
2243            Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
2244         end if;
2245
2246         Pop_Scope;
2247      end if;
2248   end Insert_Library_Level_Actions;
2249
2250   ----------------------
2251   -- Inside_Init_Proc --
2252   ----------------------
2253
2254   function Inside_Init_Proc return Boolean is
2255      S : Entity_Id;
2256
2257   begin
2258      S := Current_Scope;
2259      while Present (S)
2260        and then S /= Standard_Standard
2261      loop
2262         if Is_Init_Proc (S) then
2263            return True;
2264         else
2265            S := Scope (S);
2266         end if;
2267      end loop;
2268
2269      return False;
2270   end Inside_Init_Proc;
2271
2272   ----------------------------
2273   -- Is_All_Null_Statements --
2274   ----------------------------
2275
2276   function Is_All_Null_Statements (L : List_Id) return Boolean is
2277      Stm : Node_Id;
2278
2279   begin
2280      Stm := First (L);
2281      while Present (Stm) loop
2282         if Nkind (Stm) /= N_Null_Statement then
2283            return False;
2284         end if;
2285
2286         Next (Stm);
2287      end loop;
2288
2289      return True;
2290   end Is_All_Null_Statements;
2291
2292   ----------------------------------
2293   -- Is_Possibly_Unaligned_Object --
2294   ----------------------------------
2295
2296   function Is_Possibly_Unaligned_Object (P : Node_Id) return Boolean is
2297   begin
2298      --  If target does not have strict alignment, result is always
2299      --  False, since correctness of code does no depend on alignment.
2300
2301      if not Target_Strict_Alignment then
2302         return False;
2303      end if;
2304
2305      --  If renamed object, apply test to underlying object
2306
2307      if Is_Entity_Name (P)
2308        and then Is_Object (Entity (P))
2309        and then Present (Renamed_Object (Entity (P)))
2310      then
2311         return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (P)));
2312      end if;
2313
2314      --  If this is an element of a packed array, may be unaligned
2315
2316      if Is_Ref_To_Bit_Packed_Array (P) then
2317         return True;
2318      end if;
2319
2320      --  Case of component reference
2321
2322      if Nkind (P) = N_Selected_Component then
2323
2324         --  If component reference is for a record that is bit packed
2325         --  or has a specified alignment (that might be too small) or
2326         --  the component reference has a component clause, then the
2327         --  object may be unaligned.
2328
2329         if Is_Packed (Etype (Prefix (P)))
2330           or else Known_Alignment (Etype (Prefix (P)))
2331           or else Present (Component_Clause (Entity (Selector_Name (P))))
2332         then
2333            return True;
2334
2335         --  Otherwise, for a component reference, test prefix
2336
2337         else
2338            return Is_Possibly_Unaligned_Object (Prefix (P));
2339         end if;
2340
2341      --  If not a component reference, must be aligned
2342
2343      else
2344         return False;
2345      end if;
2346   end Is_Possibly_Unaligned_Object;
2347
2348   ---------------------------------
2349   -- Is_Possibly_Unaligned_Slice --
2350   ---------------------------------
2351
2352   function Is_Possibly_Unaligned_Slice (P : Node_Id) return Boolean is
2353   begin
2354      if Is_Entity_Name (P)
2355        and then Is_Object (Entity (P))
2356        and then Present (Renamed_Object (Entity (P)))
2357      then
2358         return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (P)));
2359      end if;
2360
2361      --  We only need to worry if the target has strict alignment, unless
2362      --  it is a nested record component with a component clause, which
2363      --  Gigi does not handle well. This patch should disappear with GCC 3.0
2364      --  and it is not clear why it is needed even when the representation
2365      --  clause is a confirming one, but in its absence gigi complains that
2366      --  the slice is not addressable.???
2367
2368      if not Target_Strict_Alignment then
2369         if Nkind (P) /= N_Slice
2370           or else Nkind (Prefix (P)) /= N_Selected_Component
2371           or else Nkind (Prefix (Prefix (P))) /= N_Selected_Component
2372         then
2373            return False;
2374         end if;
2375      end if;
2376
2377      --  The reference must be a slice
2378
2379      if Nkind (P) /= N_Slice then
2380         return False;
2381      end if;
2382
2383      --  If it is a slice, then look at the array type being sliced
2384
2385      declare
2386         Pref : constant Node_Id   := Prefix (P);
2387         Typ  : constant Entity_Id := Etype (Prefix (P));
2388
2389      begin
2390         --  The worrisome case is one where we don't know the alignment
2391         --  of the array, or we know it and it is greater than 1 (if the
2392         --  alignment is one, then obviously it cannot be misaligned).
2393
2394         if Known_Alignment (Typ) and then Alignment (Typ) = 1 then
2395            return False;
2396         end if;
2397
2398         --  The only way we can be unaligned is if the array being sliced
2399         --  is a component of a record, and either the record is packed,
2400         --  or the component has a component clause, or the record has
2401         --  a specified alignment (that might be too small).
2402
2403         return
2404            Nkind (Pref) = N_Selected_Component
2405              and then
2406                 (Is_Packed (Etype (Prefix (Pref)))
2407                    or else
2408                  Known_Alignment (Etype (Prefix (Pref)))
2409                    or else
2410                  Present (Component_Clause (Entity (Selector_Name (Pref)))));
2411      end;
2412   end Is_Possibly_Unaligned_Slice;
2413
2414   --------------------------------
2415   -- Is_Ref_To_Bit_Packed_Array --
2416   --------------------------------
2417
2418   function Is_Ref_To_Bit_Packed_Array (P : Node_Id) return Boolean is
2419      Result : Boolean;
2420      Expr   : Node_Id;
2421
2422   begin
2423      if Is_Entity_Name (P)
2424        and then Is_Object (Entity (P))
2425        and then Present (Renamed_Object (Entity (P)))
2426      then
2427         return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (P)));
2428      end if;
2429
2430      if Nkind (P) = N_Indexed_Component
2431           or else
2432         Nkind (P) = N_Selected_Component
2433      then
2434         if Is_Bit_Packed_Array (Etype (Prefix (P))) then
2435            Result := True;
2436         else
2437            Result := Is_Ref_To_Bit_Packed_Array (Prefix (P));
2438         end if;
2439
2440         if Result and then Nkind (P) = N_Indexed_Component then
2441            Expr := First (Expressions (P));
2442
2443            while Present (Expr) loop
2444               Force_Evaluation (Expr);
2445               Next (Expr);
2446            end loop;
2447         end if;
2448
2449         return Result;
2450
2451      else
2452         return False;
2453      end if;
2454   end Is_Ref_To_Bit_Packed_Array;
2455
2456   --------------------------------
2457   -- Is_Ref_To_Bit_Packed_Slice --
2458   --------------------------------
2459
2460   function Is_Ref_To_Bit_Packed_Slice (P : Node_Id) return Boolean is
2461   begin
2462      if Is_Entity_Name (P)
2463        and then Is_Object (Entity (P))
2464        and then Present (Renamed_Object (Entity (P)))
2465      then
2466         return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (P)));
2467      end if;
2468
2469      if Nkind (P) = N_Slice
2470        and then Is_Bit_Packed_Array (Etype (Prefix (P)))
2471      then
2472         return True;
2473
2474      elsif Nkind (P) = N_Indexed_Component
2475           or else
2476         Nkind (P) = N_Selected_Component
2477      then
2478         return Is_Ref_To_Bit_Packed_Slice (Prefix (P));
2479
2480      else
2481         return False;
2482      end if;
2483   end Is_Ref_To_Bit_Packed_Slice;
2484
2485   -----------------------
2486   -- Is_Renamed_Object --
2487   -----------------------
2488
2489   function Is_Renamed_Object (N : Node_Id) return Boolean is
2490      Pnod : constant Node_Id   := Parent (N);
2491      Kind : constant Node_Kind := Nkind (Pnod);
2492
2493   begin
2494      if Kind = N_Object_Renaming_Declaration then
2495         return True;
2496
2497      elsif Kind = N_Indexed_Component
2498        or else Kind = N_Selected_Component
2499      then
2500         return Is_Renamed_Object (Pnod);
2501
2502      else
2503         return False;
2504      end if;
2505   end Is_Renamed_Object;
2506
2507   ----------------------------
2508   -- Is_Untagged_Derivation --
2509   ----------------------------
2510
2511   function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
2512   begin
2513      return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
2514               or else
2515             (Is_Private_Type (T) and then Present (Full_View (T))
2516               and then not Is_Tagged_Type (Full_View (T))
2517               and then Is_Derived_Type (Full_View (T))
2518               and then Etype (Full_View (T)) /= T);
2519
2520   end Is_Untagged_Derivation;
2521
2522   --------------------
2523   -- Kill_Dead_Code --
2524   --------------------
2525
2526   procedure Kill_Dead_Code (N : Node_Id) is
2527   begin
2528      if Present (N) then
2529         Remove_Handler_Entries (N);
2530         Remove_Warning_Messages (N);
2531
2532         --  Recurse into block statements and bodies to process declarations
2533         --  and statements
2534
2535         if Nkind (N) = N_Block_Statement
2536           or else Nkind (N) = N_Subprogram_Body
2537           or else Nkind (N) = N_Package_Body
2538         then
2539            Kill_Dead_Code (Declarations (N));
2540            Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
2541
2542            if Nkind (N) = N_Subprogram_Body then
2543               Set_Is_Eliminated (Defining_Entity (N));
2544            end if;
2545
2546         --  Recurse into composite statement to kill individual statements,
2547         --  in particular instantiations.
2548
2549         elsif Nkind (N) = N_If_Statement then
2550            Kill_Dead_Code (Then_Statements (N));
2551            Kill_Dead_Code (Elsif_Parts (N));
2552            Kill_Dead_Code (Else_Statements (N));
2553
2554         elsif Nkind (N) = N_Loop_Statement then
2555            Kill_Dead_Code (Statements (N));
2556
2557         elsif Nkind (N) = N_Case_Statement then
2558            declare
2559               Alt : Node_Id := First (Alternatives (N));
2560
2561            begin
2562               while Present (Alt) loop
2563                  Kill_Dead_Code (Statements (Alt));
2564                  Next (Alt);
2565               end loop;
2566            end;
2567
2568         elsif Nkind (N) = N_Case_Statement_Alternative then
2569            Kill_Dead_Code (Statements (N));
2570
2571         --  Deal with dead instances caused by deleting instantiations
2572
2573         elsif Nkind (N) in N_Generic_Instantiation then
2574            Remove_Dead_Instance (N);
2575         end if;
2576
2577         Delete_Tree (N);
2578      end if;
2579   end Kill_Dead_Code;
2580
2581   --  Case where argument is a list of nodes to be killed
2582
2583   procedure Kill_Dead_Code (L : List_Id) is
2584      N : Node_Id;
2585
2586   begin
2587      if Is_Non_Empty_List (L) then
2588         loop
2589            N := Remove_Head (L);
2590            exit when No (N);
2591            Kill_Dead_Code (N);
2592         end loop;
2593      end if;
2594   end Kill_Dead_Code;
2595
2596   ------------------------
2597   -- Known_Non_Negative --
2598   ------------------------
2599
2600   function Known_Non_Negative (Opnd : Node_Id) return Boolean is
2601   begin
2602      if Is_OK_Static_Expression (Opnd)
2603        and then Expr_Value (Opnd) >= 0
2604      then
2605         return True;
2606
2607      else
2608         declare
2609            Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
2610
2611         begin
2612            return
2613              Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
2614         end;
2615      end if;
2616   end Known_Non_Negative;
2617
2618   --------------------
2619   -- Known_Non_Null --
2620   --------------------
2621
2622   function Known_Non_Null (N : Node_Id) return Boolean is
2623   begin
2624      pragma Assert (Is_Access_Type (Underlying_Type (Etype (N))));
2625
2626      --  Case of entity for which Is_Known_Non_Null is True
2627
2628      if Is_Entity_Name (N) and then Is_Known_Non_Null (Entity (N)) then
2629
2630         --  If the entity is aliased or volatile, then we decide that
2631         --  we don't know it is really non-null even if the sequential
2632         --  flow indicates that it is, since such variables can be
2633         --  changed without us noticing.
2634
2635         if Is_Aliased (Entity (N))
2636           or else Treat_As_Volatile (Entity (N))
2637         then
2638            return False;
2639
2640         --  For all other cases, the flag is decisive
2641
2642         else
2643            return True;
2644         end if;
2645
2646      --  True if access attribute
2647
2648      elsif Nkind (N) = N_Attribute_Reference
2649        and then (Attribute_Name (N) = Name_Access
2650                    or else
2651                  Attribute_Name (N) = Name_Unchecked_Access
2652                    or else
2653                  Attribute_Name (N) = Name_Unrestricted_Access)
2654      then
2655         return True;
2656
2657      --  True if allocator
2658
2659      elsif Nkind (N) = N_Allocator then
2660         return True;
2661
2662      --  For a conversion, true if expression is known non-null
2663
2664      elsif Nkind (N) = N_Type_Conversion then
2665         return Known_Non_Null (Expression (N));
2666
2667      --  One more case is when Current_Value references a condition
2668      --  that ensures a non-null value.
2669
2670      elsif Is_Entity_Name (N) then
2671         declare
2672            Op  : Node_Kind;
2673            Val : Node_Id;
2674
2675         begin
2676            Get_Current_Value_Condition (N, Op, Val);
2677            return Op = N_Op_Ne and then Nkind (Val) = N_Null;
2678         end;
2679
2680      --  Above are all cases where the value could be determined to be
2681      --  non-null. In all other cases, we don't know, so return False.
2682
2683      else
2684         return False;
2685      end if;
2686   end Known_Non_Null;
2687
2688   -----------------------------
2689   -- Make_CW_Equivalent_Type --
2690   -----------------------------
2691
2692   --  Create a record type used as an equivalent of any member
2693   --  of the class which takes its size from exp.
2694
2695   --  Generate the following code:
2696
2697   --   type Equiv_T is record
2698   --     _parent :  T (List of discriminant constaints taken from Exp);
2699   --     Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
2700   --   end Equiv_T;
2701   --
2702   --   ??? Note that this type does not guarantee same alignment as all
2703   --   derived types
2704
2705   function Make_CW_Equivalent_Type
2706     (T    : Entity_Id;
2707      E    : Node_Id)
2708      return Entity_Id
2709   is
2710      Loc         : constant Source_Ptr := Sloc (E);
2711      Root_Typ    : constant Entity_Id  := Root_Type (T);
2712      List_Def    : constant List_Id    := Empty_List;
2713      Equiv_Type  : Entity_Id;
2714      Range_Type  : Entity_Id;
2715      Str_Type    : Entity_Id;
2716      Constr_Root : Entity_Id;
2717      Sizexpr     : Node_Id;
2718
2719   begin
2720      if not Has_Discriminants (Root_Typ) then
2721         Constr_Root := Root_Typ;
2722      else
2723         Constr_Root :=
2724           Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
2725
2726         --  subtype cstr__n is T (List of discr constraints taken from Exp)
2727
2728         Append_To (List_Def,
2729           Make_Subtype_Declaration (Loc,
2730             Defining_Identifier => Constr_Root,
2731               Subtype_Indication =>
2732                 Make_Subtype_From_Expr (E, Root_Typ)));
2733      end if;
2734
2735      --  subtype rg__xx is Storage_Offset range
2736      --                           (Expr'size - typ'size) / Storage_Unit
2737
2738      Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
2739
2740      Sizexpr :=
2741        Make_Op_Subtract (Loc,
2742          Left_Opnd =>
2743            Make_Attribute_Reference (Loc,
2744              Prefix =>
2745                OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
2746              Attribute_Name => Name_Size),
2747          Right_Opnd =>
2748            Make_Attribute_Reference (Loc,
2749              Prefix => New_Reference_To (Constr_Root, Loc),
2750              Attribute_Name => Name_Object_Size));
2751
2752      Set_Paren_Count (Sizexpr, 1);
2753
2754      Append_To (List_Def,
2755        Make_Subtype_Declaration (Loc,
2756          Defining_Identifier => Range_Type,
2757          Subtype_Indication =>
2758            Make_Subtype_Indication (Loc,
2759              Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
2760              Constraint => Make_Range_Constraint (Loc,
2761                Range_Expression =>
2762                  Make_Range (Loc,
2763                    Low_Bound => Make_Integer_Literal (Loc, 1),
2764                    High_Bound =>
2765                      Make_Op_Divide (Loc,
2766                        Left_Opnd => Sizexpr,
2767                        Right_Opnd => Make_Integer_Literal (Loc,
2768                            Intval => System_Storage_Unit)))))));
2769
2770      --  subtype str__nn is Storage_Array (rg__x);
2771
2772      Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
2773      Append_To (List_Def,
2774        Make_Subtype_Declaration (Loc,
2775          Defining_Identifier => Str_Type,
2776          Subtype_Indication =>
2777            Make_Subtype_Indication (Loc,
2778              Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
2779              Constraint =>
2780                Make_Index_Or_Discriminant_Constraint (Loc,
2781                  Constraints =>
2782                    New_List (New_Reference_To (Range_Type, Loc))))));
2783
2784      --  type Equiv_T is record
2785      --    _parent : Tnn;
2786      --    E : Str_Type;
2787      --  end Equiv_T;
2788
2789      Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
2790
2791      --  When the target requires front-end layout, it's necessary to allow
2792      --  the equivalent type to be frozen so that layout can occur (when the
2793      --  associated class-wide subtype is frozen, the equivalent type will
2794      --  be frozen, see freeze.adb). For other targets, Gigi wants to have
2795      --  the equivalent type marked as frozen and deals with this type itself.
2796      --  In the Gigi case this will also avoid the generation of an init
2797      --  procedure for the type.
2798
2799      if not Frontend_Layout_On_Target then
2800         Set_Is_Frozen (Equiv_Type);
2801      end if;
2802
2803      Set_Ekind (Equiv_Type, E_Record_Type);
2804      Set_Parent_Subtype (Equiv_Type, Constr_Root);
2805
2806      Append_To (List_Def,
2807        Make_Full_Type_Declaration (Loc,
2808          Defining_Identifier => Equiv_Type,
2809
2810          Type_Definition =>
2811            Make_Record_Definition (Loc,
2812              Component_List => Make_Component_List (Loc,
2813                Component_Items => New_List (
2814                  Make_Component_Declaration (Loc,
2815                    Defining_Identifier =>
2816                      Make_Defining_Identifier (Loc, Name_uParent),
2817                    Component_Definition =>
2818                      Make_Component_Definition (Loc,
2819                        Aliased_Present    => False,
2820                        Subtype_Indication =>
2821                          New_Reference_To (Constr_Root, Loc))),
2822
2823                  Make_Component_Declaration (Loc,
2824                    Defining_Identifier =>
2825                      Make_Defining_Identifier (Loc,
2826                        Chars => New_Internal_Name ('C')),
2827                    Component_Definition =>
2828                      Make_Component_Definition (Loc,
2829                        Aliased_Present    => False,
2830                        Subtype_Indication =>
2831                          New_Reference_To (Str_Type, Loc)))),
2832
2833                Variant_Part => Empty))));
2834
2835      Insert_Actions (E, List_Def);
2836      return Equiv_Type;
2837   end Make_CW_Equivalent_Type;
2838
2839   ------------------------
2840   -- Make_Literal_Range --
2841   ------------------------
2842
2843   function Make_Literal_Range
2844     (Loc         : Source_Ptr;
2845      Literal_Typ : Entity_Id)
2846      return        Node_Id
2847   is
2848      Lo : constant Node_Id :=
2849             New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
2850
2851   begin
2852      Set_Analyzed (Lo, False);
2853
2854         return
2855           Make_Range (Loc,
2856             Low_Bound => Lo,
2857
2858             High_Bound =>
2859               Make_Op_Subtract (Loc,
2860                  Left_Opnd =>
2861                    Make_Op_Add (Loc,
2862                      Left_Opnd  => New_Copy_Tree (Lo),
2863                      Right_Opnd =>
2864                        Make_Integer_Literal (Loc,
2865                          String_Literal_Length (Literal_Typ))),
2866                  Right_Opnd => Make_Integer_Literal (Loc, 1)));
2867   end Make_Literal_Range;
2868
2869   ----------------------------
2870   -- Make_Subtype_From_Expr --
2871   ----------------------------
2872
2873   --  1. If Expr is an uncontrained array expression, creates
2874   --    Unc_Type(Expr'first(1)..Expr'Last(1),..., Expr'first(n)..Expr'last(n))
2875
2876   --  2. If Expr is a unconstrained discriminated type expression, creates
2877   --    Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
2878
2879   --  3. If Expr is class-wide, creates an implicit class wide subtype
2880
2881   function Make_Subtype_From_Expr
2882     (E       : Node_Id;
2883      Unc_Typ : Entity_Id)
2884      return    Node_Id
2885   is
2886      Loc         : constant Source_Ptr := Sloc (E);
2887      List_Constr : constant List_Id    := New_List;
2888      D           : Entity_Id;
2889
2890      Full_Subtyp  : Entity_Id;
2891      Priv_Subtyp  : Entity_Id;
2892      Utyp         : Entity_Id;
2893      Full_Exp     : Node_Id;
2894
2895   begin
2896      if Is_Private_Type (Unc_Typ)
2897        and then Has_Unknown_Discriminants (Unc_Typ)
2898      then
2899         --  Prepare the subtype completion, Go to base type to
2900         --  find underlying type.
2901
2902         Utyp        := Underlying_Type (Base_Type (Unc_Typ));
2903         Full_Subtyp := Make_Defining_Identifier (Loc,
2904                          New_Internal_Name ('C'));
2905         Full_Exp    :=
2906           Unchecked_Convert_To
2907             (Utyp, Duplicate_Subexpr_No_Checks (E));
2908         Set_Parent (Full_Exp, Parent (E));
2909
2910         Priv_Subtyp :=
2911           Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
2912
2913         Insert_Action (E,
2914           Make_Subtype_Declaration (Loc,
2915             Defining_Identifier => Full_Subtyp,
2916             Subtype_Indication  => Make_Subtype_From_Expr (Full_Exp, Utyp)));
2917
2918         --  Define the dummy private subtype
2919
2920         Set_Ekind          (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
2921         Set_Etype          (Priv_Subtyp, Unc_Typ);
2922         Set_Scope          (Priv_Subtyp, Full_Subtyp);
2923         Set_Is_Constrained (Priv_Subtyp);
2924         Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
2925         Set_Is_Itype       (Priv_Subtyp);
2926         Set_Associated_Node_For_Itype (Priv_Subtyp, E);
2927
2928         if Is_Tagged_Type  (Priv_Subtyp) then
2929            Set_Class_Wide_Type
2930              (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
2931            Set_Primitive_Operations (Priv_Subtyp,
2932              Primitive_Operations (Unc_Typ));
2933         end if;
2934
2935         Set_Full_View (Priv_Subtyp, Full_Subtyp);
2936
2937         return New_Reference_To (Priv_Subtyp, Loc);
2938
2939      elsif Is_Array_Type (Unc_Typ) then
2940         for J in 1 .. Number_Dimensions (Unc_Typ) loop
2941            Append_To (List_Constr,
2942              Make_Range (Loc,
2943                Low_Bound =>
2944                  Make_Attribute_Reference (Loc,
2945                    Prefix => Duplicate_Subexpr_No_Checks (E),
2946                    Attribute_Name => Name_First,
2947                    Expressions => New_List (
2948                      Make_Integer_Literal (Loc, J))),
2949
2950                High_Bound =>
2951                  Make_Attribute_Reference (Loc,
2952                    Prefix         => Duplicate_Subexpr_No_Checks (E),
2953                    Attribute_Name => Name_Last,
2954                    Expressions    => New_List (
2955                      Make_Integer_Literal (Loc, J)))));
2956         end loop;
2957
2958      elsif Is_Class_Wide_Type (Unc_Typ) then
2959         declare
2960            CW_Subtype : Entity_Id;
2961            EQ_Typ     : Entity_Id := Empty;
2962
2963         begin
2964            --  A class-wide equivalent type is not needed when Java_VM
2965            --  because the JVM back end handles the class-wide object
2966            --  initialization itself (and doesn't need or want the
2967            --  additional intermediate type to handle the assignment).
2968
2969            if Expander_Active and then not Java_VM then
2970               EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
2971            end if;
2972
2973            CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
2974            Set_Equivalent_Type (CW_Subtype, EQ_Typ);
2975
2976            if Present (EQ_Typ) then
2977               Set_Is_Class_Wide_Equivalent_Type (EQ_Typ);
2978            end if;
2979
2980            Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
2981
2982            return New_Occurrence_Of (CW_Subtype, Loc);
2983         end;
2984
2985      --  Comment needed (what case is this ???)
2986
2987      else
2988         D := First_Discriminant (Unc_Typ);
2989         while Present (D) loop
2990            Append_To (List_Constr,
2991              Make_Selected_Component (Loc,
2992                Prefix        => Duplicate_Subexpr_No_Checks (E),
2993                Selector_Name => New_Reference_To (D, Loc)));
2994
2995            Next_Discriminant (D);
2996         end loop;
2997      end if;
2998
2999      return
3000        Make_Subtype_Indication (Loc,
3001          Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
3002          Constraint   =>
3003            Make_Index_Or_Discriminant_Constraint (Loc,
3004              Constraints => List_Constr));
3005   end Make_Subtype_From_Expr;
3006
3007   -----------------------------
3008   -- May_Generate_Large_Temp --
3009   -----------------------------
3010
3011   --  At the current time, the only types that we return False for (i.e.
3012   --  where we decide we know they cannot generate large temps) are ones
3013   --  where we know the size is 128 bits or less at compile time, and we
3014   --  are still not doing a thorough job on arrays and records ???
3015
3016   function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
3017   begin
3018      if not Stack_Checking_Enabled then
3019         return False;
3020
3021      elsif not Size_Known_At_Compile_Time (Typ) then
3022         return False;
3023
3024      elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
3025         return False;
3026
3027      elsif Is_Array_Type (Typ)
3028        and then Present (Packed_Array_Type (Typ))
3029      then
3030         return May_Generate_Large_Temp (Packed_Array_Type (Typ));
3031
3032      --  We could do more here to find other small types ???
3033
3034      else
3035         return True;
3036      end if;
3037   end May_Generate_Large_Temp;
3038
3039   ----------------------------
3040   -- New_Class_Wide_Subtype --
3041   ----------------------------
3042
3043   function New_Class_Wide_Subtype
3044     (CW_Typ : Entity_Id;
3045      N      : Node_Id)
3046      return   Entity_Id
3047   is
3048      Res       : constant Entity_Id := Create_Itype (E_Void, N);
3049      Res_Name  : constant Name_Id   := Chars (Res);
3050      Res_Scope : constant Entity_Id := Scope (Res);
3051
3052   begin
3053      Copy_Node (CW_Typ, Res);
3054      Set_Sloc (Res, Sloc (N));
3055      Set_Is_Itype (Res);
3056      Set_Associated_Node_For_Itype (Res, N);
3057      Set_Is_Public (Res, False);   --  By default, may be changed below.
3058      Set_Public_Status (Res);
3059      Set_Chars (Res, Res_Name);
3060      Set_Scope (Res, Res_Scope);
3061      Set_Ekind (Res, E_Class_Wide_Subtype);
3062      Set_Next_Entity (Res, Empty);
3063      Set_Etype (Res, Base_Type (CW_Typ));
3064
3065      --  For targets where front-end layout is required, reset the Is_Frozen
3066      --  status of the subtype to False (it can be implicitly set to true
3067      --  from the copy of the class-wide type). For other targets, Gigi
3068      --  doesn't want the class-wide subtype to go through the freezing
3069      --  process (though it's unclear why that causes problems and it would
3070      --  be nice to allow freezing to occur normally for all targets ???).
3071
3072      if Frontend_Layout_On_Target then
3073         Set_Is_Frozen (Res, False);
3074      end if;
3075
3076      Set_Freeze_Node (Res, Empty);
3077      return (Res);
3078   end New_Class_Wide_Subtype;
3079
3080   -------------------------
3081   -- Remove_Side_Effects --
3082   -------------------------
3083
3084   procedure Remove_Side_Effects
3085     (Exp          : Node_Id;
3086      Name_Req     : Boolean := False;
3087      Variable_Ref : Boolean := False)
3088   is
3089      Loc          : constant Source_Ptr := Sloc (Exp);
3090      Exp_Type     : constant Entity_Id      := Etype (Exp);
3091      Svg_Suppress : constant Suppress_Array := Scope_Suppress;
3092      Def_Id       : Entity_Id;
3093      Ref_Type     : Entity_Id;
3094      Res          : Node_Id;
3095      Ptr_Typ_Decl : Node_Id;
3096      New_Exp      : Node_Id;
3097      E            : Node_Id;
3098
3099      function Side_Effect_Free (N : Node_Id) return Boolean;
3100      --  Determines if the tree N represents an expession that is known
3101      --  not to have side effects, and for which no processing is required.
3102
3103      function Side_Effect_Free (L : List_Id) return Boolean;
3104      --  Determines if all elements of the list L are side effect free
3105
3106      function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
3107      --  The argument N is a construct where the Prefix is dereferenced
3108      --  if it is a an access type and the result is a variable. The call
3109      --  returns True if the construct is side effect free (not considering
3110      --  side effects in other than the prefix which are to be tested by the
3111      --  caller).
3112
3113      function Within_In_Parameter (N : Node_Id) return Boolean;
3114      --  Determines if N is a subcomponent of a composite in-parameter.
3115      --  If so, N is not side-effect free when the actual is global and
3116      --  modifiable indirectly from within a subprogram, because it may
3117      --  be passed by reference. The front-end must be conservative here
3118      --  and assume that this may happen with any array or record type.
3119      --  On the other hand, we cannot create temporaries for all expressions
3120      --  for which this condition is true, for various reasons that might
3121      --  require clearing up ??? For example, descriminant references that
3122      --  appear out of place, or spurious type errors with class-wide
3123      --  expressions. As a result, we limit the transformation to loop
3124      --  bounds, which is so far the only case that requires it.
3125
3126      -----------------------------
3127      -- Safe_Prefixed_Reference --
3128      -----------------------------
3129
3130      function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
3131      begin
3132         --  If prefix is not side effect free, definitely not safe
3133
3134         if not Side_Effect_Free (Prefix (N)) then
3135            return False;
3136
3137         --  If the prefix is of an access type that is not access-to-constant,
3138         --  then this construct is a variable reference, which means it is to
3139         --  be considered to have side effects if Variable_Ref is set True
3140         --  Exception is an access to an entity that is a constant or an
3141         --  in-parameter which does not come from source, and is the result
3142         --  of a previous removal of side-effects.
3143
3144         elsif Is_Access_Type (Etype (Prefix (N)))
3145           and then not Is_Access_Constant (Etype (Prefix (N)))
3146           and then Variable_Ref
3147         then
3148            if not Is_Entity_Name (Prefix (N)) then
3149               return False;
3150            else
3151               return Ekind (Entity (Prefix (N))) = E_Constant
3152                 or else Ekind (Entity (Prefix (N))) = E_In_Parameter;
3153            end if;
3154
3155         --  The following test is the simplest way of solving a complex
3156         --  problem uncovered by BB08-010: Side effect on loop bound that
3157         --  is a subcomponent of a global variable:
3158         --    If a loop bound is a subcomponent of a global variable, a
3159         --    modification of that variable within the loop may incorrectly
3160         --    affect the execution of the loop.
3161
3162         elsif not
3163           (Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
3164              or else not Within_In_Parameter (Prefix (N)))
3165         then
3166            return False;
3167
3168         --  All other cases are side effect free
3169
3170         else
3171            return True;
3172         end if;
3173      end Safe_Prefixed_Reference;
3174
3175      ----------------------
3176      -- Side_Effect_Free --
3177      ----------------------
3178
3179      function Side_Effect_Free (N : Node_Id) return Boolean is
3180      begin
3181         --  Note on checks that could raise Constraint_Error. Strictly, if
3182         --  we take advantage of 11.6, these checks do not count as side
3183         --  effects. However, we would just as soon consider that they are
3184         --  side effects, since the backend CSE does not work very well on
3185         --  expressions which can raise Constraint_Error. On the other
3186         --  hand, if we do not consider them to be side effect free, then
3187         --  we get some awkward expansions in -gnato mode, resulting in
3188         --  code insertions at a point where we do not have a clear model
3189         --  for performing the insertions. See 4908-002/comment for details.
3190
3191         --  Special handling for entity names
3192
3193         if Is_Entity_Name (N) then
3194
3195            --  If the entity is a constant, it is definitely side effect
3196            --  free. Note that the test of Is_Variable (N) below might
3197            --  be expected to catch this case, but it does not, because
3198            --  this test goes to the original tree, and we may have
3199            --  already rewritten a variable node with a constant as
3200            --  a result of an earlier Force_Evaluation call.
3201
3202            if Ekind (Entity (N)) = E_Constant
3203              or else Ekind (Entity (N)) = E_In_Parameter
3204            then
3205               return True;
3206
3207            --  Functions are not side effect free
3208
3209            elsif Ekind (Entity (N)) = E_Function then
3210               return False;
3211
3212            --  Variables are considered to be a side effect if Variable_Ref
3213            --  is set or if we have a volatile variable and Name_Req is off.
3214            --  If Name_Req is True then we can't help returning a name which
3215            --  effectively allows multiple references in any case.
3216
3217            elsif Is_Variable (N) then
3218               return not Variable_Ref
3219                 and then (not Treat_As_Volatile (Entity (N))
3220                             or else Name_Req);
3221
3222            --  Any other entity (e.g. a subtype name) is definitely side
3223            --  effect free.
3224
3225            else
3226               return True;
3227            end if;
3228
3229         --  A value known at compile time is always side effect free
3230
3231         elsif Compile_Time_Known_Value (N) then
3232            return True;
3233         end if;
3234
3235         --  For other than entity names and compile time known values,
3236         --  check the node kind for special processing.
3237
3238         case Nkind (N) is
3239
3240            --  An attribute reference is side effect free if its expressions
3241            --  are side effect free and its prefix is side effect free or
3242            --  is an entity reference.
3243
3244            --  Is this right? what about x'first where x is a variable???
3245
3246            when N_Attribute_Reference =>
3247               return Side_Effect_Free (Expressions (N))
3248                 and then (Is_Entity_Name (Prefix (N))
3249                            or else Side_Effect_Free (Prefix (N)));
3250
3251            --  A binary operator is side effect free if and both operands
3252            --  are side effect free. For this purpose binary operators
3253            --  include membership tests and short circuit forms
3254
3255            when N_Binary_Op |
3256                 N_In        |
3257                 N_Not_In    |
3258                 N_And_Then  |
3259                 N_Or_Else
3260            =>
3261               return Side_Effect_Free (Left_Opnd  (N))
3262                 and then Side_Effect_Free (Right_Opnd (N));
3263
3264            --  An explicit dereference is side effect free only if it is
3265            --  a side effect free prefixed reference.
3266
3267            when N_Explicit_Dereference =>
3268               return Safe_Prefixed_Reference (N);
3269
3270            --  A call to _rep_to_pos is side effect free, since we generate
3271            --  this pure function call ourselves. Moreover it is critically
3272            --  important to make this exception, since otherwise we can
3273            --  have discriminants in array components which don't look
3274            --  side effect free in the case of an array whose index type
3275            --  is an enumeration type with an enumeration rep clause.
3276
3277            --  All other function calls are not side effect free
3278
3279            when N_Function_Call =>
3280               return Nkind (Name (N)) = N_Identifier
3281                 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
3282                 and then
3283                   Side_Effect_Free (First (Parameter_Associations (N)));
3284
3285            --  An indexed component is side effect free if it is a side
3286            --  effect free prefixed reference and all the indexing
3287            --  expressions are side effect free.
3288
3289            when N_Indexed_Component =>
3290               return Side_Effect_Free (Expressions (N))
3291                 and then Safe_Prefixed_Reference (N);
3292
3293            --  A type qualification is side effect free if the expression
3294            --  is side effect free.
3295
3296            when N_Qualified_Expression =>
3297               return Side_Effect_Free (Expression (N));
3298
3299            --  A selected component is side effect free only if it is a
3300            --  side effect free prefixed reference.
3301
3302            when N_Selected_Component =>
3303               return Safe_Prefixed_Reference (N);
3304
3305            --  A range is side effect free if the bounds are side effect free
3306
3307            when N_Range =>
3308               return Side_Effect_Free (Low_Bound (N))
3309                 and then Side_Effect_Free (High_Bound (N));
3310
3311            --  A slice is side effect free if it is a side effect free
3312            --  prefixed reference and the bounds are side effect free.
3313
3314            when N_Slice =>
3315               return Side_Effect_Free (Discrete_Range (N))
3316                 and then Safe_Prefixed_Reference (N);
3317
3318            --  A type conversion is side effect free if the expression
3319            --  to be converted is side effect free.
3320
3321            when N_Type_Conversion =>
3322               return Side_Effect_Free (Expression (N));
3323
3324            --  A unary operator is side effect free if the operand
3325            --  is side effect free.
3326
3327            when N_Unary_Op =>
3328               return Side_Effect_Free (Right_Opnd (N));
3329
3330            --  An unchecked type conversion is side effect free only if it
3331            --  is safe and its argument is side effect free.
3332
3333            when N_Unchecked_Type_Conversion =>
3334               return Safe_Unchecked_Type_Conversion (N)
3335                 and then Side_Effect_Free (Expression (N));
3336
3337            --  An unchecked expression is side effect free if its expression
3338            --  is side effect free.
3339
3340            when N_Unchecked_Expression =>
3341               return Side_Effect_Free (Expression (N));
3342
3343            --  We consider that anything else has side effects. This is a bit
3344            --  crude, but we are pretty close for most common cases, and we
3345            --  are certainly correct (i.e. we never return True when the
3346            --  answer should be False).
3347
3348            when others =>
3349               return False;
3350         end case;
3351      end Side_Effect_Free;
3352
3353      --  A list is side effect free if all elements of the list are
3354      --  side effect free.
3355
3356      function Side_Effect_Free (L : List_Id) return Boolean is
3357         N : Node_Id;
3358
3359      begin
3360         if L = No_List or else L = Error_List then
3361            return True;
3362
3363         else
3364            N := First (L);
3365
3366            while Present (N) loop
3367               if not Side_Effect_Free (N) then
3368                  return False;
3369               else
3370                  Next (N);
3371               end if;
3372            end loop;
3373
3374            return True;
3375         end if;
3376      end Side_Effect_Free;
3377
3378      -------------------------
3379      -- Within_In_Parameter --
3380      -------------------------
3381
3382      function Within_In_Parameter (N : Node_Id) return Boolean is
3383      begin
3384         if not Comes_From_Source (N) then
3385            return False;
3386
3387         elsif Is_Entity_Name (N) then
3388            return
3389              Ekind (Entity (N)) = E_In_Parameter;
3390
3391         elsif Nkind (N) = N_Indexed_Component
3392           or else Nkind (N) = N_Selected_Component
3393         then
3394            return Within_In_Parameter (Prefix (N));
3395         else
3396
3397            return False;
3398         end if;
3399      end Within_In_Parameter;
3400
3401   --  Start of processing for Remove_Side_Effects
3402
3403   begin
3404      --  If we are side effect free already or expansion is disabled,
3405      --  there is nothing to do.
3406
3407      if Side_Effect_Free (Exp) or else not Expander_Active then
3408         return;
3409      end if;
3410
3411      --  All this must not have any checks
3412
3413      Scope_Suppress := (others => True);
3414
3415      --  If the expression has the form v.all then we can just capture
3416      --  the pointer, and then do an explicit dereference on the result.
3417
3418      if Nkind (Exp) = N_Explicit_Dereference then
3419         Def_Id :=
3420           Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3421         Res :=
3422           Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
3423
3424         Insert_Action (Exp,
3425           Make_Object_Declaration (Loc,
3426             Defining_Identifier => Def_Id,
3427             Object_Definition   =>
3428               New_Reference_To (Etype (Prefix (Exp)), Loc),
3429             Constant_Present    => True,
3430             Expression          => Relocate_Node (Prefix (Exp))));
3431
3432      --  Similar processing for an unchecked conversion of an expression
3433      --  of the form v.all, where we want the same kind of treatment.
3434
3435      elsif Nkind (Exp) = N_Unchecked_Type_Conversion
3436        and then Nkind (Expression (Exp)) = N_Explicit_Dereference
3437      then
3438         Remove_Side_Effects (Expression (Exp), Variable_Ref);
3439         Scope_Suppress := Svg_Suppress;
3440         return;
3441
3442      --  If this is a type conversion, leave the type conversion and remove
3443      --  the side effects in the expression. This is important in several
3444      --  circumstances: for change of representations, and also when this
3445      --  is a view conversion to a smaller object, where gigi can end up
3446      --  its own temporary of the wrong size.
3447
3448      --  ??? this transformation is inhibited for elementary types that are
3449      --  not involved in a change of representation because it causes
3450      --  regressions that are not fully understood yet.
3451
3452      elsif Nkind (Exp) = N_Type_Conversion
3453        and then (not Is_Elementary_Type (Underlying_Type (Exp_Type))
3454                   or else Nkind (Parent (Exp)) = N_Assignment_Statement)
3455      then
3456         Remove_Side_Effects (Expression (Exp), Variable_Ref);
3457         Scope_Suppress := Svg_Suppress;
3458         return;
3459
3460      --  For expressions that denote objects, we can use a renaming scheme.
3461      --  We skip using this if we have a volatile variable and we do not
3462      --  have Nam_Req set true (see comments above for Side_Effect_Free).
3463      --  We also skip this scheme for class-wide expressions in order to
3464      --  avoid recursive expansion (see Expand_N_Object_Renaming_Declaration)
3465      --  If the object is a function call, we need to create a temporary and
3466      --  not a renaming.
3467
3468      --  Note that we could use ordinary object declarations in the case of
3469      --  expressions not appearing as lvalues. That is left as a possible
3470      --  optimization in the future but we prefer to generate renamings
3471      --  right now, since we may indeed be transforming an lvalue.
3472
3473      elsif Is_Object_Reference (Exp)
3474        and then Nkind (Exp) /= N_Function_Call
3475        and then not Variable_Ref
3476        and then (Name_Req
3477                   or else not Is_Entity_Name (Exp)
3478                   or else not Treat_As_Volatile (Entity (Exp)))
3479        and then not Is_Class_Wide_Type (Exp_Type)
3480      then
3481         Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3482
3483         if Nkind (Exp) = N_Selected_Component
3484           and then Nkind (Prefix (Exp)) = N_Function_Call
3485           and then Is_Array_Type (Etype (Exp))
3486         then
3487            --  Avoid generating a variable-sized temporary, by generating
3488            --  the renaming declaration just for the function call. The
3489            --  transformation could be refined to apply only when the array
3490            --  component is constrained by a discriminant???
3491
3492            Res :=
3493              Make_Selected_Component (Loc,
3494                Prefix => New_Occurrence_Of (Def_Id, Loc),
3495                Selector_Name => Selector_Name (Exp));
3496
3497            Insert_Action (Exp,
3498              Make_Object_Renaming_Declaration (Loc,
3499                Defining_Identifier => Def_Id,
3500                Subtype_Mark        =>
3501                  New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
3502                Name                => Relocate_Node (Prefix (Exp))));
3503
3504            --  The temporary must be elaborated by gigi, and is of course
3505            --  not to be replaced in-line by the expression it renames,
3506            --  which would defeat the purpose of removing the side-effect.
3507
3508            Set_Is_Renaming_Of_Object (Def_Id, False);
3509
3510         else
3511            Res := New_Reference_To (Def_Id, Loc);
3512
3513            Insert_Action (Exp,
3514              Make_Object_Renaming_Declaration (Loc,
3515                Defining_Identifier => Def_Id,
3516                Subtype_Mark        => New_Reference_To (Exp_Type, Loc),
3517                Name                => Relocate_Node (Exp)));
3518
3519            Set_Is_Renaming_Of_Object (Def_Id, False);
3520         end if;
3521
3522      --  If it is a scalar type, just make a copy.
3523
3524      elsif Is_Elementary_Type (Exp_Type) then
3525         Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3526         Set_Etype (Def_Id, Exp_Type);
3527         Res := New_Reference_To (Def_Id, Loc);
3528
3529         E :=
3530           Make_Object_Declaration (Loc,
3531             Defining_Identifier => Def_Id,
3532             Object_Definition   => New_Reference_To (Exp_Type, Loc),
3533             Constant_Present    => True,
3534             Expression          => Relocate_Node (Exp));
3535
3536         Set_Assignment_OK (E);
3537         Insert_Action (Exp, E);
3538
3539      --  Always use a renaming for an unchecked conversion
3540      --  If this is an unchecked conversion that Gigi can't handle, make
3541      --  a copy or a use a renaming to capture the value.
3542
3543      elsif Nkind (Exp) = N_Unchecked_Type_Conversion
3544        and then not Safe_Unchecked_Type_Conversion (Exp)
3545      then
3546         if Controlled_Type (Etype (Exp)) then
3547
3548            --  Use a renaming to capture the expression, rather than create
3549            --  a controlled temporary.
3550
3551            Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3552            Res := New_Reference_To (Def_Id, Loc);
3553
3554            Insert_Action (Exp,
3555              Make_Object_Renaming_Declaration (Loc,
3556                Defining_Identifier => Def_Id,
3557                Subtype_Mark        => New_Reference_To (Exp_Type, Loc),
3558                Name                => Relocate_Node (Exp)));
3559
3560         else
3561            Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3562            Set_Etype (Def_Id, Exp_Type);
3563            Res := New_Reference_To (Def_Id, Loc);
3564
3565            E :=
3566              Make_Object_Declaration (Loc,
3567                Defining_Identifier => Def_Id,
3568                Object_Definition   => New_Reference_To (Exp_Type, Loc),
3569                Constant_Present    => not Is_Variable (Exp),
3570                Expression          => Relocate_Node (Exp));
3571
3572            Set_Assignment_OK (E);
3573            Insert_Action (Exp, E);
3574         end if;
3575
3576      --  Otherwise we generate a reference to the value
3577
3578      else
3579         Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
3580
3581         Ptr_Typ_Decl :=
3582           Make_Full_Type_Declaration (Loc,
3583             Defining_Identifier => Ref_Type,
3584             Type_Definition =>
3585               Make_Access_To_Object_Definition (Loc,
3586                 All_Present => True,
3587                 Subtype_Indication =>
3588                   New_Reference_To (Exp_Type, Loc)));
3589
3590         E := Exp;
3591         Insert_Action (Exp, Ptr_Typ_Decl);
3592
3593         Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3594         Set_Etype (Def_Id, Exp_Type);
3595
3596         Res :=
3597           Make_Explicit_Dereference (Loc,
3598             Prefix => New_Reference_To (Def_Id, Loc));
3599
3600         if Nkind (E) = N_Explicit_Dereference then
3601            New_Exp := Relocate_Node (Prefix (E));
3602         else
3603            E := Relocate_Node (E);
3604            New_Exp := Make_Reference (Loc, E);
3605         end if;
3606
3607         if Nkind (E) = N_Aggregate and then Expansion_Delayed (E) then
3608            Set_Expansion_Delayed (E, False);
3609            Set_Analyzed (E, False);
3610         end if;
3611
3612         Insert_Action (Exp,
3613           Make_Object_Declaration (Loc,
3614             Defining_Identifier => Def_Id,
3615             Object_Definition   => New_Reference_To (Ref_Type, Loc),
3616             Expression          => New_Exp));
3617      end if;
3618
3619      --  Preserve the Assignment_OK flag in all copies, since at least
3620      --  one copy may be used in a context where this flag must be set
3621      --  (otherwise why would the flag be set in the first place).
3622
3623      Set_Assignment_OK (Res, Assignment_OK (Exp));
3624
3625      --  Finally rewrite the original expression and we are done
3626
3627      Rewrite (Exp, Res);
3628      Analyze_And_Resolve (Exp, Exp_Type);
3629      Scope_Suppress := Svg_Suppress;
3630   end Remove_Side_Effects;
3631
3632   ------------------------------------
3633   -- Safe_Unchecked_Type_Conversion --
3634   ------------------------------------
3635
3636   --  Note: this function knows quite a bit about the exact requirements
3637   --  of Gigi with respect to unchecked type conversions, and its code
3638   --  must be coordinated with any changes in Gigi in this area.
3639
3640   --  The above requirements should be documented in Sinfo ???
3641
3642   function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
3643      Otyp   : Entity_Id;
3644      Ityp   : Entity_Id;
3645      Oalign : Uint;
3646      Ialign : Uint;
3647      Pexp   : constant Node_Id := Parent (Exp);
3648
3649   begin
3650      --  If the expression is the RHS of an assignment or object declaration
3651      --   we are always OK because there will always be a target.
3652
3653      --  Object renaming declarations, (generated for view conversions of
3654      --  actuals in inlined calls), like object declarations, provide an
3655      --  explicit type, and are safe as well.
3656
3657      if (Nkind (Pexp) = N_Assignment_Statement
3658           and then Expression (Pexp) = Exp)
3659        or else Nkind (Pexp) = N_Object_Declaration
3660        or else Nkind (Pexp) = N_Object_Renaming_Declaration
3661      then
3662         return True;
3663
3664      --  If the expression is the prefix of an N_Selected_Component
3665      --  we should also be OK because GCC knows to look inside the
3666      --  conversion except if the type is discriminated. We assume
3667      --  that we are OK anyway if the type is not set yet or if it is
3668      --  controlled since we can't afford to introduce a temporary in
3669      --  this case.
3670
3671      elsif Nkind (Pexp) = N_Selected_Component
3672         and then Prefix (Pexp) = Exp
3673      then
3674         if No (Etype (Pexp)) then
3675            return True;
3676         else
3677            return
3678              not Has_Discriminants (Etype (Pexp))
3679                or else Is_Constrained (Etype (Pexp));
3680         end if;
3681      end if;
3682
3683      --  Set the output type, this comes from Etype if it is set, otherwise
3684      --  we take it from the subtype mark, which we assume was already
3685      --  fully analyzed.
3686
3687      if Present (Etype (Exp)) then
3688         Otyp := Etype (Exp);
3689      else
3690         Otyp := Entity (Subtype_Mark (Exp));
3691      end if;
3692
3693      --  The input type always comes from the expression, and we assume
3694      --  this is indeed always analyzed, so we can simply get the Etype.
3695
3696      Ityp := Etype (Expression (Exp));
3697
3698      --  Initialize alignments to unknown so far
3699
3700      Oalign := No_Uint;
3701      Ialign := No_Uint;
3702
3703      --  Replace a concurrent type by its corresponding record type
3704      --  and each type by its underlying type and do the tests on those.
3705      --  The original type may be a private type whose completion is a
3706      --  concurrent type, so find the underlying type first.
3707
3708      if Present (Underlying_Type (Otyp)) then
3709         Otyp := Underlying_Type (Otyp);
3710      end if;
3711
3712      if Present (Underlying_Type (Ityp)) then
3713         Ityp := Underlying_Type (Ityp);
3714      end if;
3715
3716      if Is_Concurrent_Type (Otyp) then
3717         Otyp := Corresponding_Record_Type (Otyp);
3718      end if;
3719
3720      if Is_Concurrent_Type (Ityp) then
3721         Ityp := Corresponding_Record_Type (Ityp);
3722      end if;
3723
3724      --  If the base types are the same, we know there is no problem since
3725      --  this conversion will be a noop.
3726
3727      if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
3728         return True;
3729
3730      --  If the size of output type is known at compile time, there is
3731      --  never a problem.  Note that unconstrained records are considered
3732      --  to be of known size, but we can't consider them that way here,
3733      --  because we are talking about the actual size of the object.
3734
3735      --  We also make sure that in addition to the size being known, we do
3736      --  not have a case which might generate an embarrassingly large temp
3737      --  in stack checking mode.
3738
3739      elsif Size_Known_At_Compile_Time (Otyp)
3740        and then not May_Generate_Large_Temp (Otyp)
3741        and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
3742      then
3743         return True;
3744
3745      --  If either type is tagged, then we know the alignment is OK so
3746      --  Gigi will be able to use pointer punning.
3747
3748      elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
3749         return True;
3750
3751      --  If either type is a limited record type, we cannot do a copy, so
3752      --  say safe since there's nothing else we can do.
3753
3754      elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
3755         return True;
3756
3757      --  Conversions to and from packed array types are always ignored and
3758      --  hence are safe.
3759
3760      elsif Is_Packed_Array_Type (Otyp)
3761        or else Is_Packed_Array_Type (Ityp)
3762      then
3763         return True;
3764      end if;
3765
3766      --  The only other cases known to be safe is if the input type's
3767      --  alignment is known to be at least the maximum alignment for the
3768      --  target or if both alignments are known and the output type's
3769      --  alignment is no stricter than the input's.  We can use the alignment
3770      --  of the component type of an array if a type is an unpacked
3771      --  array type.
3772
3773      if Present (Alignment_Clause (Otyp)) then
3774         Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
3775
3776      elsif Is_Array_Type (Otyp)
3777        and then Present (Alignment_Clause (Component_Type (Otyp)))
3778      then
3779         Oalign := Expr_Value (Expression (Alignment_Clause
3780                                           (Component_Type (Otyp))));
3781      end if;
3782
3783      if Present (Alignment_Clause (Ityp)) then
3784         Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
3785
3786      elsif Is_Array_Type (Ityp)
3787        and then Present (Alignment_Clause (Component_Type (Ityp)))
3788      then
3789         Ialign := Expr_Value (Expression (Alignment_Clause
3790                                           (Component_Type (Ityp))));
3791      end if;
3792
3793      if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
3794         return True;
3795
3796      elsif Ialign /= No_Uint and then Oalign /= No_Uint
3797        and then Ialign <= Oalign
3798      then
3799         return True;
3800
3801      --   Otherwise, Gigi cannot handle this and we must make a temporary.
3802
3803      else
3804         return False;
3805      end if;
3806
3807   end Safe_Unchecked_Type_Conversion;
3808
3809   --------------------------
3810   -- Set_Elaboration_Flag --
3811   --------------------------
3812
3813   procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
3814      Loc : constant Source_Ptr := Sloc (N);
3815      Ent : constant Entity_Id  := Elaboration_Entity (Spec_Id);
3816      Asn : Node_Id;
3817
3818   begin
3819      if Present (Ent) then
3820
3821         --  Nothing to do if at the compilation unit level, because in this
3822         --  case the flag is set by the binder generated elaboration routine.
3823
3824         if Nkind (Parent (N)) = N_Compilation_Unit then
3825            null;
3826
3827         --  Here we do need to generate an assignment statement
3828
3829         else
3830            Check_Restriction (No_Elaboration_Code, N);
3831            Asn :=
3832              Make_Assignment_Statement (Loc,
3833                Name       => New_Occurrence_Of (Ent, Loc),
3834                Expression => New_Occurrence_Of (Standard_True, Loc));
3835
3836            if Nkind (Parent (N)) = N_Subunit then
3837               Insert_After (Corresponding_Stub (Parent (N)), Asn);
3838            else
3839               Insert_After (N, Asn);
3840            end if;
3841
3842            Analyze (Asn);
3843
3844            --  Kill current value indication. This is necessary because
3845            --  the tests of this flag are inserted out of sequence and must
3846            --  not pick up bogus indications of the wrong constant value.
3847
3848            Set_Current_Value (Ent, Empty);
3849         end if;
3850      end if;
3851   end Set_Elaboration_Flag;
3852
3853   --------------------------
3854   -- Target_Has_Fixed_Ops --
3855   --------------------------
3856
3857   Integer_Sized_Small : Ureal;
3858   --  Set to 2.0 ** -(Integer'Size - 1) the first time that this
3859   --  function is called (we don't want to compute it more than once!)
3860
3861   Long_Integer_Sized_Small : Ureal;
3862   --  Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this
3863   --  functoin is called (we don't want to compute it more than once)
3864
3865   First_Time_For_THFO : Boolean := True;
3866   --  Set to False after first call (if Fractional_Fixed_Ops_On_Target)
3867
3868   function Target_Has_Fixed_Ops
3869     (Left_Typ   : Entity_Id;
3870      Right_Typ  : Entity_Id;
3871      Result_Typ : Entity_Id)
3872      return       Boolean
3873   is
3874      function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
3875      --  Return True if the given type is a fixed-point type with a small
3876      --  value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
3877      --  an absolute value less than 1.0. This is currently limited
3878      --  to fixed-point types that map to Integer or Long_Integer.
3879
3880      ------------------------
3881      -- Is_Fractional_Type --
3882      ------------------------
3883
3884      function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
3885      begin
3886         if Esize (Typ) = Standard_Integer_Size then
3887            return Small_Value (Typ) = Integer_Sized_Small;
3888
3889         elsif Esize (Typ) = Standard_Long_Integer_Size then
3890            return Small_Value (Typ) = Long_Integer_Sized_Small;
3891
3892         else
3893            return False;
3894         end if;
3895      end Is_Fractional_Type;
3896
3897   --  Start of processing for Target_Has_Fixed_Ops
3898
3899   begin
3900      --  Return False if Fractional_Fixed_Ops_On_Target is false
3901
3902      if not Fractional_Fixed_Ops_On_Target then
3903         return False;
3904      end if;
3905
3906      --  Here the target has Fractional_Fixed_Ops, if first time, compute
3907      --  standard constants used by Is_Fractional_Type.
3908
3909      if First_Time_For_THFO then
3910         First_Time_For_THFO := False;
3911
3912         Integer_Sized_Small :=
3913           UR_From_Components
3914             (Num   => Uint_1,
3915              Den   => UI_From_Int (Standard_Integer_Size - 1),
3916              Rbase => 2);
3917
3918         Long_Integer_Sized_Small :=
3919           UR_From_Components
3920             (Num   => Uint_1,
3921              Den   => UI_From_Int (Standard_Long_Integer_Size - 1),
3922              Rbase => 2);
3923      end if;
3924
3925      --  Return True if target supports fixed-by-fixed multiply/divide
3926      --  for fractional fixed-point types (see Is_Fractional_Type) and
3927      --  the operand and result types are equivalent fractional types.
3928
3929      return Is_Fractional_Type (Base_Type (Left_Typ))
3930        and then Is_Fractional_Type (Base_Type (Right_Typ))
3931        and then Is_Fractional_Type (Base_Type (Result_Typ))
3932        and then Esize (Left_Typ) = Esize (Right_Typ)
3933        and then Esize (Left_Typ) = Esize (Result_Typ);
3934   end Target_Has_Fixed_Ops;
3935
3936   ------------------------------------------
3937   -- Type_May_Have_Bit_Aligned_Components --
3938   ------------------------------------------
3939
3940   function Type_May_Have_Bit_Aligned_Components
3941     (Typ : Entity_Id) return Boolean
3942   is
3943   begin
3944      --  Array type, check component type
3945
3946      if Is_Array_Type (Typ) then
3947         return
3948           Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
3949
3950      --  Record type, check components
3951
3952      elsif Is_Record_Type (Typ) then
3953         declare
3954            E : Entity_Id;
3955
3956         begin
3957            E := First_Entity (Typ);
3958            while Present (E) loop
3959               if Ekind (E) = E_Component
3960                 or else Ekind (E) = E_Discriminant
3961               then
3962                  if Component_May_Be_Bit_Aligned (E)
3963                    or else
3964                      Type_May_Have_Bit_Aligned_Components (Etype (E))
3965                  then
3966                     return True;
3967                  end if;
3968               end if;
3969
3970               Next_Entity (E);
3971            end loop;
3972
3973            return False;
3974         end;
3975
3976      --  Type other than array or record is always OK
3977
3978      else
3979         return False;
3980      end if;
3981   end Type_May_Have_Bit_Aligned_Components;
3982
3983   ----------------------------
3984   -- Wrap_Cleanup_Procedure --
3985   ----------------------------
3986
3987   procedure Wrap_Cleanup_Procedure (N : Node_Id) is
3988      Loc   : constant Source_Ptr := Sloc (N);
3989      Stseq : constant Node_Id    := Handled_Statement_Sequence (N);
3990      Stmts : constant List_Id    := Statements (Stseq);
3991
3992   begin
3993      if Abort_Allowed then
3994         Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
3995         Append_To  (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
3996      end if;
3997   end Wrap_Cleanup_Procedure;
3998
3999end Exp_Util;
4000