1 /* Emit RTL for the GCC expander.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21 
22 
23 /* Middle-to-low level generation of rtx code and insns.
24 
25    This file contains the functions `gen_rtx', `gen_reg_rtx'
26    and `gen_label_rtx' that are the usual ways of creating rtl
27    expressions for most purposes.
28 
29    It also has the functions for creating insns and linking
30    them in the doubly-linked chain.
31 
32    The patterns of the insns are created by machine-dependent
33    routines in insn-emit.c, which is generated automatically from
34    the machine description.  These routines use `gen_rtx' to make
35    the individual rtx's of the pattern; what is machine dependent
36    is the kind of rtx's they make and what arguments they use.  */
37 
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60 
61 /* Commonly used modes.  */
62 
63 enum machine_mode byte_mode;	/* Mode whose width is BITS_PER_UNIT.  */
64 enum machine_mode word_mode;	/* Mode whose width is BITS_PER_WORD.  */
65 enum machine_mode double_mode;	/* Mode whose width is DOUBLE_TYPE_SIZE.  */
66 enum machine_mode ptr_mode;	/* Mode whose width is POINTER_SIZE.  */
67 
68 
69 /* This is *not* reset after each function.  It gives each CODE_LABEL
70    in the entire compilation a unique label number.  */
71 
72 static GTY(()) int label_num = 1;
73 
74 /* Highest label number in current function.
75    Zero means use the value of label_num instead.
76    This is nonzero only when belatedly compiling an inline function.  */
77 
78 static int last_label_num;
79 
80 /* Value label_num had when set_new_last_label_num was called.
81    If label_num has not changed since then, last_label_num is valid.  */
82 
83 static int base_label_num;
84 
85 /* Nonzero means do not generate NOTEs for source line numbers.  */
86 
87 static int no_line_numbers;
88 
89 /* Commonly used rtx's, so that we only need space for one copy.
90    These are initialized once for the entire compilation.
91    All of these are unique; no other rtx-object will be equal to any
92    of these.  */
93 
94 rtx global_rtl[GR_MAX];
95 
96 /* Commonly used RTL for hard registers.  These objects are not necessarily
97    unique, so we allocate them separately from global_rtl.  They are
98    initialized once per compilation unit, then copied into regno_reg_rtx
99    at the beginning of each function.  */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101 
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103    the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
104    record a copy of const[012]_rtx.  */
105 
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107 
108 rtx const_true_rtx;
109 
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121 
122 /* All references to the following fixed hard registers go through
123    these unique rtl objects.  On machines where the frame-pointer and
124    arg-pointer are the same register, they use the same unique object.
125 
126    After register allocation, other rtl objects which used to be pseudo-regs
127    may be clobbered to refer to the frame-pointer register.
128    But references that were originally to the frame-pointer can be
129    distinguished from the others because they contain frame_pointer_rtx.
130 
131    When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132    tricky: until register elimination has taken place hard_frame_pointer_rtx
133    should be used if it is being set, and frame_pointer_rtx otherwise.  After
134    register elimination hard_frame_pointer_rtx should always be used.
135    On machines where the two registers are same (most) then these are the
136    same.
137 
138    In an inline procedure, the stack and frame pointer rtxs may not be
139    used for anything else.  */
140 rtx static_chain_rtx;		/* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx;	/* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx;	/* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143 
144 /* This is used to implement __builtin_return_address for some machines.
145    See for instance the MIPS port.  */
146 rtx return_address_pointer_rtx;	/* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147 
148 /* We make one copy of (const_int C) where C is in
149    [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150    to save space during the compilation and simplify comparisons of
151    integers.  */
152 
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154 
155 /* A hash table storing CONST_INTs whose absolute value is greater
156    than MAX_SAVED_CONST_INT.  */
157 
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159      htab_t const_int_htab;
160 
161 /* A hash table storing memory attribute structures.  */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163      htab_t mem_attrs_htab;
164 
165 /* A hash table storing register attribute structures.  */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167      htab_t reg_attrs_htab;
168 
169 /* A hash table storing all CONST_DOUBLEs.  */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171      htab_t const_double_htab;
172 
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178 
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 				 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202 
203 /* Probability of the conditional branch currently proceeded by try_split.
204    Set to -1 otherwise.  */
205 int split_branch_probability = -1;
206 
207 /* Returns a hash code for X (which is a really a CONST_INT).  */
208 
209 static hashval_t
const_int_htab_hash(const void * x)210 const_int_htab_hash (const void *x)
211 {
212   return (hashval_t) INTVAL ((rtx) x);
213 }
214 
215 /* Returns nonzero if the value represented by X (which is really a
216    CONST_INT) is the same as that given by Y (which is really a
217    HOST_WIDE_INT *).  */
218 
219 static int
const_int_htab_eq(const void * x,const void * y)220 const_int_htab_eq (const void *x, const void *y)
221 {
222   return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224 
225 /* Returns a hash code for X (which is really a CONST_DOUBLE).  */
226 static hashval_t
const_double_htab_hash(const void * x)227 const_double_htab_hash (const void *x)
228 {
229   rtx value = (rtx) x;
230   hashval_t h;
231 
232   if (GET_MODE (value) == VOIDmode)
233     h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234   else
235     {
236       h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237       /* MODE is used in the comparison, so it should be in the hash.  */
238       h ^= GET_MODE (value);
239     }
240   return h;
241 }
242 
243 /* Returns nonzero if the value represented by X (really a ...)
244    is the same as that represented by Y (really a ...) */
245 static int
const_double_htab_eq(const void * x,const void * y)246 const_double_htab_eq (const void *x, const void *y)
247 {
248   rtx a = (rtx)x, b = (rtx)y;
249 
250   if (GET_MODE (a) != GET_MODE (b))
251     return 0;
252   if (GET_MODE (a) == VOIDmode)
253     return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 	    && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255   else
256     return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 			   CONST_DOUBLE_REAL_VALUE (b));
258 }
259 
260 /* Returns a hash code for X (which is a really a mem_attrs *).  */
261 
262 static hashval_t
mem_attrs_htab_hash(const void * x)263 mem_attrs_htab_hash (const void *x)
264 {
265   mem_attrs *p = (mem_attrs *) x;
266 
267   return (p->alias ^ (p->align * 1000)
268 	  ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 	  ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 	  ^ (size_t) p->expr);
271 }
272 
273 /* Returns nonzero if the value represented by X (which is really a
274    mem_attrs *) is the same as that given by Y (which is also really a
275    mem_attrs *).  */
276 
277 static int
mem_attrs_htab_eq(const void * x,const void * y)278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280   mem_attrs *p = (mem_attrs *) x;
281   mem_attrs *q = (mem_attrs *) y;
282 
283   return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 	  && p->size == q->size && p->align == q->align);
285 }
286 
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288    one identical to it is not already in the table.  We are doing this for
289    MEM of mode MODE.  */
290 
291 static mem_attrs *
get_mem_attrs(HOST_WIDE_INT alias,tree expr,rtx offset,rtx size,unsigned int align,enum machine_mode mode)292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 	       unsigned int align, enum machine_mode mode)
294 {
295   mem_attrs attrs;
296   void **slot;
297 
298   /* If everything is the default, we can just return zero.
299      This must match what the corresponding MEM_* macros return when the
300      field is not present.  */
301   if (alias == 0 && expr == 0 && offset == 0
302       && (size == 0
303 	  || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304       && (STRICT_ALIGNMENT && mode != BLKmode
305 	  ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306     return 0;
307 
308   attrs.alias = alias;
309   attrs.expr = expr;
310   attrs.offset = offset;
311   attrs.size = size;
312   attrs.align = align;
313 
314   slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315   if (*slot == 0)
316     {
317       *slot = ggc_alloc (sizeof (mem_attrs));
318       memcpy (*slot, &attrs, sizeof (mem_attrs));
319     }
320 
321   return *slot;
322 }
323 
324 /* Returns a hash code for X (which is a really a reg_attrs *).  */
325 
326 static hashval_t
reg_attrs_htab_hash(const void * x)327 reg_attrs_htab_hash (const void *x)
328 {
329   reg_attrs *p = (reg_attrs *) x;
330 
331   return ((p->offset * 1000) ^ (long) p->decl);
332 }
333 
334 /* Returns nonzero if the value represented by X (which is really a
335    reg_attrs *) is the same as that given by Y (which is also really a
336    reg_attrs *).  */
337 
338 static int
reg_attrs_htab_eq(const void * x,const void * y)339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341   reg_attrs *p = (reg_attrs *) x;
342   reg_attrs *q = (reg_attrs *) y;
343 
344   return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347    one identical to it is not already in the table.  We are doing this for
348    MEM of mode MODE.  */
349 
350 static reg_attrs *
get_reg_attrs(tree decl,int offset)351 get_reg_attrs (tree decl, int offset)
352 {
353   reg_attrs attrs;
354   void **slot;
355 
356   /* If everything is the default, we can just return zero.  */
357   if (decl == 0 && offset == 0)
358     return 0;
359 
360   attrs.decl = decl;
361   attrs.offset = offset;
362 
363   slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364   if (*slot == 0)
365     {
366       *slot = ggc_alloc (sizeof (reg_attrs));
367       memcpy (*slot, &attrs, sizeof (reg_attrs));
368     }
369 
370   return *slot;
371 }
372 
373 /* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
374    don't attempt to share with the various global pieces of rtl (such as
375    frame_pointer_rtx).  */
376 
377 rtx
gen_raw_REG(enum machine_mode mode,int regno)378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380   rtx x = gen_rtx_raw_REG (mode, regno);
381   ORIGINAL_REGNO (x) = regno;
382   return x;
383 }
384 
385 /* There are some RTL codes that require special attention; the generation
386    functions do the raw handling.  If you add to this list, modify
387    special_rtx in gengenrtl.c as well.  */
388 
389 rtx
gen_rtx_CONST_INT(enum machine_mode mode ATTRIBUTE_UNUSED,HOST_WIDE_INT arg)390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392   void **slot;
393 
394   if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395     return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396 
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398   if (const_true_rtx && arg == STORE_FLAG_VALUE)
399     return const_true_rtx;
400 #endif
401 
402   /* Look up the CONST_INT in the hash table.  */
403   slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 				   (hashval_t) arg, INSERT);
405   if (*slot == 0)
406     *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407 
408   return (rtx) *slot;
409 }
410 
411 rtx
gen_int_mode(HOST_WIDE_INT c,enum machine_mode mode)412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414   return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416 
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418    REAL_VALUE_TYPEs.  Also, their length is known only at run time,
419    so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
420 
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422    hash table.  If so, return its counterpart; otherwise add it
423    to the hash table and return it.  */
424 static rtx
lookup_const_double(rtx real)425 lookup_const_double (rtx real)
426 {
427   void **slot = htab_find_slot (const_double_htab, real, INSERT);
428   if (*slot == 0)
429     *slot = real;
430 
431   return (rtx) *slot;
432 }
433 
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435    VALUE in mode MODE.  */
436 rtx
const_double_from_real_value(REAL_VALUE_TYPE value,enum machine_mode mode)437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439   rtx real = rtx_alloc (CONST_DOUBLE);
440   PUT_MODE (real, mode);
441 
442   memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443 
444   return lookup_const_double (real);
445 }
446 
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448    of ints: I0 is the low-order word and I1 is the high-order word.
449    Do not use this routine for non-integer modes; convert to
450    REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE.  */
451 
452 rtx
immed_double_const(HOST_WIDE_INT i0,HOST_WIDE_INT i1,enum machine_mode mode)453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455   rtx value;
456   unsigned int i;
457 
458   if (mode != VOIDmode)
459     {
460       int width;
461       if (GET_MODE_CLASS (mode) != MODE_INT
462 	  && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 	  /* We can get a 0 for an error mark.  */
464 	  && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 	  && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 	abort ();
467 
468       /* We clear out all bits that don't belong in MODE, unless they and
469 	 our sign bit are all one.  So we get either a reasonable negative
470 	 value or a reasonable unsigned value for this mode.  */
471       width = GET_MODE_BITSIZE (mode);
472       if (width < HOST_BITS_PER_WIDE_INT
473 	  && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 	      != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 	i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476       else if (width == HOST_BITS_PER_WIDE_INT
477 	       && ! (i1 == ~0 && i0 < 0))
478 	i1 = 0;
479       else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 	/* We cannot represent this value as a constant.  */
481 	abort ();
482 
483       /* If this would be an entire word for the target, but is not for
484 	 the host, then sign-extend on the host so that the number will
485 	 look the same way on the host that it would on the target.
486 
487 	 For example, when building a 64 bit alpha hosted 32 bit sparc
488 	 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 	 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 	 The latter confuses the sparc backend.  */
491 
492       if (width < HOST_BITS_PER_WIDE_INT
493 	  && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 	i0 |= ((HOST_WIDE_INT) (-1) << width);
495 
496       /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 	 CONST_INT.
498 
499 	 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 	 a large unsigned constant with the size of MODE being
501 	 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 	 in a wider mode.  In that case we will mis-interpret it as a
503 	 negative number.
504 
505 	 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 	 any constant in any mode if it is an unsigned constant larger
507 	 than the maximum signed integer in an int on the host.  However,
508 	 doing this will break everyone that always expects to see a
509 	 CONST_INT for SImode and smaller.
510 
511 	 We have always been making CONST_INTs in this case, so nothing
512 	 new is being broken.  */
513 
514       if (width <= HOST_BITS_PER_WIDE_INT)
515 	i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516     }
517 
518   /* If this integer fits in one word, return a CONST_INT.  */
519   if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520     return GEN_INT (i0);
521 
522   /* We use VOIDmode for integers.  */
523   value = rtx_alloc (CONST_DOUBLE);
524   PUT_MODE (value, VOIDmode);
525 
526   CONST_DOUBLE_LOW (value) = i0;
527   CONST_DOUBLE_HIGH (value) = i1;
528 
529   for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530     XWINT (value, i) = 0;
531 
532   return lookup_const_double (value);
533 }
534 
535 rtx
gen_rtx_REG(enum machine_mode mode,unsigned int regno)536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538   /* In case the MD file explicitly references the frame pointer, have
539      all such references point to the same frame pointer.  This is
540      used during frame pointer elimination to distinguish the explicit
541      references to these registers from pseudos that happened to be
542      assigned to them.
543 
544      If we have eliminated the frame pointer or arg pointer, we will
545      be using it as a normal register, for example as a spill
546      register.  In such cases, we might be accessing it in a mode that
547      is not Pmode and therefore cannot use the pre-allocated rtx.
548 
549      Also don't do this when we are making new REGs in reload, since
550      we don't want to get confused with the real pointers.  */
551 
552   if (mode == Pmode && !reload_in_progress)
553     {
554       if (regno == FRAME_POINTER_REGNUM
555 	  && (!reload_completed || frame_pointer_needed))
556 	return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558       if (regno == HARD_FRAME_POINTER_REGNUM
559 	  && (!reload_completed || frame_pointer_needed))
560 	return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563       if (regno == ARG_POINTER_REGNUM)
564 	return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567       if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 	return return_address_pointer_rtx;
569 #endif
570       if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 	  && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 	return pic_offset_table_rtx;
573       if (regno == STACK_POINTER_REGNUM)
574 	return stack_pointer_rtx;
575     }
576 
577 #if 0
578   /* If the per-function register table has been set up, try to re-use
579      an existing entry in that table to avoid useless generation of RTL.
580 
581      This code is disabled for now until we can fix the various backends
582      which depend on having non-shared hard registers in some cases.   Long
583      term we want to re-enable this code as it can significantly cut down
584      on the amount of useless RTL that gets generated.
585 
586      We'll also need to fix some code that runs after reload that wants to
587      set ORIGINAL_REGNO.  */
588 
589   if (cfun
590       && cfun->emit
591       && regno_reg_rtx
592       && regno < FIRST_PSEUDO_REGISTER
593       && reg_raw_mode[regno] == mode)
594     return regno_reg_rtx[regno];
595 #endif
596 
597   return gen_raw_REG (mode, regno);
598 }
599 
600 rtx
gen_rtx_MEM(enum machine_mode mode,rtx addr)601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603   rtx rt = gen_rtx_raw_MEM (mode, addr);
604 
605   /* This field is not cleared by the mere allocation of the rtx, so
606      we clear it here.  */
607   MEM_ATTRS (rt) = 0;
608 
609   return rt;
610 }
611 
612 rtx
gen_rtx_SUBREG(enum machine_mode mode,rtx reg,int offset)613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615   /* This is the most common failure type.
616      Catch it early so we can see who does it.  */
617   if ((offset % GET_MODE_SIZE (mode)) != 0)
618     abort ();
619 
620   /* This check isn't usable right now because combine will
621      throw arbitrary crap like a CALL into a SUBREG in
622      gen_lowpart_for_combine so we must just eat it.  */
623 #if 0
624   /* Check for this too.  */
625   if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626     abort ();
627 #endif
628   return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630 
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632    is smaller than mode of REG, otherwise paradoxical SUBREG.  */
633 
634 rtx
gen_lowpart_SUBREG(enum machine_mode mode,rtx reg)635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637   enum machine_mode inmode;
638 
639   inmode = GET_MODE (reg);
640   if (inmode == VOIDmode)
641     inmode = mode;
642   return gen_rtx_SUBREG (mode, reg,
643 			 subreg_lowpart_offset (mode, inmode));
644 }
645 
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 **
648 **	    This routine generates an RTX of the size specified by
649 **	<code>, which is an RTX code.   The RTX structure is initialized
650 **	from the arguments <element1> through <elementn>, which are
651 **	interpreted according to the specific RTX type's format.   The
652 **	special machine mode associated with the rtx (if any) is specified
653 **	in <mode>.
654 **
655 **	    gen_rtx can be invoked in a way which resembles the lisp-like
656 **	rtx it will generate.   For example, the following rtx structure:
657 **
658 **	      (plus:QI (mem:QI (reg:SI 1))
659 **		       (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 **
661 **		...would be generated by the following C code:
662 **
663 **		gen_rtx (PLUS, QImode,
664 **		    gen_rtx (MEM, QImode,
665 **			gen_rtx (REG, SImode, 1)),
666 **		    gen_rtx (MEM, QImode,
667 **			gen_rtx (PLUS, SImode,
668 **			    gen_rtx (REG, SImode, 2),
669 **			    gen_rtx (REG, SImode, 3)))),
670 */
671 
672 /*VARARGS2*/
673 rtx
gen_rtx(enum rtx_code code,enum machine_mode mode,...)674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 {
676   int i;		/* Array indices...			*/
677   const char *fmt;	/* Current rtx's format...		*/
678   rtx rt_val;		/* RTX to return to caller...		*/
679   va_list p;
680 
681   va_start (p, mode);
682 
683   switch (code)
684     {
685     case CONST_INT:
686       rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687       break;
688 
689     case CONST_DOUBLE:
690       {
691 	HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 	HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693 
694 	rt_val = immed_double_const (arg0, arg1, mode);
695       }
696       break;
697 
698     case REG:
699       rt_val = gen_rtx_REG (mode, va_arg (p, int));
700       break;
701 
702     case MEM:
703       rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704       break;
705 
706     default:
707       rt_val = rtx_alloc (code);	/* Allocate the storage space.  */
708       rt_val->mode = mode;		/* Store the machine mode...  */
709 
710       fmt = GET_RTX_FORMAT (code);	/* Find the right format...  */
711       for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 	{
713 	  switch (*fmt++)
714 	    {
715 	    case '0':		/* Field with unknown use.  Zero it.  */
716 	      X0EXP (rt_val, i) = NULL_RTX;
717 	      break;
718 
719 	    case 'i':		/* An integer?  */
720 	      XINT (rt_val, i) = va_arg (p, int);
721 	      break;
722 
723 	    case 'w':		/* A wide integer? */
724 	      XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 	      break;
726 
727 	    case 's':		/* A string?  */
728 	      XSTR (rt_val, i) = va_arg (p, char *);
729 	      break;
730 
731 	    case 'e':		/* An expression?  */
732 	    case 'u':		/* An insn?  Same except when printing.  */
733 	      XEXP (rt_val, i) = va_arg (p, rtx);
734 	      break;
735 
736 	    case 'E':		/* An RTX vector?  */
737 	      XVEC (rt_val, i) = va_arg (p, rtvec);
738 	      break;
739 
740 	    case 'b':           /* A bitmap? */
741 	      XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 	      break;
743 
744 	    case 't':           /* A tree? */
745 	      XTREE (rt_val, i) = va_arg (p, tree);
746 	      break;
747 
748 	    default:
749 	      abort ();
750 	    }
751 	}
752       break;
753     }
754 
755   va_end (p);
756   return rt_val;
757 }
758 
759 /* gen_rtvec (n, [rt1, ..., rtn])
760 **
761 **	    This routine creates an rtvec and stores within it the
762 **	pointers to rtx's which are its arguments.
763 */
764 
765 /*VARARGS1*/
766 rtvec
gen_rtvec(int n,...)767 gen_rtvec (int n, ...)
768 {
769   int i, save_n;
770   rtx *vector;
771   va_list p;
772 
773   va_start (p, n);
774 
775   if (n == 0)
776     return NULL_RTVEC;		/* Don't allocate an empty rtvec...	*/
777 
778   vector = alloca (n * sizeof (rtx));
779 
780   for (i = 0; i < n; i++)
781     vector[i] = va_arg (p, rtx);
782 
783   /* The definition of VA_* in K&R C causes `n' to go out of scope.  */
784   save_n = n;
785   va_end (p);
786 
787   return gen_rtvec_v (save_n, vector);
788 }
789 
790 rtvec
gen_rtvec_v(int n,rtx * argp)791 gen_rtvec_v (int n, rtx *argp)
792 {
793   int i;
794   rtvec rt_val;
795 
796   if (n == 0)
797     return NULL_RTVEC;		/* Don't allocate an empty rtvec...	*/
798 
799   rt_val = rtvec_alloc (n);	/* Allocate an rtvec...			*/
800 
801   for (i = 0; i < n; i++)
802     rt_val->elem[i] = *argp++;
803 
804   return rt_val;
805 }
806 
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808    This pseudo is assigned the next sequential register number.  */
809 
810 rtx
gen_reg_rtx(enum machine_mode mode)811 gen_reg_rtx (enum machine_mode mode)
812 {
813   struct function *f = cfun;
814   rtx val;
815 
816   /* Don't let anything called after initial flow analysis create new
817      registers.  */
818   if (no_new_pseudos)
819     abort ();
820 
821   if (generating_concat_p
822       && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824     {
825       /* For complex modes, don't make a single pseudo.
826 	 Instead, make a CONCAT of two pseudos.
827 	 This allows noncontiguous allocation of the real and imaginary parts,
828 	 which makes much better code.  Besides, allocating DCmode
829 	 pseudos overstrains reload on some machines like the 386.  */
830       rtx realpart, imagpart;
831       enum machine_mode partmode = GET_MODE_INNER (mode);
832 
833       realpart = gen_reg_rtx (partmode);
834       imagpart = gen_reg_rtx (partmode);
835       return gen_rtx_CONCAT (mode, realpart, imagpart);
836     }
837 
838   /* Make sure regno_pointer_align, and regno_reg_rtx are large
839      enough to have an element for this pseudo reg number.  */
840 
841   if (reg_rtx_no == f->emit->regno_pointer_align_length)
842     {
843       int old_size = f->emit->regno_pointer_align_length;
844       char *new;
845       rtx *new1;
846 
847       new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848       memset (new + old_size, 0, old_size);
849       f->emit->regno_pointer_align = (unsigned char *) new;
850 
851       new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 			  old_size * 2 * sizeof (rtx));
853       memset (new1 + old_size, 0, old_size * sizeof (rtx));
854       regno_reg_rtx = new1;
855 
856       f->emit->regno_pointer_align_length = old_size * 2;
857     }
858 
859   val = gen_raw_REG (mode, reg_rtx_no);
860   regno_reg_rtx[reg_rtx_no++] = val;
861   return val;
862 }
863 
864 /* Generate a register with same attributes as REG,
865    but offsetted by OFFSET.  */
866 
867 rtx
gen_rtx_REG_offset(rtx reg,enum machine_mode mode,unsigned int regno,int offset)868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 {
870   rtx new = gen_rtx_REG (mode, regno);
871   REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 				   REG_OFFSET (reg) + offset);
873   return new;
874 }
875 
876 /* Set the decl for MEM to DECL.  */
877 
878 void
set_reg_attrs_from_mem(rtx reg,rtx mem)879 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 {
881   if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882     REG_ATTRS (reg)
883       = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
884 }
885 
886 /* Set the register attributes for registers contained in PARM_RTX.
887    Use needed values from memory attributes of MEM.  */
888 
889 void
set_reg_attrs_for_parm(rtx parm_rtx,rtx mem)890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 {
892   if (GET_CODE (parm_rtx) == REG)
893     set_reg_attrs_from_mem (parm_rtx, mem);
894   else if (GET_CODE (parm_rtx) == PARALLEL)
895     {
896       /* Check for a NULL entry in the first slot, used to indicate that the
897 	 parameter goes both on the stack and in registers.  */
898       int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899       for (; i < XVECLEN (parm_rtx, 0); i++)
900 	{
901 	  rtx x = XVECEXP (parm_rtx, 0, i);
902 	  if (GET_CODE (XEXP (x, 0)) == REG)
903 	    REG_ATTRS (XEXP (x, 0))
904 	      = get_reg_attrs (MEM_EXPR (mem),
905 			       INTVAL (XEXP (x, 1)));
906 	}
907     }
908 }
909 
910 /* Assign the RTX X to declaration T.  */
911 void
set_decl_rtl(tree t,rtx x)912 set_decl_rtl (tree t, rtx x)
913 {
914   DECL_CHECK (t)->decl.rtl = x;
915 
916   if (!x)
917     return;
918   /* For register, we maintain the reverse information too.  */
919   if (GET_CODE (x) == REG)
920     REG_ATTRS (x) = get_reg_attrs (t, 0);
921   else if (GET_CODE (x) == SUBREG)
922     REG_ATTRS (SUBREG_REG (x))
923       = get_reg_attrs (t, -SUBREG_BYTE (x));
924   if (GET_CODE (x) == CONCAT)
925     {
926       if (REG_P (XEXP (x, 0)))
927         REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928       if (REG_P (XEXP (x, 1)))
929 	REG_ATTRS (XEXP (x, 1))
930 	  = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931     }
932   if (GET_CODE (x) == PARALLEL)
933     {
934       int i;
935       for (i = 0; i < XVECLEN (x, 0); i++)
936 	{
937 	  rtx y = XVECEXP (x, 0, i);
938 	  if (REG_P (XEXP (y, 0)))
939 	    REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
940 	}
941     }
942 }
943 
944 /* Identify REG (which may be a CONCAT) as a user register.  */
945 
946 void
mark_user_reg(rtx reg)947 mark_user_reg (rtx reg)
948 {
949   if (GET_CODE (reg) == CONCAT)
950     {
951       REG_USERVAR_P (XEXP (reg, 0)) = 1;
952       REG_USERVAR_P (XEXP (reg, 1)) = 1;
953     }
954   else if (GET_CODE (reg) == REG)
955     REG_USERVAR_P (reg) = 1;
956   else
957     abort ();
958 }
959 
960 /* Identify REG as a probable pointer register and show its alignment
961    as ALIGN, if nonzero.  */
962 
963 void
mark_reg_pointer(rtx reg,int align)964 mark_reg_pointer (rtx reg, int align)
965 {
966   if (! REG_POINTER (reg))
967     {
968       REG_POINTER (reg) = 1;
969 
970       if (align)
971 	REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972     }
973   else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974     /* We can no-longer be sure just how aligned this pointer is.  */
975     REGNO_POINTER_ALIGN (REGNO (reg)) = align;
976 }
977 
978 /* Return 1 plus largest pseudo reg number used in the current function.  */
979 
980 int
max_reg_num(void)981 max_reg_num (void)
982 {
983   return reg_rtx_no;
984 }
985 
986 /* Return 1 + the largest label number used so far in the current function.  */
987 
988 int
max_label_num(void)989 max_label_num (void)
990 {
991   if (last_label_num && label_num == base_label_num)
992     return last_label_num;
993   return label_num;
994 }
995 
996 /* Return first label number used in this function (if any were used).  */
997 
998 int
get_first_label_num(void)999 get_first_label_num (void)
1000 {
1001   return first_label_num;
1002 }
1003 
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005    register.  */
1006 int
subreg_hard_regno(rtx x,int check_mode)1007 subreg_hard_regno (rtx x, int check_mode)
1008 {
1009   enum machine_mode mode = GET_MODE (x);
1010   unsigned int byte_offset, base_regno, final_regno;
1011   rtx reg = SUBREG_REG (x);
1012 
1013   /* This is where we attempt to catch illegal subregs
1014      created by the compiler.  */
1015   if (GET_CODE (x) != SUBREG
1016       || GET_CODE (reg) != REG)
1017     abort ();
1018   base_regno = REGNO (reg);
1019   if (base_regno >= FIRST_PSEUDO_REGISTER)
1020     abort ();
1021   if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022     abort ();
1023 #ifdef ENABLE_CHECKING
1024   if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 				      SUBREG_BYTE (x), mode))
1026     abort ();
1027 #endif
1028   /* Catch non-congruent offsets too.  */
1029   byte_offset = SUBREG_BYTE (x);
1030   if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031     abort ();
1032 
1033   final_regno = subreg_regno (x);
1034 
1035   return final_regno;
1036 }
1037 
1038 /* Return a value representing some low-order bits of X, where the number
1039    of low-order bits is given by MODE.  Note that no conversion is done
1040    between floating-point and fixed-point values, rather, the bit
1041    representation is returned.
1042 
1043    This function handles the cases in common between gen_lowpart, below,
1044    and two variants in cse.c and combine.c.  These are the cases that can
1045    be safely handled at all points in the compilation.
1046 
1047    If this is not a case we can handle, return 0.  */
1048 
1049 rtx
gen_lowpart_common(enum machine_mode mode,rtx x)1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 {
1052   int msize = GET_MODE_SIZE (mode);
1053   int xsize;
1054   int offset = 0;
1055   enum machine_mode innermode;
1056 
1057   /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1058      so we have to make one up.  Yuk.  */
1059   innermode = GET_MODE (x);
1060   if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1061     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1062   else if (innermode == VOIDmode)
1063     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1064 
1065   xsize = GET_MODE_SIZE (innermode);
1066 
1067   if (innermode == VOIDmode || innermode == BLKmode)
1068     abort ();
1069 
1070   if (innermode == mode)
1071     return x;
1072 
1073   /* MODE must occupy no more words than the mode of X.  */
1074   if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1075       > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1076     return 0;
1077 
1078   /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
1079   if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1080     return 0;
1081 
1082   offset = subreg_lowpart_offset (mode, innermode);
1083 
1084   if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1085       && (GET_MODE_CLASS (mode) == MODE_INT
1086 	  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1087     {
1088       /* If we are getting the low-order part of something that has been
1089 	 sign- or zero-extended, we can either just use the object being
1090 	 extended or make a narrower extension.  If we want an even smaller
1091 	 piece than the size of the object being extended, call ourselves
1092 	 recursively.
1093 
1094 	 This case is used mostly by combine and cse.  */
1095 
1096       if (GET_MODE (XEXP (x, 0)) == mode)
1097 	return XEXP (x, 0);
1098       else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1099 	return gen_lowpart_common (mode, XEXP (x, 0));
1100       else if (msize < xsize)
1101 	return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1102     }
1103   else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1104 	   || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1105 	   || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1106     return simplify_gen_subreg (mode, x, innermode, offset);
1107 
1108   /* Otherwise, we can't do this.  */
1109   return 0;
1110 }
1111 
1112 /* Return the constant real or imaginary part (which has mode MODE)
1113    of a complex value X.  The IMAGPART_P argument determines whether
1114    the real or complex component should be returned.  This function
1115    returns NULL_RTX if the component isn't a constant.  */
1116 
1117 static rtx
gen_complex_constant_part(enum machine_mode mode,rtx x,int imagpart_p)1118 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1119 {
1120   tree decl, part;
1121 
1122   if (GET_CODE (x) == MEM
1123       && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1124     {
1125       decl = SYMBOL_REF_DECL (XEXP (x, 0));
1126       if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1127 	{
1128 	  part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1129 	  if (TREE_CODE (part) == REAL_CST
1130 	      || TREE_CODE (part) == INTEGER_CST)
1131 	    return expand_expr (part, NULL_RTX, mode, 0);
1132 	}
1133     }
1134   return NULL_RTX;
1135 }
1136 
1137 /* Return the real part (which has mode MODE) of a complex value X.
1138    This always comes at the low address in memory.  */
1139 
1140 rtx
gen_realpart(enum machine_mode mode,rtx x)1141 gen_realpart (enum machine_mode mode, rtx x)
1142 {
1143   rtx part;
1144 
1145   /* Handle complex constants.  */
1146   part = gen_complex_constant_part (mode, x, 0);
1147   if (part != NULL_RTX)
1148     return part;
1149 
1150   if (WORDS_BIG_ENDIAN
1151       && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1152       && REG_P (x)
1153       && REGNO (x) < FIRST_PSEUDO_REGISTER)
1154     internal_error
1155       ("can't access real part of complex value in hard register");
1156   else if (WORDS_BIG_ENDIAN)
1157     return gen_highpart (mode, x);
1158   else
1159     return gen_lowpart (mode, x);
1160 }
1161 
1162 /* Return the imaginary part (which has mode MODE) of a complex value X.
1163    This always comes at the high address in memory.  */
1164 
1165 rtx
gen_imagpart(enum machine_mode mode,rtx x)1166 gen_imagpart (enum machine_mode mode, rtx x)
1167 {
1168   rtx part;
1169 
1170   /* Handle complex constants.  */
1171   part = gen_complex_constant_part (mode, x, 1);
1172   if (part != NULL_RTX)
1173     return part;
1174 
1175   if (WORDS_BIG_ENDIAN)
1176     return gen_lowpart (mode, x);
1177   else if (! WORDS_BIG_ENDIAN
1178 	   && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1179 	   && REG_P (x)
1180 	   && REGNO (x) < FIRST_PSEUDO_REGISTER)
1181     internal_error
1182       ("can't access imaginary part of complex value in hard register");
1183   else
1184     return gen_highpart (mode, x);
1185 }
1186 
1187 /* Return 1 iff X, assumed to be a SUBREG,
1188    refers to the real part of the complex value in its containing reg.
1189    Complex values are always stored with the real part in the first word,
1190    regardless of WORDS_BIG_ENDIAN.  */
1191 
1192 int
subreg_realpart_p(rtx x)1193 subreg_realpart_p (rtx x)
1194 {
1195   if (GET_CODE (x) != SUBREG)
1196     abort ();
1197 
1198   return ((unsigned int) SUBREG_BYTE (x)
1199 	  < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1200 }
1201 
1202 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1203    return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1204    least-significant part of X.
1205    MODE specifies how big a part of X to return;
1206    it usually should not be larger than a word.
1207    If X is a MEM whose address is a QUEUED, the value may be so also.  */
1208 
1209 rtx
gen_lowpart(enum machine_mode mode,rtx x)1210 gen_lowpart (enum machine_mode mode, rtx x)
1211 {
1212   rtx result = gen_lowpart_common (mode, x);
1213 
1214   if (result)
1215     return result;
1216   else if (GET_CODE (x) == REG)
1217     {
1218       /* Must be a hard reg that's not valid in MODE.  */
1219       result = gen_lowpart_common (mode, copy_to_reg (x));
1220       if (result == 0)
1221 	abort ();
1222       return result;
1223     }
1224   else if (GET_CODE (x) == MEM)
1225     {
1226       /* The only additional case we can do is MEM.  */
1227       int offset = 0;
1228 
1229       /* The following exposes the use of "x" to CSE.  */
1230       if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1231 	  && SCALAR_INT_MODE_P (GET_MODE (x))
1232 	  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1233 				    GET_MODE_BITSIZE (GET_MODE (x)))
1234 	  && ! no_new_pseudos)
1235 	return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1236 
1237       if (WORDS_BIG_ENDIAN)
1238 	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1239 		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1240 
1241       if (BYTES_BIG_ENDIAN)
1242 	/* Adjust the address so that the address-after-the-data
1243 	   is unchanged.  */
1244 	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1245 		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1246 
1247       return adjust_address (x, mode, offset);
1248     }
1249   else if (GET_CODE (x) == ADDRESSOF)
1250     return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1251   else
1252     abort ();
1253 }
1254 
1255 /* Like `gen_lowpart', but refer to the most significant part.
1256    This is used to access the imaginary part of a complex number.  */
1257 
1258 rtx
gen_highpart(enum machine_mode mode,rtx x)1259 gen_highpart (enum machine_mode mode, rtx x)
1260 {
1261   unsigned int msize = GET_MODE_SIZE (mode);
1262   rtx result;
1263 
1264   /* This case loses if X is a subreg.  To catch bugs early,
1265      complain if an invalid MODE is used even in other cases.  */
1266   if (msize > UNITS_PER_WORD
1267       && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1268     abort ();
1269 
1270   result = simplify_gen_subreg (mode, x, GET_MODE (x),
1271 				subreg_highpart_offset (mode, GET_MODE (x)));
1272 
1273   /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274      the target if we have a MEM.  gen_highpart must return a valid operand,
1275      emitting code if necessary to do so.  */
1276   if (result != NULL_RTX && GET_CODE (result) == MEM)
1277     result = validize_mem (result);
1278 
1279   if (!result)
1280     abort ();
1281   return result;
1282 }
1283 
1284 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1285    be VOIDmode constant.  */
1286 rtx
gen_highpart_mode(enum machine_mode outermode,enum machine_mode innermode,rtx exp)1287 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1288 {
1289   if (GET_MODE (exp) != VOIDmode)
1290     {
1291       if (GET_MODE (exp) != innermode)
1292 	abort ();
1293       return gen_highpart (outermode, exp);
1294     }
1295   return simplify_gen_subreg (outermode, exp, innermode,
1296 			      subreg_highpart_offset (outermode, innermode));
1297 }
1298 
1299 /* Return offset in bytes to get OUTERMODE low part
1300    of the value in mode INNERMODE stored in memory in target format.  */
1301 
1302 unsigned int
subreg_lowpart_offset(enum machine_mode outermode,enum machine_mode innermode)1303 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1304 {
1305   unsigned int offset = 0;
1306   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1307 
1308   if (difference > 0)
1309     {
1310       if (WORDS_BIG_ENDIAN)
1311 	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1312       if (BYTES_BIG_ENDIAN)
1313 	offset += difference % UNITS_PER_WORD;
1314     }
1315 
1316   return offset;
1317 }
1318 
1319 /* Return offset in bytes to get OUTERMODE high part
1320    of the value in mode INNERMODE stored in memory in target format.  */
1321 unsigned int
subreg_highpart_offset(enum machine_mode outermode,enum machine_mode innermode)1322 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1323 {
1324   unsigned int offset = 0;
1325   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1326 
1327   if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1328     abort ();
1329 
1330   if (difference > 0)
1331     {
1332       if (! WORDS_BIG_ENDIAN)
1333 	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1334       if (! BYTES_BIG_ENDIAN)
1335 	offset += difference % UNITS_PER_WORD;
1336     }
1337 
1338   return offset;
1339 }
1340 
1341 /* Return 1 iff X, assumed to be a SUBREG,
1342    refers to the least significant part of its containing reg.
1343    If X is not a SUBREG, always return 1 (it is its own low part!).  */
1344 
1345 int
subreg_lowpart_p(rtx x)1346 subreg_lowpart_p (rtx x)
1347 {
1348   if (GET_CODE (x) != SUBREG)
1349     return 1;
1350   else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1351     return 0;
1352 
1353   return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1354 	  == SUBREG_BYTE (x));
1355 }
1356 
1357 /* Return subword OFFSET of operand OP.
1358    The word number, OFFSET, is interpreted as the word number starting
1359    at the low-order address.  OFFSET 0 is the low-order word if not
1360    WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1361 
1362    If we cannot extract the required word, we return zero.  Otherwise,
1363    an rtx corresponding to the requested word will be returned.
1364 
1365    VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1366    reload has completed, a valid address will always be returned.  After
1367    reload, if a valid address cannot be returned, we return zero.
1368 
1369    If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1370    it is the responsibility of the caller.
1371 
1372    MODE is the mode of OP in case it is a CONST_INT.
1373 
1374    ??? This is still rather broken for some cases.  The problem for the
1375    moment is that all callers of this thing provide no 'goal mode' to
1376    tell us to work with.  This exists because all callers were written
1377    in a word based SUBREG world.
1378    Now use of this function can be deprecated by simplify_subreg in most
1379    cases.
1380  */
1381 
1382 rtx
operand_subword(rtx op,unsigned int offset,int validate_address,enum machine_mode mode)1383 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1384 {
1385   if (mode == VOIDmode)
1386     mode = GET_MODE (op);
1387 
1388   if (mode == VOIDmode)
1389     abort ();
1390 
1391   /* If OP is narrower than a word, fail.  */
1392   if (mode != BLKmode
1393       && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1394     return 0;
1395 
1396   /* If we want a word outside OP, return zero.  */
1397   if (mode != BLKmode
1398       && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1399     return const0_rtx;
1400 
1401   /* Form a new MEM at the requested address.  */
1402   if (GET_CODE (op) == MEM)
1403     {
1404       rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1405 
1406       if (! validate_address)
1407 	return new;
1408 
1409       else if (reload_completed)
1410 	{
1411 	  if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1412 	    return 0;
1413 	}
1414       else
1415 	return replace_equiv_address (new, XEXP (new, 0));
1416     }
1417 
1418   /* Rest can be handled by simplify_subreg.  */
1419   return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1420 }
1421 
1422 /* Similar to `operand_subword', but never return 0.  If we can't extract
1423    the required subword, put OP into a register and try again.  If that fails,
1424    abort.  We always validate the address in this case.
1425 
1426    MODE is the mode of OP, in case it is CONST_INT.  */
1427 
1428 rtx
operand_subword_force(rtx op,unsigned int offset,enum machine_mode mode)1429 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1430 {
1431   rtx result = operand_subword (op, offset, 1, mode);
1432 
1433   if (result)
1434     return result;
1435 
1436   if (mode != BLKmode && mode != VOIDmode)
1437     {
1438       /* If this is a register which can not be accessed by words, copy it
1439 	 to a pseudo register.  */
1440       if (GET_CODE (op) == REG)
1441 	op = copy_to_reg (op);
1442       else
1443 	op = force_reg (mode, op);
1444     }
1445 
1446   result = operand_subword (op, offset, 1, mode);
1447   if (result == 0)
1448     abort ();
1449 
1450   return result;
1451 }
1452 
1453 /* Given a compare instruction, swap the operands.
1454    A test instruction is changed into a compare of 0 against the operand.  */
1455 
1456 void
reverse_comparison(rtx insn)1457 reverse_comparison (rtx insn)
1458 {
1459   rtx body = PATTERN (insn);
1460   rtx comp;
1461 
1462   if (GET_CODE (body) == SET)
1463     comp = SET_SRC (body);
1464   else
1465     comp = SET_SRC (XVECEXP (body, 0, 0));
1466 
1467   if (GET_CODE (comp) == COMPARE)
1468     {
1469       rtx op0 = XEXP (comp, 0);
1470       rtx op1 = XEXP (comp, 1);
1471       XEXP (comp, 0) = op1;
1472       XEXP (comp, 1) = op0;
1473     }
1474   else
1475     {
1476       rtx new = gen_rtx_COMPARE (VOIDmode,
1477 				 CONST0_RTX (GET_MODE (comp)), comp);
1478       if (GET_CODE (body) == SET)
1479 	SET_SRC (body) = new;
1480       else
1481 	SET_SRC (XVECEXP (body, 0, 0)) = new;
1482     }
1483 }
1484 
1485 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1486    or (2) a component ref of something variable.  Represent the later with
1487    a NULL expression.  */
1488 
1489 static tree
component_ref_for_mem_expr(tree ref)1490 component_ref_for_mem_expr (tree ref)
1491 {
1492   tree inner = TREE_OPERAND (ref, 0);
1493 
1494   if (TREE_CODE (inner) == COMPONENT_REF)
1495     inner = component_ref_for_mem_expr (inner);
1496   else
1497     {
1498       tree placeholder_ptr = 0;
1499 
1500       /* Now remove any conversions: they don't change what the underlying
1501 	 object is.  Likewise for SAVE_EXPR.  Also handle PLACEHOLDER_EXPR.  */
1502       while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1503 	     || TREE_CODE (inner) == NON_LVALUE_EXPR
1504 	     || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1505 	     || TREE_CODE (inner) == SAVE_EXPR
1506 	     || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1507 	if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1508 	  inner = find_placeholder (inner, &placeholder_ptr);
1509 	else
1510 	  inner = TREE_OPERAND (inner, 0);
1511 
1512       if (! DECL_P (inner))
1513 	inner = NULL_TREE;
1514     }
1515 
1516   if (inner == TREE_OPERAND (ref, 0))
1517     return ref;
1518   else
1519     return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1520 		  TREE_OPERAND (ref, 1));
1521 }
1522 
1523 /* Returns 1 if both MEM_EXPR can be considered equal
1524    and 0 otherwise.  */
1525 
1526 int
mem_expr_equal_p(tree expr1,tree expr2)1527 mem_expr_equal_p (tree expr1, tree expr2)
1528 {
1529   if (expr1 == expr2)
1530     return 1;
1531 
1532   if (! expr1 || ! expr2)
1533     return 0;
1534 
1535   if (TREE_CODE (expr1) != TREE_CODE (expr2))
1536     return 0;
1537 
1538   if (TREE_CODE (expr1) == COMPONENT_REF)
1539     return
1540       mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1541 			TREE_OPERAND (expr2, 0))
1542       && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1543 			   TREE_OPERAND (expr2, 1));
1544 
1545   if (TREE_CODE (expr1) == INDIRECT_REF)
1546     return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1547 			     TREE_OPERAND (expr2, 0));
1548 
1549   /* Decls with different pointers can't be equal.  */
1550   if (DECL_P (expr1))
1551     return 0;
1552 
1553   abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1554 	      have been resolved here.  */
1555 }
1556 
1557 /* Given REF, a MEM, and T, either the type of X or the expression
1558    corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1559    if we are making a new object of this type.  BITPOS is nonzero if
1560    there is an offset outstanding on T that will be applied later.  */
1561 
1562 void
set_mem_attributes_minus_bitpos(rtx ref,tree t,int objectp,HOST_WIDE_INT bitpos)1563 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1564 				 HOST_WIDE_INT bitpos)
1565 {
1566   HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1567   tree expr = MEM_EXPR (ref);
1568   rtx offset = MEM_OFFSET (ref);
1569   rtx size = MEM_SIZE (ref);
1570   unsigned int align = MEM_ALIGN (ref);
1571   HOST_WIDE_INT apply_bitpos = 0;
1572   tree type;
1573 
1574   /* It can happen that type_for_mode was given a mode for which there
1575      is no language-level type.  In which case it returns NULL, which
1576      we can see here.  */
1577   if (t == NULL_TREE)
1578     return;
1579 
1580   type = TYPE_P (t) ? t : TREE_TYPE (t);
1581   if (type == error_mark_node)
1582     return;
1583 
1584   /* If we have already set DECL_RTL = ref, get_alias_set will get the
1585      wrong answer, as it assumes that DECL_RTL already has the right alias
1586      info.  Callers should not set DECL_RTL until after the call to
1587      set_mem_attributes.  */
1588   if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1589     abort ();
1590 
1591   /* Get the alias set from the expression or type (perhaps using a
1592      front-end routine) and use it.  */
1593   alias = get_alias_set (t);
1594 
1595   MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1596   MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1597   RTX_UNCHANGING_P (ref)
1598     |= ((lang_hooks.honor_readonly
1599 	 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1600 	|| (! TYPE_P (t) && TREE_CONSTANT (t)));
1601 
1602   /* If we are making an object of this type, or if this is a DECL, we know
1603      that it is a scalar if the type is not an aggregate.  */
1604   if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1605     MEM_SCALAR_P (ref) = 1;
1606 
1607   /* We can set the alignment from the type if we are making an object,
1608      this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
1609   if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1610     align = MAX (align, TYPE_ALIGN (type));
1611 
1612   /* If the size is known, we can set that.  */
1613   if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1614     size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1615 
1616   /* If T is not a type, we may be able to deduce some more information about
1617      the expression.  */
1618   if (! TYPE_P (t))
1619     {
1620       maybe_set_unchanging (ref, t);
1621       if (TREE_THIS_VOLATILE (t))
1622 	MEM_VOLATILE_P (ref) = 1;
1623 
1624       /* Now remove any conversions: they don't change what the underlying
1625 	 object is.  Likewise for SAVE_EXPR.  */
1626       while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1627 	     || TREE_CODE (t) == NON_LVALUE_EXPR
1628 	     || TREE_CODE (t) == VIEW_CONVERT_EXPR
1629 	     || TREE_CODE (t) == SAVE_EXPR)
1630 	t = TREE_OPERAND (t, 0);
1631 
1632       /* If this expression can't be addressed (e.g., it contains a reference
1633 	 to a non-addressable field), show we don't change its alias set.  */
1634       if (! can_address_p (t))
1635 	MEM_KEEP_ALIAS_SET_P (ref) = 1;
1636 
1637       /* If this is a decl, set the attributes of the MEM from it.  */
1638       if (DECL_P (t))
1639 	{
1640 	  expr = t;
1641 	  offset = const0_rtx;
1642 	  apply_bitpos = bitpos;
1643 	  size = (DECL_SIZE_UNIT (t)
1644 		  && host_integerp (DECL_SIZE_UNIT (t), 1)
1645 		  ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1646 	  align = DECL_ALIGN (t);
1647 	}
1648 
1649       /* If this is a constant, we know the alignment.  */
1650       else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1651 	{
1652 	  align = TYPE_ALIGN (type);
1653 #ifdef CONSTANT_ALIGNMENT
1654 	  align = CONSTANT_ALIGNMENT (t, align);
1655 #endif
1656 	}
1657 
1658       /* If this is a field reference and not a bit-field, record it.  */
1659       /* ??? There is some information that can be gleened from bit-fields,
1660 	 such as the word offset in the structure that might be modified.
1661 	 But skip it for now.  */
1662       else if (TREE_CODE (t) == COMPONENT_REF
1663 	       && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1664 	{
1665 	  expr = component_ref_for_mem_expr (t);
1666 	  offset = const0_rtx;
1667 	  apply_bitpos = bitpos;
1668 	  /* ??? Any reason the field size would be different than
1669 	     the size we got from the type?  */
1670 	}
1671 
1672       /* If this is an array reference, look for an outer field reference.  */
1673       else if (TREE_CODE (t) == ARRAY_REF)
1674 	{
1675 	  tree off_tree = size_zero_node;
1676 	  /* We can't modify t, because we use it at the end of the
1677 	     function.  */
1678 	  tree t2 = t;
1679 
1680 	  do
1681 	    {
1682 	      tree index = TREE_OPERAND (t2, 1);
1683 	      tree array = TREE_OPERAND (t2, 0);
1684 	      tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1685 	      tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1686 	      tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1687 
1688 	      /* We assume all arrays have sizes that are a multiple of a byte.
1689 		 First subtract the lower bound, if any, in the type of the
1690 		 index, then convert to sizetype and multiply by the size of the
1691 		 array element.  */
1692 	      if (low_bound != 0 && ! integer_zerop (low_bound))
1693 		index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1694 				     index, low_bound));
1695 
1696 	      /* If the index has a self-referential type, pass it to a
1697 		 WITH_RECORD_EXPR; if the component size is, pass our
1698 		 component to one.  */
1699 	      if (CONTAINS_PLACEHOLDER_P (index))
1700 		index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1701 	      if (CONTAINS_PLACEHOLDER_P (unit_size))
1702 		unit_size = build (WITH_RECORD_EXPR, sizetype,
1703 				   unit_size, array);
1704 
1705 	      off_tree
1706 		= fold (build (PLUS_EXPR, sizetype,
1707 			       fold (build (MULT_EXPR, sizetype,
1708 					    index,
1709 					    unit_size)),
1710 			       off_tree));
1711 	      t2 = TREE_OPERAND (t2, 0);
1712 	    }
1713 	  while (TREE_CODE (t2) == ARRAY_REF);
1714 
1715 	  if (DECL_P (t2))
1716 	    {
1717 	      expr = t2;
1718 	      offset = NULL;
1719 	      if (host_integerp (off_tree, 1))
1720 		{
1721 		  HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1722 		  HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1723 		  align = DECL_ALIGN (t2);
1724 		  if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1725 	            align = aoff;
1726 		  offset = GEN_INT (ioff);
1727 		  apply_bitpos = bitpos;
1728 		}
1729 	    }
1730 	  else if (TREE_CODE (t2) == COMPONENT_REF)
1731 	    {
1732 	      expr = component_ref_for_mem_expr (t2);
1733 	      if (host_integerp (off_tree, 1))
1734 		{
1735 		  offset = GEN_INT (tree_low_cst (off_tree, 1));
1736 		  apply_bitpos = bitpos;
1737 		}
1738 	      /* ??? Any reason the field size would be different than
1739 		 the size we got from the type?  */
1740 	    }
1741 	  else if (flag_argument_noalias > 1
1742 		   && TREE_CODE (t2) == INDIRECT_REF
1743 		   && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1744 	    {
1745 	      expr = t2;
1746 	      offset = NULL;
1747 	    }
1748 	}
1749 
1750       /* If this is a Fortran indirect argument reference, record the
1751 	 parameter decl.  */
1752       else if (flag_argument_noalias > 1
1753 	       && TREE_CODE (t) == INDIRECT_REF
1754 	       && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1755 	{
1756 	  expr = t;
1757 	  offset = NULL;
1758 	}
1759     }
1760 
1761   /* If we modified OFFSET based on T, then subtract the outstanding
1762      bit position offset.  Similarly, increase the size of the accessed
1763      object to contain the negative offset.  */
1764   if (apply_bitpos)
1765     {
1766       offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1767       if (size)
1768 	size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1769     }
1770 
1771   /* Now set the attributes we computed above.  */
1772   MEM_ATTRS (ref)
1773     = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1774 
1775   /* If this is already known to be a scalar or aggregate, we are done.  */
1776   if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1777     return;
1778 
1779   /* If it is a reference into an aggregate, this is part of an aggregate.
1780      Otherwise we don't know.  */
1781   else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1782 	   || TREE_CODE (t) == ARRAY_RANGE_REF
1783 	   || TREE_CODE (t) == BIT_FIELD_REF)
1784     MEM_IN_STRUCT_P (ref) = 1;
1785 }
1786 
1787 void
set_mem_attributes(rtx ref,tree t,int objectp)1788 set_mem_attributes (rtx ref, tree t, int objectp)
1789 {
1790   set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1791 }
1792 
1793 /* Set the decl for MEM to DECL.  */
1794 
1795 void
set_mem_attrs_from_reg(rtx mem,rtx reg)1796 set_mem_attrs_from_reg (rtx mem, rtx reg)
1797 {
1798   MEM_ATTRS (mem)
1799     = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1800 		     GEN_INT (REG_OFFSET (reg)),
1801 		     MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1802 }
1803 
1804 /* Set the alias set of MEM to SET.  */
1805 
1806 void
set_mem_alias_set(rtx mem,HOST_WIDE_INT set)1807 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1808 {
1809 #ifdef ENABLE_CHECKING
1810   /* If the new and old alias sets don't conflict, something is wrong.  */
1811   if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1812     abort ();
1813 #endif
1814 
1815   MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1816 				   MEM_SIZE (mem), MEM_ALIGN (mem),
1817 				   GET_MODE (mem));
1818 }
1819 
1820 /* Set the alignment of MEM to ALIGN bits.  */
1821 
1822 void
set_mem_align(rtx mem,unsigned int align)1823 set_mem_align (rtx mem, unsigned int align)
1824 {
1825   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1826 				   MEM_OFFSET (mem), MEM_SIZE (mem), align,
1827 				   GET_MODE (mem));
1828 }
1829 
1830 /* Set the expr for MEM to EXPR.  */
1831 
1832 void
set_mem_expr(rtx mem,tree expr)1833 set_mem_expr (rtx mem, tree expr)
1834 {
1835   MEM_ATTRS (mem)
1836     = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1837 		     MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1838 }
1839 
1840 /* Set the offset of MEM to OFFSET.  */
1841 
1842 void
set_mem_offset(rtx mem,rtx offset)1843 set_mem_offset (rtx mem, rtx offset)
1844 {
1845   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1846 				   offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1847 				   GET_MODE (mem));
1848 }
1849 
1850 /* Set the size of MEM to SIZE.  */
1851 
1852 void
set_mem_size(rtx mem,rtx size)1853 set_mem_size (rtx mem, rtx size)
1854 {
1855   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1856 				   MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1857 				   GET_MODE (mem));
1858 }
1859 
1860 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1861    and its address changed to ADDR.  (VOIDmode means don't change the mode.
1862    NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
1863    returned memory location is required to be valid.  The memory
1864    attributes are not changed.  */
1865 
1866 static rtx
change_address_1(rtx memref,enum machine_mode mode,rtx addr,int validate)1867 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1868 {
1869   rtx new;
1870 
1871   if (GET_CODE (memref) != MEM)
1872     abort ();
1873   if (mode == VOIDmode)
1874     mode = GET_MODE (memref);
1875   if (addr == 0)
1876     addr = XEXP (memref, 0);
1877   if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1878       && (!validate || memory_address_p (mode, addr)))
1879     return memref;
1880 
1881   if (validate)
1882     {
1883       if (reload_in_progress || reload_completed)
1884 	{
1885 	  if (! memory_address_p (mode, addr))
1886 	    abort ();
1887 	}
1888       else
1889 	addr = memory_address (mode, addr);
1890     }
1891 
1892   if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1893     return memref;
1894 
1895   new = gen_rtx_MEM (mode, addr);
1896   MEM_COPY_ATTRIBUTES (new, memref);
1897   return new;
1898 }
1899 
1900 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1901    way we are changing MEMREF, so we only preserve the alias set.  */
1902 
1903 rtx
change_address(rtx memref,enum machine_mode mode,rtx addr)1904 change_address (rtx memref, enum machine_mode mode, rtx addr)
1905 {
1906   rtx new = change_address_1 (memref, mode, addr, 1), size;
1907   enum machine_mode mmode = GET_MODE (new);
1908   unsigned int align;
1909 
1910   size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1911   align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1912 
1913   /* If there are no changes, just return the original memory reference.  */
1914   if (new == memref)
1915     {
1916       if (MEM_ATTRS (memref) == 0
1917 	  || (MEM_EXPR (memref) == NULL
1918 	      && MEM_OFFSET (memref) == NULL
1919 	      && MEM_SIZE (memref) == size
1920 	      && MEM_ALIGN (memref) == align))
1921 	return new;
1922 
1923       new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1924       MEM_COPY_ATTRIBUTES (new, memref);
1925     }
1926 
1927   MEM_ATTRS (new)
1928     = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1929 
1930   return new;
1931 }
1932 
1933 /* Return a memory reference like MEMREF, but with its mode changed
1934    to MODE and its address offset by OFFSET bytes.  If VALIDATE is
1935    nonzero, the memory address is forced to be valid.
1936    If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1937    and caller is responsible for adjusting MEMREF base register.  */
1938 
1939 rtx
adjust_address_1(rtx memref,enum machine_mode mode,HOST_WIDE_INT offset,int validate,int adjust)1940 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1941 		  int validate, int adjust)
1942 {
1943   rtx addr = XEXP (memref, 0);
1944   rtx new;
1945   rtx memoffset = MEM_OFFSET (memref);
1946   rtx size = 0;
1947   unsigned int memalign = MEM_ALIGN (memref);
1948 
1949   /* If there are no changes, just return the original memory reference.  */
1950   if (mode == GET_MODE (memref) && !offset
1951       && (!validate || memory_address_p (mode, addr)))
1952     return memref;
1953 
1954   /* ??? Prefer to create garbage instead of creating shared rtl.
1955      This may happen even if offset is nonzero -- consider
1956      (plus (plus reg reg) const_int) -- so do this always.  */
1957   addr = copy_rtx (addr);
1958 
1959   if (adjust)
1960     {
1961       /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1962 	 object, we can merge it into the LO_SUM.  */
1963       if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1964 	  && offset >= 0
1965 	  && (unsigned HOST_WIDE_INT) offset
1966 	      < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1967 	addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1968 			       plus_constant (XEXP (addr, 1), offset));
1969       else
1970 	addr = plus_constant (addr, offset);
1971     }
1972 
1973   new = change_address_1 (memref, mode, addr, validate);
1974 
1975   /* Compute the new values of the memory attributes due to this adjustment.
1976      We add the offsets and update the alignment.  */
1977   if (memoffset)
1978     memoffset = GEN_INT (offset + INTVAL (memoffset));
1979 
1980   /* Compute the new alignment by taking the MIN of the alignment and the
1981      lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1982      if zero.  */
1983   if (offset != 0)
1984     memalign
1985       = MIN (memalign,
1986 	     (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1987 
1988   /* We can compute the size in a number of ways.  */
1989   if (GET_MODE (new) != BLKmode)
1990     size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1991   else if (MEM_SIZE (memref))
1992     size = plus_constant (MEM_SIZE (memref), -offset);
1993 
1994   MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1995 				   memoffset, size, memalign, GET_MODE (new));
1996 
1997   /* At some point, we should validate that this offset is within the object,
1998      if all the appropriate values are known.  */
1999   return new;
2000 }
2001 
2002 /* Return a memory reference like MEMREF, but with its mode changed
2003    to MODE and its address changed to ADDR, which is assumed to be
2004    MEMREF offseted by OFFSET bytes.  If VALIDATE is
2005    nonzero, the memory address is forced to be valid.  */
2006 
2007 rtx
adjust_automodify_address_1(rtx memref,enum machine_mode mode,rtx addr,HOST_WIDE_INT offset,int validate)2008 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2009 			     HOST_WIDE_INT offset, int validate)
2010 {
2011   memref = change_address_1 (memref, VOIDmode, addr, validate);
2012   return adjust_address_1 (memref, mode, offset, validate, 0);
2013 }
2014 
2015 /* Return a memory reference like MEMREF, but whose address is changed by
2016    adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
2017    known to be in OFFSET (possibly 1).  */
2018 
2019 rtx
offset_address(rtx memref,rtx offset,unsigned HOST_WIDE_INT pow2)2020 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2021 {
2022   rtx new, addr = XEXP (memref, 0);
2023 
2024   new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2025 
2026   /* At this point we don't know _why_ the address is invalid.  It
2027      could have secondary memory references, multiplies or anything.
2028 
2029      However, if we did go and rearrange things, we can wind up not
2030      being able to recognize the magic around pic_offset_table_rtx.
2031      This stuff is fragile, and is yet another example of why it is
2032      bad to expose PIC machinery too early.  */
2033   if (! memory_address_p (GET_MODE (memref), new)
2034       && GET_CODE (addr) == PLUS
2035       && XEXP (addr, 0) == pic_offset_table_rtx)
2036     {
2037       addr = force_reg (GET_MODE (addr), addr);
2038       new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2039     }
2040 
2041   update_temp_slot_address (XEXP (memref, 0), new);
2042   new = change_address_1 (memref, VOIDmode, new, 1);
2043 
2044   /* If there are no changes, just return the original memory reference.  */
2045   if (new == memref)
2046     return new;
2047 
2048   /* Update the alignment to reflect the offset.  Reset the offset, which
2049      we don't know.  */
2050   MEM_ATTRS (new)
2051     = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2052 		     MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2053 		     GET_MODE (new));
2054   return new;
2055 }
2056 
2057 /* Return a memory reference like MEMREF, but with its address changed to
2058    ADDR.  The caller is asserting that the actual piece of memory pointed
2059    to is the same, just the form of the address is being changed, such as
2060    by putting something into a register.  */
2061 
2062 rtx
replace_equiv_address(rtx memref,rtx addr)2063 replace_equiv_address (rtx memref, rtx addr)
2064 {
2065   /* change_address_1 copies the memory attribute structure without change
2066      and that's exactly what we want here.  */
2067   update_temp_slot_address (XEXP (memref, 0), addr);
2068   return change_address_1 (memref, VOIDmode, addr, 1);
2069 }
2070 
2071 /* Likewise, but the reference is not required to be valid.  */
2072 
2073 rtx
replace_equiv_address_nv(rtx memref,rtx addr)2074 replace_equiv_address_nv (rtx memref, rtx addr)
2075 {
2076   return change_address_1 (memref, VOIDmode, addr, 0);
2077 }
2078 
2079 /* Return a memory reference like MEMREF, but with its mode widened to
2080    MODE and offset by OFFSET.  This would be used by targets that e.g.
2081    cannot issue QImode memory operations and have to use SImode memory
2082    operations plus masking logic.  */
2083 
2084 rtx
widen_memory_access(rtx memref,enum machine_mode mode,HOST_WIDE_INT offset)2085 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2086 {
2087   rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2088   tree expr = MEM_EXPR (new);
2089   rtx memoffset = MEM_OFFSET (new);
2090   unsigned int size = GET_MODE_SIZE (mode);
2091 
2092   /* If there are no changes, just return the original memory reference.  */
2093   if (new == memref)
2094     return new;
2095 
2096   /* If we don't know what offset we were at within the expression, then
2097      we can't know if we've overstepped the bounds.  */
2098   if (! memoffset)
2099     expr = NULL_TREE;
2100 
2101   while (expr)
2102     {
2103       if (TREE_CODE (expr) == COMPONENT_REF)
2104 	{
2105 	  tree field = TREE_OPERAND (expr, 1);
2106 
2107 	  if (! DECL_SIZE_UNIT (field))
2108 	    {
2109 	      expr = NULL_TREE;
2110 	      break;
2111 	    }
2112 
2113 	  /* Is the field at least as large as the access?  If so, ok,
2114 	     otherwise strip back to the containing structure.  */
2115 	  if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2116 	      && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2117 	      && INTVAL (memoffset) >= 0)
2118 	    break;
2119 
2120 	  if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2121 	    {
2122 	      expr = NULL_TREE;
2123 	      break;
2124 	    }
2125 
2126 	  expr = TREE_OPERAND (expr, 0);
2127 	  memoffset = (GEN_INT (INTVAL (memoffset)
2128 		       + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2129 		       + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2130 		          / BITS_PER_UNIT)));
2131 	}
2132       /* Similarly for the decl.  */
2133       else if (DECL_P (expr)
2134 	       && DECL_SIZE_UNIT (expr)
2135 	       && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2136 	       && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2137 	       && (! memoffset || INTVAL (memoffset) >= 0))
2138 	break;
2139       else
2140 	{
2141 	  /* The widened memory access overflows the expression, which means
2142 	     that it could alias another expression.  Zap it.  */
2143 	  expr = NULL_TREE;
2144 	  break;
2145 	}
2146     }
2147 
2148   if (! expr)
2149     memoffset = NULL_RTX;
2150 
2151   /* The widened memory may alias other stuff, so zap the alias set.  */
2152   /* ??? Maybe use get_alias_set on any remaining expression.  */
2153 
2154   MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2155 				   MEM_ALIGN (new), mode);
2156 
2157   return new;
2158 }
2159 
2160 /* Return a newly created CODE_LABEL rtx with a unique label number.  */
2161 
2162 rtx
gen_label_rtx(void)2163 gen_label_rtx (void)
2164 {
2165   return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2166 			     NULL, label_num++, NULL);
2167 }
2168 
2169 /* For procedure integration.  */
2170 
2171 /* Install new pointers to the first and last insns in the chain.
2172    Also, set cur_insn_uid to one higher than the last in use.
2173    Used for an inline-procedure after copying the insn chain.  */
2174 
2175 void
set_new_first_and_last_insn(rtx first,rtx last)2176 set_new_first_and_last_insn (rtx first, rtx last)
2177 {
2178   rtx insn;
2179 
2180   first_insn = first;
2181   last_insn = last;
2182   cur_insn_uid = 0;
2183 
2184   for (insn = first; insn; insn = NEXT_INSN (insn))
2185     cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2186 
2187   cur_insn_uid++;
2188 }
2189 
2190 /* Set the last label number found in the current function.
2191    This is used when belatedly compiling an inline function.  */
2192 
2193 void
set_new_last_label_num(int last)2194 set_new_last_label_num (int last)
2195 {
2196   base_label_num = label_num;
2197   last_label_num = last;
2198 }
2199 
2200 /* Restore all variables describing the current status from the structure *P.
2201    This is used after a nested function.  */
2202 
2203 void
restore_emit_status(struct function * p ATTRIBUTE_UNUSED)2204 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2205 {
2206   last_label_num = 0;
2207 }
2208 
2209 /* Go through all the RTL insn bodies and copy any invalid shared
2210    structure.  This routine should only be called once.  */
2211 
2212 void
unshare_all_rtl(tree fndecl,rtx insn)2213 unshare_all_rtl (tree fndecl, rtx insn)
2214 {
2215   tree decl;
2216 
2217   /* Make sure that virtual parameters are not shared.  */
2218   for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2219     SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2220 
2221   /* Make sure that virtual stack slots are not shared.  */
2222   unshare_all_decls (DECL_INITIAL (fndecl));
2223 
2224   /* Unshare just about everything else.  */
2225   unshare_all_rtl_in_chain (insn);
2226 
2227   /* Make sure the addresses of stack slots found outside the insn chain
2228      (such as, in DECL_RTL of a variable) are not shared
2229      with the insn chain.
2230 
2231      This special care is necessary when the stack slot MEM does not
2232      actually appear in the insn chain.  If it does appear, its address
2233      is unshared from all else at that point.  */
2234   stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2235 }
2236 
2237 /* Go through all the RTL insn bodies and copy any invalid shared
2238    structure, again.  This is a fairly expensive thing to do so it
2239    should be done sparingly.  */
2240 
2241 void
unshare_all_rtl_again(rtx insn)2242 unshare_all_rtl_again (rtx insn)
2243 {
2244   rtx p;
2245   tree decl;
2246 
2247   for (p = insn; p; p = NEXT_INSN (p))
2248     if (INSN_P (p))
2249       {
2250 	reset_used_flags (PATTERN (p));
2251 	reset_used_flags (REG_NOTES (p));
2252 	reset_used_flags (LOG_LINKS (p));
2253       }
2254 
2255   /* Make sure that virtual stack slots are not shared.  */
2256   reset_used_decls (DECL_INITIAL (cfun->decl));
2257 
2258   /* Make sure that virtual parameters are not shared.  */
2259   for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2260     reset_used_flags (DECL_RTL (decl));
2261 
2262   reset_used_flags (stack_slot_list);
2263 
2264   unshare_all_rtl (cfun->decl, insn);
2265 }
2266 
2267 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2268    Recursively does the same for subexpressions.  */
2269 
2270 static void
verify_rtx_sharing(rtx orig,rtx insn)2271 verify_rtx_sharing (rtx orig, rtx insn)
2272 {
2273   rtx x = orig;
2274   int i;
2275   enum rtx_code code;
2276   const char *format_ptr;
2277 
2278   if (x == 0)
2279     return;
2280 
2281   code = GET_CODE (x);
2282 
2283   /* These types may be freely shared.  */
2284 
2285   switch (code)
2286     {
2287     case REG:
2288     case QUEUED:
2289     case CONST_INT:
2290     case CONST_DOUBLE:
2291     case CONST_VECTOR:
2292     case SYMBOL_REF:
2293     case LABEL_REF:
2294     case CODE_LABEL:
2295     case PC:
2296     case CC0:
2297     case SCRATCH:
2298       /* SCRATCH must be shared because they represent distinct values.  */
2299       return;
2300 
2301     case CONST:
2302       /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
2303 	 a LABEL_REF, it isn't sharable.  */
2304       if (GET_CODE (XEXP (x, 0)) == PLUS
2305 	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2306 	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2307 	return;
2308       break;
2309 
2310     case MEM:
2311       /* A MEM is allowed to be shared if its address is constant.  */
2312       if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2313 	  || reload_completed || reload_in_progress)
2314 	return;
2315 
2316       break;
2317 
2318     default:
2319       break;
2320     }
2321 
2322   /* This rtx may not be shared.  If it has already been seen,
2323      replace it with a copy of itself.  */
2324 
2325   if (RTX_FLAG (x, used))
2326     {
2327       error ("Invalid rtl sharing found in the insn");
2328       debug_rtx (insn);
2329       error ("Shared rtx");
2330       debug_rtx (x);
2331       abort ();
2332     }
2333   RTX_FLAG (x, used) = 1;
2334 
2335   /* Now scan the subexpressions recursively.  */
2336 
2337   format_ptr = GET_RTX_FORMAT (code);
2338 
2339   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2340     {
2341       switch (*format_ptr++)
2342 	{
2343 	case 'e':
2344 	  verify_rtx_sharing (XEXP (x, i), insn);
2345 	  break;
2346 
2347 	case 'E':
2348 	  if (XVEC (x, i) != NULL)
2349 	    {
2350 	      int j;
2351 	      int len = XVECLEN (x, i);
2352 
2353 	      for (j = 0; j < len; j++)
2354 		{
2355 		  /* We allow sharing of ASM_OPERANDS inside single instruction.  */
2356 		  if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2357 		      && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2358 		    verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2359 		  else
2360 		    verify_rtx_sharing (XVECEXP (x, i, j), insn);
2361 		}
2362 	    }
2363 	  break;
2364 	}
2365     }
2366   return;
2367 }
2368 
2369 /* Go through all the RTL insn bodies and check that there is no unexpected
2370    sharing in between the subexpressions.  */
2371 
2372 void
verify_rtl_sharing(void)2373 verify_rtl_sharing (void)
2374 {
2375   rtx p;
2376 
2377   for (p = get_insns (); p; p = NEXT_INSN (p))
2378     if (INSN_P (p))
2379       {
2380 	reset_used_flags (PATTERN (p));
2381 	reset_used_flags (REG_NOTES (p));
2382 	reset_used_flags (LOG_LINKS (p));
2383       }
2384 
2385   for (p = get_insns (); p; p = NEXT_INSN (p))
2386     if (INSN_P (p))
2387       {
2388 	verify_rtx_sharing (PATTERN (p), p);
2389 	verify_rtx_sharing (REG_NOTES (p), p);
2390 	verify_rtx_sharing (LOG_LINKS (p), p);
2391       }
2392 }
2393 
2394 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2395    Assumes the mark bits are cleared at entry.  */
2396 
2397 void
unshare_all_rtl_in_chain(rtx insn)2398 unshare_all_rtl_in_chain (rtx insn)
2399 {
2400   for (; insn; insn = NEXT_INSN (insn))
2401     if (INSN_P (insn))
2402       {
2403 	PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2404 	REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2405 	LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2406       }
2407 }
2408 
2409 /* Go through all virtual stack slots of a function and copy any
2410    shared structure.  */
2411 static void
unshare_all_decls(tree blk)2412 unshare_all_decls (tree blk)
2413 {
2414   tree t;
2415 
2416   /* Copy shared decls.  */
2417   for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2418     if (DECL_RTL_SET_P (t))
2419       SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2420 
2421   /* Now process sub-blocks.  */
2422   for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2423     unshare_all_decls (t);
2424 }
2425 
2426 /* Go through all virtual stack slots of a function and mark them as
2427    not shared.  */
2428 static void
reset_used_decls(tree blk)2429 reset_used_decls (tree blk)
2430 {
2431   tree t;
2432 
2433   /* Mark decls.  */
2434   for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2435     if (DECL_RTL_SET_P (t))
2436       reset_used_flags (DECL_RTL (t));
2437 
2438   /* Now process sub-blocks.  */
2439   for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2440     reset_used_decls (t);
2441 }
2442 
2443 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2444    placed in the result directly, rather than being copied.  MAY_SHARE is
2445    either a MEM of an EXPR_LIST of MEMs.  */
2446 
2447 rtx
copy_most_rtx(rtx orig,rtx may_share)2448 copy_most_rtx (rtx orig, rtx may_share)
2449 {
2450   rtx copy;
2451   int i, j;
2452   RTX_CODE code;
2453   const char *format_ptr;
2454 
2455   if (orig == may_share
2456       || (GET_CODE (may_share) == EXPR_LIST
2457 	  && in_expr_list_p (may_share, orig)))
2458     return orig;
2459 
2460   code = GET_CODE (orig);
2461 
2462   switch (code)
2463     {
2464     case REG:
2465     case QUEUED:
2466     case CONST_INT:
2467     case CONST_DOUBLE:
2468     case CONST_VECTOR:
2469     case SYMBOL_REF:
2470     case CODE_LABEL:
2471     case PC:
2472     case CC0:
2473       return orig;
2474     default:
2475       break;
2476     }
2477 
2478   copy = rtx_alloc (code);
2479   PUT_MODE (copy, GET_MODE (orig));
2480   RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2481   RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2482   RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2483   RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2484   RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2485 
2486   format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2487 
2488   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2489     {
2490       switch (*format_ptr++)
2491 	{
2492 	case 'e':
2493 	  XEXP (copy, i) = XEXP (orig, i);
2494 	  if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2495 	    XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2496 	  break;
2497 
2498 	case 'u':
2499 	  XEXP (copy, i) = XEXP (orig, i);
2500 	  break;
2501 
2502 	case 'E':
2503 	case 'V':
2504 	  XVEC (copy, i) = XVEC (orig, i);
2505 	  if (XVEC (orig, i) != NULL)
2506 	    {
2507 	      XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2508 	      for (j = 0; j < XVECLEN (copy, i); j++)
2509 		XVECEXP (copy, i, j)
2510 		  = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2511 	    }
2512 	  break;
2513 
2514 	case 'w':
2515 	  XWINT (copy, i) = XWINT (orig, i);
2516 	  break;
2517 
2518 	case 'n':
2519 	case 'i':
2520 	  XINT (copy, i) = XINT (orig, i);
2521 	  break;
2522 
2523 	case 't':
2524 	  XTREE (copy, i) = XTREE (orig, i);
2525 	  break;
2526 
2527 	case 's':
2528 	case 'S':
2529 	  XSTR (copy, i) = XSTR (orig, i);
2530 	  break;
2531 
2532 	case '0':
2533 	  X0ANY (copy, i) = X0ANY (orig, i);
2534 	  break;
2535 
2536 	default:
2537 	  abort ();
2538 	}
2539     }
2540   return copy;
2541 }
2542 
2543 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2544    Recursively does the same for subexpressions.  Uses
2545    copy_rtx_if_shared_1 to reduce stack space.  */
2546 
2547 rtx
copy_rtx_if_shared(rtx orig)2548 copy_rtx_if_shared (rtx orig)
2549 {
2550   copy_rtx_if_shared_1 (&orig);
2551   return orig;
2552 }
2553 
2554 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2555    use.  Recursively does the same for subexpressions.  */
2556 
2557 static void
copy_rtx_if_shared_1(rtx * orig1)2558 copy_rtx_if_shared_1 (rtx *orig1)
2559 {
2560   rtx x;
2561   int i;
2562   enum rtx_code code;
2563   rtx *last_ptr;
2564   const char *format_ptr;
2565   int copied = 0;
2566   int length;
2567 
2568   /* Repeat is used to turn tail-recursion into iteration.  */
2569 repeat:
2570   x = *orig1;
2571 
2572   if (x == 0)
2573     return;
2574 
2575   code = GET_CODE (x);
2576 
2577   /* These types may be freely shared.  */
2578 
2579   switch (code)
2580     {
2581     case REG:
2582     case QUEUED:
2583     case CONST_INT:
2584     case CONST_DOUBLE:
2585     case CONST_VECTOR:
2586     case SYMBOL_REF:
2587     case LABEL_REF:
2588     case CODE_LABEL:
2589     case PC:
2590     case CC0:
2591     case SCRATCH:
2592       /* SCRATCH must be shared because they represent distinct values.  */
2593       return;
2594 
2595     case CONST:
2596       /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
2597 	 a LABEL_REF, it isn't sharable.  */
2598       if (GET_CODE (XEXP (x, 0)) == PLUS
2599 	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2600 	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2601 	return;
2602       break;
2603 
2604     case INSN:
2605     case JUMP_INSN:
2606     case CALL_INSN:
2607     case NOTE:
2608     case BARRIER:
2609       /* The chain of insns is not being copied.  */
2610       return;
2611 
2612     default:
2613       break;
2614     }
2615 
2616   /* This rtx may not be shared.  If it has already been seen,
2617      replace it with a copy of itself.  */
2618 
2619   if (RTX_FLAG (x, used))
2620     {
2621       rtx copy;
2622 
2623       copy = rtx_alloc (code);
2624       memcpy (copy, x, RTX_SIZE (code));
2625       x = copy;
2626       copied = 1;
2627     }
2628   RTX_FLAG (x, used) = 1;
2629 
2630   /* Now scan the subexpressions recursively.
2631      We can store any replaced subexpressions directly into X
2632      since we know X is not shared!  Any vectors in X
2633      must be copied if X was copied.  */
2634 
2635   format_ptr = GET_RTX_FORMAT (code);
2636   length = GET_RTX_LENGTH (code);
2637   last_ptr = NULL;
2638 
2639   for (i = 0; i < length; i++)
2640     {
2641       switch (*format_ptr++)
2642 	{
2643 	case 'e':
2644           if (last_ptr)
2645             copy_rtx_if_shared_1 (last_ptr);
2646 	  last_ptr = &XEXP (x, i);
2647 	  break;
2648 
2649 	case 'E':
2650 	  if (XVEC (x, i) != NULL)
2651 	    {
2652 	      int j;
2653 	      int len = XVECLEN (x, i);
2654 
2655               /* Copy the vector iff I copied the rtx and the length
2656 		 is nonzero.  */
2657 	      if (copied && len > 0)
2658 		XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2659 
2660               /* Call recursively on all inside the vector.  */
2661 	      for (j = 0; j < len; j++)
2662                 {
2663 		  if (last_ptr)
2664 		    copy_rtx_if_shared_1 (last_ptr);
2665                   last_ptr = &XVECEXP (x, i, j);
2666                 }
2667 	    }
2668 	  break;
2669 	}
2670     }
2671   *orig1 = x;
2672   if (last_ptr)
2673     {
2674       orig1 = last_ptr;
2675       goto repeat;
2676     }
2677   return;
2678 }
2679 
2680 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2681    to look for shared sub-parts.  */
2682 
2683 void
reset_used_flags(rtx x)2684 reset_used_flags (rtx x)
2685 {
2686   int i, j;
2687   enum rtx_code code;
2688   const char *format_ptr;
2689   int length;
2690 
2691   /* Repeat is used to turn tail-recursion into iteration.  */
2692 repeat:
2693   if (x == 0)
2694     return;
2695 
2696   code = GET_CODE (x);
2697 
2698   /* These types may be freely shared so we needn't do any resetting
2699      for them.  */
2700 
2701   switch (code)
2702     {
2703     case REG:
2704     case QUEUED:
2705     case CONST_INT:
2706     case CONST_DOUBLE:
2707     case CONST_VECTOR:
2708     case SYMBOL_REF:
2709     case CODE_LABEL:
2710     case PC:
2711     case CC0:
2712       return;
2713 
2714     case INSN:
2715     case JUMP_INSN:
2716     case CALL_INSN:
2717     case NOTE:
2718     case LABEL_REF:
2719     case BARRIER:
2720       /* The chain of insns is not being copied.  */
2721       return;
2722 
2723     default:
2724       break;
2725     }
2726 
2727   RTX_FLAG (x, used) = 0;
2728 
2729   format_ptr = GET_RTX_FORMAT (code);
2730   length = GET_RTX_LENGTH (code);
2731 
2732   for (i = 0; i < length; i++)
2733     {
2734       switch (*format_ptr++)
2735 	{
2736 	case 'e':
2737           if (i == length-1)
2738             {
2739               x = XEXP (x, i);
2740 	      goto repeat;
2741             }
2742 	  reset_used_flags (XEXP (x, i));
2743 	  break;
2744 
2745 	case 'E':
2746 	  for (j = 0; j < XVECLEN (x, i); j++)
2747 	    reset_used_flags (XVECEXP (x, i, j));
2748 	  break;
2749 	}
2750     }
2751 }
2752 
2753 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2754    to look for shared sub-parts.  */
2755 
2756 void
set_used_flags(rtx x)2757 set_used_flags (rtx x)
2758 {
2759   int i, j;
2760   enum rtx_code code;
2761   const char *format_ptr;
2762 
2763   if (x == 0)
2764     return;
2765 
2766   code = GET_CODE (x);
2767 
2768   /* These types may be freely shared so we needn't do any resetting
2769      for them.  */
2770 
2771   switch (code)
2772     {
2773     case REG:
2774     case QUEUED:
2775     case CONST_INT:
2776     case CONST_DOUBLE:
2777     case CONST_VECTOR:
2778     case SYMBOL_REF:
2779     case CODE_LABEL:
2780     case PC:
2781     case CC0:
2782       return;
2783 
2784     case INSN:
2785     case JUMP_INSN:
2786     case CALL_INSN:
2787     case NOTE:
2788     case LABEL_REF:
2789     case BARRIER:
2790       /* The chain of insns is not being copied.  */
2791       return;
2792 
2793     default:
2794       break;
2795     }
2796 
2797   RTX_FLAG (x, used) = 1;
2798 
2799   format_ptr = GET_RTX_FORMAT (code);
2800   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2801     {
2802       switch (*format_ptr++)
2803 	{
2804 	case 'e':
2805 	  set_used_flags (XEXP (x, i));
2806 	  break;
2807 
2808 	case 'E':
2809 	  for (j = 0; j < XVECLEN (x, i); j++)
2810 	    set_used_flags (XVECEXP (x, i, j));
2811 	  break;
2812 	}
2813     }
2814 }
2815 
2816 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2817    Return X or the rtx for the pseudo reg the value of X was copied into.
2818    OTHER must be valid as a SET_DEST.  */
2819 
2820 rtx
make_safe_from(rtx x,rtx other)2821 make_safe_from (rtx x, rtx other)
2822 {
2823   while (1)
2824     switch (GET_CODE (other))
2825       {
2826       case SUBREG:
2827 	other = SUBREG_REG (other);
2828 	break;
2829       case STRICT_LOW_PART:
2830       case SIGN_EXTEND:
2831       case ZERO_EXTEND:
2832 	other = XEXP (other, 0);
2833 	break;
2834       default:
2835 	goto done;
2836       }
2837  done:
2838   if ((GET_CODE (other) == MEM
2839        && ! CONSTANT_P (x)
2840        && GET_CODE (x) != REG
2841        && GET_CODE (x) != SUBREG)
2842       || (GET_CODE (other) == REG
2843 	  && (REGNO (other) < FIRST_PSEUDO_REGISTER
2844 	      || reg_mentioned_p (other, x))))
2845     {
2846       rtx temp = gen_reg_rtx (GET_MODE (x));
2847       emit_move_insn (temp, x);
2848       return temp;
2849     }
2850   return x;
2851 }
2852 
2853 /* Emission of insns (adding them to the doubly-linked list).  */
2854 
2855 /* Return the first insn of the current sequence or current function.  */
2856 
2857 rtx
get_insns(void)2858 get_insns (void)
2859 {
2860   return first_insn;
2861 }
2862 
2863 /* Specify a new insn as the first in the chain.  */
2864 
2865 void
set_first_insn(rtx insn)2866 set_first_insn (rtx insn)
2867 {
2868   if (PREV_INSN (insn) != 0)
2869     abort ();
2870   first_insn = insn;
2871 }
2872 
2873 /* Return the last insn emitted in current sequence or current function.  */
2874 
2875 rtx
get_last_insn(void)2876 get_last_insn (void)
2877 {
2878   return last_insn;
2879 }
2880 
2881 /* Specify a new insn as the last in the chain.  */
2882 
2883 void
set_last_insn(rtx insn)2884 set_last_insn (rtx insn)
2885 {
2886   if (NEXT_INSN (insn) != 0)
2887     abort ();
2888   last_insn = insn;
2889 }
2890 
2891 /* Return the last insn emitted, even if it is in a sequence now pushed.  */
2892 
2893 rtx
get_last_insn_anywhere(void)2894 get_last_insn_anywhere (void)
2895 {
2896   struct sequence_stack *stack;
2897   if (last_insn)
2898     return last_insn;
2899   for (stack = seq_stack; stack; stack = stack->next)
2900     if (stack->last != 0)
2901       return stack->last;
2902   return 0;
2903 }
2904 
2905 /* Return the first nonnote insn emitted in current sequence or current
2906    function.  This routine looks inside SEQUENCEs.  */
2907 
2908 rtx
get_first_nonnote_insn(void)2909 get_first_nonnote_insn (void)
2910 {
2911   rtx insn = first_insn;
2912 
2913   while (insn)
2914     {
2915       insn = next_insn (insn);
2916       if (insn == 0 || GET_CODE (insn) != NOTE)
2917 	break;
2918     }
2919 
2920   return insn;
2921 }
2922 
2923 /* Return the last nonnote insn emitted in current sequence or current
2924    function.  This routine looks inside SEQUENCEs.  */
2925 
2926 rtx
get_last_nonnote_insn(void)2927 get_last_nonnote_insn (void)
2928 {
2929   rtx insn = last_insn;
2930 
2931   while (insn)
2932     {
2933       insn = previous_insn (insn);
2934       if (insn == 0 || GET_CODE (insn) != NOTE)
2935 	break;
2936     }
2937 
2938   return insn;
2939 }
2940 
2941 /* Return a number larger than any instruction's uid in this function.  */
2942 
2943 int
get_max_uid(void)2944 get_max_uid (void)
2945 {
2946   return cur_insn_uid;
2947 }
2948 
2949 /* Renumber instructions so that no instruction UIDs are wasted.  */
2950 
2951 void
renumber_insns(FILE * stream)2952 renumber_insns (FILE *stream)
2953 {
2954   rtx insn;
2955 
2956   /* If we're not supposed to renumber instructions, don't.  */
2957   if (!flag_renumber_insns)
2958     return;
2959 
2960   /* If there aren't that many instructions, then it's not really
2961      worth renumbering them.  */
2962   if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2963     return;
2964 
2965   cur_insn_uid = 1;
2966 
2967   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2968     {
2969       if (stream)
2970 	fprintf (stream, "Renumbering insn %d to %d\n",
2971 		 INSN_UID (insn), cur_insn_uid);
2972       INSN_UID (insn) = cur_insn_uid++;
2973     }
2974 }
2975 
2976 /* Return the next insn.  If it is a SEQUENCE, return the first insn
2977    of the sequence.  */
2978 
2979 rtx
next_insn(rtx insn)2980 next_insn (rtx insn)
2981 {
2982   if (insn)
2983     {
2984       insn = NEXT_INSN (insn);
2985       if (insn && GET_CODE (insn) == INSN
2986 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
2987 	insn = XVECEXP (PATTERN (insn), 0, 0);
2988     }
2989 
2990   return insn;
2991 }
2992 
2993 /* Return the previous insn.  If it is a SEQUENCE, return the last insn
2994    of the sequence.  */
2995 
2996 rtx
previous_insn(rtx insn)2997 previous_insn (rtx insn)
2998 {
2999   if (insn)
3000     {
3001       insn = PREV_INSN (insn);
3002       if (insn && GET_CODE (insn) == INSN
3003 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
3004 	insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3005     }
3006 
3007   return insn;
3008 }
3009 
3010 /* Return the next insn after INSN that is not a NOTE.  This routine does not
3011    look inside SEQUENCEs.  */
3012 
3013 rtx
next_nonnote_insn(rtx insn)3014 next_nonnote_insn (rtx insn)
3015 {
3016   while (insn)
3017     {
3018       insn = NEXT_INSN (insn);
3019       if (insn == 0 || GET_CODE (insn) != NOTE)
3020 	break;
3021     }
3022 
3023   return insn;
3024 }
3025 
3026 /* Return the previous insn before INSN that is not a NOTE.  This routine does
3027    not look inside SEQUENCEs.  */
3028 
3029 rtx
prev_nonnote_insn(rtx insn)3030 prev_nonnote_insn (rtx insn)
3031 {
3032   while (insn)
3033     {
3034       insn = PREV_INSN (insn);
3035       if (insn == 0 || GET_CODE (insn) != NOTE)
3036 	break;
3037     }
3038 
3039   return insn;
3040 }
3041 
3042 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3043    or 0, if there is none.  This routine does not look inside
3044    SEQUENCEs.  */
3045 
3046 rtx
next_real_insn(rtx insn)3047 next_real_insn (rtx insn)
3048 {
3049   while (insn)
3050     {
3051       insn = NEXT_INSN (insn);
3052       if (insn == 0 || GET_CODE (insn) == INSN
3053 	  || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3054 	break;
3055     }
3056 
3057   return insn;
3058 }
3059 
3060 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3061    or 0, if there is none.  This routine does not look inside
3062    SEQUENCEs.  */
3063 
3064 rtx
prev_real_insn(rtx insn)3065 prev_real_insn (rtx insn)
3066 {
3067   while (insn)
3068     {
3069       insn = PREV_INSN (insn);
3070       if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3071 	  || GET_CODE (insn) == JUMP_INSN)
3072 	break;
3073     }
3074 
3075   return insn;
3076 }
3077 
3078 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3079    This routine does not look inside SEQUENCEs.  */
3080 
3081 rtx
last_call_insn(void)3082 last_call_insn (void)
3083 {
3084   rtx insn;
3085 
3086   for (insn = get_last_insn ();
3087        insn && GET_CODE (insn) != CALL_INSN;
3088        insn = PREV_INSN (insn))
3089     ;
3090 
3091   return insn;
3092 }
3093 
3094 /* Find the next insn after INSN that really does something.  This routine
3095    does not look inside SEQUENCEs.  Until reload has completed, this is the
3096    same as next_real_insn.  */
3097 
3098 int
active_insn_p(rtx insn)3099 active_insn_p (rtx insn)
3100 {
3101   return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3102 	  || (GET_CODE (insn) == INSN
3103 	      && (! reload_completed
3104 		  || (GET_CODE (PATTERN (insn)) != USE
3105 		      && GET_CODE (PATTERN (insn)) != CLOBBER))));
3106 }
3107 
3108 rtx
next_active_insn(rtx insn)3109 next_active_insn (rtx insn)
3110 {
3111   while (insn)
3112     {
3113       insn = NEXT_INSN (insn);
3114       if (insn == 0 || active_insn_p (insn))
3115 	break;
3116     }
3117 
3118   return insn;
3119 }
3120 
3121 /* Find the last insn before INSN that really does something.  This routine
3122    does not look inside SEQUENCEs.  Until reload has completed, this is the
3123    same as prev_real_insn.  */
3124 
3125 rtx
prev_active_insn(rtx insn)3126 prev_active_insn (rtx insn)
3127 {
3128   while (insn)
3129     {
3130       insn = PREV_INSN (insn);
3131       if (insn == 0 || active_insn_p (insn))
3132 	break;
3133     }
3134 
3135   return insn;
3136 }
3137 
3138 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none.  */
3139 
3140 rtx
next_label(rtx insn)3141 next_label (rtx insn)
3142 {
3143   while (insn)
3144     {
3145       insn = NEXT_INSN (insn);
3146       if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3147 	break;
3148     }
3149 
3150   return insn;
3151 }
3152 
3153 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none.  */
3154 
3155 rtx
prev_label(rtx insn)3156 prev_label (rtx insn)
3157 {
3158   while (insn)
3159     {
3160       insn = PREV_INSN (insn);
3161       if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3162 	break;
3163     }
3164 
3165   return insn;
3166 }
3167 
3168 #ifdef HAVE_cc0
3169 /* INSN uses CC0 and is being moved into a delay slot.  Set up REG_CC_SETTER
3170    and REG_CC_USER notes so we can find it.  */
3171 
3172 void
link_cc0_insns(rtx insn)3173 link_cc0_insns (rtx insn)
3174 {
3175   rtx user = next_nonnote_insn (insn);
3176 
3177   if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3178     user = XVECEXP (PATTERN (user), 0, 0);
3179 
3180   REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3181 					REG_NOTES (user));
3182   REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3183 }
3184 
3185 /* Return the next insn that uses CC0 after INSN, which is assumed to
3186    set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3187    applied to the result of this function should yield INSN).
3188 
3189    Normally, this is simply the next insn.  However, if a REG_CC_USER note
3190    is present, it contains the insn that uses CC0.
3191 
3192    Return 0 if we can't find the insn.  */
3193 
3194 rtx
next_cc0_user(rtx insn)3195 next_cc0_user (rtx insn)
3196 {
3197   rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3198 
3199   if (note)
3200     return XEXP (note, 0);
3201 
3202   insn = next_nonnote_insn (insn);
3203   if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3204     insn = XVECEXP (PATTERN (insn), 0, 0);
3205 
3206   if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3207     return insn;
3208 
3209   return 0;
3210 }
3211 
3212 /* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
3213    note, it is the previous insn.  */
3214 
3215 rtx
prev_cc0_setter(rtx insn)3216 prev_cc0_setter (rtx insn)
3217 {
3218   rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3219 
3220   if (note)
3221     return XEXP (note, 0);
3222 
3223   insn = prev_nonnote_insn (insn);
3224   if (! sets_cc0_p (PATTERN (insn)))
3225     abort ();
3226 
3227   return insn;
3228 }
3229 #endif
3230 
3231 /* Increment the label uses for all labels present in rtx.  */
3232 
3233 static void
mark_label_nuses(rtx x)3234 mark_label_nuses (rtx x)
3235 {
3236   enum rtx_code code;
3237   int i, j;
3238   const char *fmt;
3239 
3240   code = GET_CODE (x);
3241   if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3242     LABEL_NUSES (XEXP (x, 0))++;
3243 
3244   fmt = GET_RTX_FORMAT (code);
3245   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3246     {
3247       if (fmt[i] == 'e')
3248 	mark_label_nuses (XEXP (x, i));
3249       else if (fmt[i] == 'E')
3250 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3251 	  mark_label_nuses (XVECEXP (x, i, j));
3252     }
3253 }
3254 
3255 
3256 /* Try splitting insns that can be split for better scheduling.
3257    PAT is the pattern which might split.
3258    TRIAL is the insn providing PAT.
3259    LAST is nonzero if we should return the last insn of the sequence produced.
3260 
3261    If this routine succeeds in splitting, it returns the first or last
3262    replacement insn depending on the value of LAST.  Otherwise, it
3263    returns TRIAL.  If the insn to be returned can be split, it will be.  */
3264 
3265 rtx
try_split(rtx pat,rtx trial,int last)3266 try_split (rtx pat, rtx trial, int last)
3267 {
3268   rtx before = PREV_INSN (trial);
3269   rtx after = NEXT_INSN (trial);
3270   int has_barrier = 0;
3271   rtx tem;
3272   rtx note, seq;
3273   int probability;
3274   rtx insn_last, insn;
3275   int njumps = 0;
3276 
3277   if (any_condjump_p (trial)
3278       && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3279     split_branch_probability = INTVAL (XEXP (note, 0));
3280   probability = split_branch_probability;
3281 
3282   seq = split_insns (pat, trial);
3283 
3284   split_branch_probability = -1;
3285 
3286   /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3287      We may need to handle this specially.  */
3288   if (after && GET_CODE (after) == BARRIER)
3289     {
3290       has_barrier = 1;
3291       after = NEXT_INSN (after);
3292     }
3293 
3294   if (!seq)
3295     return trial;
3296 
3297   /* Avoid infinite loop if any insn of the result matches
3298      the original pattern.  */
3299   insn_last = seq;
3300   while (1)
3301     {
3302       if (INSN_P (insn_last)
3303 	  && rtx_equal_p (PATTERN (insn_last), pat))
3304 	return trial;
3305       if (!NEXT_INSN (insn_last))
3306 	break;
3307       insn_last = NEXT_INSN (insn_last);
3308     }
3309 
3310   /* Mark labels.  */
3311   for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3312     {
3313       if (GET_CODE (insn) == JUMP_INSN)
3314 	{
3315 	  mark_jump_label (PATTERN (insn), insn, 0);
3316 	  njumps++;
3317 	  if (probability != -1
3318 	      && any_condjump_p (insn)
3319 	      && !find_reg_note (insn, REG_BR_PROB, 0))
3320 	    {
3321 	      /* We can preserve the REG_BR_PROB notes only if exactly
3322 		 one jump is created, otherwise the machine description
3323 		 is responsible for this step using
3324 		 split_branch_probability variable.  */
3325 	      if (njumps != 1)
3326 		abort ();
3327 	      REG_NOTES (insn)
3328 		= gen_rtx_EXPR_LIST (REG_BR_PROB,
3329 				     GEN_INT (probability),
3330 				     REG_NOTES (insn));
3331 	    }
3332 	}
3333     }
3334 
3335   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3336      in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it.  */
3337   if (GET_CODE (trial) == CALL_INSN)
3338     {
3339       for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3340 	if (GET_CODE (insn) == CALL_INSN)
3341 	  {
3342 	    rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3343 	    while (*p)
3344 	      p = &XEXP (*p, 1);
3345 	    *p = CALL_INSN_FUNCTION_USAGE (trial);
3346 	    SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3347 	  }
3348     }
3349 
3350   /* Copy notes, particularly those related to the CFG.  */
3351   for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3352     {
3353       switch (REG_NOTE_KIND (note))
3354 	{
3355 	case REG_EH_REGION:
3356 	  insn = insn_last;
3357 	  while (insn != NULL_RTX)
3358 	    {
3359 	      if (GET_CODE (insn) == CALL_INSN
3360 		  || (flag_non_call_exceptions
3361 		      && may_trap_p (PATTERN (insn))))
3362 		REG_NOTES (insn)
3363 		  = gen_rtx_EXPR_LIST (REG_EH_REGION,
3364 				       XEXP (note, 0),
3365 				       REG_NOTES (insn));
3366 	      insn = PREV_INSN (insn);
3367 	    }
3368 	  break;
3369 
3370 	case REG_NORETURN:
3371 	case REG_SETJMP:
3372 	case REG_ALWAYS_RETURN:
3373 	  insn = insn_last;
3374 	  while (insn != NULL_RTX)
3375 	    {
3376 	      if (GET_CODE (insn) == CALL_INSN)
3377 		REG_NOTES (insn)
3378 		  = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3379 				       XEXP (note, 0),
3380 				       REG_NOTES (insn));
3381 	      insn = PREV_INSN (insn);
3382 	    }
3383 	  break;
3384 
3385 	case REG_NON_LOCAL_GOTO:
3386 	  insn = insn_last;
3387 	  while (insn != NULL_RTX)
3388 	    {
3389 	      if (GET_CODE (insn) == JUMP_INSN)
3390 		REG_NOTES (insn)
3391 		  = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3392 				       XEXP (note, 0),
3393 				       REG_NOTES (insn));
3394 	      insn = PREV_INSN (insn);
3395 	    }
3396 	  break;
3397 
3398 	default:
3399 	  break;
3400 	}
3401     }
3402 
3403   /* If there are LABELS inside the split insns increment the
3404      usage count so we don't delete the label.  */
3405   if (GET_CODE (trial) == INSN)
3406     {
3407       insn = insn_last;
3408       while (insn != NULL_RTX)
3409 	{
3410 	  if (GET_CODE (insn) == INSN)
3411 	    mark_label_nuses (PATTERN (insn));
3412 
3413 	  insn = PREV_INSN (insn);
3414 	}
3415     }
3416 
3417   tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3418 
3419   delete_insn (trial);
3420   if (has_barrier)
3421     emit_barrier_after (tem);
3422 
3423   /* Recursively call try_split for each new insn created; by the
3424      time control returns here that insn will be fully split, so
3425      set LAST and continue from the insn after the one returned.
3426      We can't use next_active_insn here since AFTER may be a note.
3427      Ignore deleted insns, which can be occur if not optimizing.  */
3428   for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3429     if (! INSN_DELETED_P (tem) && INSN_P (tem))
3430       tem = try_split (PATTERN (tem), tem, 1);
3431 
3432   /* Return either the first or the last insn, depending on which was
3433      requested.  */
3434   return last
3435     ? (after ? PREV_INSN (after) : last_insn)
3436     : NEXT_INSN (before);
3437 }
3438 
3439 /* Make and return an INSN rtx, initializing all its slots.
3440    Store PATTERN in the pattern slots.  */
3441 
3442 rtx
make_insn_raw(rtx pattern)3443 make_insn_raw (rtx pattern)
3444 {
3445   rtx insn;
3446 
3447   insn = rtx_alloc (INSN);
3448 
3449   INSN_UID (insn) = cur_insn_uid++;
3450   PATTERN (insn) = pattern;
3451   INSN_CODE (insn) = -1;
3452   LOG_LINKS (insn) = NULL;
3453   REG_NOTES (insn) = NULL;
3454   INSN_LOCATOR (insn) = 0;
3455   BLOCK_FOR_INSN (insn) = NULL;
3456 
3457 #ifdef ENABLE_RTL_CHECKING
3458   if (insn
3459       && INSN_P (insn)
3460       && (returnjump_p (insn)
3461 	  || (GET_CODE (insn) == SET
3462 	      && SET_DEST (insn) == pc_rtx)))
3463     {
3464       warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3465       debug_rtx (insn);
3466     }
3467 #endif
3468 
3469   return insn;
3470 }
3471 
3472 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
3473 
3474 static rtx
make_jump_insn_raw(rtx pattern)3475 make_jump_insn_raw (rtx pattern)
3476 {
3477   rtx insn;
3478 
3479   insn = rtx_alloc (JUMP_INSN);
3480   INSN_UID (insn) = cur_insn_uid++;
3481 
3482   PATTERN (insn) = pattern;
3483   INSN_CODE (insn) = -1;
3484   LOG_LINKS (insn) = NULL;
3485   REG_NOTES (insn) = NULL;
3486   JUMP_LABEL (insn) = NULL;
3487   INSN_LOCATOR (insn) = 0;
3488   BLOCK_FOR_INSN (insn) = NULL;
3489 
3490   return insn;
3491 }
3492 
3493 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
3494 
3495 static rtx
make_call_insn_raw(rtx pattern)3496 make_call_insn_raw (rtx pattern)
3497 {
3498   rtx insn;
3499 
3500   insn = rtx_alloc (CALL_INSN);
3501   INSN_UID (insn) = cur_insn_uid++;
3502 
3503   PATTERN (insn) = pattern;
3504   INSN_CODE (insn) = -1;
3505   LOG_LINKS (insn) = NULL;
3506   REG_NOTES (insn) = NULL;
3507   CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3508   INSN_LOCATOR (insn) = 0;
3509   BLOCK_FOR_INSN (insn) = NULL;
3510 
3511   return insn;
3512 }
3513 
3514 /* Add INSN to the end of the doubly-linked list.
3515    INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
3516 
3517 void
add_insn(rtx insn)3518 add_insn (rtx insn)
3519 {
3520   PREV_INSN (insn) = last_insn;
3521   NEXT_INSN (insn) = 0;
3522 
3523   if (NULL != last_insn)
3524     NEXT_INSN (last_insn) = insn;
3525 
3526   if (NULL == first_insn)
3527     first_insn = insn;
3528 
3529   last_insn = insn;
3530 }
3531 
3532 /* Add INSN into the doubly-linked list after insn AFTER.  This and
3533    the next should be the only functions called to insert an insn once
3534    delay slots have been filled since only they know how to update a
3535    SEQUENCE.  */
3536 
3537 void
add_insn_after(rtx insn,rtx after)3538 add_insn_after (rtx insn, rtx after)
3539 {
3540   rtx next = NEXT_INSN (after);
3541   basic_block bb;
3542 
3543   if (optimize && INSN_DELETED_P (after))
3544     abort ();
3545 
3546   NEXT_INSN (insn) = next;
3547   PREV_INSN (insn) = after;
3548 
3549   if (next)
3550     {
3551       PREV_INSN (next) = insn;
3552       if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3553 	PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3554     }
3555   else if (last_insn == after)
3556     last_insn = insn;
3557   else
3558     {
3559       struct sequence_stack *stack = seq_stack;
3560       /* Scan all pending sequences too.  */
3561       for (; stack; stack = stack->next)
3562 	if (after == stack->last)
3563 	  {
3564 	    stack->last = insn;
3565 	    break;
3566 	  }
3567 
3568       if (stack == 0)
3569 	abort ();
3570     }
3571 
3572   if (GET_CODE (after) != BARRIER
3573       && GET_CODE (insn) != BARRIER
3574       && (bb = BLOCK_FOR_INSN (after)))
3575     {
3576       set_block_for_insn (insn, bb);
3577       if (INSN_P (insn))
3578 	bb->flags |= BB_DIRTY;
3579       /* Should not happen as first in the BB is always
3580 	 either NOTE or LABEL.  */
3581       if (BB_END (bb) == after
3582 	  /* Avoid clobbering of structure when creating new BB.  */
3583 	  && GET_CODE (insn) != BARRIER
3584 	  && (GET_CODE (insn) != NOTE
3585 	      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3586 	BB_END (bb) = insn;
3587     }
3588 
3589   NEXT_INSN (after) = insn;
3590   if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3591     {
3592       rtx sequence = PATTERN (after);
3593       NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3594     }
3595 }
3596 
3597 /* Add INSN into the doubly-linked list before insn BEFORE.  This and
3598    the previous should be the only functions called to insert an insn once
3599    delay slots have been filled since only they know how to update a
3600    SEQUENCE.  */
3601 
3602 void
add_insn_before(rtx insn,rtx before)3603 add_insn_before (rtx insn, rtx before)
3604 {
3605   rtx prev = PREV_INSN (before);
3606   basic_block bb;
3607 
3608   if (optimize && INSN_DELETED_P (before))
3609     abort ();
3610 
3611   PREV_INSN (insn) = prev;
3612   NEXT_INSN (insn) = before;
3613 
3614   if (prev)
3615     {
3616       NEXT_INSN (prev) = insn;
3617       if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3618 	{
3619 	  rtx sequence = PATTERN (prev);
3620 	  NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3621 	}
3622     }
3623   else if (first_insn == before)
3624     first_insn = insn;
3625   else
3626     {
3627       struct sequence_stack *stack = seq_stack;
3628       /* Scan all pending sequences too.  */
3629       for (; stack; stack = stack->next)
3630 	if (before == stack->first)
3631 	  {
3632 	    stack->first = insn;
3633 	    break;
3634 	  }
3635 
3636       if (stack == 0)
3637 	abort ();
3638     }
3639 
3640   if (GET_CODE (before) != BARRIER
3641       && GET_CODE (insn) != BARRIER
3642       && (bb = BLOCK_FOR_INSN (before)))
3643     {
3644       set_block_for_insn (insn, bb);
3645       if (INSN_P (insn))
3646 	bb->flags |= BB_DIRTY;
3647       /* Should not happen as first in the BB is always
3648 	 either NOTE or LABEl.  */
3649       if (BB_HEAD (bb) == insn
3650 	  /* Avoid clobbering of structure when creating new BB.  */
3651 	  && GET_CODE (insn) != BARRIER
3652 	  && (GET_CODE (insn) != NOTE
3653 	      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3654 	abort ();
3655     }
3656 
3657   PREV_INSN (before) = insn;
3658   if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3659     PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3660 }
3661 
3662 /* Remove an insn from its doubly-linked list.  This function knows how
3663    to handle sequences.  */
3664 void
remove_insn(rtx insn)3665 remove_insn (rtx insn)
3666 {
3667   rtx next = NEXT_INSN (insn);
3668   rtx prev = PREV_INSN (insn);
3669   basic_block bb;
3670 
3671   if (prev)
3672     {
3673       NEXT_INSN (prev) = next;
3674       if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3675 	{
3676 	  rtx sequence = PATTERN (prev);
3677 	  NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3678 	}
3679     }
3680   else if (first_insn == insn)
3681     first_insn = next;
3682   else
3683     {
3684       struct sequence_stack *stack = seq_stack;
3685       /* Scan all pending sequences too.  */
3686       for (; stack; stack = stack->next)
3687 	if (insn == stack->first)
3688 	  {
3689 	    stack->first = next;
3690 	    break;
3691 	  }
3692 
3693       if (stack == 0)
3694 	abort ();
3695     }
3696 
3697   if (next)
3698     {
3699       PREV_INSN (next) = prev;
3700       if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3701 	PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3702     }
3703   else if (last_insn == insn)
3704     last_insn = prev;
3705   else
3706     {
3707       struct sequence_stack *stack = seq_stack;
3708       /* Scan all pending sequences too.  */
3709       for (; stack; stack = stack->next)
3710 	if (insn == stack->last)
3711 	  {
3712 	    stack->last = prev;
3713 	    break;
3714 	  }
3715 
3716       if (stack == 0)
3717 	abort ();
3718     }
3719   if (GET_CODE (insn) != BARRIER
3720       && (bb = BLOCK_FOR_INSN (insn)))
3721     {
3722       if (INSN_P (insn))
3723 	bb->flags |= BB_DIRTY;
3724       if (BB_HEAD (bb) == insn)
3725 	{
3726 	  /* Never ever delete the basic block note without deleting whole
3727 	     basic block.  */
3728 	  if (GET_CODE (insn) == NOTE)
3729 	    abort ();
3730 	  BB_HEAD (bb) = next;
3731 	}
3732       if (BB_END (bb) == insn)
3733 	BB_END (bb) = prev;
3734     }
3735 }
3736 
3737 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
3738 
3739 void
add_function_usage_to(rtx call_insn,rtx call_fusage)3740 add_function_usage_to (rtx call_insn, rtx call_fusage)
3741 {
3742   if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3743     abort ();
3744 
3745   /* Put the register usage information on the CALL.  If there is already
3746      some usage information, put ours at the end.  */
3747   if (CALL_INSN_FUNCTION_USAGE (call_insn))
3748     {
3749       rtx link;
3750 
3751       for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3752 	   link = XEXP (link, 1))
3753 	;
3754 
3755       XEXP (link, 1) = call_fusage;
3756     }
3757   else
3758     CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3759 }
3760 
3761 /* Delete all insns made since FROM.
3762    FROM becomes the new last instruction.  */
3763 
3764 void
delete_insns_since(rtx from)3765 delete_insns_since (rtx from)
3766 {
3767   if (from == 0)
3768     first_insn = 0;
3769   else
3770     NEXT_INSN (from) = 0;
3771   last_insn = from;
3772 }
3773 
3774 /* This function is deprecated, please use sequences instead.
3775 
3776    Move a consecutive bunch of insns to a different place in the chain.
3777    The insns to be moved are those between FROM and TO.
3778    They are moved to a new position after the insn AFTER.
3779    AFTER must not be FROM or TO or any insn in between.
3780 
3781    This function does not know about SEQUENCEs and hence should not be
3782    called after delay-slot filling has been done.  */
3783 
3784 void
reorder_insns_nobb(rtx from,rtx to,rtx after)3785 reorder_insns_nobb (rtx from, rtx to, rtx after)
3786 {
3787   /* Splice this bunch out of where it is now.  */
3788   if (PREV_INSN (from))
3789     NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3790   if (NEXT_INSN (to))
3791     PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3792   if (last_insn == to)
3793     last_insn = PREV_INSN (from);
3794   if (first_insn == from)
3795     first_insn = NEXT_INSN (to);
3796 
3797   /* Make the new neighbors point to it and it to them.  */
3798   if (NEXT_INSN (after))
3799     PREV_INSN (NEXT_INSN (after)) = to;
3800 
3801   NEXT_INSN (to) = NEXT_INSN (after);
3802   PREV_INSN (from) = after;
3803   NEXT_INSN (after) = from;
3804   if (after == last_insn)
3805     last_insn = to;
3806 }
3807 
3808 /* Same as function above, but take care to update BB boundaries.  */
3809 void
reorder_insns(rtx from,rtx to,rtx after)3810 reorder_insns (rtx from, rtx to, rtx after)
3811 {
3812   rtx prev = PREV_INSN (from);
3813   basic_block bb, bb2;
3814 
3815   reorder_insns_nobb (from, to, after);
3816 
3817   if (GET_CODE (after) != BARRIER
3818       && (bb = BLOCK_FOR_INSN (after)))
3819     {
3820       rtx x;
3821       bb->flags |= BB_DIRTY;
3822 
3823       if (GET_CODE (from) != BARRIER
3824 	  && (bb2 = BLOCK_FOR_INSN (from)))
3825 	{
3826 	  if (BB_END (bb2) == to)
3827 	    BB_END (bb2) = prev;
3828 	  bb2->flags |= BB_DIRTY;
3829 	}
3830 
3831       if (BB_END (bb) == after)
3832 	BB_END (bb) = to;
3833 
3834       for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3835 	set_block_for_insn (x, bb);
3836     }
3837 }
3838 
3839 /* Return the line note insn preceding INSN.  */
3840 
3841 static rtx
find_line_note(rtx insn)3842 find_line_note (rtx insn)
3843 {
3844   if (no_line_numbers)
3845     return 0;
3846 
3847   for (; insn; insn = PREV_INSN (insn))
3848     if (GET_CODE (insn) == NOTE
3849 	&& NOTE_LINE_NUMBER (insn) >= 0)
3850       break;
3851 
3852   return insn;
3853 }
3854 
3855 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3856    of the moved insns when debugging.  This may insert a note between AFTER
3857    and FROM, and another one after TO.  */
3858 
3859 void
reorder_insns_with_line_notes(rtx from,rtx to,rtx after)3860 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3861 {
3862   rtx from_line = find_line_note (from);
3863   rtx after_line = find_line_note (after);
3864 
3865   reorder_insns (from, to, after);
3866 
3867   if (from_line == after_line)
3868     return;
3869 
3870   if (from_line)
3871     emit_note_copy_after (from_line, after);
3872   if (after_line)
3873     emit_note_copy_after (after_line, to);
3874 }
3875 
3876 /* Remove unnecessary notes from the instruction stream.  */
3877 
3878 void
remove_unnecessary_notes(void)3879 remove_unnecessary_notes (void)
3880 {
3881   rtx block_stack = NULL_RTX;
3882   rtx eh_stack = NULL_RTX;
3883   rtx insn;
3884   rtx next;
3885   rtx tmp;
3886 
3887   /* We must not remove the first instruction in the function because
3888      the compiler depends on the first instruction being a note.  */
3889   for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3890     {
3891       /* Remember what's next.  */
3892       next = NEXT_INSN (insn);
3893 
3894       /* We're only interested in notes.  */
3895       if (GET_CODE (insn) != NOTE)
3896 	continue;
3897 
3898       switch (NOTE_LINE_NUMBER (insn))
3899 	{
3900 	case NOTE_INSN_DELETED:
3901 	case NOTE_INSN_LOOP_END_TOP_COND:
3902 	  remove_insn (insn);
3903 	  break;
3904 
3905 	case NOTE_INSN_EH_REGION_BEG:
3906 	  eh_stack = alloc_INSN_LIST (insn, eh_stack);
3907 	  break;
3908 
3909 	case NOTE_INSN_EH_REGION_END:
3910 	  /* Too many end notes.  */
3911 	  if (eh_stack == NULL_RTX)
3912 	    abort ();
3913 	  /* Mismatched nesting.  */
3914 	  if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3915 	    abort ();
3916 	  tmp = eh_stack;
3917 	  eh_stack = XEXP (eh_stack, 1);
3918 	  free_INSN_LIST_node (tmp);
3919 	  break;
3920 
3921 	case NOTE_INSN_BLOCK_BEG:
3922 	  /* By now, all notes indicating lexical blocks should have
3923 	     NOTE_BLOCK filled in.  */
3924 	  if (NOTE_BLOCK (insn) == NULL_TREE)
3925 	    abort ();
3926 	  block_stack = alloc_INSN_LIST (insn, block_stack);
3927 	  break;
3928 
3929 	case NOTE_INSN_BLOCK_END:
3930 	  /* Too many end notes.  */
3931 	  if (block_stack == NULL_RTX)
3932 	    abort ();
3933 	  /* Mismatched nesting.  */
3934 	  if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3935 	    abort ();
3936 	  tmp = block_stack;
3937 	  block_stack = XEXP (block_stack, 1);
3938 	  free_INSN_LIST_node (tmp);
3939 
3940 	  /* Scan back to see if there are any non-note instructions
3941 	     between INSN and the beginning of this block.  If not,
3942 	     then there is no PC range in the generated code that will
3943 	     actually be in this block, so there's no point in
3944 	     remembering the existence of the block.  */
3945 	  for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3946 	    {
3947 	      /* This block contains a real instruction.  Note that we
3948 		 don't include labels; if the only thing in the block
3949 		 is a label, then there are still no PC values that
3950 		 lie within the block.  */
3951 	      if (INSN_P (tmp))
3952 		break;
3953 
3954 	      /* We're only interested in NOTEs.  */
3955 	      if (GET_CODE (tmp) != NOTE)
3956 		continue;
3957 
3958 	      if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3959 		{
3960 		  /* We just verified that this BLOCK matches us with
3961 		     the block_stack check above.  Never delete the
3962 		     BLOCK for the outermost scope of the function; we
3963 		     can refer to names from that scope even if the
3964 		     block notes are messed up.  */
3965 		  if (! is_body_block (NOTE_BLOCK (insn))
3966 		      && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3967 		    {
3968 		      remove_insn (tmp);
3969 		      remove_insn (insn);
3970 		    }
3971 		  break;
3972 		}
3973 	      else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3974 		/* There's a nested block.  We need to leave the
3975 		   current block in place since otherwise the debugger
3976 		   wouldn't be able to show symbols from our block in
3977 		   the nested block.  */
3978 		break;
3979 	    }
3980 	}
3981     }
3982 
3983   /* Too many begin notes.  */
3984   if (block_stack || eh_stack)
3985     abort ();
3986 }
3987 
3988 
3989 /* Emit insn(s) of given code and pattern
3990    at a specified place within the doubly-linked list.
3991 
3992    All of the emit_foo global entry points accept an object
3993    X which is either an insn list or a PATTERN of a single
3994    instruction.
3995 
3996    There are thus a few canonical ways to generate code and
3997    emit it at a specific place in the instruction stream.  For
3998    example, consider the instruction named SPOT and the fact that
3999    we would like to emit some instructions before SPOT.  We might
4000    do it like this:
4001 
4002 	start_sequence ();
4003 	... emit the new instructions ...
4004 	insns_head = get_insns ();
4005 	end_sequence ();
4006 
4007 	emit_insn_before (insns_head, SPOT);
4008 
4009    It used to be common to generate SEQUENCE rtl instead, but that
4010    is a relic of the past which no longer occurs.  The reason is that
4011    SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4012    generated would almost certainly die right after it was created.  */
4013 
4014 /* Make X be output before the instruction BEFORE.  */
4015 
4016 rtx
emit_insn_before_noloc(rtx x,rtx before)4017 emit_insn_before_noloc (rtx x, rtx before)
4018 {
4019   rtx last = before;
4020   rtx insn;
4021 
4022 #ifdef ENABLE_RTL_CHECKING
4023   if (before == NULL_RTX)
4024     abort ();
4025 #endif
4026 
4027   if (x == NULL_RTX)
4028     return last;
4029 
4030   switch (GET_CODE (x))
4031     {
4032     case INSN:
4033     case JUMP_INSN:
4034     case CALL_INSN:
4035     case CODE_LABEL:
4036     case BARRIER:
4037     case NOTE:
4038       insn = x;
4039       while (insn)
4040 	{
4041 	  rtx next = NEXT_INSN (insn);
4042 	  add_insn_before (insn, before);
4043 	  last = insn;
4044 	  insn = next;
4045 	}
4046       break;
4047 
4048 #ifdef ENABLE_RTL_CHECKING
4049     case SEQUENCE:
4050       abort ();
4051       break;
4052 #endif
4053 
4054     default:
4055       last = make_insn_raw (x);
4056       add_insn_before (last, before);
4057       break;
4058     }
4059 
4060   return last;
4061 }
4062 
4063 /* Make an instruction with body X and code JUMP_INSN
4064    and output it before the instruction BEFORE.  */
4065 
4066 rtx
emit_jump_insn_before_noloc(rtx x,rtx before)4067 emit_jump_insn_before_noloc (rtx x, rtx before)
4068 {
4069   rtx insn, last = NULL_RTX;
4070 
4071 #ifdef ENABLE_RTL_CHECKING
4072   if (before == NULL_RTX)
4073     abort ();
4074 #endif
4075 
4076   switch (GET_CODE (x))
4077     {
4078     case INSN:
4079     case JUMP_INSN:
4080     case CALL_INSN:
4081     case CODE_LABEL:
4082     case BARRIER:
4083     case NOTE:
4084       insn = x;
4085       while (insn)
4086 	{
4087 	  rtx next = NEXT_INSN (insn);
4088 	  add_insn_before (insn, before);
4089 	  last = insn;
4090 	  insn = next;
4091 	}
4092       break;
4093 
4094 #ifdef ENABLE_RTL_CHECKING
4095     case SEQUENCE:
4096       abort ();
4097       break;
4098 #endif
4099 
4100     default:
4101       last = make_jump_insn_raw (x);
4102       add_insn_before (last, before);
4103       break;
4104     }
4105 
4106   return last;
4107 }
4108 
4109 /* Make an instruction with body X and code CALL_INSN
4110    and output it before the instruction BEFORE.  */
4111 
4112 rtx
emit_call_insn_before_noloc(rtx x,rtx before)4113 emit_call_insn_before_noloc (rtx x, rtx before)
4114 {
4115   rtx last = NULL_RTX, insn;
4116 
4117 #ifdef ENABLE_RTL_CHECKING
4118   if (before == NULL_RTX)
4119     abort ();
4120 #endif
4121 
4122   switch (GET_CODE (x))
4123     {
4124     case INSN:
4125     case JUMP_INSN:
4126     case CALL_INSN:
4127     case CODE_LABEL:
4128     case BARRIER:
4129     case NOTE:
4130       insn = x;
4131       while (insn)
4132 	{
4133 	  rtx next = NEXT_INSN (insn);
4134 	  add_insn_before (insn, before);
4135 	  last = insn;
4136 	  insn = next;
4137 	}
4138       break;
4139 
4140 #ifdef ENABLE_RTL_CHECKING
4141     case SEQUENCE:
4142       abort ();
4143       break;
4144 #endif
4145 
4146     default:
4147       last = make_call_insn_raw (x);
4148       add_insn_before (last, before);
4149       break;
4150     }
4151 
4152   return last;
4153 }
4154 
4155 /* Make an insn of code BARRIER
4156    and output it before the insn BEFORE.  */
4157 
4158 rtx
emit_barrier_before(rtx before)4159 emit_barrier_before (rtx before)
4160 {
4161   rtx insn = rtx_alloc (BARRIER);
4162 
4163   INSN_UID (insn) = cur_insn_uid++;
4164 
4165   add_insn_before (insn, before);
4166   return insn;
4167 }
4168 
4169 /* Emit the label LABEL before the insn BEFORE.  */
4170 
4171 rtx
emit_label_before(rtx label,rtx before)4172 emit_label_before (rtx label, rtx before)
4173 {
4174   /* This can be called twice for the same label as a result of the
4175      confusion that follows a syntax error!  So make it harmless.  */
4176   if (INSN_UID (label) == 0)
4177     {
4178       INSN_UID (label) = cur_insn_uid++;
4179       add_insn_before (label, before);
4180     }
4181 
4182   return label;
4183 }
4184 
4185 /* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
4186 
4187 rtx
emit_note_before(int subtype,rtx before)4188 emit_note_before (int subtype, rtx before)
4189 {
4190   rtx note = rtx_alloc (NOTE);
4191   INSN_UID (note) = cur_insn_uid++;
4192   NOTE_SOURCE_FILE (note) = 0;
4193   NOTE_LINE_NUMBER (note) = subtype;
4194   BLOCK_FOR_INSN (note) = NULL;
4195 
4196   add_insn_before (note, before);
4197   return note;
4198 }
4199 
4200 /* Helper for emit_insn_after, handles lists of instructions
4201    efficiently.  */
4202 
4203 static rtx emit_insn_after_1 (rtx, rtx);
4204 
4205 static rtx
emit_insn_after_1(rtx first,rtx after)4206 emit_insn_after_1 (rtx first, rtx after)
4207 {
4208   rtx last;
4209   rtx after_after;
4210   basic_block bb;
4211 
4212   if (GET_CODE (after) != BARRIER
4213       && (bb = BLOCK_FOR_INSN (after)))
4214     {
4215       bb->flags |= BB_DIRTY;
4216       for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4217 	if (GET_CODE (last) != BARRIER)
4218 	  set_block_for_insn (last, bb);
4219       if (GET_CODE (last) != BARRIER)
4220 	set_block_for_insn (last, bb);
4221       if (BB_END (bb) == after)
4222 	BB_END (bb) = last;
4223     }
4224   else
4225     for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4226       continue;
4227 
4228   after_after = NEXT_INSN (after);
4229 
4230   NEXT_INSN (after) = first;
4231   PREV_INSN (first) = after;
4232   NEXT_INSN (last) = after_after;
4233   if (after_after)
4234     PREV_INSN (after_after) = last;
4235 
4236   if (after == last_insn)
4237     last_insn = last;
4238   return last;
4239 }
4240 
4241 /* Make X be output after the insn AFTER.  */
4242 
4243 rtx
emit_insn_after_noloc(rtx x,rtx after)4244 emit_insn_after_noloc (rtx x, rtx after)
4245 {
4246   rtx last = after;
4247 
4248 #ifdef ENABLE_RTL_CHECKING
4249   if (after == NULL_RTX)
4250     abort ();
4251 #endif
4252 
4253   if (x == NULL_RTX)
4254     return last;
4255 
4256   switch (GET_CODE (x))
4257     {
4258     case INSN:
4259     case JUMP_INSN:
4260     case CALL_INSN:
4261     case CODE_LABEL:
4262     case BARRIER:
4263     case NOTE:
4264       last = emit_insn_after_1 (x, after);
4265       break;
4266 
4267 #ifdef ENABLE_RTL_CHECKING
4268     case SEQUENCE:
4269       abort ();
4270       break;
4271 #endif
4272 
4273     default:
4274       last = make_insn_raw (x);
4275       add_insn_after (last, after);
4276       break;
4277     }
4278 
4279   return last;
4280 }
4281 
4282 /* Similar to emit_insn_after, except that line notes are to be inserted so
4283    as to act as if this insn were at FROM.  */
4284 
4285 void
emit_insn_after_with_line_notes(rtx x,rtx after,rtx from)4286 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4287 {
4288   rtx from_line = find_line_note (from);
4289   rtx after_line = find_line_note (after);
4290   rtx insn = emit_insn_after (x, after);
4291 
4292   if (from_line)
4293     emit_note_copy_after (from_line, after);
4294 
4295   if (after_line)
4296     emit_note_copy_after (after_line, insn);
4297 }
4298 
4299 /* Make an insn of code JUMP_INSN with body X
4300    and output it after the insn AFTER.  */
4301 
4302 rtx
emit_jump_insn_after_noloc(rtx x,rtx after)4303 emit_jump_insn_after_noloc (rtx x, rtx after)
4304 {
4305   rtx last;
4306 
4307 #ifdef ENABLE_RTL_CHECKING
4308   if (after == NULL_RTX)
4309     abort ();
4310 #endif
4311 
4312   switch (GET_CODE (x))
4313     {
4314     case INSN:
4315     case JUMP_INSN:
4316     case CALL_INSN:
4317     case CODE_LABEL:
4318     case BARRIER:
4319     case NOTE:
4320       last = emit_insn_after_1 (x, after);
4321       break;
4322 
4323 #ifdef ENABLE_RTL_CHECKING
4324     case SEQUENCE:
4325       abort ();
4326       break;
4327 #endif
4328 
4329     default:
4330       last = make_jump_insn_raw (x);
4331       add_insn_after (last, after);
4332       break;
4333     }
4334 
4335   return last;
4336 }
4337 
4338 /* Make an instruction with body X and code CALL_INSN
4339    and output it after the instruction AFTER.  */
4340 
4341 rtx
emit_call_insn_after_noloc(rtx x,rtx after)4342 emit_call_insn_after_noloc (rtx x, rtx after)
4343 {
4344   rtx last;
4345 
4346 #ifdef ENABLE_RTL_CHECKING
4347   if (after == NULL_RTX)
4348     abort ();
4349 #endif
4350 
4351   switch (GET_CODE (x))
4352     {
4353     case INSN:
4354     case JUMP_INSN:
4355     case CALL_INSN:
4356     case CODE_LABEL:
4357     case BARRIER:
4358     case NOTE:
4359       last = emit_insn_after_1 (x, after);
4360       break;
4361 
4362 #ifdef ENABLE_RTL_CHECKING
4363     case SEQUENCE:
4364       abort ();
4365       break;
4366 #endif
4367 
4368     default:
4369       last = make_call_insn_raw (x);
4370       add_insn_after (last, after);
4371       break;
4372     }
4373 
4374   return last;
4375 }
4376 
4377 /* Make an insn of code BARRIER
4378    and output it after the insn AFTER.  */
4379 
4380 rtx
emit_barrier_after(rtx after)4381 emit_barrier_after (rtx after)
4382 {
4383   rtx insn = rtx_alloc (BARRIER);
4384 
4385   INSN_UID (insn) = cur_insn_uid++;
4386 
4387   add_insn_after (insn, after);
4388   return insn;
4389 }
4390 
4391 /* Emit the label LABEL after the insn AFTER.  */
4392 
4393 rtx
emit_label_after(rtx label,rtx after)4394 emit_label_after (rtx label, rtx after)
4395 {
4396   /* This can be called twice for the same label
4397      as a result of the confusion that follows a syntax error!
4398      So make it harmless.  */
4399   if (INSN_UID (label) == 0)
4400     {
4401       INSN_UID (label) = cur_insn_uid++;
4402       add_insn_after (label, after);
4403     }
4404 
4405   return label;
4406 }
4407 
4408 /* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4409 
4410 rtx
emit_note_after(int subtype,rtx after)4411 emit_note_after (int subtype, rtx after)
4412 {
4413   rtx note = rtx_alloc (NOTE);
4414   INSN_UID (note) = cur_insn_uid++;
4415   NOTE_SOURCE_FILE (note) = 0;
4416   NOTE_LINE_NUMBER (note) = subtype;
4417   BLOCK_FOR_INSN (note) = NULL;
4418   add_insn_after (note, after);
4419   return note;
4420 }
4421 
4422 /* Emit a copy of note ORIG after the insn AFTER.  */
4423 
4424 rtx
emit_note_copy_after(rtx orig,rtx after)4425 emit_note_copy_after (rtx orig, rtx after)
4426 {
4427   rtx note;
4428 
4429   if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4430     {
4431       cur_insn_uid++;
4432       return 0;
4433     }
4434 
4435   note = rtx_alloc (NOTE);
4436   INSN_UID (note) = cur_insn_uid++;
4437   NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4438   NOTE_DATA (note) = NOTE_DATA (orig);
4439   BLOCK_FOR_INSN (note) = NULL;
4440   add_insn_after (note, after);
4441   return note;
4442 }
4443 
4444 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4445 rtx
emit_insn_after_setloc(rtx pattern,rtx after,int loc)4446 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4447 {
4448   rtx last = emit_insn_after_noloc (pattern, after);
4449 
4450   if (pattern == NULL_RTX || !loc)
4451     return last;
4452 
4453   after = NEXT_INSN (after);
4454   while (1)
4455     {
4456       if (active_insn_p (after) && !INSN_LOCATOR (after))
4457 	INSN_LOCATOR (after) = loc;
4458       if (after == last)
4459 	break;
4460       after = NEXT_INSN (after);
4461     }
4462   return last;
4463 }
4464 
4465 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4466 rtx
emit_insn_after(rtx pattern,rtx after)4467 emit_insn_after (rtx pattern, rtx after)
4468 {
4469   if (INSN_P (after))
4470     return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4471   else
4472     return emit_insn_after_noloc (pattern, after);
4473 }
4474 
4475 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4476 rtx
emit_jump_insn_after_setloc(rtx pattern,rtx after,int loc)4477 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4478 {
4479   rtx last = emit_jump_insn_after_noloc (pattern, after);
4480 
4481   if (pattern == NULL_RTX || !loc)
4482     return last;
4483 
4484   after = NEXT_INSN (after);
4485   while (1)
4486     {
4487       if (active_insn_p (after) && !INSN_LOCATOR (after))
4488 	INSN_LOCATOR (after) = loc;
4489       if (after == last)
4490 	break;
4491       after = NEXT_INSN (after);
4492     }
4493   return last;
4494 }
4495 
4496 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4497 rtx
emit_jump_insn_after(rtx pattern,rtx after)4498 emit_jump_insn_after (rtx pattern, rtx after)
4499 {
4500   if (INSN_P (after))
4501     return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4502   else
4503     return emit_jump_insn_after_noloc (pattern, after);
4504 }
4505 
4506 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4507 rtx
emit_call_insn_after_setloc(rtx pattern,rtx after,int loc)4508 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4509 {
4510   rtx last = emit_call_insn_after_noloc (pattern, after);
4511 
4512   if (pattern == NULL_RTX || !loc)
4513     return last;
4514 
4515   after = NEXT_INSN (after);
4516   while (1)
4517     {
4518       if (active_insn_p (after) && !INSN_LOCATOR (after))
4519 	INSN_LOCATOR (after) = loc;
4520       if (after == last)
4521 	break;
4522       after = NEXT_INSN (after);
4523     }
4524   return last;
4525 }
4526 
4527 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4528 rtx
emit_call_insn_after(rtx pattern,rtx after)4529 emit_call_insn_after (rtx pattern, rtx after)
4530 {
4531   if (INSN_P (after))
4532     return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4533   else
4534     return emit_call_insn_after_noloc (pattern, after);
4535 }
4536 
4537 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE.  */
4538 rtx
emit_insn_before_setloc(rtx pattern,rtx before,int loc)4539 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4540 {
4541   rtx first = PREV_INSN (before);
4542   rtx last = emit_insn_before_noloc (pattern, before);
4543 
4544   if (pattern == NULL_RTX || !loc)
4545     return last;
4546 
4547   first = NEXT_INSN (first);
4548   while (1)
4549     {
4550       if (active_insn_p (first) && !INSN_LOCATOR (first))
4551 	INSN_LOCATOR (first) = loc;
4552       if (first == last)
4553 	break;
4554       first = NEXT_INSN (first);
4555     }
4556   return last;
4557 }
4558 
4559 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4560 rtx
emit_insn_before(rtx pattern,rtx before)4561 emit_insn_before (rtx pattern, rtx before)
4562 {
4563   if (INSN_P (before))
4564     return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4565   else
4566     return emit_insn_before_noloc (pattern, before);
4567 }
4568 
4569 /* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4570 rtx
emit_jump_insn_before_setloc(rtx pattern,rtx before,int loc)4571 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4572 {
4573   rtx first = PREV_INSN (before);
4574   rtx last = emit_jump_insn_before_noloc (pattern, before);
4575 
4576   if (pattern == NULL_RTX)
4577     return last;
4578 
4579   first = NEXT_INSN (first);
4580   while (1)
4581     {
4582       if (active_insn_p (first) && !INSN_LOCATOR (first))
4583 	INSN_LOCATOR (first) = loc;
4584       if (first == last)
4585 	break;
4586       first = NEXT_INSN (first);
4587     }
4588   return last;
4589 }
4590 
4591 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4592 rtx
emit_jump_insn_before(rtx pattern,rtx before)4593 emit_jump_insn_before (rtx pattern, rtx before)
4594 {
4595   if (INSN_P (before))
4596     return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4597   else
4598     return emit_jump_insn_before_noloc (pattern, before);
4599 }
4600 
4601 /* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4602 rtx
emit_call_insn_before_setloc(rtx pattern,rtx before,int loc)4603 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4604 {
4605   rtx first = PREV_INSN (before);
4606   rtx last = emit_call_insn_before_noloc (pattern, before);
4607 
4608   if (pattern == NULL_RTX)
4609     return last;
4610 
4611   first = NEXT_INSN (first);
4612   while (1)
4613     {
4614       if (active_insn_p (first) && !INSN_LOCATOR (first))
4615 	INSN_LOCATOR (first) = loc;
4616       if (first == last)
4617 	break;
4618       first = NEXT_INSN (first);
4619     }
4620   return last;
4621 }
4622 
4623 /* like emit_call_insn_before_noloc,
4624    but set insn_locator according to before.  */
4625 rtx
emit_call_insn_before(rtx pattern,rtx before)4626 emit_call_insn_before (rtx pattern, rtx before)
4627 {
4628   if (INSN_P (before))
4629     return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4630   else
4631     return emit_call_insn_before_noloc (pattern, before);
4632 }
4633 
4634 /* Take X and emit it at the end of the doubly-linked
4635    INSN list.
4636 
4637    Returns the last insn emitted.  */
4638 
4639 rtx
emit_insn(rtx x)4640 emit_insn (rtx x)
4641 {
4642   rtx last = last_insn;
4643   rtx insn;
4644 
4645   if (x == NULL_RTX)
4646     return last;
4647 
4648   switch (GET_CODE (x))
4649     {
4650     case INSN:
4651     case JUMP_INSN:
4652     case CALL_INSN:
4653     case CODE_LABEL:
4654     case BARRIER:
4655     case NOTE:
4656       insn = x;
4657       while (insn)
4658 	{
4659 	  rtx next = NEXT_INSN (insn);
4660 	  add_insn (insn);
4661 	  last = insn;
4662 	  insn = next;
4663 	}
4664       break;
4665 
4666 #ifdef ENABLE_RTL_CHECKING
4667     case SEQUENCE:
4668       abort ();
4669       break;
4670 #endif
4671 
4672     default:
4673       last = make_insn_raw (x);
4674       add_insn (last);
4675       break;
4676     }
4677 
4678   return last;
4679 }
4680 
4681 /* Make an insn of code JUMP_INSN with pattern X
4682    and add it to the end of the doubly-linked list.  */
4683 
4684 rtx
emit_jump_insn(rtx x)4685 emit_jump_insn (rtx x)
4686 {
4687   rtx last = NULL_RTX, insn;
4688 
4689   switch (GET_CODE (x))
4690     {
4691     case INSN:
4692     case JUMP_INSN:
4693     case CALL_INSN:
4694     case CODE_LABEL:
4695     case BARRIER:
4696     case NOTE:
4697       insn = x;
4698       while (insn)
4699 	{
4700 	  rtx next = NEXT_INSN (insn);
4701 	  add_insn (insn);
4702 	  last = insn;
4703 	  insn = next;
4704 	}
4705       break;
4706 
4707 #ifdef ENABLE_RTL_CHECKING
4708     case SEQUENCE:
4709       abort ();
4710       break;
4711 #endif
4712 
4713     default:
4714       last = make_jump_insn_raw (x);
4715       add_insn (last);
4716       break;
4717     }
4718 
4719   return last;
4720 }
4721 
4722 /* Make an insn of code CALL_INSN with pattern X
4723    and add it to the end of the doubly-linked list.  */
4724 
4725 rtx
emit_call_insn(rtx x)4726 emit_call_insn (rtx x)
4727 {
4728   rtx insn;
4729 
4730   switch (GET_CODE (x))
4731     {
4732     case INSN:
4733     case JUMP_INSN:
4734     case CALL_INSN:
4735     case CODE_LABEL:
4736     case BARRIER:
4737     case NOTE:
4738       insn = emit_insn (x);
4739       break;
4740 
4741 #ifdef ENABLE_RTL_CHECKING
4742     case SEQUENCE:
4743       abort ();
4744       break;
4745 #endif
4746 
4747     default:
4748       insn = make_call_insn_raw (x);
4749       add_insn (insn);
4750       break;
4751     }
4752 
4753   return insn;
4754 }
4755 
4756 /* Add the label LABEL to the end of the doubly-linked list.  */
4757 
4758 rtx
emit_label(rtx label)4759 emit_label (rtx label)
4760 {
4761   /* This can be called twice for the same label
4762      as a result of the confusion that follows a syntax error!
4763      So make it harmless.  */
4764   if (INSN_UID (label) == 0)
4765     {
4766       INSN_UID (label) = cur_insn_uid++;
4767       add_insn (label);
4768     }
4769   return label;
4770 }
4771 
4772 /* Make an insn of code BARRIER
4773    and add it to the end of the doubly-linked list.  */
4774 
4775 rtx
emit_barrier(void)4776 emit_barrier (void)
4777 {
4778   rtx barrier = rtx_alloc (BARRIER);
4779   INSN_UID (barrier) = cur_insn_uid++;
4780   add_insn (barrier);
4781   return barrier;
4782 }
4783 
4784 /* Make line numbering NOTE insn for LOCATION add it to the end
4785    of the doubly-linked list, but only if line-numbers are desired for
4786    debugging info and it doesn't match the previous one.  */
4787 
4788 rtx
emit_line_note(location_t location)4789 emit_line_note (location_t location)
4790 {
4791   rtx note;
4792 
4793   set_file_and_line_for_stmt (location);
4794 
4795   if (location.file && last_location.file
4796       && !strcmp (location.file, last_location.file)
4797       && location.line == last_location.line)
4798     return NULL_RTX;
4799   last_location = location;
4800 
4801   if (no_line_numbers)
4802     {
4803       cur_insn_uid++;
4804       return NULL_RTX;
4805     }
4806 
4807   note = emit_note (location.line);
4808   NOTE_SOURCE_FILE (note) = location.file;
4809 
4810   return note;
4811 }
4812 
4813 /* Emit a copy of note ORIG.  */
4814 
4815 rtx
emit_note_copy(rtx orig)4816 emit_note_copy (rtx orig)
4817 {
4818   rtx note;
4819 
4820   if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4821     {
4822       cur_insn_uid++;
4823       return NULL_RTX;
4824     }
4825 
4826   note = rtx_alloc (NOTE);
4827 
4828   INSN_UID (note) = cur_insn_uid++;
4829   NOTE_DATA (note) = NOTE_DATA (orig);
4830   NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4831   BLOCK_FOR_INSN (note) = NULL;
4832   add_insn (note);
4833 
4834   return note;
4835 }
4836 
4837 /* Make an insn of code NOTE or type NOTE_NO
4838    and add it to the end of the doubly-linked list.  */
4839 
4840 rtx
emit_note(int note_no)4841 emit_note (int note_no)
4842 {
4843   rtx note;
4844 
4845   note = rtx_alloc (NOTE);
4846   INSN_UID (note) = cur_insn_uid++;
4847   NOTE_LINE_NUMBER (note) = note_no;
4848   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4849   BLOCK_FOR_INSN (note) = NULL;
4850   add_insn (note);
4851   return note;
4852 }
4853 
4854 /* Cause next statement to emit a line note even if the line number
4855    has not changed.  */
4856 
4857 void
force_next_line_note(void)4858 force_next_line_note (void)
4859 {
4860   last_location.line = -1;
4861 }
4862 
4863 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4864    note of this type already exists, remove it first.  */
4865 
4866 rtx
set_unique_reg_note(rtx insn,enum reg_note kind,rtx datum)4867 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4868 {
4869   rtx note = find_reg_note (insn, kind, NULL_RTX);
4870 
4871   switch (kind)
4872     {
4873     case REG_EQUAL:
4874     case REG_EQUIV:
4875       /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4876 	 has multiple sets (some callers assume single_set
4877 	 means the insn only has one set, when in fact it
4878 	 means the insn only has one * useful * set).  */
4879       if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4880 	{
4881 	  if (note)
4882 	    abort ();
4883 	  return NULL_RTX;
4884 	}
4885 
4886       /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4887 	 It serves no useful purpose and breaks eliminate_regs.  */
4888       if (GET_CODE (datum) == ASM_OPERANDS)
4889 	return NULL_RTX;
4890       break;
4891 
4892     default:
4893       break;
4894     }
4895 
4896   if (note)
4897     {
4898       XEXP (note, 0) = datum;
4899       return note;
4900     }
4901 
4902   REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4903   return REG_NOTES (insn);
4904 }
4905 
4906 /* Return an indication of which type of insn should have X as a body.
4907    The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */
4908 
4909 enum rtx_code
classify_insn(rtx x)4910 classify_insn (rtx x)
4911 {
4912   if (GET_CODE (x) == CODE_LABEL)
4913     return CODE_LABEL;
4914   if (GET_CODE (x) == CALL)
4915     return CALL_INSN;
4916   if (GET_CODE (x) == RETURN)
4917     return JUMP_INSN;
4918   if (GET_CODE (x) == SET)
4919     {
4920       if (SET_DEST (x) == pc_rtx)
4921 	return JUMP_INSN;
4922       else if (GET_CODE (SET_SRC (x)) == CALL)
4923 	return CALL_INSN;
4924       else
4925 	return INSN;
4926     }
4927   if (GET_CODE (x) == PARALLEL)
4928     {
4929       int j;
4930       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4931 	if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4932 	  return CALL_INSN;
4933 	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4934 		 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4935 	  return JUMP_INSN;
4936 	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4937 		 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4938 	  return CALL_INSN;
4939     }
4940   return INSN;
4941 }
4942 
4943 /* Emit the rtl pattern X as an appropriate kind of insn.
4944    If X is a label, it is simply added into the insn chain.  */
4945 
4946 rtx
emit(rtx x)4947 emit (rtx x)
4948 {
4949   enum rtx_code code = classify_insn (x);
4950 
4951   if (code == CODE_LABEL)
4952     return emit_label (x);
4953   else if (code == INSN)
4954     return emit_insn (x);
4955   else if (code == JUMP_INSN)
4956     {
4957       rtx insn = emit_jump_insn (x);
4958       if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4959 	return emit_barrier ();
4960       return insn;
4961     }
4962   else if (code == CALL_INSN)
4963     return emit_call_insn (x);
4964   else
4965     abort ();
4966 }
4967 
4968 /* Space for free sequence stack entries.  */
4969 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4970 
4971 /* Begin emitting insns to a sequence which can be packaged in an
4972    RTL_EXPR.  If this sequence will contain something that might cause
4973    the compiler to pop arguments to function calls (because those
4974    pops have previously been deferred; see INHIBIT_DEFER_POP for more
4975    details), use do_pending_stack_adjust before calling this function.
4976    That will ensure that the deferred pops are not accidentally
4977    emitted in the middle of this sequence.  */
4978 
4979 void
start_sequence(void)4980 start_sequence (void)
4981 {
4982   struct sequence_stack *tem;
4983 
4984   if (free_sequence_stack != NULL)
4985     {
4986       tem = free_sequence_stack;
4987       free_sequence_stack = tem->next;
4988     }
4989   else
4990     tem = ggc_alloc (sizeof (struct sequence_stack));
4991 
4992   tem->next = seq_stack;
4993   tem->first = first_insn;
4994   tem->last = last_insn;
4995   tem->sequence_rtl_expr = seq_rtl_expr;
4996 
4997   seq_stack = tem;
4998 
4999   first_insn = 0;
5000   last_insn = 0;
5001 }
5002 
5003 /* Similarly, but indicate that this sequence will be placed in T, an
5004    RTL_EXPR.  See the documentation for start_sequence for more
5005    information about how to use this function.  */
5006 
5007 void
start_sequence_for_rtl_expr(tree t)5008 start_sequence_for_rtl_expr (tree t)
5009 {
5010   start_sequence ();
5011 
5012   seq_rtl_expr = t;
5013 }
5014 
5015 /* Set up the insn chain starting with FIRST as the current sequence,
5016    saving the previously current one.  See the documentation for
5017    start_sequence for more information about how to use this function.  */
5018 
5019 void
push_to_sequence(rtx first)5020 push_to_sequence (rtx first)
5021 {
5022   rtx last;
5023 
5024   start_sequence ();
5025 
5026   for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5027 
5028   first_insn = first;
5029   last_insn = last;
5030 }
5031 
5032 /* Set up the insn chain from a chain stort in FIRST to LAST.  */
5033 
5034 void
push_to_full_sequence(rtx first,rtx last)5035 push_to_full_sequence (rtx first, rtx last)
5036 {
5037   start_sequence ();
5038   first_insn = first;
5039   last_insn = last;
5040   /* We really should have the end of the insn chain here.  */
5041   if (last && NEXT_INSN (last))
5042     abort ();
5043 }
5044 
5045 /* Set up the outer-level insn chain
5046    as the current sequence, saving the previously current one.  */
5047 
5048 void
push_topmost_sequence(void)5049 push_topmost_sequence (void)
5050 {
5051   struct sequence_stack *stack, *top = NULL;
5052 
5053   start_sequence ();
5054 
5055   for (stack = seq_stack; stack; stack = stack->next)
5056     top = stack;
5057 
5058   first_insn = top->first;
5059   last_insn = top->last;
5060   seq_rtl_expr = top->sequence_rtl_expr;
5061 }
5062 
5063 /* After emitting to the outer-level insn chain, update the outer-level
5064    insn chain, and restore the previous saved state.  */
5065 
5066 void
pop_topmost_sequence(void)5067 pop_topmost_sequence (void)
5068 {
5069   struct sequence_stack *stack, *top = NULL;
5070 
5071   for (stack = seq_stack; stack; stack = stack->next)
5072     top = stack;
5073 
5074   top->first = first_insn;
5075   top->last = last_insn;
5076   /* ??? Why don't we save seq_rtl_expr here?  */
5077 
5078   end_sequence ();
5079 }
5080 
5081 /* After emitting to a sequence, restore previous saved state.
5082 
5083    To get the contents of the sequence just made, you must call
5084    `get_insns' *before* calling here.
5085 
5086    If the compiler might have deferred popping arguments while
5087    generating this sequence, and this sequence will not be immediately
5088    inserted into the instruction stream, use do_pending_stack_adjust
5089    before calling get_insns.  That will ensure that the deferred
5090    pops are inserted into this sequence, and not into some random
5091    location in the instruction stream.  See INHIBIT_DEFER_POP for more
5092    information about deferred popping of arguments.  */
5093 
5094 void
end_sequence(void)5095 end_sequence (void)
5096 {
5097   struct sequence_stack *tem = seq_stack;
5098 
5099   first_insn = tem->first;
5100   last_insn = tem->last;
5101   seq_rtl_expr = tem->sequence_rtl_expr;
5102   seq_stack = tem->next;
5103 
5104   memset (tem, 0, sizeof (*tem));
5105   tem->next = free_sequence_stack;
5106   free_sequence_stack = tem;
5107 }
5108 
5109 /* This works like end_sequence, but records the old sequence in FIRST
5110    and LAST.  */
5111 
5112 void
end_full_sequence(rtx * first,rtx * last)5113 end_full_sequence (rtx *first, rtx *last)
5114 {
5115   *first = first_insn;
5116   *last = last_insn;
5117   end_sequence ();
5118 }
5119 
5120 /* Return 1 if currently emitting into a sequence.  */
5121 
5122 int
in_sequence_p(void)5123 in_sequence_p (void)
5124 {
5125   return seq_stack != 0;
5126 }
5127 
5128 /* Put the various virtual registers into REGNO_REG_RTX.  */
5129 
5130 void
init_virtual_regs(struct emit_status * es)5131 init_virtual_regs (struct emit_status *es)
5132 {
5133   rtx *ptr = es->x_regno_reg_rtx;
5134   ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5135   ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5136   ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5137   ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5138   ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5139 }
5140 
5141 
5142 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
5143 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5144 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5145 static int copy_insn_n_scratches;
5146 
5147 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5148    copied an ASM_OPERANDS.
5149    In that case, it is the original input-operand vector.  */
5150 static rtvec orig_asm_operands_vector;
5151 
5152 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5153    copied an ASM_OPERANDS.
5154    In that case, it is the copied input-operand vector.  */
5155 static rtvec copy_asm_operands_vector;
5156 
5157 /* Likewise for the constraints vector.  */
5158 static rtvec orig_asm_constraints_vector;
5159 static rtvec copy_asm_constraints_vector;
5160 
5161 /* Recursively create a new copy of an rtx for copy_insn.
5162    This function differs from copy_rtx in that it handles SCRATCHes and
5163    ASM_OPERANDs properly.
5164    Normally, this function is not used directly; use copy_insn as front end.
5165    However, you could first copy an insn pattern with copy_insn and then use
5166    this function afterwards to properly copy any REG_NOTEs containing
5167    SCRATCHes.  */
5168 
5169 rtx
copy_insn_1(rtx orig)5170 copy_insn_1 (rtx orig)
5171 {
5172   rtx copy;
5173   int i, j;
5174   RTX_CODE code;
5175   const char *format_ptr;
5176 
5177   code = GET_CODE (orig);
5178 
5179   switch (code)
5180     {
5181     case REG:
5182     case QUEUED:
5183     case CONST_INT:
5184     case CONST_DOUBLE:
5185     case CONST_VECTOR:
5186     case SYMBOL_REF:
5187     case CODE_LABEL:
5188     case PC:
5189     case CC0:
5190     case ADDRESSOF:
5191       return orig;
5192 
5193     case SCRATCH:
5194       for (i = 0; i < copy_insn_n_scratches; i++)
5195 	if (copy_insn_scratch_in[i] == orig)
5196 	  return copy_insn_scratch_out[i];
5197       break;
5198 
5199     case CONST:
5200       /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
5201 	 a LABEL_REF, it isn't sharable.  */
5202       if (GET_CODE (XEXP (orig, 0)) == PLUS
5203 	  && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5204 	  && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5205 	return orig;
5206       break;
5207 
5208       /* A MEM with a constant address is not sharable.  The problem is that
5209 	 the constant address may need to be reloaded.  If the mem is shared,
5210 	 then reloading one copy of this mem will cause all copies to appear
5211 	 to have been reloaded.  */
5212 
5213     default:
5214       break;
5215     }
5216 
5217   copy = rtx_alloc (code);
5218 
5219   /* Copy the various flags, and other information.  We assume that
5220      all fields need copying, and then clear the fields that should
5221      not be copied.  That is the sensible default behavior, and forces
5222      us to explicitly document why we are *not* copying a flag.  */
5223   memcpy (copy, orig, RTX_HDR_SIZE);
5224 
5225   /* We do not copy the USED flag, which is used as a mark bit during
5226      walks over the RTL.  */
5227   RTX_FLAG (copy, used) = 0;
5228 
5229   /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
5230   if (GET_RTX_CLASS (code) == 'i')
5231     {
5232       RTX_FLAG (copy, jump) = 0;
5233       RTX_FLAG (copy, call) = 0;
5234       RTX_FLAG (copy, frame_related) = 0;
5235     }
5236 
5237   format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5238 
5239   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5240     {
5241       copy->u.fld[i] = orig->u.fld[i];
5242       switch (*format_ptr++)
5243 	{
5244 	case 'e':
5245 	  if (XEXP (orig, i) != NULL)
5246 	    XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5247 	  break;
5248 
5249 	case 'E':
5250 	case 'V':
5251 	  if (XVEC (orig, i) == orig_asm_constraints_vector)
5252 	    XVEC (copy, i) = copy_asm_constraints_vector;
5253 	  else if (XVEC (orig, i) == orig_asm_operands_vector)
5254 	    XVEC (copy, i) = copy_asm_operands_vector;
5255 	  else if (XVEC (orig, i) != NULL)
5256 	    {
5257 	      XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5258 	      for (j = 0; j < XVECLEN (copy, i); j++)
5259 		XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5260 	    }
5261 	  break;
5262 
5263 	case 't':
5264 	case 'w':
5265 	case 'i':
5266 	case 's':
5267 	case 'S':
5268 	case 'u':
5269 	case '0':
5270 	  /* These are left unchanged.  */
5271 	  break;
5272 
5273 	default:
5274 	  abort ();
5275 	}
5276     }
5277 
5278   if (code == SCRATCH)
5279     {
5280       i = copy_insn_n_scratches++;
5281       if (i >= MAX_RECOG_OPERANDS)
5282 	abort ();
5283       copy_insn_scratch_in[i] = orig;
5284       copy_insn_scratch_out[i] = copy;
5285     }
5286   else if (code == ASM_OPERANDS)
5287     {
5288       orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5289       copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5290       orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5291       copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5292     }
5293 
5294   return copy;
5295 }
5296 
5297 /* Create a new copy of an rtx.
5298    This function differs from copy_rtx in that it handles SCRATCHes and
5299    ASM_OPERANDs properly.
5300    INSN doesn't really have to be a full INSN; it could be just the
5301    pattern.  */
5302 rtx
copy_insn(rtx insn)5303 copy_insn (rtx insn)
5304 {
5305   copy_insn_n_scratches = 0;
5306   orig_asm_operands_vector = 0;
5307   orig_asm_constraints_vector = 0;
5308   copy_asm_operands_vector = 0;
5309   copy_asm_constraints_vector = 0;
5310   return copy_insn_1 (insn);
5311 }
5312 
5313 /* Initialize data structures and variables in this file
5314    before generating rtl for each function.  */
5315 
5316 void
init_emit(void)5317 init_emit (void)
5318 {
5319   struct function *f = cfun;
5320 
5321   f->emit = ggc_alloc (sizeof (struct emit_status));
5322   first_insn = NULL;
5323   last_insn = NULL;
5324   seq_rtl_expr = NULL;
5325   cur_insn_uid = 1;
5326   reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5327   last_location.line = 0;
5328   last_location.file = 0;
5329   first_label_num = label_num;
5330   last_label_num = 0;
5331   seq_stack = NULL;
5332 
5333   /* Init the tables that describe all the pseudo regs.  */
5334 
5335   f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5336 
5337   f->emit->regno_pointer_align
5338     = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5339 			 * sizeof (unsigned char));
5340 
5341   regno_reg_rtx
5342     = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5343 
5344   /* Put copies of all the hard registers into regno_reg_rtx.  */
5345   memcpy (regno_reg_rtx,
5346 	  static_regno_reg_rtx,
5347 	  FIRST_PSEUDO_REGISTER * sizeof (rtx));
5348 
5349   /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
5350   init_virtual_regs (f->emit);
5351 
5352   /* Indicate that the virtual registers and stack locations are
5353      all pointers.  */
5354   REG_POINTER (stack_pointer_rtx) = 1;
5355   REG_POINTER (frame_pointer_rtx) = 1;
5356   REG_POINTER (hard_frame_pointer_rtx) = 1;
5357   REG_POINTER (arg_pointer_rtx) = 1;
5358 
5359   REG_POINTER (virtual_incoming_args_rtx) = 1;
5360   REG_POINTER (virtual_stack_vars_rtx) = 1;
5361   REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5362   REG_POINTER (virtual_outgoing_args_rtx) = 1;
5363   REG_POINTER (virtual_cfa_rtx) = 1;
5364 
5365 #ifdef STACK_BOUNDARY
5366   REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5367   REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5368   REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5369   REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5370 
5371   REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5372   REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5373   REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5374   REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5375   REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5376 #endif
5377 
5378 #ifdef INIT_EXPANDERS
5379   INIT_EXPANDERS;
5380 #endif
5381 }
5382 
5383 /* Generate the constant 0.  */
5384 
5385 static rtx
gen_const_vector_0(enum machine_mode mode)5386 gen_const_vector_0 (enum machine_mode mode)
5387 {
5388   rtx tem;
5389   rtvec v;
5390   int units, i;
5391   enum machine_mode inner;
5392 
5393   units = GET_MODE_NUNITS (mode);
5394   inner = GET_MODE_INNER (mode);
5395 
5396   v = rtvec_alloc (units);
5397 
5398   /* We need to call this function after we to set CONST0_RTX first.  */
5399   if (!CONST0_RTX (inner))
5400     abort ();
5401 
5402   for (i = 0; i < units; ++i)
5403     RTVEC_ELT (v, i) = CONST0_RTX (inner);
5404 
5405   tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5406   return tem;
5407 }
5408 
5409 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5410    all elements are zero.  */
5411 rtx
gen_rtx_CONST_VECTOR(enum machine_mode mode,rtvec v)5412 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5413 {
5414   rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5415   int i;
5416 
5417   for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5418     if (RTVEC_ELT (v, i) != inner_zero)
5419       return gen_rtx_raw_CONST_VECTOR (mode, v);
5420   return CONST0_RTX (mode);
5421 }
5422 
5423 /* Create some permanent unique rtl objects shared between all functions.
5424    LINE_NUMBERS is nonzero if line numbers are to be generated.  */
5425 
5426 void
init_emit_once(int line_numbers)5427 init_emit_once (int line_numbers)
5428 {
5429   int i;
5430   enum machine_mode mode;
5431   enum machine_mode double_mode;
5432 
5433   /* We need reg_raw_mode, so initialize the modes now.  */
5434   init_reg_modes_once ();
5435 
5436   /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5437      tables.  */
5438   const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5439 				    const_int_htab_eq, NULL);
5440 
5441   const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5442 				       const_double_htab_eq, NULL);
5443 
5444   mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5445 				    mem_attrs_htab_eq, NULL);
5446   reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5447 				    reg_attrs_htab_eq, NULL);
5448 
5449   no_line_numbers = ! line_numbers;
5450 
5451   /* Compute the word and byte modes.  */
5452 
5453   byte_mode = VOIDmode;
5454   word_mode = VOIDmode;
5455   double_mode = VOIDmode;
5456 
5457   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5458        mode = GET_MODE_WIDER_MODE (mode))
5459     {
5460       if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5461 	  && byte_mode == VOIDmode)
5462 	byte_mode = mode;
5463 
5464       if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5465 	  && word_mode == VOIDmode)
5466 	word_mode = mode;
5467     }
5468 
5469   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5470        mode = GET_MODE_WIDER_MODE (mode))
5471     {
5472       if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5473 	  && double_mode == VOIDmode)
5474 	double_mode = mode;
5475     }
5476 
5477   ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5478 
5479   /* Assign register numbers to the globally defined register rtx.
5480      This must be done at runtime because the register number field
5481      is in a union and some compilers can't initialize unions.  */
5482 
5483   pc_rtx = gen_rtx (PC, VOIDmode);
5484   cc0_rtx = gen_rtx (CC0, VOIDmode);
5485   stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5486   frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5487   if (hard_frame_pointer_rtx == 0)
5488     hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5489 					  HARD_FRAME_POINTER_REGNUM);
5490   if (arg_pointer_rtx == 0)
5491     arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5492   virtual_incoming_args_rtx =
5493     gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5494   virtual_stack_vars_rtx =
5495     gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5496   virtual_stack_dynamic_rtx =
5497     gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5498   virtual_outgoing_args_rtx =
5499     gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5500   virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5501 
5502   /* Initialize RTL for commonly used hard registers.  These are
5503      copied into regno_reg_rtx as we begin to compile each function.  */
5504   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5505     static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5506 
5507 #ifdef INIT_EXPANDERS
5508   /* This is to initialize {init|mark|free}_machine_status before the first
5509      call to push_function_context_to.  This is needed by the Chill front
5510      end which calls push_function_context_to before the first call to
5511      init_function_start.  */
5512   INIT_EXPANDERS;
5513 #endif
5514 
5515   /* Create the unique rtx's for certain rtx codes and operand values.  */
5516 
5517   /* Don't use gen_rtx here since gen_rtx in this case
5518      tries to use these variables.  */
5519   for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5520     const_int_rtx[i + MAX_SAVED_CONST_INT] =
5521       gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5522 
5523   if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5524       && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5525     const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5526   else
5527     const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5528 
5529   REAL_VALUE_FROM_INT (dconst0,   0,  0, double_mode);
5530   REAL_VALUE_FROM_INT (dconst1,   1,  0, double_mode);
5531   REAL_VALUE_FROM_INT (dconst2,   2,  0, double_mode);
5532   REAL_VALUE_FROM_INT (dconst3,   3,  0, double_mode);
5533   REAL_VALUE_FROM_INT (dconst10, 10,  0, double_mode);
5534   REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5535   REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5536 
5537   dconsthalf = dconst1;
5538   dconsthalf.exp--;
5539 
5540   real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5541 
5542   /* Initialize mathematical constants for constant folding builtins.
5543      These constants need to be given to at least 160 bits precision.  */
5544   real_from_string (&dconstpi,
5545     "3.1415926535897932384626433832795028841971693993751058209749445923078");
5546   real_from_string (&dconste,
5547     "2.7182818284590452353602874713526624977572470936999595749669676277241");
5548 
5549   for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5550     {
5551       REAL_VALUE_TYPE *r =
5552 	(i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5553 
5554       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5555 	   mode = GET_MODE_WIDER_MODE (mode))
5556 	const_tiny_rtx[i][(int) mode] =
5557 	  CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5558 
5559       const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5560 
5561       for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5562 	   mode = GET_MODE_WIDER_MODE (mode))
5563 	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5564 
5565       for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5566 	   mode != VOIDmode;
5567 	   mode = GET_MODE_WIDER_MODE (mode))
5568 	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5569     }
5570 
5571   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5572        mode != VOIDmode;
5573        mode = GET_MODE_WIDER_MODE (mode))
5574     const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5575 
5576   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5577        mode != VOIDmode;
5578        mode = GET_MODE_WIDER_MODE (mode))
5579     const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5580 
5581   for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5582     if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5583       const_tiny_rtx[0][i] = const0_rtx;
5584 
5585   const_tiny_rtx[0][(int) BImode] = const0_rtx;
5586   if (STORE_FLAG_VALUE == 1)
5587     const_tiny_rtx[1][(int) BImode] = const1_rtx;
5588 
5589 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5590   return_address_pointer_rtx
5591     = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5592 #endif
5593 
5594 #ifdef STATIC_CHAIN_REGNUM
5595   static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5596 
5597 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5598   if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5599     static_chain_incoming_rtx
5600       = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5601   else
5602 #endif
5603     static_chain_incoming_rtx = static_chain_rtx;
5604 #endif
5605 
5606 #ifdef STATIC_CHAIN
5607   static_chain_rtx = STATIC_CHAIN;
5608 
5609 #ifdef STATIC_CHAIN_INCOMING
5610   static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5611 #else
5612   static_chain_incoming_rtx = static_chain_rtx;
5613 #endif
5614 #endif
5615 
5616   if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5617     pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5618 }
5619 
5620 /* Query and clear/ restore no_line_numbers.  This is used by the
5621    switch / case handling in stmt.c to give proper line numbers in
5622    warnings about unreachable code.  */
5623 
5624 int
force_line_numbers(void)5625 force_line_numbers (void)
5626 {
5627   int old = no_line_numbers;
5628 
5629   no_line_numbers = 0;
5630   if (old)
5631     force_next_line_note ();
5632   return old;
5633 }
5634 
5635 void
restore_line_number_status(int old_value)5636 restore_line_number_status (int old_value)
5637 {
5638   no_line_numbers = old_value;
5639 }
5640 
5641 /* Produce exact duplicate of insn INSN after AFTER.
5642    Care updating of libcall regions if present.  */
5643 
5644 rtx
emit_copy_of_insn_after(rtx insn,rtx after)5645 emit_copy_of_insn_after (rtx insn, rtx after)
5646 {
5647   rtx new;
5648   rtx note1, note2, link;
5649 
5650   switch (GET_CODE (insn))
5651     {
5652     case INSN:
5653       new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5654       break;
5655 
5656     case JUMP_INSN:
5657       new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5658       break;
5659 
5660     case CALL_INSN:
5661       new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5662       if (CALL_INSN_FUNCTION_USAGE (insn))
5663 	CALL_INSN_FUNCTION_USAGE (new)
5664 	  = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5665       SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5666       CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5667       break;
5668 
5669     default:
5670       abort ();
5671     }
5672 
5673   /* Update LABEL_NUSES.  */
5674   mark_jump_label (PATTERN (new), new, 0);
5675 
5676   INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5677 
5678   /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5679      make them.  */
5680   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5681     if (REG_NOTE_KIND (link) != REG_LABEL)
5682       {
5683 	if (GET_CODE (link) == EXPR_LIST)
5684 	  REG_NOTES (new)
5685 	    = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5686 					      XEXP (link, 0),
5687 					      REG_NOTES (new)));
5688 	else
5689 	  REG_NOTES (new)
5690 	    = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5691 					      XEXP (link, 0),
5692 					      REG_NOTES (new)));
5693       }
5694 
5695   /* Fix the libcall sequences.  */
5696   if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5697     {
5698       rtx p = new;
5699       while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5700 	p = PREV_INSN (p);
5701       XEXP (note1, 0) = p;
5702       XEXP (note2, 0) = new;
5703     }
5704   INSN_CODE (new) = INSN_CODE (insn);
5705   return new;
5706 }
5707 
5708 #include "gt-emit-rtl.h"
5709