1 /* ET-trees data structure implementation.
2    Contributed by Pavel Nejedly
3    Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10 
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 Library General Public License for more details.
15 
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB.  If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA.
20 
21   The ET-forest structure is described in:
22     D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
23     J.  G'omput. System Sci., 26(3):362 381, 1983.
24 */
25 
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "et-forest.h"
31 #include "alloc-pool.h"
32 
33 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow.  */
34 #undef DEBUG_ET
35 
36 #ifdef DEBUG_ET
37 #include "basic-block.h"
38 #endif
39 
40 /* The occurence of a node in the et tree.  */
41 struct et_occ
42 {
43   struct et_node *of;		/* The node.  */
44 
45   struct et_occ *parent;	/* Parent in the splay-tree.  */
46   struct et_occ *prev;		/* Left son in the splay-tree.  */
47   struct et_occ *next;		/* Right son in the splay-tree.  */
48 
49   int depth;			/* The depth of the node is the sum of depth
50 				   fields on the path to the root.  */
51   int min;			/* The minimum value of the depth in the subtree
52 				   is obtained by adding sum of depth fields
53 				   on the path to the root.  */
54   struct et_occ *min_occ;	/* The occurence in the subtree with the minimal
55 				   depth.  */
56 };
57 
58 static alloc_pool et_nodes;
59 static alloc_pool et_occurences;
60 
61 /* Changes depth of OCC to D.  */
62 
63 static inline void
set_depth(struct et_occ * occ,int d)64 set_depth (struct et_occ *occ, int d)
65 {
66   if (!occ)
67     return;
68 
69   occ->min += d - occ->depth;
70   occ->depth = d;
71 }
72 
73 /* Adds D to the depth of OCC.  */
74 
75 static inline void
set_depth_add(struct et_occ * occ,int d)76 set_depth_add (struct et_occ *occ, int d)
77 {
78   if (!occ)
79     return;
80 
81   occ->min += d;
82   occ->depth += d;
83 }
84 
85 /* Sets prev field of OCC to P.  */
86 
87 static inline void
set_prev(struct et_occ * occ,struct et_occ * t)88 set_prev (struct et_occ *occ, struct et_occ *t)
89 {
90 #ifdef DEBUG_ET
91   if (occ == t)
92     abort ();
93 #endif
94 
95   occ->prev = t;
96   if (t)
97     t->parent = occ;
98 }
99 
100 /* Sets next field of OCC to P.  */
101 
102 static inline void
set_next(struct et_occ * occ,struct et_occ * t)103 set_next (struct et_occ *occ, struct et_occ *t)
104 {
105 #ifdef DEBUG_ET
106   if (occ == t)
107     abort ();
108 #endif
109 
110   occ->next = t;
111   if (t)
112     t->parent = occ;
113 }
114 
115 /* Recompute minimum for occurence OCC.  */
116 
117 static inline void
et_recomp_min(struct et_occ * occ)118 et_recomp_min (struct et_occ *occ)
119 {
120   struct et_occ *mson = occ->prev;
121 
122   if (!mson
123       || (occ->next
124 	  && mson->min > occ->next->min))
125       mson = occ->next;
126 
127   if (mson && mson->min < 0)
128     {
129       occ->min = mson->min + occ->depth;
130       occ->min_occ = mson->min_occ;
131     }
132   else
133     {
134       occ->min = occ->depth;
135       occ->min_occ = occ;
136     }
137 }
138 
139 #ifdef DEBUG_ET
140 /* Checks whether neighbourhood of OCC seems sane.  */
141 
142 static void
et_check_occ_sanity(struct et_occ * occ)143 et_check_occ_sanity (struct et_occ *occ)
144 {
145   if (!occ)
146     return;
147 
148   if (occ->parent == occ)
149     abort ();
150 
151   if (occ->prev == occ)
152     abort ();
153 
154   if (occ->next == occ)
155     abort ();
156 
157   if (occ->next && occ->next == occ->prev)
158     abort ();
159 
160   if (occ->next)
161     {
162       if (occ->next == occ->parent)
163 	abort ();
164 
165       if (occ->next->parent != occ)
166 	abort ();
167     }
168 
169   if (occ->prev)
170     {
171       if (occ->prev == occ->parent)
172 	abort ();
173 
174       if (occ->prev->parent != occ)
175 	abort ();
176     }
177 
178   if (occ->parent
179       && occ->parent->prev != occ
180       && occ->parent->next != occ)
181     abort ();
182 }
183 
184 /* Checks whether tree rooted at OCC is sane.  */
185 
186 static void
et_check_sanity(struct et_occ * occ)187 et_check_sanity (struct et_occ *occ)
188 {
189   et_check_occ_sanity (occ);
190   if (occ->prev)
191     et_check_sanity (occ->prev);
192   if (occ->next)
193     et_check_sanity (occ->next);
194 }
195 
196 /* Checks whether tree containing OCC is sane.  */
197 
198 static void
et_check_tree_sanity(struct et_occ * occ)199 et_check_tree_sanity (struct et_occ *occ)
200 {
201   while (occ->parent)
202     occ = occ->parent;
203 
204   et_check_sanity (occ);
205 }
206 
207 /* For recording the paths.  */
208 
209 static int len;
210 static void *datas[100000];
211 static int depths[100000];
212 
213 /* Records the path represented by OCC, with depth incremented by DEPTH.  */
214 
215 static int
record_path_before_1(struct et_occ * occ,int depth)216 record_path_before_1 (struct et_occ *occ, int depth)
217 {
218   int mn, m;
219 
220   depth += occ->depth;
221   mn = depth;
222 
223   if (occ->prev)
224     {
225       m = record_path_before_1 (occ->prev, depth);
226       if (m < mn)
227 	mn = m;
228     }
229 
230   fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
231   depths[len] = depth;
232   datas[len] = occ->of;
233   len++;
234 
235   if (occ->next)
236     {
237       m = record_path_before_1 (occ->next, depth);
238       if (m < mn)
239 	mn = m;
240     }
241 
242   if (mn != occ->min + depth - occ->depth)
243     abort ();
244 
245   return mn;
246 }
247 
248 /* Records the path represented by a tree containing OCC.  */
249 
250 static void
record_path_before(struct et_occ * occ)251 record_path_before (struct et_occ *occ)
252 {
253   while (occ->parent)
254     occ = occ->parent;
255 
256   len = 0;
257   record_path_before_1 (occ, 0);
258   fprintf (stderr, "\n");
259 }
260 
261 /* Checks whether the path represented by OCC, with depth incremented by DEPTH,
262    was not changed since the last recording.  */
263 
264 static int
check_path_after_1(struct et_occ * occ,int depth)265 check_path_after_1 (struct et_occ *occ, int depth)
266 {
267   int mn, m;
268 
269   depth += occ->depth;
270   mn = depth;
271 
272   if (occ->next)
273     {
274       m = check_path_after_1 (occ->next, depth);
275       if (m < mn)
276 	mn =  m;
277     }
278 
279   len--;
280   if (depths[len] != depth
281       || datas[len] != occ->of)
282     abort ();
283 
284   if (occ->prev)
285     {
286       m = check_path_after_1 (occ->prev, depth);
287       if (m < mn)
288 	mn =  m;
289     }
290 
291   if (mn != occ->min + depth - occ->depth)
292     abort ();
293 
294   return mn;
295 }
296 
297 /* Checks whether the path represented by a tree containing OCC was
298    not changed since the last recording.  */
299 
300 static void
check_path_after(struct et_occ * occ)301 check_path_after (struct et_occ *occ)
302 {
303   while (occ->parent)
304     occ = occ->parent;
305 
306   check_path_after_1 (occ, 0);
307   if (len != 0)
308     abort ();
309 }
310 
311 #endif
312 
313 /* Splay the occurence OCC to the root of the tree.  */
314 
315 static void
et_splay(struct et_occ * occ)316 et_splay (struct et_occ *occ)
317 {
318   struct et_occ *f, *gf, *ggf;
319   int occ_depth, f_depth, gf_depth;
320 
321 #ifdef DEBUG_ET
322   record_path_before (occ);
323   et_check_tree_sanity (occ);
324 #endif
325 
326   while (occ->parent)
327     {
328       occ_depth = occ->depth;
329 
330       f = occ->parent;
331       f_depth = f->depth;
332 
333       gf = f->parent;
334 
335       if (!gf)
336 	{
337 	  set_depth_add (occ, f_depth);
338 	  occ->min_occ = f->min_occ;
339 	  occ->min = f->min;
340 
341 	  if (f->prev == occ)
342 	    {
343 	      /* zig */
344 	      set_prev (f, occ->next);
345 	      set_next (occ, f);
346 	      set_depth_add (f->prev, occ_depth);
347 	    }
348 	  else
349 	    {
350 	      /* zag */
351 	      set_next (f, occ->prev);
352 	      set_prev (occ, f);
353 	      set_depth_add (f->next, occ_depth);
354 	    }
355 	  set_depth (f, -occ_depth);
356 	  occ->parent = NULL;
357 
358 	  et_recomp_min (f);
359 #ifdef DEBUG_ET
360 	  et_check_tree_sanity (occ);
361 	  check_path_after (occ);
362 #endif
363 	  return;
364 	}
365 
366       gf_depth = gf->depth;
367 
368       set_depth_add (occ, f_depth + gf_depth);
369       occ->min_occ = gf->min_occ;
370       occ->min = gf->min;
371 
372       ggf = gf->parent;
373 
374       if (gf->prev == f)
375 	{
376 	  if (f->prev == occ)
377 	    {
378 	      /* zig zig */
379 	      set_prev (gf, f->next);
380 	      set_prev (f, occ->next);
381 	      set_next (occ, f);
382 	      set_next (f, gf);
383 
384 	      set_depth (f, -occ_depth);
385 	      set_depth_add (f->prev, occ_depth);
386 	      set_depth (gf, -f_depth);
387 	      set_depth_add (gf->prev, f_depth);
388 	    }
389 	  else
390 	    {
391 	      /* zag zig */
392 	      set_prev (gf, occ->next);
393 	      set_next (f, occ->prev);
394 	      set_prev (occ, f);
395 	      set_next (occ, gf);
396 
397 	      set_depth (f, -occ_depth);
398 	      set_depth_add (f->next, occ_depth);
399 	      set_depth (gf, -occ_depth - f_depth);
400 	      set_depth_add (gf->prev, occ_depth + f_depth);
401 	    }
402 	}
403       else
404 	{
405 	  if (f->prev == occ)
406 	    {
407 	      /* zig zag */
408 	      set_next (gf, occ->prev);
409 	      set_prev (f, occ->next);
410 	      set_prev (occ, gf);
411 	      set_next (occ, f);
412 
413 	      set_depth (f, -occ_depth);
414 	      set_depth_add (f->prev, occ_depth);
415 	      set_depth (gf, -occ_depth - f_depth);
416 	      set_depth_add (gf->next, occ_depth + f_depth);
417 	    }
418 	  else
419 	    {
420 	      /* zag zag */
421 	      set_next (gf, f->prev);
422 	      set_next (f, occ->prev);
423 	      set_prev (occ, f);
424 	      set_prev (f, gf);
425 
426 	      set_depth (f, -occ_depth);
427 	      set_depth_add (f->next, occ_depth);
428 	      set_depth (gf, -f_depth);
429 	      set_depth_add (gf->next, f_depth);
430 	    }
431 	}
432 
433       occ->parent = ggf;
434       if (ggf)
435 	{
436 	  if (ggf->prev == gf)
437 	    ggf->prev = occ;
438 	  else
439 	    ggf->next = occ;
440 	}
441 
442       et_recomp_min (gf);
443       et_recomp_min (f);
444 #ifdef DEBUG_ET
445       et_check_tree_sanity (occ);
446 #endif
447     }
448 
449 #ifdef DEBUG_ET
450   et_check_sanity (occ);
451   check_path_after (occ);
452 #endif
453 }
454 
455 /* Create a new et tree occurence of NODE.  */
456 
457 static struct et_occ *
et_new_occ(struct et_node * node)458 et_new_occ (struct et_node *node)
459 {
460   struct et_occ *nw;
461 
462   if (!et_occurences)
463     et_occurences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
464   nw = pool_alloc (et_occurences);
465 
466   nw->of = node;
467   nw->parent = NULL;
468   nw->prev = NULL;
469   nw->next = NULL;
470 
471   nw->depth = 0;
472   nw->min_occ = nw;
473   nw->min = 0;
474 
475   return nw;
476 }
477 
478 /* Create a new et tree containing DATA.  */
479 
480 struct et_node *
et_new_tree(void * data)481 et_new_tree (void *data)
482 {
483   struct et_node *nw;
484 
485   if (!et_nodes)
486     et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
487   nw = pool_alloc (et_nodes);
488 
489   nw->data = data;
490   nw->father = NULL;
491   nw->left = NULL;
492   nw->right = NULL;
493   nw->son = NULL;
494 
495   nw->rightmost_occ = et_new_occ (nw);
496   nw->parent_occ = NULL;
497 
498   return nw;
499 }
500 
501 /* Releases et tree T.  */
502 
503 void
et_free_tree(struct et_node * t)504 et_free_tree (struct et_node *t)
505 {
506   while (t->son)
507     et_split (t->son);
508 
509   if (t->father)
510     et_split (t);
511 
512   pool_free (et_occurences, t->rightmost_occ);
513   pool_free (et_nodes, t);
514 }
515 
516 /* Sets father of et tree T to FATHER.  */
517 
518 void
et_set_father(struct et_node * t,struct et_node * father)519 et_set_father (struct et_node *t, struct et_node *father)
520 {
521   struct et_node *left, *right;
522   struct et_occ *rmost, *left_part, *new_f_occ, *p;
523 
524   /* Update the path represented in the splay tree.  */
525   new_f_occ = et_new_occ (father);
526 
527   rmost = father->rightmost_occ;
528   et_splay (rmost);
529 
530   left_part = rmost->prev;
531 
532   p = t->rightmost_occ;
533   et_splay (p);
534 
535   set_prev (new_f_occ, left_part);
536   set_next (new_f_occ, p);
537 
538   p->depth++;
539   p->min++;
540   et_recomp_min (new_f_occ);
541 
542   set_prev (rmost, new_f_occ);
543 
544   if (new_f_occ->min + rmost->depth < rmost->min)
545     {
546       rmost->min = new_f_occ->min + rmost->depth;
547       rmost->min_occ = new_f_occ->min_occ;
548     }
549 
550   t->parent_occ = new_f_occ;
551 
552   /* Update the tree.  */
553   t->father = father;
554   right = father->son;
555   if (right)
556     left = right->left;
557   else
558     left = right = t;
559 
560   left->right = t;
561   right->left = t;
562   t->left = left;
563   t->right = right;
564 
565   father->son = t;
566 
567 #ifdef DEBUG_ET
568   et_check_tree_sanity (rmost);
569   record_path_before (rmost);
570 #endif
571 }
572 
573 /* Splits the edge from T to its father.  */
574 
575 void
et_split(struct et_node * t)576 et_split (struct et_node *t)
577 {
578   struct et_node *father = t->father;
579   struct et_occ *r, *l, *rmost, *p_occ;
580 
581   /* Update the path represented by the splay tree.  */
582   rmost = t->rightmost_occ;
583   et_splay (rmost);
584 
585   for (r = rmost->next; r->prev; r = r->prev)
586     continue;
587   et_splay (r);
588 
589   r->prev->parent = NULL;
590   p_occ = t->parent_occ;
591   et_splay (p_occ);
592   t->parent_occ = NULL;
593 
594   l = p_occ->prev;
595   p_occ->next->parent = NULL;
596 
597   set_prev (r, l);
598 
599   et_recomp_min (r);
600 
601   et_splay (rmost);
602   rmost->depth = 0;
603   rmost->min = 0;
604 
605   pool_free (et_occurences, p_occ);
606 
607   /* Update the tree.  */
608   if (father->son == t)
609     father->son = t->right;
610   if (father->son == t)
611     father->son = NULL;
612   else
613     {
614       t->left->right = t->right;
615       t->right->left = t->left;
616     }
617   t->left = t->right = NULL;
618   t->father = NULL;
619 
620 #ifdef DEBUG_ET
621   et_check_tree_sanity (rmost);
622   record_path_before (rmost);
623 
624   et_check_tree_sanity (r);
625   record_path_before (r);
626 #endif
627 }
628 
629 /* Finds the nearest common ancestor of the nodes N1 and N2.  */
630 
631 struct et_node *
et_nca(struct et_node * n1,struct et_node * n2)632 et_nca (struct et_node *n1, struct et_node *n2)
633 {
634   struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
635   struct et_occ *l, *r, *ret;
636   int mn;
637 
638   if (n1 == n2)
639     return n1;
640 
641   et_splay (o1);
642   l = o1->prev;
643   r = o1->next;
644   if (l)
645     l->parent = NULL;
646   if (r)
647     r->parent = NULL;
648   et_splay (o2);
649 
650   if (l == o2 || (l && l->parent != NULL))
651     {
652       ret = o2->next;
653 
654       set_prev (o1, o2);
655       if (r)
656 	r->parent = o1;
657     }
658   else
659     {
660       ret = o2->prev;
661 
662       set_next (o1, o2);
663       if (l)
664 	l->parent = o1;
665     }
666 
667   if (0 < o2->depth)
668     {
669       om = o1;
670       mn = o1->depth;
671     }
672   else
673     {
674       om = o2;
675       mn = o2->depth + o1->depth;
676     }
677 
678 #ifdef DEBUG_ET
679   et_check_tree_sanity (o2);
680 #endif
681 
682   if (ret && ret->min + o1->depth + o2->depth < mn)
683     return ret->min_occ->of;
684   else
685     return om->of;
686 }
687 
688 /* Checks whether the node UP is an ancestor of the node DOWN.  */
689 
690 bool
et_below(struct et_node * down,struct et_node * up)691 et_below (struct et_node *down, struct et_node *up)
692 {
693   struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
694   struct et_occ *l, *r;
695 
696   if (up == down)
697     return true;
698 
699   et_splay (u);
700   l = u->prev;
701   r = u->next;
702 
703   if (!l)
704     return false;
705 
706   l->parent = NULL;
707 
708   if (r)
709     r->parent = NULL;
710 
711   et_splay (d);
712 
713   if (l == d || l->parent != NULL)
714     {
715       if (r)
716 	r->parent = u;
717       set_prev (u, d);
718 #ifdef DEBUG_ET
719       et_check_tree_sanity (u);
720 #endif
721     }
722   else
723     {
724       l->parent = u;
725 
726       /* In case O1 and O2 are in two different trees, we must just restore the
727 	 original state.  */
728       if (r && r->parent != NULL)
729 	set_next (u, d);
730       else
731 	set_next (u, r);
732 
733 #ifdef DEBUG_ET
734       et_check_tree_sanity (u);
735 #endif
736       return false;
737     }
738 
739   if (0 >= d->depth)
740     return false;
741 
742   return !d->next || d->next->min + d->depth >= 0;
743 }
744