1 /* Definitions for computing resource usage of specific insns.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "regs.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "resource.h"
36 #include "except.h"
37 #include "insn-attr.h"
38 #include "params.h"
39 
40 /* This structure is used to record liveness information at the targets or
41    fallthrough insns of branches.  We will most likely need the information
42    at targets again, so save them in a hash table rather than recomputing them
43    each time.  */
44 
45 struct target_info
46 {
47   int uid;			/* INSN_UID of target.  */
48   struct target_info *next;	/* Next info for same hash bucket.  */
49   HARD_REG_SET live_regs;	/* Registers live at target.  */
50   int block;			/* Basic block number containing target.  */
51   int bb_tick;			/* Generation count of basic block info.  */
52 };
53 
54 #define TARGET_HASH_PRIME 257
55 
56 /* Indicates what resources are required at the beginning of the epilogue.  */
57 static struct resources start_of_epilogue_needs;
58 
59 /* Indicates what resources are required at function end.  */
60 static struct resources end_of_function_needs;
61 
62 /* Define the hash table itself.  */
63 static struct target_info **target_hash_table = NULL;
64 
65 /* For each basic block, we maintain a generation number of its basic
66    block info, which is updated each time we move an insn from the
67    target of a jump.  This is the generation number indexed by block
68    number.  */
69 
70 static int *bb_ticks;
71 
72 /* Marks registers possibly live at the current place being scanned by
73    mark_target_live_regs.  Also used by update_live_status.  */
74 
75 static HARD_REG_SET current_live_regs;
76 
77 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
78    Also only used by the next two functions.  */
79 
80 static HARD_REG_SET pending_dead_regs;
81 
82 static void update_live_status (rtx, rtx, void *);
83 static int find_basic_block (rtx, int);
84 static rtx next_insn_no_annul (rtx);
85 static rtx find_dead_or_set_registers (rtx, struct resources*,
86 				       rtx*, int, struct resources,
87 				       struct resources);
88 
89 /* Utility function called from mark_target_live_regs via note_stores.
90    It deadens any CLOBBERed registers and livens any SET registers.  */
91 
92 static void
update_live_status(rtx dest,rtx x,void * data ATTRIBUTE_UNUSED)93 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
94 {
95   int first_regno, last_regno;
96   int i;
97 
98   if (GET_CODE (dest) != REG
99       && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
100     return;
101 
102   if (GET_CODE (dest) == SUBREG)
103     first_regno = subreg_regno (dest);
104   else
105     first_regno = REGNO (dest);
106 
107   last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
108 
109   if (GET_CODE (x) == CLOBBER)
110     for (i = first_regno; i < last_regno; i++)
111       CLEAR_HARD_REG_BIT (current_live_regs, i);
112   else
113     for (i = first_regno; i < last_regno; i++)
114       {
115 	SET_HARD_REG_BIT (current_live_regs, i);
116 	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
117       }
118 }
119 
120 /* Find the number of the basic block with correct live register
121    information that starts closest to INSN.  Return -1 if we couldn't
122    find such a basic block or the beginning is more than
123    SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
124    an unlimited search.
125 
126    The delay slot filling code destroys the control-flow graph so,
127    instead of finding the basic block containing INSN, we search
128    backwards toward a BARRIER where the live register information is
129    correct.  */
130 
131 static int
find_basic_block(rtx insn,int search_limit)132 find_basic_block (rtx insn, int search_limit)
133 {
134   basic_block bb;
135 
136   /* Scan backwards to the previous BARRIER.  Then see if we can find a
137      label that starts a basic block.  Return the basic block number.  */
138   for (insn = prev_nonnote_insn (insn);
139        insn && GET_CODE (insn) != BARRIER && search_limit != 0;
140        insn = prev_nonnote_insn (insn), --search_limit)
141     ;
142 
143   /* The closest BARRIER is too far away.  */
144   if (search_limit == 0)
145     return -1;
146 
147   /* The start of the function.  */
148   else if (insn == 0)
149     return ENTRY_BLOCK_PTR->next_bb->index;
150 
151   /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
152      anything other than a CODE_LABEL or note, we can't find this code.  */
153   for (insn = next_nonnote_insn (insn);
154        insn && GET_CODE (insn) == CODE_LABEL;
155        insn = next_nonnote_insn (insn))
156     {
157       FOR_EACH_BB (bb)
158 	if (insn == BB_HEAD (bb))
159 	  return bb->index;
160     }
161 
162   return -1;
163 }
164 
165 /* Similar to next_insn, but ignores insns in the delay slots of
166    an annulled branch.  */
167 
168 static rtx
next_insn_no_annul(rtx insn)169 next_insn_no_annul (rtx insn)
170 {
171   if (insn)
172     {
173       /* If INSN is an annulled branch, skip any insns from the target
174 	 of the branch.  */
175       if ((GET_CODE (insn) == JUMP_INSN
176 	   || GET_CODE (insn) == CALL_INSN
177 	   || GET_CODE (insn) == INSN)
178 	  && INSN_ANNULLED_BRANCH_P (insn)
179 	  && NEXT_INSN (PREV_INSN (insn)) != insn)
180 	{
181 	  rtx next = NEXT_INSN (insn);
182 	  enum rtx_code code = GET_CODE (next);
183 
184 	  while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
185 		 && INSN_FROM_TARGET_P (next))
186 	    {
187 	      insn = next;
188 	      next = NEXT_INSN (insn);
189 	      code = GET_CODE (next);
190 	    }
191 	}
192 
193       insn = NEXT_INSN (insn);
194       if (insn && GET_CODE (insn) == INSN
195 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
196 	insn = XVECEXP (PATTERN (insn), 0, 0);
197     }
198 
199   return insn;
200 }
201 
202 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
203    which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
204    is TRUE, resources used by the called routine will be included for
205    CALL_INSNs.  */
206 
207 void
mark_referenced_resources(rtx x,struct resources * res,int include_delayed_effects)208 mark_referenced_resources (rtx x, struct resources *res,
209 			   int include_delayed_effects)
210 {
211   enum rtx_code code = GET_CODE (x);
212   int i, j;
213   unsigned int r;
214   const char *format_ptr;
215 
216   /* Handle leaf items for which we set resource flags.  Also, special-case
217      CALL, SET and CLOBBER operators.  */
218   switch (code)
219     {
220     case CONST:
221     case CONST_INT:
222     case CONST_DOUBLE:
223     case CONST_VECTOR:
224     case PC:
225     case SYMBOL_REF:
226     case LABEL_REF:
227       return;
228 
229     case SUBREG:
230       if (GET_CODE (SUBREG_REG (x)) != REG)
231 	mark_referenced_resources (SUBREG_REG (x), res, 0);
232       else
233 	{
234 	  unsigned int regno = subreg_regno (x);
235 	  unsigned int last_regno
236 	    = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
237 
238 	  if (last_regno > FIRST_PSEUDO_REGISTER)
239 	    abort ();
240 	  for (r = regno; r < last_regno; r++)
241 	    SET_HARD_REG_BIT (res->regs, r);
242 	}
243       return;
244 
245     case REG:
246 	{
247 	  unsigned int regno = REGNO (x);
248 	  unsigned int last_regno
249 	    = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
250 
251 	  if (last_regno > FIRST_PSEUDO_REGISTER)
252 	    abort ();
253 	  for (r = regno; r < last_regno; r++)
254 	    SET_HARD_REG_BIT (res->regs, r);
255 	}
256       return;
257 
258     case MEM:
259       /* If this memory shouldn't change, it really isn't referencing
260 	 memory.  */
261       if (RTX_UNCHANGING_P (x))
262 	res->unch_memory = 1;
263       else
264 	res->memory = 1;
265       res->volatil |= MEM_VOLATILE_P (x);
266 
267       /* Mark registers used to access memory.  */
268       mark_referenced_resources (XEXP (x, 0), res, 0);
269       return;
270 
271     case CC0:
272       res->cc = 1;
273       return;
274 
275     case UNSPEC_VOLATILE:
276     case ASM_INPUT:
277       /* Traditional asm's are always volatile.  */
278       res->volatil = 1;
279       return;
280 
281     case TRAP_IF:
282       res->volatil = 1;
283       break;
284 
285     case ASM_OPERANDS:
286       res->volatil |= MEM_VOLATILE_P (x);
287 
288       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
289 	 We can not just fall through here since then we would be confused
290 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
291 	 traditional asms unlike their normal usage.  */
292 
293       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
294 	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
295       return;
296 
297     case CALL:
298       /* The first operand will be a (MEM (xxx)) but doesn't really reference
299 	 memory.  The second operand may be referenced, though.  */
300       mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
301       mark_referenced_resources (XEXP (x, 1), res, 0);
302       return;
303 
304     case SET:
305       /* Usually, the first operand of SET is set, not referenced.  But
306 	 registers used to access memory are referenced.  SET_DEST is
307 	 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT.  */
308 
309       mark_referenced_resources (SET_SRC (x), res, 0);
310 
311       x = SET_DEST (x);
312       if (GET_CODE (x) == SIGN_EXTRACT
313 	  || GET_CODE (x) == ZERO_EXTRACT
314 	  || GET_CODE (x) == STRICT_LOW_PART)
315 	mark_referenced_resources (x, res, 0);
316       else if (GET_CODE (x) == SUBREG)
317 	x = SUBREG_REG (x);
318       if (GET_CODE (x) == MEM)
319 	mark_referenced_resources (XEXP (x, 0), res, 0);
320       return;
321 
322     case CLOBBER:
323       return;
324 
325     case CALL_INSN:
326       if (include_delayed_effects)
327 	{
328 	  /* A CALL references memory, the frame pointer if it exists, the
329 	     stack pointer, any global registers and any registers given in
330 	     USE insns immediately in front of the CALL.
331 
332 	     However, we may have moved some of the parameter loading insns
333 	     into the delay slot of this CALL.  If so, the USE's for them
334 	     don't count and should be skipped.  */
335 	  rtx insn = PREV_INSN (x);
336 	  rtx sequence = 0;
337 	  int seq_size = 0;
338 	  int i;
339 
340 	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
341 	  if (NEXT_INSN (insn) != x)
342 	    {
343 	      sequence = PATTERN (NEXT_INSN (insn));
344 	      seq_size = XVECLEN (sequence, 0);
345 	      if (GET_CODE (sequence) != SEQUENCE)
346 		abort ();
347 	    }
348 
349 	  res->memory = 1;
350 	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
351 	  if (frame_pointer_needed)
352 	    {
353 	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
354 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
355 	      SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
356 #endif
357 	    }
358 
359 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
360 	    if (global_regs[i])
361 	      SET_HARD_REG_BIT (res->regs, i);
362 
363 	  /* Check for a REG_SETJMP.  If it exists, then we must
364 	     assume that this call can need any register.
365 
366 	     This is done to be more conservative about how we handle setjmp.
367 	     We assume that they both use and set all registers.  Using all
368 	     registers ensures that a register will not be considered dead
369 	     just because it crosses a setjmp call.  A register should be
370 	     considered dead only if the setjmp call returns nonzero.  */
371 	  if (find_reg_note (x, REG_SETJMP, NULL))
372 	    SET_HARD_REG_SET (res->regs);
373 
374 	  {
375 	    rtx link;
376 
377 	    for (link = CALL_INSN_FUNCTION_USAGE (x);
378 		 link;
379 		 link = XEXP (link, 1))
380 	      if (GET_CODE (XEXP (link, 0)) == USE)
381 		{
382 		  for (i = 1; i < seq_size; i++)
383 		    {
384 		      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
385 		      if (GET_CODE (slot_pat) == SET
386 			  && rtx_equal_p (SET_DEST (slot_pat),
387 					  XEXP (XEXP (link, 0), 0)))
388 			break;
389 		    }
390 		  if (i >= seq_size)
391 		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
392 					       res, 0);
393 		}
394 	  }
395 	}
396 
397       /* ... fall through to other INSN processing ...  */
398 
399     case INSN:
400     case JUMP_INSN:
401 
402 #ifdef INSN_REFERENCES_ARE_DELAYED
403       if (! include_delayed_effects
404 	  && INSN_REFERENCES_ARE_DELAYED (x))
405 	return;
406 #endif
407 
408       /* No special processing, just speed up.  */
409       mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
410       return;
411 
412     default:
413       break;
414     }
415 
416   /* Process each sub-expression and flag what it needs.  */
417   format_ptr = GET_RTX_FORMAT (code);
418   for (i = 0; i < GET_RTX_LENGTH (code); i++)
419     switch (*format_ptr++)
420       {
421       case 'e':
422 	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
423 	break;
424 
425       case 'E':
426 	for (j = 0; j < XVECLEN (x, i); j++)
427 	  mark_referenced_resources (XVECEXP (x, i, j), res,
428 				     include_delayed_effects);
429 	break;
430       }
431 }
432 
433 /* A subroutine of mark_target_live_regs.  Search forward from TARGET
434    looking for registers that are set before they are used.  These are dead.
435    Stop after passing a few conditional jumps, and/or a small
436    number of unconditional branches.  */
437 
438 static rtx
find_dead_or_set_registers(rtx target,struct resources * res,rtx * jump_target,int jump_count,struct resources set,struct resources needed)439 find_dead_or_set_registers (rtx target, struct resources *res,
440 			    rtx *jump_target, int jump_count,
441 			    struct resources set, struct resources needed)
442 {
443   HARD_REG_SET scratch;
444   rtx insn, next;
445   rtx jump_insn = 0;
446   int i;
447 
448   for (insn = target; insn; insn = next)
449     {
450       rtx this_jump_insn = insn;
451 
452       next = NEXT_INSN (insn);
453 
454       /* If this instruction can throw an exception, then we don't
455 	 know where we might end up next.  That means that we have to
456 	 assume that whatever we have already marked as live really is
457 	 live.  */
458       if (can_throw_internal (insn))
459 	break;
460 
461       switch (GET_CODE (insn))
462 	{
463 	case CODE_LABEL:
464 	  /* After a label, any pending dead registers that weren't yet
465 	     used can be made dead.  */
466 	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
467 	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
468 	  CLEAR_HARD_REG_SET (pending_dead_regs);
469 
470 	  continue;
471 
472 	case BARRIER:
473 	case NOTE:
474 	  continue;
475 
476 	case INSN:
477 	  if (GET_CODE (PATTERN (insn)) == USE)
478 	    {
479 	      /* If INSN is a USE made by update_block, we care about the
480 		 underlying insn.  Any registers set by the underlying insn
481 		 are live since the insn is being done somewhere else.  */
482 	      if (INSN_P (XEXP (PATTERN (insn), 0)))
483 		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
484 				    MARK_SRC_DEST_CALL);
485 
486 	      /* All other USE insns are to be ignored.  */
487 	      continue;
488 	    }
489 	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
490 	    continue;
491 	  else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
492 	    {
493 	      /* An unconditional jump can be used to fill the delay slot
494 		 of a call, so search for a JUMP_INSN in any position.  */
495 	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
496 		{
497 		  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
498 		  if (GET_CODE (this_jump_insn) == JUMP_INSN)
499 		    break;
500 		}
501 	    }
502 
503 	default:
504 	  break;
505 	}
506 
507       if (GET_CODE (this_jump_insn) == JUMP_INSN)
508 	{
509 	  if (jump_count++ < 10)
510 	    {
511 	      if (any_uncondjump_p (this_jump_insn)
512 		  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
513 		{
514 		  next = JUMP_LABEL (this_jump_insn);
515 		  if (jump_insn == 0)
516 		    {
517 		      jump_insn = insn;
518 		      if (jump_target)
519 			*jump_target = JUMP_LABEL (this_jump_insn);
520 		    }
521 		}
522 	      else if (any_condjump_p (this_jump_insn))
523 		{
524 		  struct resources target_set, target_res;
525 		  struct resources fallthrough_res;
526 
527 		  /* We can handle conditional branches here by following
528 		     both paths, and then IOR the results of the two paths
529 		     together, which will give us registers that are dead
530 		     on both paths.  Since this is expensive, we give it
531 		     a much higher cost than unconditional branches.  The
532 		     cost was chosen so that we will follow at most 1
533 		     conditional branch.  */
534 
535 		  jump_count += 4;
536 		  if (jump_count >= 10)
537 		    break;
538 
539 		  mark_referenced_resources (insn, &needed, 1);
540 
541 		  /* For an annulled branch, mark_set_resources ignores slots
542 		     filled by instructions from the target.  This is correct
543 		     if the branch is not taken.  Since we are following both
544 		     paths from the branch, we must also compute correct info
545 		     if the branch is taken.  We do this by inverting all of
546 		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
547 		     and then inverting the INSN_FROM_TARGET_P bits again.  */
548 
549 		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
550 		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
551 		    {
552 		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
553 			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
554 			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
555 
556 		      target_set = set;
557 		      mark_set_resources (insn, &target_set, 0,
558 					  MARK_SRC_DEST_CALL);
559 
560 		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
561 			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
562 			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
563 
564 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
565 		    }
566 		  else
567 		    {
568 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
569 		      target_set = set;
570 		    }
571 
572 		  target_res = *res;
573 		  COPY_HARD_REG_SET (scratch, target_set.regs);
574 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
575 		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
576 
577 		  fallthrough_res = *res;
578 		  COPY_HARD_REG_SET (scratch, set.regs);
579 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
580 		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
581 
582 		  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
583 					      &target_res, 0, jump_count,
584 					      target_set, needed);
585 		  find_dead_or_set_registers (next,
586 					      &fallthrough_res, 0, jump_count,
587 					      set, needed);
588 		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
589 		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
590 		  break;
591 		}
592 	      else
593 		break;
594 	    }
595 	  else
596 	    {
597 	      /* Don't try this optimization if we expired our jump count
598 		 above, since that would mean there may be an infinite loop
599 		 in the function being compiled.  */
600 	      jump_insn = 0;
601 	      break;
602 	    }
603 	}
604 
605       mark_referenced_resources (insn, &needed, 1);
606       mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
607 
608       COPY_HARD_REG_SET (scratch, set.regs);
609       AND_COMPL_HARD_REG_SET (scratch, needed.regs);
610       AND_COMPL_HARD_REG_SET (res->regs, scratch);
611     }
612 
613   return jump_insn;
614 }
615 
616 /* Given X, a part of an insn, and a pointer to a `struct resource',
617    RES, indicate which resources are modified by the insn. If
618    MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
619    set by the called routine.
620 
621    If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
622    objects are being referenced instead of set.
623 
624    We never mark the insn as modifying the condition code unless it explicitly
625    SETs CC0 even though this is not totally correct.  The reason for this is
626    that we require a SET of CC0 to immediately precede the reference to CC0.
627    So if some other insn sets CC0 as a side-effect, we know it cannot affect
628    our computation and thus may be placed in a delay slot.  */
629 
630 void
mark_set_resources(rtx x,struct resources * res,int in_dest,enum mark_resource_type mark_type)631 mark_set_resources (rtx x, struct resources *res, int in_dest,
632 		    enum mark_resource_type mark_type)
633 {
634   enum rtx_code code;
635   int i, j;
636   unsigned int r;
637   const char *format_ptr;
638 
639  restart:
640 
641   code = GET_CODE (x);
642 
643   switch (code)
644     {
645     case NOTE:
646     case BARRIER:
647     case CODE_LABEL:
648     case USE:
649     case CONST_INT:
650     case CONST_DOUBLE:
651     case CONST_VECTOR:
652     case LABEL_REF:
653     case SYMBOL_REF:
654     case CONST:
655     case PC:
656       /* These don't set any resources.  */
657       return;
658 
659     case CC0:
660       if (in_dest)
661 	res->cc = 1;
662       return;
663 
664     case CALL_INSN:
665       /* Called routine modifies the condition code, memory, any registers
666 	 that aren't saved across calls, global registers and anything
667 	 explicitly CLOBBERed immediately after the CALL_INSN.  */
668 
669       if (mark_type == MARK_SRC_DEST_CALL)
670 	{
671 	  rtx link;
672 
673 	  res->cc = res->memory = 1;
674 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
675 	    if (call_used_regs[r] || global_regs[r])
676 	      SET_HARD_REG_BIT (res->regs, r);
677 
678 	  for (link = CALL_INSN_FUNCTION_USAGE (x);
679 	       link; link = XEXP (link, 1))
680 	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
681 	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
682 				  MARK_SRC_DEST);
683 
684 	  /* Check for a REG_SETJMP.  If it exists, then we must
685 	     assume that this call can clobber any register.  */
686 	  if (find_reg_note (x, REG_SETJMP, NULL))
687 	    SET_HARD_REG_SET (res->regs);
688 	}
689 
690       /* ... and also what its RTL says it modifies, if anything.  */
691 
692     case JUMP_INSN:
693     case INSN:
694 
695 	/* An insn consisting of just a CLOBBER (or USE) is just for flow
696 	   and doesn't actually do anything, so we ignore it.  */
697 
698 #ifdef INSN_SETS_ARE_DELAYED
699       if (mark_type != MARK_SRC_DEST_CALL
700 	  && INSN_SETS_ARE_DELAYED (x))
701 	return;
702 #endif
703 
704       x = PATTERN (x);
705       if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
706 	goto restart;
707       return;
708 
709     case SET:
710       /* If the source of a SET is a CALL, this is actually done by
711 	 the called routine.  So only include it if we are to include the
712 	 effects of the calling routine.  */
713 
714       mark_set_resources (SET_DEST (x), res,
715 			  (mark_type == MARK_SRC_DEST_CALL
716 			   || GET_CODE (SET_SRC (x)) != CALL),
717 			  mark_type);
718 
719       mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
720       return;
721 
722     case CLOBBER:
723       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
724       return;
725 
726     case SEQUENCE:
727       for (i = 0; i < XVECLEN (x, 0); i++)
728 	if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
729 	       && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
730 	  mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
731       return;
732 
733     case POST_INC:
734     case PRE_INC:
735     case POST_DEC:
736     case PRE_DEC:
737       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
738       return;
739 
740     case PRE_MODIFY:
741     case POST_MODIFY:
742       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
743       mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
744       mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
745       return;
746 
747     case SIGN_EXTRACT:
748     case ZERO_EXTRACT:
749       mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
750       mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
751       mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
752       return;
753 
754     case MEM:
755       if (in_dest)
756 	{
757 	  res->memory = 1;
758 	  res->unch_memory |= RTX_UNCHANGING_P (x);
759 	  res->volatil |= MEM_VOLATILE_P (x);
760 	}
761 
762       mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
763       return;
764 
765     case SUBREG:
766       if (in_dest)
767 	{
768 	  if (GET_CODE (SUBREG_REG (x)) != REG)
769 	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
770 	  else
771 	    {
772 	      unsigned int regno = subreg_regno (x);
773 	      unsigned int last_regno
774 		= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
775 
776 	      if (last_regno > FIRST_PSEUDO_REGISTER)
777 		abort ();
778 	      for (r = regno; r < last_regno; r++)
779 		SET_HARD_REG_BIT (res->regs, r);
780 	    }
781 	}
782       return;
783 
784     case REG:
785       if (in_dest)
786 	{
787 	  unsigned int regno = REGNO (x);
788 	  unsigned int last_regno
789 	    = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
790 
791 	  if (last_regno > FIRST_PSEUDO_REGISTER)
792 	    abort ();
793 	  for (r = regno; r < last_regno; r++)
794 	    SET_HARD_REG_BIT (res->regs, r);
795 	}
796       return;
797 
798     case UNSPEC_VOLATILE:
799     case ASM_INPUT:
800       /* Traditional asm's are always volatile.  */
801       res->volatil = 1;
802       return;
803 
804     case TRAP_IF:
805       res->volatil = 1;
806       break;
807 
808     case ASM_OPERANDS:
809       res->volatil |= MEM_VOLATILE_P (x);
810 
811       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
812 	 We can not just fall through here since then we would be confused
813 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
814 	 traditional asms unlike their normal usage.  */
815 
816       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
817 	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
818 			    MARK_SRC_DEST);
819       return;
820 
821     default:
822       break;
823     }
824 
825   /* Process each sub-expression and flag what it needs.  */
826   format_ptr = GET_RTX_FORMAT (code);
827   for (i = 0; i < GET_RTX_LENGTH (code); i++)
828     switch (*format_ptr++)
829       {
830       case 'e':
831 	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
832 	break;
833 
834       case 'E':
835 	for (j = 0; j < XVECLEN (x, i); j++)
836 	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
837 	break;
838       }
839 }
840 
841 /* Set the resources that are live at TARGET.
842 
843    If TARGET is zero, we refer to the end of the current function and can
844    return our precomputed value.
845 
846    Otherwise, we try to find out what is live by consulting the basic block
847    information.  This is tricky, because we must consider the actions of
848    reload and jump optimization, which occur after the basic block information
849    has been computed.
850 
851    Accordingly, we proceed as follows::
852 
853    We find the previous BARRIER and look at all immediately following labels
854    (with no intervening active insns) to see if any of them start a basic
855    block.  If we hit the start of the function first, we use block 0.
856 
857    Once we have found a basic block and a corresponding first insns, we can
858    accurately compute the live status from basic_block_live_regs and
859    reg_renumber.  (By starting at a label following a BARRIER, we are immune
860    to actions taken by reload and jump.)  Then we scan all insns between
861    that point and our target.  For each CLOBBER (or for call-clobbered regs
862    when we pass a CALL_INSN), mark the appropriate registers are dead.  For
863    a SET, mark them as live.
864 
865    We have to be careful when using REG_DEAD notes because they are not
866    updated by such things as find_equiv_reg.  So keep track of registers
867    marked as dead that haven't been assigned to, and mark them dead at the
868    next CODE_LABEL since reload and jump won't propagate values across labels.
869 
870    If we cannot find the start of a basic block (should be a very rare
871    case, if it can happen at all), mark everything as potentially live.
872 
873    Next, scan forward from TARGET looking for things set or clobbered
874    before they are used.  These are not live.
875 
876    Because we can be called many times on the same target, save our results
877    in a hash table indexed by INSN_UID.  This is only done if the function
878    init_resource_info () was invoked before we are called.  */
879 
880 void
mark_target_live_regs(rtx insns,rtx target,struct resources * res)881 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
882 {
883   int b = -1;
884   unsigned int i;
885   struct target_info *tinfo = NULL;
886   rtx insn;
887   rtx jump_insn = 0;
888   rtx jump_target;
889   HARD_REG_SET scratch;
890   struct resources set, needed;
891 
892   /* Handle end of function.  */
893   if (target == 0)
894     {
895       *res = end_of_function_needs;
896       return;
897     }
898 
899   /* We have to assume memory is needed, but the CC isn't.  */
900   res->memory = 1;
901   res->volatil = res->unch_memory = 0;
902   res->cc = 0;
903 
904   /* See if we have computed this value already.  */
905   if (target_hash_table != NULL)
906     {
907       for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
908 	   tinfo; tinfo = tinfo->next)
909 	if (tinfo->uid == INSN_UID (target))
910 	  break;
911 
912       /* Start by getting the basic block number.  If we have saved
913 	 information, we can get it from there unless the insn at the
914 	 start of the basic block has been deleted.  */
915       if (tinfo && tinfo->block != -1
916 	  && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
917 	b = tinfo->block;
918     }
919 
920   if (b == -1)
921     b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
922 
923   if (target_hash_table != NULL)
924     {
925       if (tinfo)
926 	{
927 	  /* If the information is up-to-date, use it.  Otherwise, we will
928 	     update it below.  */
929 	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
930 	    {
931 	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
932 	      return;
933 	    }
934 	}
935       else
936 	{
937 	  /* Allocate a place to put our results and chain it into the
938 	     hash table.  */
939 	  tinfo = xmalloc (sizeof (struct target_info));
940 	  tinfo->uid = INSN_UID (target);
941 	  tinfo->block = b;
942 	  tinfo->next
943 	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
944 	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
945 	}
946     }
947 
948   CLEAR_HARD_REG_SET (pending_dead_regs);
949 
950   /* If we found a basic block, get the live registers from it and update
951      them with anything set or killed between its start and the insn before
952      TARGET.  Otherwise, we must assume everything is live.  */
953   if (b != -1)
954     {
955       regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
956       unsigned int j;
957       unsigned int regno;
958       rtx start_insn, stop_insn;
959 
960       /* Compute hard regs live at start of block -- this is the real hard regs
961 	 marked live, plus live pseudo regs that have been renumbered to
962 	 hard regs.  */
963 
964       REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
965 
966       EXECUTE_IF_SET_IN_REG_SET
967 	(regs_live, FIRST_PSEUDO_REGISTER, i,
968 	 {
969 	   if (reg_renumber[i] >= 0)
970 	     {
971 	       regno = reg_renumber[i];
972 	       for (j = regno;
973 		    j < regno + HARD_REGNO_NREGS (regno,
974 						  PSEUDO_REGNO_MODE (i));
975 		    j++)
976 		 SET_HARD_REG_BIT (current_live_regs, j);
977 	     }
978 	 });
979 
980       /* Get starting and ending insn, handling the case where each might
981 	 be a SEQUENCE.  */
982       start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
983       stop_insn = target;
984 
985       if (GET_CODE (start_insn) == INSN
986 	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
987 	start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
988 
989       if (GET_CODE (stop_insn) == INSN
990 	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
991 	stop_insn = next_insn (PREV_INSN (stop_insn));
992 
993       for (insn = start_insn; insn != stop_insn;
994 	   insn = next_insn_no_annul (insn))
995 	{
996 	  rtx link;
997 	  rtx real_insn = insn;
998 	  enum rtx_code code = GET_CODE (insn);
999 
1000 	  /* If this insn is from the target of a branch, it isn't going to
1001 	     be used in the sequel.  If it is used in both cases, this
1002 	     test will not be true.  */
1003 	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1004 	      && INSN_FROM_TARGET_P (insn))
1005 	    continue;
1006 
1007 	  /* If this insn is a USE made by update_block, we care about the
1008 	     underlying insn.  */
1009 	  if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1010 	      && INSN_P (XEXP (PATTERN (insn), 0)))
1011 	      real_insn = XEXP (PATTERN (insn), 0);
1012 
1013 	  if (GET_CODE (real_insn) == CALL_INSN)
1014 	    {
1015 	      /* CALL clobbers all call-used regs that aren't fixed except
1016 		 sp, ap, and fp.  Do this before setting the result of the
1017 		 call live.  */
1018 	      AND_COMPL_HARD_REG_SET (current_live_regs,
1019 				      regs_invalidated_by_call);
1020 
1021 	      /* A CALL_INSN sets any global register live, since it may
1022 		 have been modified by the call.  */
1023 	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1024 		if (global_regs[i])
1025 		  SET_HARD_REG_BIT (current_live_regs, i);
1026 	    }
1027 
1028 	  /* Mark anything killed in an insn to be deadened at the next
1029 	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1030 	     parameters.  But they might be early.  A CALL_INSN will usually
1031 	     clobber registers used for parameters.  It isn't worth bothering
1032 	     with the unlikely case when it won't.  */
1033 	  if ((GET_CODE (real_insn) == INSN
1034 	       && GET_CODE (PATTERN (real_insn)) != USE
1035 	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1036 	      || GET_CODE (real_insn) == JUMP_INSN
1037 	      || GET_CODE (real_insn) == CALL_INSN)
1038 	    {
1039 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1040 		if (REG_NOTE_KIND (link) == REG_DEAD
1041 		    && GET_CODE (XEXP (link, 0)) == REG
1042 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1043 		  {
1044 		    unsigned int first_regno = REGNO (XEXP (link, 0));
1045 		    unsigned int last_regno
1046 		      = (first_regno
1047 			 + HARD_REGNO_NREGS (first_regno,
1048 					     GET_MODE (XEXP (link, 0))));
1049 
1050 		    for (i = first_regno; i < last_regno; i++)
1051 		      SET_HARD_REG_BIT (pending_dead_regs, i);
1052 		  }
1053 
1054 	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1055 
1056 	      /* If any registers were unused after this insn, kill them.
1057 		 These notes will always be accurate.  */
1058 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1059 		if (REG_NOTE_KIND (link) == REG_UNUSED
1060 		    && GET_CODE (XEXP (link, 0)) == REG
1061 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1062 		  {
1063 		    unsigned int first_regno = REGNO (XEXP (link, 0));
1064 		    unsigned int last_regno
1065 		      = (first_regno
1066 			 + HARD_REGNO_NREGS (first_regno,
1067 					     GET_MODE (XEXP (link, 0))));
1068 
1069 		    for (i = first_regno; i < last_regno; i++)
1070 		      CLEAR_HARD_REG_BIT (current_live_regs, i);
1071 		  }
1072 	    }
1073 
1074 	  else if (GET_CODE (real_insn) == CODE_LABEL)
1075 	    {
1076 	      /* A label clobbers the pending dead registers since neither
1077 		 reload nor jump will propagate a value across a label.  */
1078 	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1079 	      CLEAR_HARD_REG_SET (pending_dead_regs);
1080 	    }
1081 
1082 	  /* The beginning of the epilogue corresponds to the end of the
1083 	     RTL chain when there are no epilogue insns.  Certain resources
1084 	     are implicitly required at that point.  */
1085 	  else if (GET_CODE (real_insn) == NOTE
1086 		   && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1087 	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1088 	}
1089 
1090       COPY_HARD_REG_SET (res->regs, current_live_regs);
1091       if (tinfo != NULL)
1092 	{
1093 	  tinfo->block = b;
1094 	  tinfo->bb_tick = bb_ticks[b];
1095 	}
1096     }
1097   else
1098     /* We didn't find the start of a basic block.  Assume everything
1099        in use.  This should happen only extremely rarely.  */
1100     SET_HARD_REG_SET (res->regs);
1101 
1102   CLEAR_RESOURCE (&set);
1103   CLEAR_RESOURCE (&needed);
1104 
1105   jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1106 					  set, needed);
1107 
1108   /* If we hit an unconditional branch, we have another way of finding out
1109      what is live: we can see what is live at the branch target and include
1110      anything used but not set before the branch.  We add the live
1111      resources found using the test below to those found until now.  */
1112 
1113   if (jump_insn)
1114     {
1115       struct resources new_resources;
1116       rtx stop_insn = next_active_insn (jump_insn);
1117 
1118       mark_target_live_regs (insns, next_active_insn (jump_target),
1119 			     &new_resources);
1120       CLEAR_RESOURCE (&set);
1121       CLEAR_RESOURCE (&needed);
1122 
1123       /* Include JUMP_INSN in the needed registers.  */
1124       for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1125 	{
1126 	  mark_referenced_resources (insn, &needed, 1);
1127 
1128 	  COPY_HARD_REG_SET (scratch, needed.regs);
1129 	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
1130 	  IOR_HARD_REG_SET (new_resources.regs, scratch);
1131 
1132 	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1133 	}
1134 
1135       IOR_HARD_REG_SET (res->regs, new_resources.regs);
1136     }
1137 
1138   if (tinfo != NULL)
1139     {
1140       COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1141     }
1142 }
1143 
1144 /* Initialize the resources required by mark_target_live_regs ().
1145    This should be invoked before the first call to mark_target_live_regs.  */
1146 
1147 void
init_resource_info(rtx epilogue_insn)1148 init_resource_info (rtx epilogue_insn)
1149 {
1150   int i;
1151 
1152   /* Indicate what resources are required to be valid at the end of the current
1153      function.  The condition code never is and memory always is.  If the
1154      frame pointer is needed, it is and so is the stack pointer unless
1155      EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
1156      stack pointer is.  Registers used to return the function value are
1157      needed.  Registers holding global variables are needed.  */
1158 
1159   end_of_function_needs.cc = 0;
1160   end_of_function_needs.memory = 1;
1161   end_of_function_needs.unch_memory = 0;
1162   CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1163 
1164   if (frame_pointer_needed)
1165     {
1166       SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1167 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1168       SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1169 #endif
1170       if (! EXIT_IGNORE_STACK
1171 	  || current_function_sp_is_unchanging)
1172 	SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1173     }
1174   else
1175     SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1176 
1177   if (current_function_return_rtx != 0)
1178     mark_referenced_resources (current_function_return_rtx,
1179 			       &end_of_function_needs, 1);
1180 
1181   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1182     if (global_regs[i]
1183 #ifdef EPILOGUE_USES
1184 	|| EPILOGUE_USES (i)
1185 #endif
1186 	)
1187       SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1188 
1189   /* The registers required to be live at the end of the function are
1190      represented in the flow information as being dead just prior to
1191      reaching the end of the function.  For example, the return of a value
1192      might be represented by a USE of the return register immediately
1193      followed by an unconditional jump to the return label where the
1194      return label is the end of the RTL chain.  The end of the RTL chain
1195      is then taken to mean that the return register is live.
1196 
1197      This sequence is no longer maintained when epilogue instructions are
1198      added to the RTL chain.  To reconstruct the original meaning, the
1199      start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1200      point where these registers become live (start_of_epilogue_needs).
1201      If epilogue instructions are present, the registers set by those
1202      instructions won't have been processed by flow.  Thus, those
1203      registers are additionally required at the end of the RTL chain
1204      (end_of_function_needs).  */
1205 
1206   start_of_epilogue_needs = end_of_function_needs;
1207 
1208   while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1209     mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1210 			MARK_SRC_DEST_CALL);
1211 
1212   /* Allocate and initialize the tables used by mark_target_live_regs.  */
1213   target_hash_table = xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *));
1214   bb_ticks = xcalloc (last_basic_block, sizeof (int));
1215 }
1216 
1217 /* Free up the resources allocated to mark_target_live_regs ().  This
1218    should be invoked after the last call to mark_target_live_regs ().  */
1219 
1220 void
free_resource_info(void)1221 free_resource_info (void)
1222 {
1223   if (target_hash_table != NULL)
1224     {
1225       int i;
1226 
1227       for (i = 0; i < TARGET_HASH_PRIME; ++i)
1228 	{
1229 	  struct target_info *ti = target_hash_table[i];
1230 
1231 	  while (ti)
1232 	    {
1233 	      struct target_info *next = ti->next;
1234 	      free (ti);
1235 	      ti = next;
1236 	    }
1237 	}
1238 
1239       free (target_hash_table);
1240       target_hash_table = NULL;
1241     }
1242 
1243   if (bb_ticks != NULL)
1244     {
1245       free (bb_ticks);
1246       bb_ticks = NULL;
1247     }
1248 }
1249 
1250 /* Clear any hashed information that we have stored for INSN.  */
1251 
1252 void
clear_hashed_info_for_insn(rtx insn)1253 clear_hashed_info_for_insn (rtx insn)
1254 {
1255   struct target_info *tinfo;
1256 
1257   if (target_hash_table != NULL)
1258     {
1259       for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1260 	   tinfo; tinfo = tinfo->next)
1261 	if (tinfo->uid == INSN_UID (insn))
1262 	  break;
1263 
1264       if (tinfo)
1265 	tinfo->block = -1;
1266     }
1267 }
1268 
1269 /* Increment the tick count for the basic block that contains INSN.  */
1270 
1271 void
incr_ticks_for_insn(rtx insn)1272 incr_ticks_for_insn (rtx insn)
1273 {
1274   int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1275 
1276   if (b != -1)
1277     bb_ticks[b]++;
1278 }
1279 
1280 /* Add TRIAL to the set of resources used at the end of the current
1281    function.  */
1282 void
mark_end_of_function_resources(rtx trial,int include_delayed_effects)1283 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1284 {
1285   mark_referenced_resources (trial, &end_of_function_needs,
1286 			     include_delayed_effects);
1287 }
1288