1 
2 /* @(#)e_jn.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /*
15  * __ieee754_jn(n, x), __ieee754_yn(n, x)
16  * floating point Bessel's function of the 1st and 2nd kind
17  * of order n
18  *
19  * Special cases:
20  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
21  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
22  * Note 2. About jn(n,x), yn(n,x)
23  *	For n=0, j0(x) is called,
24  *	for n=1, j1(x) is called,
25  *	for n<x, forward recursion us used starting
26  *	from values of j0(x) and j1(x).
27  *	for n>x, a continued fraction approximation to
28  *	j(n,x)/j(n-1,x) is evaluated and then backward
29  *	recursion is used starting from a supposed value
30  *	for j(n,x). The resulting value of j(0,x) is
31  *	compared with the actual value to correct the
32  *	supposed value of j(n,x).
33  *
34  *	yn(n,x) is similar in all respects, except
35  *	that forward recursion is used for all
36  *	values of n>1.
37  *
38  */
39 
40 #include "fdlibm.h"
41 
42 #ifndef _DOUBLE_IS_32BITS
43 
44 #ifdef __STDC__
45 static const double
46 #else
47 static double
48 #endif
49 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
50 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
51 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
52 
53 #ifdef __STDC__
54 static const double zero  =  0.00000000000000000000e+00;
55 #else
56 static double zero  =  0.00000000000000000000e+00;
57 #endif
58 
59 #ifdef __STDC__
__ieee754_jn(int n,double x)60 	double __ieee754_jn(int n, double x)
61 #else
62 	double __ieee754_jn(n,x)
63 	int n; double x;
64 #endif
65 {
66 	__int32_t i,hx,ix,lx, sgn;
67 	double a, b, temp, di;
68 	double z, w;
69 
70     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
71      * Thus, J(-n,x) = J(n,-x)
72      */
73 	EXTRACT_WORDS(hx,lx,x);
74 	ix = 0x7fffffff&hx;
75     /* if J(n,NaN) is NaN */
76 	if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
77 	if(n<0){
78 		n = -n;
79 		x = -x;
80 		hx ^= 0x80000000;
81 	}
82 	if(n==0) return(__ieee754_j0(x));
83 	if(n==1) return(__ieee754_j1(x));
84 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
85 	x = fabs(x);
86 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
87 	    b = zero;
88 	else if((double)n<=x) {
89 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
90 	    if(ix>=0x52D00000) { /* x > 2**302 */
91     /* (x >> n**2)
92      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
93      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
94      *	    Let s=sin(x), c=cos(x),
95      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
96      *
97      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
98      *		----------------------------------
99      *		   0	 s-c		 c+s
100      *		   1	-s-c 		-c+s
101      *		   2	-s+c		-c-s
102      *		   3	 s+c		 c-s
103      */
104 		switch(n&3) {
105 		    case 0: temp =  cos(x)+sin(x); break;
106 		    case 1: temp = -cos(x)+sin(x); break;
107 		    case 2: temp = -cos(x)-sin(x); break;
108 		    case 3: temp =  cos(x)-sin(x); break;
109 		}
110 		b = invsqrtpi*temp/__ieee754_sqrt(x);
111 	    } else {
112 	        a = __ieee754_j0(x);
113 	        b = __ieee754_j1(x);
114 	        for(i=1;i<n;i++){
115 		    temp = b;
116 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
117 		    a = temp;
118 	        }
119 	    }
120 	} else {
121 	    if(ix<0x3e100000) {	/* x < 2**-29 */
122     /* x is tiny, return the first Taylor expansion of J(n,x)
123      * J(n,x) = 1/n!*(x/2)^n  - ...
124      */
125 		if(n>33)	/* underflow */
126 		    b = zero;
127 		else {
128 		    temp = x*0.5; b = temp;
129 		    for (a=one,i=2;i<=n;i++) {
130 			a *= (double)i;		/* a = n! */
131 			b *= temp;		/* b = (x/2)^n */
132 		    }
133 		    b = b/a;
134 		}
135 	    } else {
136 		/* use backward recurrence */
137 		/* 			x      x^2      x^2
138 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
139 		 *			2n  - 2(n+1) - 2(n+2)
140 		 *
141 		 * 			1      1        1
142 		 *  (for large x)   =  ----  ------   ------   .....
143 		 *			2n   2(n+1)   2(n+2)
144 		 *			-- - ------ - ------ -
145 		 *			 x     x         x
146 		 *
147 		 * Let w = 2n/x and h=2/x, then the above quotient
148 		 * is equal to the continued fraction:
149 		 *		    1
150 		 *	= -----------------------
151 		 *		       1
152 		 *	   w - -----------------
153 		 *			  1
154 		 * 	        w+h - ---------
155 		 *		       w+2h - ...
156 		 *
157 		 * To determine how many terms needed, let
158 		 * Q(0) = w, Q(1) = w(w+h) - 1,
159 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
160 		 * When Q(k) > 1e4	good for single
161 		 * When Q(k) > 1e9	good for double
162 		 * When Q(k) > 1e17	good for quadruple
163 		 */
164 	    /* determine k */
165 		double t,v;
166 		double q0,q1,h,tmp; __int32_t k,m;
167 		w  = (n+n)/(double)x; h = 2.0/(double)x;
168 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
169 		while(q1<1.0e9) {
170 			k += 1; z += h;
171 			tmp = z*q1 - q0;
172 			q0 = q1;
173 			q1 = tmp;
174 		}
175 		m = n+n;
176 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
177 		a = t;
178 		b = one;
179 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
180 		 *  Hence, if n*(log(2n/x)) > ...
181 		 *  single 8.8722839355e+01
182 		 *  double 7.09782712893383973096e+02
183 		 *  long double 1.1356523406294143949491931077970765006170e+04
184 		 *  then recurrent value may overflow and the result is
185 		 *  likely underflow to zero
186 		 */
187 		tmp = n;
188 		v = two/x;
189 		tmp = tmp*__ieee754_log(fabs(v*tmp));
190 		if(tmp<7.09782712893383973096e+02) {
191 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
192 		        temp = b;
193 			b *= di;
194 			b  = b/x - a;
195 		        a = temp;
196 			di -= two;
197 	     	    }
198 		} else {
199 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
200 		        temp = b;
201 			b *= di;
202 			b  = b/x - a;
203 		        a = temp;
204 			di -= two;
205 		    /* scale b to avoid spurious overflow */
206 			if(b>1e100) {
207 			    a /= b;
208 			    t /= b;
209 			    b  = one;
210 			}
211 	     	    }
212 		}
213 	    	b = (t*__ieee754_j0(x)/b);
214 	    }
215 	}
216 	if(sgn==1) return -b; else return b;
217 }
218 
219 #ifdef __STDC__
__ieee754_yn(int n,double x)220 	double __ieee754_yn(int n, double x)
221 #else
222 	double __ieee754_yn(n,x)
223 	int n; double x;
224 #endif
225 {
226 	__int32_t i,hx,ix,lx;
227 	__int32_t sign;
228 	double a, b, temp;
229 
230 	EXTRACT_WORDS(hx,lx,x);
231 	ix = 0x7fffffff&hx;
232     /* if Y(n,NaN) is NaN */
233 	if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
234 	if((ix|lx)==0) return -one/zero;
235 	if(hx<0) return zero/zero;
236 	sign = 1;
237 	if(n<0){
238 		n = -n;
239 		sign = 1 - ((n&1)<<1);
240 	}
241 	if(n==0) return(__ieee754_y0(x));
242 	if(n==1) return(sign*__ieee754_y1(x));
243 	if(ix==0x7ff00000) return zero;
244 	if(ix>=0x52D00000) { /* x > 2**302 */
245     /* (x >> n**2)
246      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
247      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
248      *	    Let s=sin(x), c=cos(x),
249      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
250      *
251      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
252      *		----------------------------------
253      *		   0	 s-c		 c+s
254      *		   1	-s-c 		-c+s
255      *		   2	-s+c		-c-s
256      *		   3	 s+c		 c-s
257      */
258 		switch(n&3) {
259 		    case 0: temp =  sin(x)-cos(x); break;
260 		    case 1: temp = -sin(x)-cos(x); break;
261 		    case 2: temp = -sin(x)+cos(x); break;
262 		    case 3: temp =  sin(x)+cos(x); break;
263 		}
264 		b = invsqrtpi*temp/__ieee754_sqrt(x);
265 	} else {
266 	    __uint32_t high;
267 	    a = __ieee754_y0(x);
268 	    b = __ieee754_y1(x);
269 	/* quit if b is -inf */
270 	    GET_HIGH_WORD(high,b);
271 	    for(i=1;i<n&&high!=0xfff00000;i++){
272 		temp = b;
273 		b = ((double)(i+i)/x)*b - a;
274 		GET_HIGH_WORD(high,b);
275 		a = temp;
276 	    }
277 	}
278 	if(sign>0) return b; else return -b;
279 }
280 
281 #endif /* defined(_DOUBLE_IS_32BITS) */
282