1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6# Foundation, Inc.
7#
8#
9# This file is part of GDB.
10#
11# This program is free software; you can redistribute it and/or modify
12# it under the terms of the GNU General Public License as published by
13# the Free Software Foundation; either version 2 of the License, or
14# (at your option) any later version.
15#
16# This program is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19# GNU General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with this program; if not, write to the Free Software
23# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25# Make certain that the script is running in an internationalized
26# environment.
27LANG=c ; export LANG
28LC_ALL=c ; export LC_ALL
29
30
31compare_new ()
32{
33    file=$1
34    if test ! -r ${file}
35    then
36	echo "${file} missing? cp new-${file} ${file}" 1>&2
37    elif diff -u ${file} new-${file}
38    then
39	echo "${file} unchanged" 1>&2
40    else
41	echo "${file} has changed? cp new-${file} ${file}" 1>&2
42    fi
43}
44
45
46# Format of the input table
47read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print garbage_at_eol"
48
49do_read ()
50{
51    comment=""
52    class=""
53    while read line
54    do
55	if test "${line}" = ""
56	then
57	    continue
58	elif test "${line}" = "#" -a "${comment}" = ""
59	then
60	    continue
61	elif expr "${line}" : "#" > /dev/null
62	then
63	    comment="${comment}
64${line}"
65	else
66
67	    # The semantics of IFS varies between different SH's.  Some
68	    # treat ``::' as three fields while some treat it as just too.
69	    # Work around this by eliminating ``::'' ....
70	    line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72	    OFS="${IFS}" ; IFS="[:]"
73	    eval read ${read} <<EOF
74${line}
75EOF
76	    IFS="${OFS}"
77
78	    if test -n "${garbage_at_eol}"
79	    then
80		echo "Garbage at end-of-line in ${line}" 1>&2
81		kill $$
82		exit 1
83	    fi
84
85	    # .... and then going back through each field and strip out those
86	    # that ended up with just that space character.
87	    for r in ${read}
88	    do
89		if eval test \"\${${r}}\" = \"\ \"
90		then
91		    eval ${r}=""
92		fi
93	    done
94
95	    FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96	    if test "x${macro}" = "x="
97	    then
98	        # Provide a UCASE version of function (for when there isn't MACRO)
99		macro="${FUNCTION}"
100	    elif test "${macro}" = "${FUNCTION}"
101	    then
102		echo "${function}: Specify = for macro field" 1>&2
103		kill $$
104		exit 1
105	    fi
106
107	    # Check that macro definition wasn't supplied for multi-arch
108	    case "${class}" in
109		[mM] )
110                    if test "${macro}" != ""
111		    then
112			echo "${macro}: Multi-arch yet macro" 1>&2
113			kill $$
114			exit 1
115		    fi
116	    esac
117
118	    case "${class}" in
119		m ) staticdefault="${predefault}" ;;
120		M ) staticdefault="0" ;;
121		* ) test "${staticdefault}" || staticdefault=0 ;;
122	    esac
123
124	    case "${class}" in
125	    F | V | M )
126		case "${invalid_p}" in
127		"" )
128		    if test -n "${predefault}"
129		    then
130			#invalid_p="gdbarch->${function} == ${predefault}"
131			predicate="gdbarch->${function} != ${predefault}"
132		    elif class_is_variable_p
133		    then
134			predicate="gdbarch->${function} != 0"
135		    elif class_is_function_p
136		    then
137			predicate="gdbarch->${function} != NULL"
138		    fi
139		    ;;
140		* )
141		    echo "Predicate function ${function} with invalid_p." 1>&2
142		    kill $$
143		    exit 1
144		    ;;
145		esac
146	    esac
147
148	    # PREDEFAULT is a valid fallback definition of MEMBER when
149	    # multi-arch is not enabled.  This ensures that the
150	    # default value, when multi-arch is the same as the
151	    # default value when not multi-arch.  POSTDEFAULT is
152	    # always a valid definition of MEMBER as this again
153	    # ensures consistency.
154
155	    if [ -n "${postdefault}" ]
156	    then
157		fallbackdefault="${postdefault}"
158	    elif [ -n "${predefault}" ]
159	    then
160		fallbackdefault="${predefault}"
161	    else
162		fallbackdefault="0"
163	    fi
164
165	    #NOT YET: See gdbarch.log for basic verification of
166	    # database
167
168	    break
169	fi
170    done
171    if [ -n "${class}" ]
172    then
173	true
174    else
175	false
176    fi
177}
178
179
180fallback_default_p ()
181{
182    [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183	|| [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184}
185
186class_is_variable_p ()
187{
188    case "${class}" in
189	*v* | *V* ) true ;;
190	* ) false ;;
191    esac
192}
193
194class_is_function_p ()
195{
196    case "${class}" in
197	*f* | *F* | *m* | *M* ) true ;;
198	* ) false ;;
199    esac
200}
201
202class_is_multiarch_p ()
203{
204    case "${class}" in
205	*m* | *M* ) true ;;
206	* ) false ;;
207    esac
208}
209
210class_is_predicate_p ()
211{
212    case "${class}" in
213	*F* | *V* | *M* ) true ;;
214	* ) false ;;
215    esac
216}
217
218class_is_info_p ()
219{
220    case "${class}" in
221	*i* ) true ;;
222	* ) false ;;
223    esac
224}
225
226
227# dump out/verify the doco
228for field in ${read}
229do
230  case ${field} in
231
232    class ) : ;;
233
234	# # -> line disable
235	# f -> function
236	#   hiding a function
237	# F -> function + predicate
238	#   hiding a function + predicate to test function validity
239	# v -> variable
240	#   hiding a variable
241	# V -> variable + predicate
242	#   hiding a variable + predicate to test variables validity
243	# i -> set from info
244	#   hiding something from the ``struct info'' object
245	# m -> multi-arch function
246	#   hiding a multi-arch function (parameterised with the architecture)
247        # M -> multi-arch function + predicate
248	#   hiding a multi-arch function + predicate to test function validity
249
250    macro ) : ;;
251
252	# The name of the legacy C macro by which this method can be
253	# accessed.  If empty, no macro is defined.  If "=", a macro
254	# formed from the upper-case function name is used.
255
256    returntype ) : ;;
257
258	# For functions, the return type; for variables, the data type
259
260    function ) : ;;
261
262	# For functions, the member function name; for variables, the
263	# variable name.  Member function names are always prefixed with
264	# ``gdbarch_'' for name-space purity.
265
266    formal ) : ;;
267
268	# The formal argument list.  It is assumed that the formal
269	# argument list includes the actual name of each list element.
270	# A function with no arguments shall have ``void'' as the
271	# formal argument list.
272
273    actual ) : ;;
274
275	# The list of actual arguments.  The arguments specified shall
276	# match the FORMAL list given above.  Functions with out
277	# arguments leave this blank.
278
279    attrib ) : ;;
280
281	# Any GCC attributes that should be attached to the function
282	# declaration.  At present this field is unused.
283
284    staticdefault ) : ;;
285
286	# To help with the GDB startup a static gdbarch object is
287	# created.  STATICDEFAULT is the value to insert into that
288	# static gdbarch object.  Since this a static object only
289	# simple expressions can be used.
290
291	# If STATICDEFAULT is empty, zero is used.
292
293    predefault ) : ;;
294
295	# An initial value to assign to MEMBER of the freshly
296	# malloc()ed gdbarch object.  After initialization, the
297	# freshly malloc()ed object is passed to the target
298	# architecture code for further updates.
299
300	# If PREDEFAULT is empty, zero is used.
301
302	# A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
303	# INVALID_P are specified, PREDEFAULT will be used as the
304	# default for the non- multi-arch target.
305
306	# A zero PREDEFAULT function will force the fallback to call
307	# internal_error().
308
309	# Variable declarations can refer to ``gdbarch'' which will
310	# contain the current architecture.  Care should be taken.
311
312    postdefault ) : ;;
313
314	# A value to assign to MEMBER of the new gdbarch object should
315	# the target architecture code fail to change the PREDEFAULT
316	# value.
317
318	# If POSTDEFAULT is empty, no post update is performed.
319
320	# If both INVALID_P and POSTDEFAULT are non-empty then
321	# INVALID_P will be used to determine if MEMBER should be
322	# changed to POSTDEFAULT.
323
324	# If a non-empty POSTDEFAULT and a zero INVALID_P are
325	# specified, POSTDEFAULT will be used as the default for the
326	# non- multi-arch target (regardless of the value of
327	# PREDEFAULT).
328
329	# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
330
331	# Variable declarations can refer to ``current_gdbarch'' which
332	# will contain the current architecture.  Care should be
333	# taken.
334
335    invalid_p ) : ;;
336
337	# A predicate equation that validates MEMBER.  Non-zero is
338	# returned if the code creating the new architecture failed to
339	# initialize MEMBER or the initialized the member is invalid.
340	# If POSTDEFAULT is non-empty then MEMBER will be updated to
341	# that value.  If POSTDEFAULT is empty then internal_error()
342	# is called.
343
344	# If INVALID_P is empty, a check that MEMBER is no longer
345	# equal to PREDEFAULT is used.
346
347	# The expression ``0'' disables the INVALID_P check making
348	# PREDEFAULT a legitimate value.
349
350	# See also PREDEFAULT and POSTDEFAULT.
351
352    fmt ) : ;;
353
354	# printf style format string that can be used to print out the
355	# MEMBER.  Sometimes "%s" is useful.  For functions, this is
356	# ignored and the function address is printed.
357
358	# If FMT is empty, ``%ld'' is used.
359
360    print ) : ;;
361
362	# An optional equation that casts MEMBER to a value suitable
363	# for formatting by FMT.
364
365	# If PRINT is empty, ``(long)'' is used.
366
367    garbage_at_eol ) : ;;
368
369	# Catches stray fields.
370
371    *)
372	echo "Bad field ${field}"
373	exit 1;;
374  esac
375done
376
377
378function_list ()
379{
380  # See below (DOCO) for description of each field
381  cat <<EOF
382i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name
383#
384i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
385#
386i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
387# Number of bits in a char or unsigned char for the target machine.
388# Just like CHAR_BIT in <limits.h> but describes the target machine.
389# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
390#
391# Number of bits in a short or unsigned short for the target machine.
392v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
393# Number of bits in an int or unsigned int for the target machine.
394v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
395# Number of bits in a long or unsigned long for the target machine.
396v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
397# Number of bits in a long long or unsigned long long for the target
398# machine.
399v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
400# Number of bits in a float for the target machine.
401v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
402# Number of bits in a double for the target machine.
403v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
404# Number of bits in a long double for the target machine.
405v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
406# For most targets, a pointer on the target and its representation as an
407# address in GDB have the same size and "look the same".  For such a
408# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
409# / addr_bit will be set from it.
410#
411# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
412# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
413#
414# ptr_bit is the size of a pointer on the target
415v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
416# addr_bit is the size of a target address as represented in gdb
417v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
418# Number of bits in a BFD_VMA for the target object file format.
419v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
420#
421# One if \`char' acts like \`signed char', zero if \`unsigned char'.
422v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
423#
424F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
425f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
426# UNWIND_SP is a direct replacement for TARGET_READ_SP.
427F:TARGET_READ_SP:CORE_ADDR:read_sp:void
428# Function for getting target's idea of a frame pointer.  FIXME: GDB's
429# whole scheme for dealing with "frames" and "frame pointers" needs a
430# serious shakedown.
431f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
432#
433M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
434M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
435#
436v:=:int:num_regs::::0:-1
437# This macro gives the number of pseudo-registers that live in the
438# register namespace but do not get fetched or stored on the target.
439# These pseudo-registers may be aliases for other registers,
440# combinations of other registers, or they may be computed by GDB.
441v:=:int:num_pseudo_regs::::0:0::0:::
442
443# GDB's standard (or well known) register numbers.  These can map onto
444# a real register or a pseudo (computed) register or not be defined at
445# all (-1).
446# SP_REGNUM will hopefully be replaced by UNWIND_SP.
447v:=:int:sp_regnum::::-1:-1::0
448v:=:int:pc_regnum::::-1:-1::0
449v:=:int:ps_regnum::::-1:-1::0
450v:=:int:fp0_regnum::::0:-1::0
451# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
452f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
453# Provide a default mapping from a ecoff register number to a gdb REGNUM.
454f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
455# Provide a default mapping from a DWARF register number to a gdb REGNUM.
456f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
457# Convert from an sdb register number to an internal gdb register number.
458f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
459f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
460f:=:const char *:register_name:int regnr:regnr
461
462# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
463M::struct type *:register_type:int reg_nr:reg_nr
464# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
465F:=:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
466# DEPRECATED_REGISTER_BYTES can be deleted.  The value is computed
467# from REGISTER_TYPE.
468v:=:int:deprecated_register_bytes
469# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
470# register offsets computed using just REGISTER_TYPE, this can be
471# deleted.  See: maint print registers.  NOTE: cagney/2002-05-02: This
472# function with predicate has a valid (callable) initial value.  As a
473# consequence, even when the predicate is false, the corresponding
474# function works.  This simplifies the migration process - old code,
475# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
476F:=:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
477# If all registers have identical raw and virtual sizes and those
478# sizes agree with the value computed from REGISTER_TYPE,
479# DEPRECATED_REGISTER_RAW_SIZE can be deleted.  See: maint print
480# registers.
481F:=:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
482# If all registers have identical raw and virtual sizes and those
483# sizes agree with the value computed from REGISTER_TYPE,
484# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted.  See: maint print
485# registers.
486F:=:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
487
488# See gdbint.texinfo, and PUSH_DUMMY_CALL.
489M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
490# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
491# SAVE_DUMMY_FRAME_TOS.
492F:=:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
493# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
494# DEPRECATED_FP_REGNUM.
495v:=:int:deprecated_fp_regnum::::-1:-1::0
496# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
497# DEPRECATED_TARGET_READ_FP.
498F:=:CORE_ADDR:deprecated_target_read_fp:void
499
500# See gdbint.texinfo.  See infcall.c.  New, all singing all dancing,
501# replacement for DEPRECATED_PUSH_ARGUMENTS.
502M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
503# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
504F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
505# Implement PUSH_RETURN_ADDRESS, and then merge in
506# DEPRECATED_PUSH_RETURN_ADDRESS.
507F:=:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
508# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
509F:=:void:deprecated_dummy_write_sp:CORE_ADDR val:val
510# DEPRECATED_REGISTER_SIZE can be deleted.
511v:=:int:deprecated_register_size
512v:=:int:call_dummy_location:::::AT_ENTRY_POINT::0
513M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
514
515F:=:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
516m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
517M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
518M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
519# MAP a GDB RAW register number onto a simulator register number.  See
520# also include/...-sim.h.
521f:=:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
522F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
523f:=:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
524f:=:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
525# setjmp/longjmp support.
526F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
527F:=:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
528#
529v:=:int:believe_pcc_promotion:::::::
530F:=:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
531#
532f:=:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
533f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
534f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
535#
536f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
537f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
538F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
539#
540F:=:void:deprecated_pop_frame:void:-
541# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
542F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
543
544# It has been suggested that this, well actually its predecessor,
545# should take the type/value of the function to be called and not the
546# return type.  This is left as an exercise for the reader.
547
548# NOTE: cagney/2004-06-13: The function stack.c:return_command uses
549# the predicate with default hack to avoid calling STORE_RETURN_VALUE
550# (via legacy_return_value), when a small struct is involved.
551
552M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf:::legacy_return_value
553
554# The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
555# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
556# DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
557# RETURN_VALUE.
558
559f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
560f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
561f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
562f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
563f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
564
565# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
566# ABI suitable for the implementation of a robust extract
567# struct-convention return-value address method (the sparc saves the
568# address in the callers frame).  All the other cases so far examined,
569# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
570# erreneous - the code was incorrectly assuming that the return-value
571# address, stored in a register, was preserved across the entire
572# function call.
573
574# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
575# the ABIs that are still to be analyzed - perhaps this should simply
576# be deleted.  The commented out extract_returned_value_address method
577# is provided as a starting point for the 32-bit SPARC.  It, or
578# something like it, along with changes to both infcmd.c and stack.c
579# will be needed for that case to work.  NB: It is passed the callers
580# frame since it is only after the callee has returned that this
581# function is used.
582
583#M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
584F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
585
586F:=:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
587F:=:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
588#
589f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
590f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
591f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
592M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
593f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
594f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
595v:=:CORE_ADDR:decr_pc_after_break::::0:::0
596
597# A function can be addressed by either it's "pointer" (possibly a
598# descriptor address) or "entry point" (first executable instruction).
599# The method "convert_from_func_ptr_addr" converting the former to the
600# latter.  DEPRECATED_FUNCTION_START_OFFSET is being used to implement
601# a simplified subset of that functionality - the function's address
602# corresponds to the "function pointer" and the function's start
603# corresponds to the "function entry point" - and hence is redundant.
604
605v:=:CORE_ADDR:deprecated_function_start_offset::::0:::0
606
607m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
608#
609v:=:CORE_ADDR:frame_args_skip::::0:::0
610# DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed.  The new
611# frame code works regardless of the type of frame - frameless,
612# stackless, or normal.
613F:=:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
614F:=:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
615F:=:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
616# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC.  Please
617# note, per UNWIND_PC's doco, that while the two have similar
618# interfaces they have very different underlying implementations.
619F:=:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
620M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
621M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
622# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
623# frame-base.  Enable frame-base before frame-unwind.
624F:=:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
625# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
626# frame-base.  Enable frame-base before frame-unwind.
627F:=:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
628F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
629F:=:int:frame_num_args:struct frame_info *frame:frame
630#
631# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
632# to frame_align and the requirement that methods such as
633# push_dummy_call and frame_red_zone_size maintain correct stack/frame
634# alignment.
635F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
636M::CORE_ADDR:frame_align:CORE_ADDR address:address
637# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
638# stabs_argument_has_addr.
639F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
640m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
641v:=:int:frame_red_zone_size
642#
643v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
644v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
645v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
646m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
647# On some machines there are bits in addresses which are not really
648# part of the address, but are used by the kernel, the hardware, etc.
649# for special purposes.  ADDR_BITS_REMOVE takes out any such bits so
650# we get a "real" address such as one would find in a symbol table.
651# This is used only for addresses of instructions, and even then I'm
652# not sure it's used in all contexts.  It exists to deal with there
653# being a few stray bits in the PC which would mislead us, not as some
654# sort of generic thing to handle alignment or segmentation (it's
655# possible it should be in TARGET_READ_PC instead).
656f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
657# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
658# ADDR_BITS_REMOVE.
659f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
660# FIXME/cagney/2001-01-18: This should be split in two.  A target method that indicates if
661# the target needs software single step.  An ISA method to implement it.
662#
663# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
664# using the breakpoint system instead of blatting memory directly (as with rs6000).
665#
666# FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the target can
667# single step.  If not, then implement single step using breakpoints.
668F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
669# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
670# disassembler.  Perhaphs objdump can handle it?
671f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
672f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
673
674
675# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
676# evaluates non-zero, this is the address where the debugger will place
677# a step-resume breakpoint to get us past the dynamic linker.
678m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
679# For SVR4 shared libraries, each call goes through a small piece of
680# trampoline code in the ".plt" section.  IN_SOLIB_CALL_TRAMPOLINE evaluates
681# to nonzero if we are currently stopped in one of these.
682f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
683
684# Some systems also have trampoline code for returning from shared libs.
685f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
686
687# A target might have problems with watchpoints as soon as the stack
688# frame of the current function has been destroyed.  This mostly happens
689# as the first action in a funtion's epilogue.  in_function_epilogue_p()
690# is defined to return a non-zero value if either the given addr is one
691# instruction after the stack destroying instruction up to the trailing
692# return instruction or if we can figure out that the stack frame has
693# already been invalidated regardless of the value of addr.  Targets
694# which don't suffer from that problem could just let this functionality
695# untouched.
696m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
697# Given a vector of command-line arguments, return a newly allocated
698# string which, when passed to the create_inferior function, will be
699# parsed (on Unix systems, by the shell) to yield the same vector.
700# This function should call error() if the argument vector is not
701# representable for this target or if this target does not support
702# command-line arguments.
703# ARGC is the number of elements in the vector.
704# ARGV is an array of strings, one per argument.
705m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
706f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
707f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
708v:=:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
709v:=:int:cannot_step_breakpoint::::0:0::0
710v:=:int:have_nonsteppable_watchpoint::::0:0::0
711F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
712M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
713M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
714# Is a register in a group
715m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
716# Fetch the pointer to the ith function argument.
717F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
718
719# Return the appropriate register set for a core file section with
720# name SECT_NAME and size SECT_SIZE.
721M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
722EOF
723}
724
725#
726# The .log file
727#
728exec > new-gdbarch.log
729function_list | while do_read
730do
731    cat <<EOF
732${class} ${returntype} ${function} ($formal)${attrib}
733EOF
734    for r in ${read}
735    do
736	eval echo \"\ \ \ \ ${r}=\${${r}}\"
737    done
738    if class_is_predicate_p && fallback_default_p
739    then
740	echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
741	kill $$
742	exit 1
743    fi
744    if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
745    then
746	echo "Error: postdefault is useless when invalid_p=0" 1>&2
747	kill $$
748	exit 1
749    fi
750    if class_is_multiarch_p
751    then
752	if class_is_predicate_p ; then :
753	elif test "x${predefault}" = "x"
754	then
755	    echo "Error: pure multi-arch function must have a predefault" 1>&2
756	    kill $$
757	    exit 1
758	fi
759    fi
760    echo ""
761done
762
763exec 1>&2
764compare_new gdbarch.log
765
766
767copyright ()
768{
769cat <<EOF
770/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
771
772/* Dynamic architecture support for GDB, the GNU debugger.
773
774   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
775   Software Foundation, Inc.
776
777   This file is part of GDB.
778
779   This program is free software; you can redistribute it and/or modify
780   it under the terms of the GNU General Public License as published by
781   the Free Software Foundation; either version 2 of the License, or
782   (at your option) any later version.
783
784   This program is distributed in the hope that it will be useful,
785   but WITHOUT ANY WARRANTY; without even the implied warranty of
786   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
787   GNU General Public License for more details.
788
789   You should have received a copy of the GNU General Public License
790   along with this program; if not, write to the Free Software
791   Foundation, Inc., 59 Temple Place - Suite 330,
792   Boston, MA 02111-1307, USA.  */
793
794/* This file was created with the aid of \`\`gdbarch.sh''.
795
796   The Bourne shell script \`\`gdbarch.sh'' creates the files
797   \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
798   against the existing \`\`gdbarch.[hc]''.  Any differences found
799   being reported.
800
801   If editing this file, please also run gdbarch.sh and merge any
802   changes into that script. Conversely, when making sweeping changes
803   to this file, modifying gdbarch.sh and using its output may prove
804   easier. */
805
806EOF
807}
808
809#
810# The .h file
811#
812
813exec > new-gdbarch.h
814copyright
815cat <<EOF
816#ifndef GDBARCH_H
817#define GDBARCH_H
818
819struct floatformat;
820struct ui_file;
821struct frame_info;
822struct value;
823struct objfile;
824struct minimal_symbol;
825struct regcache;
826struct reggroup;
827struct regset;
828struct disassemble_info;
829struct target_ops;
830struct obstack;
831
832extern struct gdbarch *current_gdbarch;
833
834/* If any of the following are defined, the target wasn't correctly
835   converted. */
836
837#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
838#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
839#endif
840EOF
841
842# function typedef's
843printf "\n"
844printf "\n"
845printf "/* The following are pre-initialized by GDBARCH. */\n"
846function_list | while do_read
847do
848    if class_is_info_p
849    then
850	printf "\n"
851	printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
852	printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
853	if test -n "${macro}"
854	then
855	    printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
856	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
857	    printf "#endif\n"
858	    printf "#if !defined (${macro})\n"
859	    printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
860	    printf "#endif\n"
861	fi
862    fi
863done
864
865# function typedef's
866printf "\n"
867printf "\n"
868printf "/* The following are initialized by the target dependent code. */\n"
869function_list | while do_read
870do
871    if [ -n "${comment}" ]
872    then
873	echo "${comment}" | sed \
874	    -e '2 s,#,/*,' \
875	    -e '3,$ s,#,  ,' \
876	    -e '$ s,$, */,'
877    fi
878
879    if class_is_predicate_p
880    then
881	if test -n "${macro}"
882	then
883	    printf "\n"
884	    printf "#if defined (${macro})\n"
885	    printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
886	    printf "#if !defined (${macro}_P)\n"
887	    printf "#define ${macro}_P() (1)\n"
888	    printf "#endif\n"
889	    printf "#endif\n"
890	fi
891	printf "\n"
892	printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
893	if test -n "${macro}"
894	then
895	    printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
896	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
897	    printf "#endif\n"
898	    printf "#if !defined (${macro}_P)\n"
899	    printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
900	    printf "#endif\n"
901	fi
902    fi
903    if class_is_variable_p
904    then
905	printf "\n"
906	printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
907	printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
908	if test -n "${macro}"
909	then
910	    printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
911	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
912	    printf "#endif\n"
913	    printf "#if !defined (${macro})\n"
914	    printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
915	    printf "#endif\n"
916	fi
917    fi
918    if class_is_function_p
919    then
920	printf "\n"
921	if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
922	then
923	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
924	elif class_is_multiarch_p
925	then
926	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
927	else
928	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
929	fi
930	if [ "x${formal}" = "xvoid" ]
931	then
932	  printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
933	else
934	  printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
935	fi
936	printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
937	if test -n "${macro}"
938	then
939	    printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
940	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
941	    printf "#endif\n"
942	    if [ "x${actual}" = "x" ]
943	    then
944		d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
945	    elif [ "x${actual}" = "x-" ]
946	    then
947		d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
948	    else
949		d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
950	    fi
951	    printf "#if !defined (${macro})\n"
952	    if [ "x${actual}" = "x" ]
953	    then
954		printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
955	    elif [ "x${actual}" = "x-" ]
956	    then
957		printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
958	    else
959		printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
960	    fi
961	    printf "#endif\n"
962	fi
963    fi
964done
965
966# close it off
967cat <<EOF
968
969extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
970
971
972/* Mechanism for co-ordinating the selection of a specific
973   architecture.
974
975   GDB targets (*-tdep.c) can register an interest in a specific
976   architecture.  Other GDB components can register a need to maintain
977   per-architecture data.
978
979   The mechanisms below ensures that there is only a loose connection
980   between the set-architecture command and the various GDB
981   components.  Each component can independently register their need
982   to maintain architecture specific data with gdbarch.
983
984   Pragmatics:
985
986   Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
987   didn't scale.
988
989   The more traditional mega-struct containing architecture specific
990   data for all the various GDB components was also considered.  Since
991   GDB is built from a variable number of (fairly independent)
992   components it was determined that the global aproach was not
993   applicable. */
994
995
996/* Register a new architectural family with GDB.
997
998   Register support for the specified ARCHITECTURE with GDB.  When
999   gdbarch determines that the specified architecture has been
1000   selected, the corresponding INIT function is called.
1001
1002   --
1003
1004   The INIT function takes two parameters: INFO which contains the
1005   information available to gdbarch about the (possibly new)
1006   architecture; ARCHES which is a list of the previously created
1007   \`\`struct gdbarch'' for this architecture.
1008
1009   The INFO parameter is, as far as possible, be pre-initialized with
1010   information obtained from INFO.ABFD or the previously selected
1011   architecture.
1012
1013   The ARCHES parameter is a linked list (sorted most recently used)
1014   of all the previously created architures for this architecture
1015   family.  The (possibly NULL) ARCHES->gdbarch can used to access
1016   values from the previously selected architecture for this
1017   architecture family.  The global \`\`current_gdbarch'' shall not be
1018   used.
1019
1020   The INIT function shall return any of: NULL - indicating that it
1021   doesn't recognize the selected architecture; an existing \`\`struct
1022   gdbarch'' from the ARCHES list - indicating that the new
1023   architecture is just a synonym for an earlier architecture (see
1024   gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1025   - that describes the selected architecture (see gdbarch_alloc()).
1026
1027   The DUMP_TDEP function shall print out all target specific values.
1028   Care should be taken to ensure that the function works in both the
1029   multi-arch and non- multi-arch cases. */
1030
1031struct gdbarch_list
1032{
1033  struct gdbarch *gdbarch;
1034  struct gdbarch_list *next;
1035};
1036
1037struct gdbarch_info
1038{
1039  /* Use default: NULL (ZERO). */
1040  const struct bfd_arch_info *bfd_arch_info;
1041
1042  /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
1043  int byte_order;
1044
1045  /* Use default: NULL (ZERO). */
1046  bfd *abfd;
1047
1048  /* Use default: NULL (ZERO). */
1049  struct gdbarch_tdep_info *tdep_info;
1050
1051  /* Use default: GDB_OSABI_UNINITIALIZED (-1).  */
1052  enum gdb_osabi osabi;
1053};
1054
1055typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1056typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1057
1058/* DEPRECATED - use gdbarch_register() */
1059extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1060
1061extern void gdbarch_register (enum bfd_architecture architecture,
1062                              gdbarch_init_ftype *,
1063                              gdbarch_dump_tdep_ftype *);
1064
1065
1066/* Return a freshly allocated, NULL terminated, array of the valid
1067   architecture names.  Since architectures are registered during the
1068   _initialize phase this function only returns useful information
1069   once initialization has been completed. */
1070
1071extern const char **gdbarch_printable_names (void);
1072
1073
1074/* Helper function.  Search the list of ARCHES for a GDBARCH that
1075   matches the information provided by INFO. */
1076
1077extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches,  const struct gdbarch_info *info);
1078
1079
1080/* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
1081   basic initialization using values obtained from the INFO andTDEP
1082   parameters.  set_gdbarch_*() functions are called to complete the
1083   initialization of the object. */
1084
1085extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1086
1087
1088/* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
1089   It is assumed that the caller freeds the \`\`struct
1090   gdbarch_tdep''. */
1091
1092extern void gdbarch_free (struct gdbarch *);
1093
1094
1095/* Helper function.  Allocate memory from the \`\`struct gdbarch''
1096   obstack.  The memory is freed when the corresponding architecture
1097   is also freed.  */
1098
1099extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1100#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1101#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1102
1103
1104/* Helper function. Force an update of the current architecture.
1105
1106   The actual architecture selected is determined by INFO, \`\`(gdb) set
1107   architecture'' et.al., the existing architecture and BFD's default
1108   architecture.  INFO should be initialized to zero and then selected
1109   fields should be updated.
1110
1111   Returns non-zero if the update succeeds */
1112
1113extern int gdbarch_update_p (struct gdbarch_info info);
1114
1115
1116/* Helper function.  Find an architecture matching info.
1117
1118   INFO should be initialized using gdbarch_info_init, relevant fields
1119   set, and then finished using gdbarch_info_fill.
1120
1121   Returns the corresponding architecture, or NULL if no matching
1122   architecture was found.  "current_gdbarch" is not updated.  */
1123
1124extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1125
1126
1127/* Helper function.  Set the global "current_gdbarch" to "gdbarch".
1128
1129   FIXME: kettenis/20031124: Of the functions that follow, only
1130   gdbarch_from_bfd is supposed to survive.  The others will
1131   dissappear since in the future GDB will (hopefully) be truly
1132   multi-arch.  However, for now we're still stuck with the concept of
1133   a single active architecture.  */
1134
1135extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1136
1137
1138/* Register per-architecture data-pointer.
1139
1140   Reserve space for a per-architecture data-pointer.  An identifier
1141   for the reserved data-pointer is returned.  That identifer should
1142   be saved in a local static variable.
1143
1144   Memory for the per-architecture data shall be allocated using
1145   gdbarch_obstack_zalloc.  That memory will be deleted when the
1146   corresponding architecture object is deleted.
1147
1148   When a previously created architecture is re-selected, the
1149   per-architecture data-pointer for that previous architecture is
1150   restored.  INIT() is not re-called.
1151
1152   Multiple registrarants for any architecture are allowed (and
1153   strongly encouraged).  */
1154
1155struct gdbarch_data;
1156
1157typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1158extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1159typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1160extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1161extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1162                                         struct gdbarch_data *data,
1163			                 void *pointer);
1164
1165extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1166
1167
1168
1169/* Register per-architecture memory region.
1170
1171   Provide a memory-region swap mechanism.  Per-architecture memory
1172   region are created.  These memory regions are swapped whenever the
1173   architecture is changed.  For a new architecture, the memory region
1174   is initialized with zero (0) and the INIT function is called.
1175
1176   Memory regions are swapped / initialized in the order that they are
1177   registered.  NULL DATA and/or INIT values can be specified.
1178
1179   New code should use gdbarch_data_register_*(). */
1180
1181typedef void (gdbarch_swap_ftype) (void);
1182extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1183#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1184
1185
1186
1187/* Set the dynamic target-system-dependent parameters (architecture,
1188   byte-order, ...) using information found in the BFD */
1189
1190extern void set_gdbarch_from_file (bfd *);
1191
1192
1193/* Initialize the current architecture to the "first" one we find on
1194   our list.  */
1195
1196extern void initialize_current_architecture (void);
1197
1198/* gdbarch trace variable */
1199extern int gdbarch_debug;
1200
1201extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1202
1203#endif
1204EOF
1205exec 1>&2
1206#../move-if-change new-gdbarch.h gdbarch.h
1207compare_new gdbarch.h
1208
1209
1210#
1211# C file
1212#
1213
1214exec > new-gdbarch.c
1215copyright
1216cat <<EOF
1217
1218#include "defs.h"
1219#include "arch-utils.h"
1220
1221#include "gdbcmd.h"
1222#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1223#include "symcat.h"
1224
1225#include "floatformat.h"
1226
1227#include "gdb_assert.h"
1228#include "gdb_string.h"
1229#include "gdb-events.h"
1230#include "reggroups.h"
1231#include "osabi.h"
1232#include "gdb_obstack.h"
1233
1234/* Static function declarations */
1235
1236static void alloc_gdbarch_data (struct gdbarch *);
1237
1238/* Non-zero if we want to trace architecture code.  */
1239
1240#ifndef GDBARCH_DEBUG
1241#define GDBARCH_DEBUG 0
1242#endif
1243int gdbarch_debug = GDBARCH_DEBUG;
1244
1245EOF
1246
1247# gdbarch open the gdbarch object
1248printf "\n"
1249printf "/* Maintain the struct gdbarch object */\n"
1250printf "\n"
1251printf "struct gdbarch\n"
1252printf "{\n"
1253printf "  /* Has this architecture been fully initialized?  */\n"
1254printf "  int initialized_p;\n"
1255printf "\n"
1256printf "  /* An obstack bound to the lifetime of the architecture.  */\n"
1257printf "  struct obstack *obstack;\n"
1258printf "\n"
1259printf "  /* basic architectural information */\n"
1260function_list | while do_read
1261do
1262    if class_is_info_p
1263    then
1264	printf "  ${returntype} ${function};\n"
1265    fi
1266done
1267printf "\n"
1268printf "  /* target specific vector. */\n"
1269printf "  struct gdbarch_tdep *tdep;\n"
1270printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
1271printf "\n"
1272printf "  /* per-architecture data-pointers */\n"
1273printf "  unsigned nr_data;\n"
1274printf "  void **data;\n"
1275printf "\n"
1276printf "  /* per-architecture swap-regions */\n"
1277printf "  struct gdbarch_swap *swap;\n"
1278printf "\n"
1279cat <<EOF
1280  /* Multi-arch values.
1281
1282     When extending this structure you must:
1283
1284     Add the field below.
1285
1286     Declare set/get functions and define the corresponding
1287     macro in gdbarch.h.
1288
1289     gdbarch_alloc(): If zero/NULL is not a suitable default,
1290     initialize the new field.
1291
1292     verify_gdbarch(): Confirm that the target updated the field
1293     correctly.
1294
1295     gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1296     field is dumped out
1297
1298     \`\`startup_gdbarch()'': Append an initial value to the static
1299     variable (base values on the host's c-type system).
1300
1301     get_gdbarch(): Implement the set/get functions (probably using
1302     the macro's as shortcuts).
1303
1304     */
1305
1306EOF
1307function_list | while do_read
1308do
1309    if class_is_variable_p
1310    then
1311	printf "  ${returntype} ${function};\n"
1312    elif class_is_function_p
1313    then
1314	printf "  gdbarch_${function}_ftype *${function}${attrib};\n"
1315    fi
1316done
1317printf "};\n"
1318
1319# A pre-initialized vector
1320printf "\n"
1321printf "\n"
1322cat <<EOF
1323/* The default architecture uses host values (for want of a better
1324   choice). */
1325EOF
1326printf "\n"
1327printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1328printf "\n"
1329printf "struct gdbarch startup_gdbarch =\n"
1330printf "{\n"
1331printf "  1, /* Always initialized.  */\n"
1332printf "  NULL, /* The obstack.  */\n"
1333printf "  /* basic architecture information */\n"
1334function_list | while do_read
1335do
1336    if class_is_info_p
1337    then
1338	printf "  ${staticdefault},  /* ${function} */\n"
1339    fi
1340done
1341cat <<EOF
1342  /* target specific vector and its dump routine */
1343  NULL, NULL,
1344  /*per-architecture data-pointers and swap regions */
1345  0, NULL, NULL,
1346  /* Multi-arch values */
1347EOF
1348function_list | while do_read
1349do
1350    if class_is_function_p || class_is_variable_p
1351    then
1352	printf "  ${staticdefault},  /* ${function} */\n"
1353    fi
1354done
1355cat <<EOF
1356  /* startup_gdbarch() */
1357};
1358
1359struct gdbarch *current_gdbarch = &startup_gdbarch;
1360EOF
1361
1362# Create a new gdbarch struct
1363cat <<EOF
1364
1365/* Create a new \`\`struct gdbarch'' based on information provided by
1366   \`\`struct gdbarch_info''. */
1367EOF
1368printf "\n"
1369cat <<EOF
1370struct gdbarch *
1371gdbarch_alloc (const struct gdbarch_info *info,
1372               struct gdbarch_tdep *tdep)
1373{
1374  /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1375     so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1376     the current local architecture and not the previous global
1377     architecture.  This ensures that the new architectures initial
1378     values are not influenced by the previous architecture.  Once
1379     everything is parameterised with gdbarch, this will go away.  */
1380  struct gdbarch *current_gdbarch;
1381
1382  /* Create an obstack for allocating all the per-architecture memory,
1383     then use that to allocate the architecture vector.  */
1384  struct obstack *obstack = XMALLOC (struct obstack);
1385  obstack_init (obstack);
1386  current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1387  memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1388  current_gdbarch->obstack = obstack;
1389
1390  alloc_gdbarch_data (current_gdbarch);
1391
1392  current_gdbarch->tdep = tdep;
1393EOF
1394printf "\n"
1395function_list | while do_read
1396do
1397    if class_is_info_p
1398    then
1399	printf "  current_gdbarch->${function} = info->${function};\n"
1400    fi
1401done
1402printf "\n"
1403printf "  /* Force the explicit initialization of these. */\n"
1404function_list | while do_read
1405do
1406    if class_is_function_p || class_is_variable_p
1407    then
1408	if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1409	then
1410	  printf "  current_gdbarch->${function} = ${predefault};\n"
1411	fi
1412    fi
1413done
1414cat <<EOF
1415  /* gdbarch_alloc() */
1416
1417  return current_gdbarch;
1418}
1419EOF
1420
1421# Free a gdbarch struct.
1422printf "\n"
1423printf "\n"
1424cat <<EOF
1425/* Allocate extra space using the per-architecture obstack.  */
1426
1427void *
1428gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1429{
1430  void *data = obstack_alloc (arch->obstack, size);
1431  memset (data, 0, size);
1432  return data;
1433}
1434
1435
1436/* Free a gdbarch struct.  This should never happen in normal
1437   operation --- once you've created a gdbarch, you keep it around.
1438   However, if an architecture's init function encounters an error
1439   building the structure, it may need to clean up a partially
1440   constructed gdbarch.  */
1441
1442void
1443gdbarch_free (struct gdbarch *arch)
1444{
1445  struct obstack *obstack;
1446  gdb_assert (arch != NULL);
1447  gdb_assert (!arch->initialized_p);
1448  obstack = arch->obstack;
1449  obstack_free (obstack, 0); /* Includes the ARCH.  */
1450  xfree (obstack);
1451}
1452EOF
1453
1454# verify a new architecture
1455cat <<EOF
1456
1457
1458/* Ensure that all values in a GDBARCH are reasonable.  */
1459
1460/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1461   just happens to match the global variable \`\`current_gdbarch''.  That
1462   way macros refering to that variable get the local and not the global
1463   version - ulgh.  Once everything is parameterised with gdbarch, this
1464   will go away. */
1465
1466static void
1467verify_gdbarch (struct gdbarch *current_gdbarch)
1468{
1469  struct ui_file *log;
1470  struct cleanup *cleanups;
1471  long dummy;
1472  char *buf;
1473  log = mem_fileopen ();
1474  cleanups = make_cleanup_ui_file_delete (log);
1475  /* fundamental */
1476  if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1477    fprintf_unfiltered (log, "\n\tbyte-order");
1478  if (current_gdbarch->bfd_arch_info == NULL)
1479    fprintf_unfiltered (log, "\n\tbfd_arch_info");
1480  /* Check those that need to be defined for the given multi-arch level. */
1481EOF
1482function_list | while do_read
1483do
1484    if class_is_function_p || class_is_variable_p
1485    then
1486	if [ "x${invalid_p}" = "x0" ]
1487	then
1488	    printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1489	elif class_is_predicate_p
1490	then
1491	    printf "  /* Skip verify of ${function}, has predicate */\n"
1492	# FIXME: See do_read for potential simplification
1493 	elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1494	then
1495	    printf "  if (${invalid_p})\n"
1496	    printf "    current_gdbarch->${function} = ${postdefault};\n"
1497	elif [ -n "${predefault}" -a -n "${postdefault}" ]
1498	then
1499	    printf "  if (current_gdbarch->${function} == ${predefault})\n"
1500	    printf "    current_gdbarch->${function} = ${postdefault};\n"
1501	elif [ -n "${postdefault}" ]
1502	then
1503	    printf "  if (current_gdbarch->${function} == 0)\n"
1504	    printf "    current_gdbarch->${function} = ${postdefault};\n"
1505	elif [ -n "${invalid_p}" ]
1506	then
1507	    printf "  if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1508	    printf "      && (${invalid_p}))\n"
1509	    printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1510	elif [ -n "${predefault}" ]
1511	then
1512	    printf "  if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1513	    printf "      && (current_gdbarch->${function} == ${predefault}))\n"
1514	    printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1515	fi
1516    fi
1517done
1518cat <<EOF
1519  buf = ui_file_xstrdup (log, &dummy);
1520  make_cleanup (xfree, buf);
1521  if (strlen (buf) > 0)
1522    internal_error (__FILE__, __LINE__,
1523                    "verify_gdbarch: the following are invalid ...%s",
1524                    buf);
1525  do_cleanups (cleanups);
1526}
1527EOF
1528
1529# dump the structure
1530printf "\n"
1531printf "\n"
1532cat <<EOF
1533/* Print out the details of the current architecture. */
1534
1535/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1536   just happens to match the global variable \`\`current_gdbarch''.  That
1537   way macros refering to that variable get the local and not the global
1538   version - ulgh.  Once everything is parameterised with gdbarch, this
1539   will go away. */
1540
1541void
1542gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1543{
1544  fprintf_unfiltered (file,
1545                      "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1546                      GDB_MULTI_ARCH);
1547EOF
1548function_list | sort -t: -k 4 | while do_read
1549do
1550    # First the predicate
1551    if class_is_predicate_p
1552    then
1553	if test -n "${macro}"
1554	then
1555	    printf "#ifdef ${macro}_P\n"
1556	    printf "  fprintf_unfiltered (file,\n"
1557	    printf "                      \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1558	    printf "                      \"${macro}_P()\",\n"
1559	    printf "                      XSTRING (${macro}_P ()));\n"
1560	    printf "#endif\n"
1561	fi
1562	printf "  fprintf_unfiltered (file,\n"
1563	printf "                      \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1564	printf "                      gdbarch_${function}_p (current_gdbarch));\n"
1565    fi
1566    # Print the macro definition.
1567    if test -n "${macro}"
1568    then
1569	printf "#ifdef ${macro}\n"
1570	if class_is_function_p
1571	then
1572	    printf "  fprintf_unfiltered (file,\n"
1573	    printf "                      \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1574	    printf "                      \"${macro}(${actual})\",\n"
1575	    printf "                      XSTRING (${macro} (${actual})));\n"
1576	else
1577	    printf "  fprintf_unfiltered (file,\n"
1578	    printf "                      \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1579	    printf "                      XSTRING (${macro}));\n"
1580	fi
1581	printf "#endif\n"
1582    fi
1583    # Print the corresponding value.
1584    if class_is_function_p
1585    then
1586	printf "  fprintf_unfiltered (file,\n"
1587	printf "                      \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1588	printf "                      (long) current_gdbarch->${function});\n"
1589    else
1590	# It is a variable
1591	case "${fmt}:${print}:${returntype}" in
1592	    ::CORE_ADDR )
1593		fmt="0x%s"
1594		print="paddr_nz (current_gdbarch->${function})"
1595		;;
1596	    ::* )
1597	        fmt="%s"
1598		print="paddr_d (current_gdbarch->${function})"
1599		;;
1600	    * )
1601	        test "${fmt}" || fmt="%ld"
1602		test "${print}" || print="(long) (current_gdbarch->${function})"
1603		;;
1604        esac
1605	printf "  fprintf_unfiltered (file,\n"
1606	printf "                      \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1607	printf "                      ${print});\n"
1608    fi
1609done
1610cat <<EOF
1611  if (current_gdbarch->dump_tdep != NULL)
1612    current_gdbarch->dump_tdep (current_gdbarch, file);
1613}
1614EOF
1615
1616
1617# GET/SET
1618printf "\n"
1619cat <<EOF
1620struct gdbarch_tdep *
1621gdbarch_tdep (struct gdbarch *gdbarch)
1622{
1623  if (gdbarch_debug >= 2)
1624    fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1625  return gdbarch->tdep;
1626}
1627EOF
1628printf "\n"
1629function_list | while do_read
1630do
1631    if class_is_predicate_p
1632    then
1633	printf "\n"
1634	printf "int\n"
1635	printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1636	printf "{\n"
1637        printf "  gdb_assert (gdbarch != NULL);\n"
1638	printf "  return ${predicate};\n"
1639	printf "}\n"
1640    fi
1641    if class_is_function_p
1642    then
1643	printf "\n"
1644	printf "${returntype}\n"
1645	if [ "x${formal}" = "xvoid" ]
1646	then
1647	  printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1648	else
1649	  printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1650	fi
1651	printf "{\n"
1652        printf "  gdb_assert (gdbarch != NULL);\n"
1653	printf "  gdb_assert (gdbarch->${function} != NULL);\n"
1654	if class_is_predicate_p && test -n "${predefault}"
1655	then
1656	    # Allow a call to a function with a predicate.
1657	    printf "  /* Do not check predicate: ${predicate}, allow call.  */\n"
1658	fi
1659	printf "  if (gdbarch_debug >= 2)\n"
1660	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1661	if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1662	then
1663	    if class_is_multiarch_p
1664	    then
1665		params="gdbarch"
1666	    else
1667		params=""
1668	    fi
1669	else
1670	    if class_is_multiarch_p
1671	    then
1672		params="gdbarch, ${actual}"
1673	    else
1674		params="${actual}"
1675	    fi
1676        fi
1677       	if [ "x${returntype}" = "xvoid" ]
1678	then
1679	  printf "  gdbarch->${function} (${params});\n"
1680	else
1681	  printf "  return gdbarch->${function} (${params});\n"
1682	fi
1683	printf "}\n"
1684	printf "\n"
1685	printf "void\n"
1686	printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1687        printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
1688	printf "{\n"
1689	printf "  gdbarch->${function} = ${function};\n"
1690	printf "}\n"
1691    elif class_is_variable_p
1692    then
1693	printf "\n"
1694	printf "${returntype}\n"
1695	printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1696	printf "{\n"
1697        printf "  gdb_assert (gdbarch != NULL);\n"
1698	if [ "x${invalid_p}" = "x0" ]
1699	then
1700	    printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1701	elif [ -n "${invalid_p}" ]
1702	then
1703	    printf "  /* Check variable is valid.  */\n"
1704	    printf "  gdb_assert (!(${invalid_p}));\n"
1705	elif [ -n "${predefault}" ]
1706	then
1707	    printf "  /* Check variable changed from pre-default.  */\n"
1708	    printf "  gdb_assert (gdbarch->${function} != ${predefault});\n"
1709	fi
1710	printf "  if (gdbarch_debug >= 2)\n"
1711	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1712	printf "  return gdbarch->${function};\n"
1713	printf "}\n"
1714	printf "\n"
1715	printf "void\n"
1716	printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1717        printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
1718	printf "{\n"
1719	printf "  gdbarch->${function} = ${function};\n"
1720	printf "}\n"
1721    elif class_is_info_p
1722    then
1723	printf "\n"
1724	printf "${returntype}\n"
1725	printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1726	printf "{\n"
1727        printf "  gdb_assert (gdbarch != NULL);\n"
1728	printf "  if (gdbarch_debug >= 2)\n"
1729	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1730	printf "  return gdbarch->${function};\n"
1731	printf "}\n"
1732    fi
1733done
1734
1735# All the trailing guff
1736cat <<EOF
1737
1738
1739/* Keep a registry of per-architecture data-pointers required by GDB
1740   modules. */
1741
1742struct gdbarch_data
1743{
1744  unsigned index;
1745  int init_p;
1746  gdbarch_data_pre_init_ftype *pre_init;
1747  gdbarch_data_post_init_ftype *post_init;
1748};
1749
1750struct gdbarch_data_registration
1751{
1752  struct gdbarch_data *data;
1753  struct gdbarch_data_registration *next;
1754};
1755
1756struct gdbarch_data_registry
1757{
1758  unsigned nr;
1759  struct gdbarch_data_registration *registrations;
1760};
1761
1762struct gdbarch_data_registry gdbarch_data_registry =
1763{
1764  0, NULL,
1765};
1766
1767static struct gdbarch_data *
1768gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1769		       gdbarch_data_post_init_ftype *post_init)
1770{
1771  struct gdbarch_data_registration **curr;
1772  /* Append the new registraration.  */
1773  for (curr = &gdbarch_data_registry.registrations;
1774       (*curr) != NULL;
1775       curr = &(*curr)->next);
1776  (*curr) = XMALLOC (struct gdbarch_data_registration);
1777  (*curr)->next = NULL;
1778  (*curr)->data = XMALLOC (struct gdbarch_data);
1779  (*curr)->data->index = gdbarch_data_registry.nr++;
1780  (*curr)->data->pre_init = pre_init;
1781  (*curr)->data->post_init = post_init;
1782  (*curr)->data->init_p = 1;
1783  return (*curr)->data;
1784}
1785
1786struct gdbarch_data *
1787gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1788{
1789  return gdbarch_data_register (pre_init, NULL);
1790}
1791
1792struct gdbarch_data *
1793gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1794{
1795  return gdbarch_data_register (NULL, post_init);
1796}
1797
1798/* Create/delete the gdbarch data vector. */
1799
1800static void
1801alloc_gdbarch_data (struct gdbarch *gdbarch)
1802{
1803  gdb_assert (gdbarch->data == NULL);
1804  gdbarch->nr_data = gdbarch_data_registry.nr;
1805  gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1806}
1807
1808/* Initialize the current value of the specified per-architecture
1809   data-pointer. */
1810
1811void
1812deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1813			     struct gdbarch_data *data,
1814			     void *pointer)
1815{
1816  gdb_assert (data->index < gdbarch->nr_data);
1817  gdb_assert (gdbarch->data[data->index] == NULL);
1818  gdb_assert (data->pre_init == NULL);
1819  gdbarch->data[data->index] = pointer;
1820}
1821
1822/* Return the current value of the specified per-architecture
1823   data-pointer. */
1824
1825void *
1826gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1827{
1828  gdb_assert (data->index < gdbarch->nr_data);
1829  if (gdbarch->data[data->index] == NULL)
1830    {
1831      /* The data-pointer isn't initialized, call init() to get a
1832	 value.  */
1833      if (data->pre_init != NULL)
1834	/* Mid architecture creation: pass just the obstack, and not
1835	   the entire architecture, as that way it isn't possible for
1836	   pre-init code to refer to undefined architecture
1837	   fields.  */
1838	gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1839      else if (gdbarch->initialized_p
1840	       && data->post_init != NULL)
1841	/* Post architecture creation: pass the entire architecture
1842	   (as all fields are valid), but be careful to also detect
1843	   recursive references.  */
1844	{
1845	  gdb_assert (data->init_p);
1846	  data->init_p = 0;
1847	  gdbarch->data[data->index] = data->post_init (gdbarch);
1848	  data->init_p = 1;
1849	}
1850      else
1851	/* The architecture initialization hasn't completed - punt -
1852	 hope that the caller knows what they are doing.  Once
1853	 deprecated_set_gdbarch_data has been initialized, this can be
1854	 changed to an internal error.  */
1855	return NULL;
1856      gdb_assert (gdbarch->data[data->index] != NULL);
1857    }
1858  return gdbarch->data[data->index];
1859}
1860
1861
1862
1863/* Keep a registry of swapped data required by GDB modules. */
1864
1865struct gdbarch_swap
1866{
1867  void *swap;
1868  struct gdbarch_swap_registration *source;
1869  struct gdbarch_swap *next;
1870};
1871
1872struct gdbarch_swap_registration
1873{
1874  void *data;
1875  unsigned long sizeof_data;
1876  gdbarch_swap_ftype *init;
1877  struct gdbarch_swap_registration *next;
1878};
1879
1880struct gdbarch_swap_registry
1881{
1882  int nr;
1883  struct gdbarch_swap_registration *registrations;
1884};
1885
1886struct gdbarch_swap_registry gdbarch_swap_registry = 
1887{
1888  0, NULL,
1889};
1890
1891void
1892deprecated_register_gdbarch_swap (void *data,
1893		                  unsigned long sizeof_data,
1894		                  gdbarch_swap_ftype *init)
1895{
1896  struct gdbarch_swap_registration **rego;
1897  for (rego = &gdbarch_swap_registry.registrations;
1898       (*rego) != NULL;
1899       rego = &(*rego)->next);
1900  (*rego) = XMALLOC (struct gdbarch_swap_registration);
1901  (*rego)->next = NULL;
1902  (*rego)->init = init;
1903  (*rego)->data = data;
1904  (*rego)->sizeof_data = sizeof_data;
1905}
1906
1907static void
1908current_gdbarch_swap_init_hack (void)
1909{
1910  struct gdbarch_swap_registration *rego;
1911  struct gdbarch_swap **curr = &current_gdbarch->swap;
1912  for (rego = gdbarch_swap_registry.registrations;
1913       rego != NULL;
1914       rego = rego->next)
1915    {
1916      if (rego->data != NULL)
1917	{
1918	  (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1919					    struct gdbarch_swap);
1920	  (*curr)->source = rego;
1921	  (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1922						  rego->sizeof_data);
1923	  (*curr)->next = NULL;
1924	  curr = &(*curr)->next;
1925	}
1926      if (rego->init != NULL)
1927	rego->init ();
1928    }
1929}
1930
1931static struct gdbarch *
1932current_gdbarch_swap_out_hack (void)
1933{
1934  struct gdbarch *old_gdbarch = current_gdbarch;
1935  struct gdbarch_swap *curr;
1936
1937  gdb_assert (old_gdbarch != NULL);
1938  for (curr = old_gdbarch->swap;
1939       curr != NULL;
1940       curr = curr->next)
1941    {
1942      memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1943      memset (curr->source->data, 0, curr->source->sizeof_data);
1944    }
1945  current_gdbarch = NULL;
1946  return old_gdbarch;
1947}
1948
1949static void
1950current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1951{
1952  struct gdbarch_swap *curr;
1953
1954  gdb_assert (current_gdbarch == NULL);
1955  for (curr = new_gdbarch->swap;
1956       curr != NULL;
1957       curr = curr->next)
1958    memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1959  current_gdbarch = new_gdbarch;
1960}
1961
1962
1963/* Keep a registry of the architectures known by GDB. */
1964
1965struct gdbarch_registration
1966{
1967  enum bfd_architecture bfd_architecture;
1968  gdbarch_init_ftype *init;
1969  gdbarch_dump_tdep_ftype *dump_tdep;
1970  struct gdbarch_list *arches;
1971  struct gdbarch_registration *next;
1972};
1973
1974static struct gdbarch_registration *gdbarch_registry = NULL;
1975
1976static void
1977append_name (const char ***buf, int *nr, const char *name)
1978{
1979  *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1980  (*buf)[*nr] = name;
1981  *nr += 1;
1982}
1983
1984const char **
1985gdbarch_printable_names (void)
1986{
1987  /* Accumulate a list of names based on the registed list of
1988     architectures. */
1989  enum bfd_architecture a;
1990  int nr_arches = 0;
1991  const char **arches = NULL;
1992  struct gdbarch_registration *rego;
1993  for (rego = gdbarch_registry;
1994       rego != NULL;
1995       rego = rego->next)
1996    {
1997      const struct bfd_arch_info *ap;
1998      ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1999      if (ap == NULL)
2000        internal_error (__FILE__, __LINE__,
2001                        "gdbarch_architecture_names: multi-arch unknown");
2002      do
2003        {
2004          append_name (&arches, &nr_arches, ap->printable_name);
2005          ap = ap->next;
2006        }
2007      while (ap != NULL);
2008    }
2009  append_name (&arches, &nr_arches, NULL);
2010  return arches;
2011}
2012
2013
2014void
2015gdbarch_register (enum bfd_architecture bfd_architecture,
2016                  gdbarch_init_ftype *init,
2017		  gdbarch_dump_tdep_ftype *dump_tdep)
2018{
2019  struct gdbarch_registration **curr;
2020  const struct bfd_arch_info *bfd_arch_info;
2021  /* Check that BFD recognizes this architecture */
2022  bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2023  if (bfd_arch_info == NULL)
2024    {
2025      internal_error (__FILE__, __LINE__,
2026                      "gdbarch: Attempt to register unknown architecture (%d)",
2027                      bfd_architecture);
2028    }
2029  /* Check that we haven't seen this architecture before */
2030  for (curr = &gdbarch_registry;
2031       (*curr) != NULL;
2032       curr = &(*curr)->next)
2033    {
2034      if (bfd_architecture == (*curr)->bfd_architecture)
2035	internal_error (__FILE__, __LINE__,
2036                        "gdbarch: Duplicate registraration of architecture (%s)",
2037	                bfd_arch_info->printable_name);
2038    }
2039  /* log it */
2040  if (gdbarch_debug)
2041    fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2042			bfd_arch_info->printable_name,
2043			(long) init);
2044  /* Append it */
2045  (*curr) = XMALLOC (struct gdbarch_registration);
2046  (*curr)->bfd_architecture = bfd_architecture;
2047  (*curr)->init = init;
2048  (*curr)->dump_tdep = dump_tdep;
2049  (*curr)->arches = NULL;
2050  (*curr)->next = NULL;
2051}
2052
2053void
2054register_gdbarch_init (enum bfd_architecture bfd_architecture,
2055		       gdbarch_init_ftype *init)
2056{
2057  gdbarch_register (bfd_architecture, init, NULL);
2058}
2059
2060
2061/* Look for an architecture using gdbarch_info.  Base search on only
2062   BFD_ARCH_INFO and BYTE_ORDER. */
2063
2064struct gdbarch_list *
2065gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2066                             const struct gdbarch_info *info)
2067{
2068  for (; arches != NULL; arches = arches->next)
2069    {
2070      if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2071	continue;
2072      if (info->byte_order != arches->gdbarch->byte_order)
2073	continue;
2074      if (info->osabi != arches->gdbarch->osabi)
2075	continue;
2076      return arches;
2077    }
2078  return NULL;
2079}
2080
2081
2082/* Find an architecture that matches the specified INFO.  Create a new
2083   architecture if needed.  Return that new architecture.  Assumes
2084   that there is no current architecture.  */
2085
2086static struct gdbarch *
2087find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2088{
2089  struct gdbarch *new_gdbarch;
2090  struct gdbarch_registration *rego;
2091
2092  /* The existing architecture has been swapped out - all this code
2093     works from a clean slate.  */
2094  gdb_assert (current_gdbarch == NULL);
2095
2096  /* Fill in missing parts of the INFO struct using a number of
2097     sources: "set ..."; INFOabfd supplied; and the existing
2098     architecture.  */
2099  gdbarch_info_fill (old_gdbarch, &info);
2100
2101  /* Must have found some sort of architecture. */
2102  gdb_assert (info.bfd_arch_info != NULL);
2103
2104  if (gdbarch_debug)
2105    {
2106      fprintf_unfiltered (gdb_stdlog,
2107			  "find_arch_by_info: info.bfd_arch_info %s\n",
2108			  (info.bfd_arch_info != NULL
2109			   ? info.bfd_arch_info->printable_name
2110			   : "(null)"));
2111      fprintf_unfiltered (gdb_stdlog,
2112			  "find_arch_by_info: info.byte_order %d (%s)\n",
2113			  info.byte_order,
2114			  (info.byte_order == BFD_ENDIAN_BIG ? "big"
2115			   : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2116			   : "default"));
2117      fprintf_unfiltered (gdb_stdlog,
2118			  "find_arch_by_info: info.osabi %d (%s)\n",
2119			  info.osabi, gdbarch_osabi_name (info.osabi));
2120      fprintf_unfiltered (gdb_stdlog,
2121			  "find_arch_by_info: info.abfd 0x%lx\n",
2122			  (long) info.abfd);
2123      fprintf_unfiltered (gdb_stdlog,
2124			  "find_arch_by_info: info.tdep_info 0x%lx\n",
2125			  (long) info.tdep_info);
2126    }
2127
2128  /* Find the tdep code that knows about this architecture.  */
2129  for (rego = gdbarch_registry;
2130       rego != NULL;
2131       rego = rego->next)
2132    if (rego->bfd_architecture == info.bfd_arch_info->arch)
2133      break;
2134  if (rego == NULL)
2135    {
2136      if (gdbarch_debug)
2137	fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2138			    "No matching architecture\n");
2139      return 0;
2140    }
2141
2142  /* Ask the tdep code for an architecture that matches "info".  */
2143  new_gdbarch = rego->init (info, rego->arches);
2144
2145  /* Did the tdep code like it?  No.  Reject the change and revert to
2146     the old architecture.  */
2147  if (new_gdbarch == NULL)
2148    {
2149      if (gdbarch_debug)
2150	fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151			    "Target rejected architecture\n");
2152      return NULL;
2153    }
2154
2155  /* Is this a pre-existing architecture (as determined by already
2156     being initialized)?  Move it to the front of the architecture
2157     list (keeping the list sorted Most Recently Used).  */
2158  if (new_gdbarch->initialized_p)
2159    {
2160      struct gdbarch_list **list;
2161      struct gdbarch_list *this;
2162      if (gdbarch_debug)
2163	fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2164			    "Previous architecture 0x%08lx (%s) selected\n",
2165			    (long) new_gdbarch,
2166			    new_gdbarch->bfd_arch_info->printable_name);
2167      /* Find the existing arch in the list.  */
2168      for (list = &rego->arches;
2169	   (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2170	   list = &(*list)->next);
2171      /* It had better be in the list of architectures.  */
2172      gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2173      /* Unlink THIS.  */
2174      this = (*list);
2175      (*list) = this->next;
2176      /* Insert THIS at the front.  */
2177      this->next = rego->arches;
2178      rego->arches = this;
2179      /* Return it.  */
2180      return new_gdbarch;
2181    }
2182
2183  /* It's a new architecture.  */
2184  if (gdbarch_debug)
2185    fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2186			"New architecture 0x%08lx (%s) selected\n",
2187			(long) new_gdbarch,
2188			new_gdbarch->bfd_arch_info->printable_name);
2189  
2190  /* Insert the new architecture into the front of the architecture
2191     list (keep the list sorted Most Recently Used).  */
2192  {
2193    struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2194    this->next = rego->arches;
2195    this->gdbarch = new_gdbarch;
2196    rego->arches = this;
2197  }    
2198
2199  /* Check that the newly installed architecture is valid.  Plug in
2200     any post init values.  */
2201  new_gdbarch->dump_tdep = rego->dump_tdep;
2202  verify_gdbarch (new_gdbarch);
2203  new_gdbarch->initialized_p = 1;
2204
2205  /* Initialize any per-architecture swap areas.  This phase requires
2206     a valid global CURRENT_GDBARCH.  Set it momentarially, and then
2207     swap the entire architecture out.  */
2208  current_gdbarch = new_gdbarch;
2209  current_gdbarch_swap_init_hack ();
2210  current_gdbarch_swap_out_hack ();
2211
2212  if (gdbarch_debug)
2213    gdbarch_dump (new_gdbarch, gdb_stdlog);
2214
2215  return new_gdbarch;
2216}
2217
2218struct gdbarch *
2219gdbarch_find_by_info (struct gdbarch_info info)
2220{
2221  /* Save the previously selected architecture, setting the global to
2222     NULL.  This stops things like gdbarch->init() trying to use the
2223     previous architecture's configuration.  The previous architecture
2224     may not even be of the same architecture family.  The most recent
2225     architecture of the same family is found at the head of the
2226     rego->arches list.  */
2227  struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2228
2229  /* Find the specified architecture.  */
2230  struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2231
2232  /* Restore the existing architecture.  */
2233  gdb_assert (current_gdbarch == NULL);
2234  current_gdbarch_swap_in_hack (old_gdbarch);
2235
2236  return new_gdbarch;
2237}
2238
2239/* Make the specified architecture current, swapping the existing one
2240   out.  */
2241
2242void
2243deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2244{
2245  gdb_assert (new_gdbarch != NULL);
2246  gdb_assert (current_gdbarch != NULL);
2247  gdb_assert (new_gdbarch->initialized_p);
2248  current_gdbarch_swap_out_hack ();
2249  current_gdbarch_swap_in_hack (new_gdbarch);
2250  architecture_changed_event ();
2251}
2252
2253extern void _initialize_gdbarch (void);
2254
2255void
2256_initialize_gdbarch (void)
2257{
2258  struct cmd_list_element *c;
2259
2260  add_show_from_set (add_set_cmd ("arch",
2261				  class_maintenance,
2262				  var_zinteger,
2263				  (char *)&gdbarch_debug,
2264				  "Set architecture debugging.\\n\\
2265When non-zero, architecture debugging is enabled.", &setdebuglist),
2266		     &showdebuglist);
2267  c = add_set_cmd ("archdebug",
2268		   class_maintenance,
2269		   var_zinteger,
2270		   (char *)&gdbarch_debug,
2271		   "Set architecture debugging.\\n\\
2272When non-zero, architecture debugging is enabled.", &setlist);
2273
2274  deprecate_cmd (c, "set debug arch");
2275  deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2276}
2277EOF
2278
2279# close things off
2280exec 1>&2
2281#../move-if-change new-gdbarch.c gdbarch.c
2282compare_new gdbarch.c
2283