1 /* PPC GNU/Linux native support.
2
3 Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
4 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44
45 #ifndef PT_READ_U
46 #define PT_READ_U PTRACE_PEEKUSR
47 #endif
48 #ifndef PT_WRITE_U
49 #define PT_WRITE_U PTRACE_POKEUSR
50 #endif
51
52 /* Default the type of the ptrace transfer to int. */
53 #ifndef PTRACE_XFER_TYPE
54 #define PTRACE_XFER_TYPE int
55 #endif
56
57 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
58 configure time check. Some older glibc's (for instance 2.2.1)
59 don't have a specific powerpc version of ptrace.h, and fall back on
60 a generic one. In such cases, sys/ptrace.h defines
61 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
62 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
63 PTRACE_SETVRREGS to be. This also makes a configury check pretty
64 much useless. */
65
66 /* These definitions should really come from the glibc header files,
67 but Glibc doesn't know about the vrregs yet. */
68 #ifndef PTRACE_GETVRREGS
69 #define PTRACE_GETVRREGS 18
70 #define PTRACE_SETVRREGS 19
71 #endif
72
73
74 /* Similarly for the ptrace requests for getting / setting the SPE
75 registers (ev0 -- ev31, acc, and spefscr). See the description of
76 gdb_evrregset_t for details. */
77 #ifndef PTRACE_GETEVRREGS
78 #define PTRACE_GETEVRREGS 20
79 #define PTRACE_SETEVRREGS 21
80 #endif
81
82
83 /* This oddity is because the Linux kernel defines elf_vrregset_t as
84 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
85 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
86 the vrsave as an extra 4 bytes at the end. I opted for creating a
87 flat array of chars, so that it is easier to manipulate for gdb.
88
89 There are 32 vector registers 16 bytes longs, plus a VSCR register
90 which is only 4 bytes long, but is fetched as a 16 bytes
91 quantity. Up to here we have the elf_vrregset_t structure.
92 Appended to this there is space for the VRSAVE register: 4 bytes.
93 Even though this vrsave register is not included in the regset
94 typedef, it is handled by the ptrace requests.
95
96 Note that GNU/Linux doesn't support little endian PPC hardware,
97 therefore the offset at which the real value of the VSCR register
98 is located will be always 12 bytes.
99
100 The layout is like this (where x is the actual value of the vscr reg): */
101
102 /* *INDENT-OFF* */
103 /*
104 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
105 <-------> <-------><-------><->
106 VR0 VR31 VSCR VRSAVE
107 */
108 /* *INDENT-ON* */
109
110 #define SIZEOF_VRREGS 33*16+4
111
112 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
113
114
115 /* On PPC processors that support the the Signal Processing Extension
116 (SPE) APU, the general-purpose registers are 64 bits long.
117 However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR
118 / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of
119 each register, to allow them to behave the same way they do on
120 non-SPE systems. There's a separate pair of calls,
121 PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top
122 halves of all the general-purpose registers at once, along with
123 some SPE-specific registers.
124
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long; the full 64-bit registers are called 'ev0' -- 'ev31'.
127 The ev registers are raw registers, and the GPR's are pseudo-
128 registers mapped onto their lower halves. This means that reading
129 and writing ev registers involves a mix of regset-at-once
130 PTRACE_{GET,SET}EVRREGS calls and register-at-a-time
131 PTRACE_{PEEK,POKE}USR calls.
132
133 This is the structure filled in by PTRACE_GETEVRREGS and written to
134 the inferior's registers by PTRACE_SETEVRREGS. */
135 struct gdb_evrregset_t
136 {
137 unsigned long evr[32];
138 unsigned long long acc;
139 unsigned long spefscr;
140 };
141
142
143 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
144 PTRACE_SETVRREGS requests, for reading and writing the Altivec
145 registers. Zero if we've tried one of them and gotten an
146 error. */
147 int have_ptrace_getvrregs = 1;
148
149
150 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
151 PTRACE_SETEVRREGS requests, for reading and writing the SPE
152 registers. Zero if we've tried one of them and gotten an
153 error. */
154 int have_ptrace_getsetevrregs = 1;
155
156
157 int
kernel_u_size(void)158 kernel_u_size (void)
159 {
160 return (sizeof (struct user));
161 }
162
163 /* *INDENT-OFF* */
164 /* registers layout, as presented by the ptrace interface:
165 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
166 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
167 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
168 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
169 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
170 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
171 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
172 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
173 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
174 /* *INDENT_ON * */
175
176 static int
ppc_register_u_addr(int regno)177 ppc_register_u_addr (int regno)
178 {
179 int u_addr = -1;
180 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
181 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
182 interface, and not the wordsize of the program's ABI. */
183 int wordsize = sizeof (PTRACE_XFER_TYPE);
184
185 /* General purpose registers occupy 1 slot each in the buffer */
186 if (regno >= tdep->ppc_gp0_regnum
187 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
188 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
189
190 /* Floating point regs: eight bytes each in both 32- and 64-bit
191 ptrace interfaces. Thus, two slots each in 32-bit interface, one
192 slot each in 64-bit interface. */
193 if (tdep->ppc_fp0_regnum >= 0
194 && regno >= tdep->ppc_fp0_regnum
195 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
196 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
197
198 /* UISA special purpose registers: 1 slot each */
199 if (regno == PC_REGNUM)
200 u_addr = PT_NIP * wordsize;
201 if (regno == tdep->ppc_lr_regnum)
202 u_addr = PT_LNK * wordsize;
203 if (regno == tdep->ppc_cr_regnum)
204 u_addr = PT_CCR * wordsize;
205 if (regno == tdep->ppc_xer_regnum)
206 u_addr = PT_XER * wordsize;
207 if (regno == tdep->ppc_ctr_regnum)
208 u_addr = PT_CTR * wordsize;
209 #ifdef PT_MQ
210 if (regno == tdep->ppc_mq_regnum)
211 u_addr = PT_MQ * wordsize;
212 #endif
213 if (regno == tdep->ppc_ps_regnum)
214 u_addr = PT_MSR * wordsize;
215 if (tdep->ppc_fpscr_regnum >= 0
216 && regno == tdep->ppc_fpscr_regnum)
217 u_addr = PT_FPSCR * wordsize;
218
219 return u_addr;
220 }
221
222 /* The Linux kernel ptrace interface for AltiVec registers uses the
223 registers set mechanism, as opposed to the interface for all the
224 other registers, that stores/fetches each register individually. */
225 static void
fetch_altivec_register(int tid,int regno)226 fetch_altivec_register (int tid, int regno)
227 {
228 int ret;
229 int offset = 0;
230 gdb_vrregset_t regs;
231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
232 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
233
234 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
235 if (ret < 0)
236 {
237 if (errno == EIO)
238 {
239 have_ptrace_getvrregs = 0;
240 return;
241 }
242 perror_with_name ("Unable to fetch AltiVec register");
243 }
244
245 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
246 long on the hardware. We deal only with the lower 4 bytes of the
247 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
248 there is no need to define an offset for it. */
249 if (regno == (tdep->ppc_vrsave_regnum - 1))
250 offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
251
252 supply_register (regno,
253 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
254 }
255
256 /* Fetch the top 32 bits of TID's general-purpose registers and the
257 SPE-specific registers, and place the results in EVRREGSET. If we
258 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
259 zeros.
260
261 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
262 PTRACE_SETEVRREGS requests are supported is isolated here, and in
263 set_spe_registers. */
264 static void
get_spe_registers(int tid,struct gdb_evrregset_t * evrregset)265 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
266 {
267 if (have_ptrace_getsetevrregs)
268 {
269 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
270 return;
271 else
272 {
273 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
274 we just return zeros. */
275 if (errno == EIO)
276 have_ptrace_getsetevrregs = 0;
277 else
278 /* Anything else needs to be reported. */
279 perror_with_name ("Unable to fetch SPE registers");
280 }
281 }
282
283 memset (evrregset, 0, sizeof (*evrregset));
284 }
285
286 /* Assuming TID refers to an SPE process, store the full 64-bit value
287 of TID's ev register EV_REGNUM in DEST, getting the high bits from
288 EVRREGS and the low bits from the kernel via ptrace. */
289 static void
read_spliced_spe_reg(int tid,int ev_regnum,struct gdb_evrregset_t * evrregs,char * dest)290 read_spliced_spe_reg (int tid, int ev_regnum,
291 struct gdb_evrregset_t *evrregs,
292 char *dest)
293 {
294 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
295
296 /* Make sure we're trying to read an EV register; that's all we
297 handle. */
298 gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
299 && ev_regnum <= tdep->ppc_ev31_regnum);
300
301 /* Make sure the sizes for the splicing add up. */
302 gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
303 == register_size (current_gdbarch, ev_regnum));
304
305 {
306 /* The index of ev_regnum in evrregs->evr[]. */
307 int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
308
309 /* The number of the corresponding general-purpose register, which
310 holds the lower 32 bits of the EV register. */
311 int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
312
313 /* The offset of gpr_regnum in the process's uarea. */
314 CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
315
316 /* The low word of the EV register's value. */
317 PTRACE_XFER_TYPE low_word;
318
319 /* The PTRACE_PEEKUSR / PT_READ_U ptrace requests need to be able
320 to return arbitrary register values, so they can't return -1 to
321 indicate an error. So we clear errno, and then check it after
322 the call. */
323 errno = 0;
324 low_word = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset, 0);
325
326 if (errno != 0)
327 {
328 char message[128];
329 sprintf (message, "reading register %s (#%d)",
330 REGISTER_NAME (ev_regnum), ev_regnum);
331 perror_with_name (message);
332 }
333
334 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
335 {
336 memcpy (dest, &evrregs->evr[ev_index],
337 sizeof (evrregs->evr[ev_index]));
338 * (PTRACE_XFER_TYPE *) (dest + sizeof (evrregs->evr[ev_index]))
339 = low_word;
340 }
341 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
342 {
343 * (PTRACE_XFER_TYPE *) dest = low_word;
344 memcpy (dest + sizeof (PTRACE_XFER_TYPE),
345 &evrregs->evr[ev_index], sizeof (evrregs->evr[ev_index]));
346 }
347 else
348 gdb_assert (0);
349 }
350 }
351
352
353 /* On SPE machines, supply the full value of the SPE register REGNO
354 from TID. This handles ev0 -- ev31 and acc, which are 64 bits
355 long, and spefscr, which is 32 bits long. */
356 static void
fetch_spe_register(int tid,int regno)357 fetch_spe_register (int tid, int regno)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
360 struct gdb_evrregset_t evrregs;
361
362 get_spe_registers (tid, &evrregs);
363
364 if (tdep->ppc_ev0_regnum <= regno
365 && regno <= tdep->ppc_ev31_regnum)
366 {
367 char buf[MAX_REGISTER_SIZE];
368 read_spliced_spe_reg (tid, regno, &evrregs, buf);
369 supply_register (regno, buf);
370 }
371 else if (regno == tdep->ppc_acc_regnum)
372 {
373 gdb_assert (sizeof (evrregs.acc)
374 == register_size (current_gdbarch, regno));
375 supply_register (regno, &evrregs.acc);
376 }
377 else if (regno == tdep->ppc_spefscr_regnum)
378 {
379 gdb_assert (sizeof (evrregs.spefscr)
380 == register_size (current_gdbarch, regno));
381 supply_register (regno, &evrregs.spefscr);
382 }
383 else
384 gdb_assert (0);
385 }
386
387 static void
fetch_register(int tid,int regno)388 fetch_register (int tid, int regno)
389 {
390 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
391 /* This isn't really an address. But ptrace thinks of it as one. */
392 CORE_ADDR regaddr = ppc_register_u_addr (regno);
393 int bytes_transferred;
394 unsigned int offset; /* Offset of registers within the u area. */
395 char buf[MAX_REGISTER_SIZE];
396
397 /* Sanity check: this function should only be called to fetch raw
398 registers' values, never pseudoregisters' values. */
399 if (tdep->ppc_gp0_regnum <= regno
400 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
401 gdb_assert (! tdep->ppc_gprs_pseudo_p);
402
403 if (altivec_register_p (regno))
404 {
405 /* If this is the first time through, or if it is not the first
406 time through, and we have comfirmed that there is kernel
407 support for such a ptrace request, then go and fetch the
408 register. */
409 if (have_ptrace_getvrregs)
410 {
411 fetch_altivec_register (tid, regno);
412 return;
413 }
414 /* If we have discovered that there is no ptrace support for
415 AltiVec registers, fall through and return zeroes, because
416 regaddr will be -1 in this case. */
417 }
418 else if (spe_register_p (regno))
419 {
420 fetch_spe_register (tid, regno);
421 return;
422 }
423
424 if (regaddr == -1)
425 {
426 memset (buf, '\0', DEPRECATED_REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
427 supply_register (regno, buf);
428 return;
429 }
430
431 /* Read the raw register using PTRACE_XFER_TYPE sized chunks. On a
432 32-bit platform, 64-bit floating-point registers will require two
433 transfers. */
434 for (bytes_transferred = 0;
435 bytes_transferred < register_size (current_gdbarch, regno);
436 bytes_transferred += sizeof (PTRACE_XFER_TYPE))
437 {
438 errno = 0;
439 *(PTRACE_XFER_TYPE *) & buf[bytes_transferred]
440 = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0);
441 regaddr += sizeof (PTRACE_XFER_TYPE);
442 if (errno != 0)
443 {
444 char message[128];
445 sprintf (message, "reading register %s (#%d)",
446 REGISTER_NAME (regno), regno);
447 perror_with_name (message);
448 }
449 }
450
451 /* Now supply the register. Keep in mind that the regcache's idea
452 of the register's size may not be a multiple of sizeof
453 (PTRACE_XFER_TYPE). */
454 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
455 {
456 /* Little-endian values are always found at the left end of the
457 bytes transferred. */
458 regcache_raw_supply (current_regcache, regno, buf);
459 }
460 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
461 {
462 /* Big-endian values are found at the right end of the bytes
463 transferred. */
464 size_t padding = (bytes_transferred
465 - register_size (current_gdbarch, regno));
466 regcache_raw_supply (current_regcache, regno, buf + padding);
467 }
468 else
469 gdb_assert (0);
470 }
471
472 static void
supply_vrregset(gdb_vrregset_t * vrregsetp)473 supply_vrregset (gdb_vrregset_t *vrregsetp)
474 {
475 int i;
476 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
477 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
478 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
479 int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
480
481 for (i = 0; i < num_of_vrregs; i++)
482 {
483 /* The last 2 registers of this set are only 32 bit long, not
484 128. However an offset is necessary only for VSCR because it
485 occupies a whole vector, while VRSAVE occupies a full 4 bytes
486 slot. */
487 if (i == (num_of_vrregs - 2))
488 supply_register (tdep->ppc_vr0_regnum + i,
489 *vrregsetp + i * vrregsize + offset);
490 else
491 supply_register (tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize);
492 }
493 }
494
495 static void
fetch_altivec_registers(int tid)496 fetch_altivec_registers (int tid)
497 {
498 int ret;
499 gdb_vrregset_t regs;
500
501 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
502 if (ret < 0)
503 {
504 if (errno == EIO)
505 {
506 have_ptrace_getvrregs = 0;
507 return;
508 }
509 perror_with_name ("Unable to fetch AltiVec registers");
510 }
511 supply_vrregset (®s);
512 }
513
514 /* On SPE machines, fetch the full 64 bits of all the general-purpose
515 registers, as well as the SPE-specific registers 'acc' and
516 'spefscr'. */
517 static void
fetch_spe_registers(int tid)518 fetch_spe_registers (int tid)
519 {
520 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
521 struct gdb_evrregset_t evrregs;
522 int i;
523
524 get_spe_registers (tid, &evrregs);
525
526 /* Splice and supply each of the EV registers. */
527 for (i = 0; i < ppc_num_gprs; i++)
528 {
529 char buf[MAX_REGISTER_SIZE];
530
531 read_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
532 supply_register (tdep->ppc_ev0_regnum + i, buf);
533 }
534
535 /* Supply the SPE-specific registers. */
536 supply_register (tdep->ppc_acc_regnum, &evrregs.acc);
537 supply_register (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
538 }
539
540 static void
fetch_ppc_registers(int tid)541 fetch_ppc_registers (int tid)
542 {
543 int i;
544 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
545
546 if (! tdep->ppc_gprs_pseudo_p)
547 for (i = 0; i < ppc_num_gprs; i++)
548 fetch_register (tid, tdep->ppc_gp0_regnum + i);
549 if (tdep->ppc_fp0_regnum >= 0)
550 for (i = 0; i < ppc_num_fprs; i++)
551 fetch_register (tid, tdep->ppc_fp0_regnum + i);
552 fetch_register (tid, PC_REGNUM);
553 if (tdep->ppc_ps_regnum != -1)
554 fetch_register (tid, tdep->ppc_ps_regnum);
555 if (tdep->ppc_cr_regnum != -1)
556 fetch_register (tid, tdep->ppc_cr_regnum);
557 if (tdep->ppc_lr_regnum != -1)
558 fetch_register (tid, tdep->ppc_lr_regnum);
559 if (tdep->ppc_ctr_regnum != -1)
560 fetch_register (tid, tdep->ppc_ctr_regnum);
561 if (tdep->ppc_xer_regnum != -1)
562 fetch_register (tid, tdep->ppc_xer_regnum);
563 if (tdep->ppc_mq_regnum != -1)
564 fetch_register (tid, tdep->ppc_mq_regnum);
565 if (tdep->ppc_fpscr_regnum != -1)
566 fetch_register (tid, tdep->ppc_fpscr_regnum);
567 if (have_ptrace_getvrregs)
568 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
569 fetch_altivec_registers (tid);
570 if (tdep->ppc_ev0_regnum >= 0)
571 fetch_spe_registers (tid);
572 }
573
574 /* Fetch registers from the child process. Fetch all registers if
575 regno == -1, otherwise fetch all general registers or all floating
576 point registers depending upon the value of regno. */
577 void
fetch_inferior_registers(int regno)578 fetch_inferior_registers (int regno)
579 {
580 /* Overload thread id onto process id */
581 int tid = TIDGET (inferior_ptid);
582
583 /* No thread id, just use process id */
584 if (tid == 0)
585 tid = PIDGET (inferior_ptid);
586
587 if (regno == -1)
588 fetch_ppc_registers (tid);
589 else
590 fetch_register (tid, regno);
591 }
592
593 /* Store one register. */
594 static void
store_altivec_register(int tid,int regno)595 store_altivec_register (int tid, int regno)
596 {
597 int ret;
598 int offset = 0;
599 gdb_vrregset_t regs;
600 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
601 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
602
603 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
604 if (ret < 0)
605 {
606 if (errno == EIO)
607 {
608 have_ptrace_getvrregs = 0;
609 return;
610 }
611 perror_with_name ("Unable to fetch AltiVec register");
612 }
613
614 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
615 long on the hardware. */
616 if (regno == (tdep->ppc_vrsave_regnum - 1))
617 offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
618
619 regcache_collect (regno,
620 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
621
622 ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
623 if (ret < 0)
624 perror_with_name ("Unable to store AltiVec register");
625 }
626
627 /* Assuming TID referrs to an SPE process, set the top halves of TID's
628 general-purpose registers and its SPE-specific registers to the
629 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
630 nothing.
631
632 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
633 PTRACE_SETEVRREGS requests are supported is isolated here, and in
634 get_spe_registers. */
635 static void
set_spe_registers(int tid,struct gdb_evrregset_t * evrregset)636 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
637 {
638 if (have_ptrace_getsetevrregs)
639 {
640 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
641 return;
642 else
643 {
644 /* EIO means that the PTRACE_SETEVRREGS request isn't
645 supported; we fail silently, and don't try the call
646 again. */
647 if (errno == EIO)
648 have_ptrace_getsetevrregs = 0;
649 else
650 /* Anything else needs to be reported. */
651 perror_with_name ("Unable to set SPE registers");
652 }
653 }
654 }
655
656 /* Store the bytes at SRC as the contents of TID's EV register EV_REGNUM.
657 Write the less significant word to TID using ptrace, and copy the
658 more significant word to the appropriate slot in EVRREGS. */
659 static void
write_spliced_spe_reg(int tid,int ev_regnum,struct gdb_evrregset_t * evrregs,char * src)660 write_spliced_spe_reg (int tid, int ev_regnum,
661 struct gdb_evrregset_t *evrregs,
662 char *src)
663 {
664 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
665
666 /* Make sure we're trying to write an EV register; that's all we
667 handle. */
668 gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
669 && ev_regnum <= tdep->ppc_ev31_regnum);
670
671 /* Make sure the sizes for the splicing add up. */
672 gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
673 == register_size (current_gdbarch, ev_regnum));
674
675 {
676 int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
677
678 /* The number of the corresponding general-purpose register, which
679 holds the lower 32 bits of the EV register. */
680 int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
681
682 /* The offset of gpr_regnum in the process's uarea. */
683 CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
684
685 /* The PTRACE_POKEUSR / PT_WRITE_U ptrace requests need to be able
686 to return arbitrary register values, so they can't return -1 to
687 indicate an error. So we clear errno, and check it again
688 afterwards. */
689 errno = 0;
690
691 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
692 {
693 memcpy (&evrregs->evr[ev_index], src, sizeof (evrregs->evr[ev_index]));
694 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
695 * (PTRACE_XFER_TYPE *) (src + sizeof (evrregs->evr[0])));
696 }
697 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
698 {
699 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
700 * (PTRACE_XFER_TYPE *) src);
701 memcpy (&evrregs->evr[ev_index], src + sizeof (PTRACE_XFER_TYPE),
702 sizeof (evrregs->evr[ev_index]));
703 }
704 else
705 gdb_assert (0);
706
707 if (errno != 0)
708 {
709 char message[128];
710 sprintf (message, "writing register %s (#%d)",
711 REGISTER_NAME (ev_regnum), ev_regnum);
712 perror_with_name (message);
713 }
714 }
715 }
716
717 /* Write GDB's value for the SPE register REGNO to TID. */
718 static void
store_spe_register(int tid,int regno)719 store_spe_register (int tid, int regno)
720 {
721 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
722 struct gdb_evrregset_t evrregs;
723
724 /* We can only read and write the entire EVR register set at a time,
725 so to write just a single register, we do a read-modify-write
726 maneuver. */
727 get_spe_registers (tid, &evrregs);
728
729 if (tdep->ppc_ev0_regnum >= 0
730 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
731 {
732 char buf[MAX_REGISTER_SIZE];
733 regcache_collect (regno, buf);
734 write_spliced_spe_reg (tid, regno, &evrregs, buf);
735 }
736 else if (tdep->ppc_acc_regnum >= 0
737 && regno == tdep->ppc_acc_regnum)
738 {
739 gdb_assert (sizeof (evrregs.acc)
740 == register_size (current_gdbarch, regno));
741 regcache_collect (regno, &evrregs.acc);
742 }
743 else if (tdep->ppc_spefscr_regnum >= 0
744 && regno == tdep->ppc_spefscr_regnum)
745 {
746 gdb_assert (sizeof (evrregs.spefscr)
747 == register_size (current_gdbarch, regno));
748 regcache_collect (regno, &evrregs.spefscr);
749 }
750 else
751 gdb_assert (0);
752
753 /* Write back the modified register set. */
754 set_spe_registers (tid, &evrregs);
755 }
756
757 static void
store_register(int tid,int regno)758 store_register (int tid, int regno)
759 {
760 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
761 /* This isn't really an address. But ptrace thinks of it as one. */
762 CORE_ADDR regaddr = ppc_register_u_addr (regno);
763 int i;
764 size_t bytes_to_transfer;
765 char buf[MAX_REGISTER_SIZE];
766
767 /* Sanity check: this function should only be called to store raw
768 registers' values, never pseudoregisters' values. */
769 if (tdep->ppc_gp0_regnum <= regno
770 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
771 gdb_assert (! tdep->ppc_gprs_pseudo_p);
772
773 if (altivec_register_p (regno))
774 {
775 store_altivec_register (tid, regno);
776 return;
777 }
778 else if (spe_register_p (regno))
779 {
780 store_spe_register (tid, regno);
781 return;
782 }
783
784 if (regaddr == -1)
785 return;
786
787 /* First collect the register. Keep in mind that the regcache's
788 idea of the register's size may not be a multiple of sizeof
789 (PTRACE_XFER_TYPE). */
790 memset (buf, 0, sizeof buf);
791 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
792 sizeof (PTRACE_XFER_TYPE));
793 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
794 {
795 /* Little-endian values always sit at the left end of the buffer. */
796 regcache_raw_collect (current_regcache, regno, buf);
797 }
798 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
799 {
800 /* Big-endian values sit at the right end of the buffer. */
801 size_t padding = (bytes_to_transfer
802 - register_size (current_gdbarch, regno));
803 regcache_raw_collect (current_regcache, regno, buf + padding);
804 }
805
806 for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE))
807 {
808 errno = 0;
809 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
810 *(PTRACE_XFER_TYPE *) & buf[i]);
811 regaddr += sizeof (PTRACE_XFER_TYPE);
812
813 if (errno == EIO
814 && regno == tdep->ppc_fpscr_regnum)
815 {
816 /* Some older kernel versions don't allow fpscr to be written. */
817 continue;
818 }
819
820 if (errno != 0)
821 {
822 char message[128];
823 sprintf (message, "writing register %s (#%d)",
824 REGISTER_NAME (regno), regno);
825 perror_with_name (message);
826 }
827 }
828 }
829
830 static void
fill_vrregset(gdb_vrregset_t * vrregsetp)831 fill_vrregset (gdb_vrregset_t *vrregsetp)
832 {
833 int i;
834 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
835 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
836 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
837 int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
838
839 for (i = 0; i < num_of_vrregs; i++)
840 {
841 /* The last 2 registers of this set are only 32 bit long, not
842 128, but only VSCR is fetched as a 16 bytes quantity. */
843 if (i == (num_of_vrregs - 2))
844 regcache_collect (tdep->ppc_vr0_regnum + i,
845 *vrregsetp + i * vrregsize + offset);
846 else
847 regcache_collect (tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize);
848 }
849 }
850
851 static void
store_altivec_registers(int tid)852 store_altivec_registers (int tid)
853 {
854 int ret;
855 gdb_vrregset_t regs;
856
857 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
858 if (ret < 0)
859 {
860 if (errno == EIO)
861 {
862 have_ptrace_getvrregs = 0;
863 return;
864 }
865 perror_with_name ("Couldn't get AltiVec registers");
866 }
867
868 fill_vrregset (®s);
869
870 if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
871 perror_with_name ("Couldn't write AltiVec registers");
872 }
873
874 static void
store_spe_registers(int tid)875 store_spe_registers (int tid)
876 {
877 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
878 struct gdb_evrregset_t evrregs;
879 int i;
880
881 /* The code below should store to every field of evrregs; if that
882 doesn't happen, make it obvious by initializing it with
883 suspicious values. */
884 memset (&evrregs, 42, sizeof (evrregs));
885
886 for (i = 0; i < ppc_num_gprs; i++)
887 {
888 char buf[MAX_REGISTER_SIZE];
889
890 regcache_collect (tdep->ppc_ev0_regnum + i, buf);
891 write_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
892 }
893
894 gdb_assert (sizeof (evrregs.acc)
895 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
896 regcache_collect (tdep->ppc_acc_regnum, &evrregs.acc);
897 gdb_assert (sizeof (evrregs.spefscr)
898 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
899 regcache_collect (tdep->ppc_acc_regnum, &evrregs.spefscr);
900
901 set_spe_registers (tid, &evrregs);
902 }
903
904 static void
store_ppc_registers(int tid)905 store_ppc_registers (int tid)
906 {
907 int i;
908 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
909
910 if (! tdep->ppc_gprs_pseudo_p)
911 for (i = 0; i < ppc_num_gprs; i++)
912 store_register (tid, tdep->ppc_gp0_regnum + i);
913 if (tdep->ppc_fp0_regnum >= 0)
914 for (i = 0; i < ppc_num_fprs; i++)
915 store_register (tid, tdep->ppc_fp0_regnum + i);
916 store_register (tid, PC_REGNUM);
917 if (tdep->ppc_ps_regnum != -1)
918 store_register (tid, tdep->ppc_ps_regnum);
919 if (tdep->ppc_cr_regnum != -1)
920 store_register (tid, tdep->ppc_cr_regnum);
921 if (tdep->ppc_lr_regnum != -1)
922 store_register (tid, tdep->ppc_lr_regnum);
923 if (tdep->ppc_ctr_regnum != -1)
924 store_register (tid, tdep->ppc_ctr_regnum);
925 if (tdep->ppc_xer_regnum != -1)
926 store_register (tid, tdep->ppc_xer_regnum);
927 if (tdep->ppc_mq_regnum != -1)
928 store_register (tid, tdep->ppc_mq_regnum);
929 if (tdep->ppc_fpscr_regnum != -1)
930 store_register (tid, tdep->ppc_fpscr_regnum);
931 if (have_ptrace_getvrregs)
932 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
933 store_altivec_registers (tid);
934 if (tdep->ppc_ev0_regnum >= 0)
935 store_spe_registers (tid);
936 }
937
938 void
store_inferior_registers(int regno)939 store_inferior_registers (int regno)
940 {
941 /* Overload thread id onto process id */
942 int tid = TIDGET (inferior_ptid);
943
944 /* No thread id, just use process id */
945 if (tid == 0)
946 tid = PIDGET (inferior_ptid);
947
948 if (regno >= 0)
949 store_register (tid, regno);
950 else
951 store_ppc_registers (tid);
952 }
953
954 void
supply_gregset(gdb_gregset_t * gregsetp)955 supply_gregset (gdb_gregset_t *gregsetp)
956 {
957 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
958 interface, and not the wordsize of the program's ABI. */
959 int wordsize = sizeof (PTRACE_XFER_TYPE);
960 ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
961 sizeof (gdb_gregset_t), wordsize);
962 }
963
964 static void
right_fill_reg(int regnum,void * reg)965 right_fill_reg (int regnum, void *reg)
966 {
967 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
968 interface, and not the wordsize of the program's ABI. */
969 int wordsize = sizeof (PTRACE_XFER_TYPE);
970 /* Right fill the register. */
971 regcache_raw_collect (current_regcache, regnum,
972 ((bfd_byte *) reg
973 + wordsize
974 - register_size (current_gdbarch, regnum)));
975 }
976
977 void
fill_gregset(gdb_gregset_t * gregsetp,int regno)978 fill_gregset (gdb_gregset_t *gregsetp, int regno)
979 {
980 int regi;
981 elf_greg_t *regp = (elf_greg_t *) gregsetp;
982 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
983 const int elf_ngreg = 48;
984
985
986 /* Start with zeros. */
987 memset (regp, 0, elf_ngreg * sizeof (*regp));
988
989 for (regi = 0; regi < ppc_num_gprs; regi++)
990 {
991 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
992 right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
993 }
994
995 if ((regno == -1) || regno == PC_REGNUM)
996 right_fill_reg (PC_REGNUM, regp + PT_NIP);
997 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
998 right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
999 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
1000 regcache_collect (tdep->ppc_cr_regnum, regp + PT_CCR);
1001 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
1002 regcache_collect (tdep->ppc_xer_regnum, regp + PT_XER);
1003 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
1004 right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
1005 #ifdef PT_MQ
1006 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
1007 && (tdep->ppc_mq_regnum != -1))
1008 right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
1009 #endif
1010 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
1011 right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
1012 }
1013
1014 void
supply_fpregset(gdb_fpregset_t * fpregsetp)1015 supply_fpregset (gdb_fpregset_t * fpregsetp)
1016 {
1017 ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
1018 sizeof (gdb_fpregset_t));
1019 }
1020
1021 /* Given a pointer to a floating point register set in /proc format
1022 (fpregset_t *), update the register specified by REGNO from gdb's
1023 idea of the current floating point register set. If REGNO is -1,
1024 update them all. */
1025 void
fill_fpregset(gdb_fpregset_t * fpregsetp,int regno)1026 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1027 {
1028 int regi;
1029 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1030 bfd_byte *fpp = (void *) fpregsetp;
1031
1032 if (ppc_floating_point_unit_p (current_gdbarch))
1033 {
1034 for (regi = 0; regi < ppc_num_fprs; regi++)
1035 {
1036 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
1037 regcache_collect (tdep->ppc_fp0_regnum + regi, fpp + 8 * regi);
1038 }
1039 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
1040 right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
1041 }
1042 }
1043