1 /*  This file is part of the program psim.
2 
3     Copyright 1994, 1995, 1996, 1997, 2003 Andrew Cagney
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 
19     */
20 
21 /* Additional, and optional expressions.  */
22 #ifdef WITH_ALTIVEC
23 #include "altivec_expression.h"
24 #endif
25 #ifdef WITH_E500
26 #include "e500_expression.h"
27 #endif
28 
29 /* 32bit target expressions:
30 
31    Each calculation is performed three times using each of the
32    signed64, unsigned64 and long integer types.  The macro ALU_END
33    (in _ALU_RESULT_VAL) then selects which of the three alternative
34    results will be used in the final assignment of the target
35    register.  As this selection is determined at compile time by
36    fields in the instruction (OE, EA, Rc) the compiler has sufficient
37    information to firstly simplify the selection code into a single
38    case and then back anotate the equations and hence eliminate any
39    resulting dead code.  That dead code being the calculations that,
40    as it turned out were not in the end needed.
41 
42    64bit arrithemetic is used firstly because it allows the use of
43    gcc's efficient long long operators (typically efficiently output
44    inline) and secondly because the resultant answer will contain in
45    the low 32bits the answer while in the high 32bits is either carry
46    or status information. */
47 
48 /* 64bit target expressions:
49 
50    Unfortunatly 128bit arrithemetic isn't that common.  Consequently
51    the 32/64 bit trick can not be used.  Instead all calculations are
52    required to retain carry/overflow information in separate
53    variables.  Even with this restriction it is still possible for the
54    trick of letting the compiler discard the calculation of unneeded
55    values */
56 
57 
58 /* Macro's to type cast 32bit constants to 64bits */
59 #define SIGNED64(val)   ((signed64)(signed32)(val))
60 #define UNSIGNED64(val) ((unsigned64)(unsigned32)(val))
61 
62 
63 /* Start a section of ALU code */
64 
65 #define ALU_BEGIN(val) \
66 { \
67   natural_word alu_val; \
68   unsigned64 alu_carry_val; \
69   signed64 alu_overflow_val; \
70   ALU_SET(val)
71 
72 
73 /* assign the result to the target register */
74 
75 #define ALU_END(TARG,CA,OE,Rc) \
76 { /* select the result to use */ \
77   signed_word const alu_result = _ALU_RESULT_VAL(CA,OE,Rc); \
78   /* determine the overflow bit if needed */ \
79   if (OE) { \
80     if ((((unsigned64)(alu_overflow_val & BIT64(0))) \
81 	 >> 32) \
82         == (alu_overflow_val & BIT64(32))) \
83       XER &= (~xer_overflow); \
84     else \
85       XER |= (xer_summary_overflow | xer_overflow); \
86   } \
87   /* Update the carry bit if needed */ \
88   if (CA) { \
89     XER = ((XER & ~xer_carry) \
90            | SHUFFLED32((alu_carry_val >> 32), 31, xer_carry_bit)); \
91     /* if (alu_carry_val & BIT64(31)) \
92          XER |= (xer_carry); \
93        else \
94          XER &= (~xer_carry); */ \
95   } \
96   TRACE(trace_alu, (" Result = %ld (0x%lx), XER = %ld\n", \
97                     (long)alu_result, (long)alu_result, (long)XER)); \
98   /* Update the Result Conditions if needed */ \
99   CR0_COMPARE(alu_result, 0, Rc); \
100   /* assign targ same */ \
101   TARG = alu_result; \
102 }}
103 
104 /* select the result from the different options */
105 
106 #define _ALU_RESULT_VAL(CA,OE,Rc) (WITH_TARGET_WORD_BITSIZE == 64 \
107 				   ? alu_val \
108 				   : (OE \
109 				      ? alu_overflow_val \
110 				      : (CA \
111 					 ? alu_carry_val \
112 					 : alu_val)))
113 
114 
115 /* More basic alu operations */
116 #if (WITH_TARGET_WORD_BITSIZE == 64)
117 #define ALU_SET(val) \
118 do { \
119   alu_val = val; \
120   alu_carry_val = ((unsigned64)alu_val) >> 32; \
121   alu_overflow_val = ((signed64)alu_val) >> 32; \
122 } while (0)
123 #endif
124 #if (WITH_TARGET_WORD_BITSIZE == 32)
125 #define ALU_SET(val) \
126 do { \
127   alu_val = val; \
128   alu_carry_val = (unsigned32)(alu_val); \
129   alu_overflow_val = (signed32)(alu_val); \
130 } while (0)
131 #endif
132 
133 #if (WITH_TARGET_WORD_BITSIZE == 64)
134 #define ALU_ADD(val) \
135 do { \
136   unsigned64 alu_lo = (UNSIGNED64(alu_val) \
137 		       + UNSIGNED64(val)); \
138   signed alu_carry = ((alu_lo & BIT(31)) != 0); \
139   alu_carry_val = (alu_carry_val \
140 		   + UNSIGNED64(EXTRACTED(val, 0, 31)) \
141 		   + alu_carry); \
142   alu_overflow_val = (alu_overflow_val \
143 		      + SIGNED64(EXTRACTED(val, 0, 31)) \
144 		      + alu_carry); \
145   alu_val = alu_val + val; \
146 } while (0)
147 #endif
148 #if (WITH_TARGET_WORD_BITSIZE == 32)
149 #define ALU_ADD(val) \
150 do { \
151   alu_val += val; \
152   alu_carry_val += (unsigned32)(val); \
153   alu_overflow_val += (signed32)(val); \
154 } while (0)
155 #endif
156 
157 
158 #if (WITH_TARGET_WORD_BITSIZE == 64)
159 #define ALU_ADD_CA \
160 do { \
161   signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
162   ALU_ADD(carry); \
163 } while (0)
164 #endif
165 #if (WITH_TARGET_WORD_BITSIZE == 32)
166 #define ALU_ADD_CA \
167 do { \
168   signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
169   ALU_ADD(carry); \
170 } while (0)
171 #endif
172 
173 
174 #if 0
175 #if (WITH_TARGET_WORD_BITSIZE == 64)
176 #endif
177 #if (WITH_TARGET_WORD_BITSIZE == 32)
178 #define ALU_SUB(val) \
179 do { \
180   alu_val -= val; \
181   alu_carry_val -= (unsigned32)(val); \
182   alu_overflow_val -= (signed32)(val); \
183 } while (0)
184 #endif
185 #endif
186 
187 #if (WITH_TARGET_WORD_BITSIZE == 64)
188 #endif
189 #if (WITH_TARGET_WORD_BITSIZE == 32)
190 #define ALU_OR(val) \
191 do { \
192   alu_val |= val; \
193   alu_carry_val = (unsigned32)(alu_val); \
194   alu_overflow_val = (signed32)(alu_val); \
195 } while (0)
196 #endif
197 
198 
199 #if (WITH_TARGET_WORD_BITSIZE == 64)
200 #endif
201 #if (WITH_TARGET_WORD_BITSIZE == 32)
202 #define ALU_XOR(val) \
203 do { \
204   alu_val ^= val; \
205   alu_carry_val = (unsigned32)(alu_val); \
206   alu_overflow_val = (signed32)(alu_val); \
207 } while (0)
208 #endif
209 
210 
211 #if 0
212 #if (WITH_TARGET_WORD_BITSIZE == 64)
213 #endif
214 #if (WITH_TARGET_WORD_BITSIZE == 32)
215 #define ALU_NEGATE \
216 do { \
217   alu_val = -alu_val; \
218   alu_carry_val = -alu_carry_val; \
219   alu_overflow_val = -alu_overflow_val; \
220 } while(0)
221 #endif
222 #endif
223 
224 
225 #if (WITH_TARGET_WORD_BITSIZE == 64)
226 #endif
227 #if (WITH_TARGET_WORD_BITSIZE == 32)
228 #define ALU_AND(val) \
229 do { \
230   alu_val &= val; \
231   alu_carry_val = (unsigned32)(alu_val); \
232   alu_overflow_val = (signed32)(alu_val); \
233 } while (0)
234 #endif
235 
236 
237 #if (WITH_TARGET_WORD_BITSIZE == 64)
238 #define ALU_NOT \
239 do { \
240   signed64 new_alu_val = ~alu_val; \
241   ALU_SET(new_alu_val); \
242 } while (0)
243 #endif
244 #if (WITH_TARGET_WORD_BITSIZE == 32)
245 #define ALU_NOT \
246 do { \
247   signed new_alu_val = ~alu_val; \
248   ALU_SET(new_alu_val); \
249 } while(0)
250 #endif
251 
252 
253 /* Macros for updating the condition register */
254 
255 #define CR1_UPDATE(Rc) \
256 do { \
257   if (Rc) { \
258     CR_SET(1, EXTRACTED32(FPSCR, fpscr_fx_bit, fpscr_ox_bit)); \
259   } \
260 } while (0)
261 
262 
263 #define _DO_CR_COMPARE(LHS, RHS) \
264 (((LHS) < (RHS)) \
265  ? cr_i_negative \
266  : (((LHS) > (RHS)) \
267     ? cr_i_positive \
268     : cr_i_zero))
269 
270 #define CR_SET(REG, VAL) MBLIT32(CR, REG*4, REG*4+3, VAL)
271 #define CR_FIELD(REG) EXTRACTED32(CR, REG*4, REG*4+3)
272 #define CR_SET_XER_SO(REG, VAL) \
273 do { \
274   creg new_bits = ((XER & xer_summary_overflow) \
275                    ? (cr_i_summary_overflow | VAL) \
276                    : VAL); \
277   CR_SET(REG, new_bits); \
278 } while(0)
279 
280 #define CR_COMPARE(REG, LHS, RHS) \
281 do { \
282   creg new_bits = ((XER & xer_summary_overflow) \
283                    ? (cr_i_summary_overflow | _DO_CR_COMPARE(LHS,RHS)) \
284                    : _DO_CR_COMPARE(LHS,RHS)); \
285   CR_SET(REG, new_bits); \
286 } while (0)
287 
288 #define CR0_COMPARE(LHS, RHS, Rc) \
289 do { \
290   if (Rc) { \
291     CR_COMPARE(0, LHS, RHS); \
292     TRACE(trace_alu, \
293 	  ("CR=0x%08lx, LHS=%ld, RHS=%ld\n", \
294 	   (unsigned long)CR, (long)LHS, (long)RHS)); \
295   } \
296 } while (0)
297 
298 
299 
300 /* Bring data in from the cold */
301 
302 #define MEM(SIGN, EA, NR_BYTES) \
303 ((SIGN##_##NR_BYTES) vm_data_map_read_##NR_BYTES(cpu_data_map(processor), EA, \
304 						 processor, cia)) \
305 
306 #define STORE(EA, NR_BYTES, VAL) \
307 do { \
308   vm_data_map_write_##NR_BYTES(cpu_data_map(processor), EA, VAL, \
309 			       processor, cia); \
310 } while (0)
311 
312 
313 
314 /* some FPSCR update macros. */
315 
316 #define FPSCR_BEGIN \
317 { \
318   fpscreg old_fpscr UNUSED = FPSCR
319 
320 #define FPSCR_END(Rc) { \
321   /* always update VX */ \
322   if ((FPSCR & fpscr_vx_bits)) \
323     FPSCR |= fpscr_vx; \
324   else \
325     FPSCR &= ~fpscr_vx; \
326   /* always update FEX */ \
327   if (((FPSCR & fpscr_vx) && (FPSCR & fpscr_ve)) \
328       || ((FPSCR & fpscr_ox) && (FPSCR & fpscr_oe)) \
329       || ((FPSCR & fpscr_ux) && (FPSCR & fpscr_ue)) \
330       || ((FPSCR & fpscr_zx) && (FPSCR & fpscr_ze)) \
331       || ((FPSCR & fpscr_xx) && (FPSCR & fpscr_xe))) \
332     FPSCR |= fpscr_fex; \
333   else \
334     FPSCR &= ~fpscr_fex; \
335   CR1_UPDATE(Rc); \
336   /* interrupt enabled? */ \
337   if ((MSR & (msr_floating_point_exception_mode_0 \
338               | msr_floating_point_exception_mode_1)) \
339       && (FPSCR & fpscr_fex)) \
340     program_interrupt(processor, cia, \
341                       floating_point_enabled_program_interrupt); \
342 }}
343 
344 #define FPSCR_SET(REG, VAL) MBLIT32(FPSCR, REG*4, REG*4+3, VAL)
345 #define FPSCR_FIELD(REG) EXTRACTED32(FPSCR, REG*4, REG*4+3)
346 
347 #define FPSCR_SET_FPCC(VAL) MBLIT32(FPSCR, fpscr_fpcc_bit, fpscr_fpcc_bit+3, VAL)
348 
349 /* Handle various exceptions */
350 
351 #define FPSCR_OR_VX(VAL) \
352 do { \
353   /* NOTE: VAL != 0 */ \
354   FPSCR |= (VAL); \
355   FPSCR |= fpscr_fx; \
356 } while (0)
357 
358 #define FPSCR_SET_OX(COND) \
359 do { \
360   if (COND) { \
361     FPSCR |= fpscr_ox; \
362     FPSCR |= fpscr_fx; \
363   } \
364   else \
365     FPSCR &= ~fpscr_ox; \
366 } while (0)
367 
368 #define FPSCR_SET_UX(COND) \
369 do { \
370   if (COND) { \
371     FPSCR |= fpscr_ux; \
372     FPSCR |= fpscr_fx; \
373   } \
374   else \
375     FPSCR &= ~fpscr_ux; \
376 } while (0)
377 
378 #define FPSCR_SET_ZX(COND) \
379 do { \
380   if (COND) { \
381     FPSCR |= fpscr_zx; \
382     FPSCR |= fpscr_fx; \
383   } \
384   else \
385     FPSCR &= ~fpscr_zx; \
386 } while (0)
387 
388 #define FPSCR_SET_XX(COND) \
389 do { \
390   if (COND) { \
391     FPSCR |= fpscr_xx; \
392     FPSCR |= fpscr_fx; \
393   } \
394 } while (0)
395 
396 /* Note: code using SET_FI must also explicitly call SET_XX */
397 
398 #define FPSCR_SET_FR(COND) do { \
399   if (COND) \
400     FPSCR |= fpscr_fr; \
401   else \
402     FPSCR &= ~fpscr_fr; \
403 } while (0)
404 
405 #define FPSCR_SET_FI(COND) \
406 do { \
407   if (COND) { \
408     FPSCR |= fpscr_fi; \
409   } \
410   else \
411     FPSCR &= ~fpscr_fi; \
412 } while (0)
413 
414 #define FPSCR_SET_FPRF(VAL) \
415 do { \
416   FPSCR = (FPSCR & ~fpscr_fprf) | (VAL); \
417 } while (0)
418