1 // Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
2 // in the future, this will change to the reverse. For now, suppress this
3 // warning and generally stick with being explicit about unsafety.
4 #![allow(unused_unsafe)]
5 #![cfg_attr(not(feature = "rt"), allow(dead_code))]
6 
7 //! Time driver
8 
9 mod entry;
10 pub(self) use self::entry::{EntryList, TimerEntry, TimerHandle, TimerShared};
11 
12 mod handle;
13 pub(crate) use self::handle::Handle;
14 
15 mod wheel;
16 
17 pub(super) mod sleep;
18 
19 use crate::loom::sync::atomic::{AtomicBool, Ordering};
20 use crate::loom::sync::{Arc, Mutex};
21 use crate::park::{Park, Unpark};
22 use crate::time::error::Error;
23 use crate::time::{Clock, Duration, Instant};
24 
25 use std::convert::TryInto;
26 use std::fmt;
27 use std::{num::NonZeroU64, ptr::NonNull, task::Waker};
28 
29 /// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
30 ///
31 /// A `Driver` instance tracks the state necessary for managing time and
32 /// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
33 ///
34 /// It is expected that a single instance manages many individual [`Sleep`][sleep]
35 /// instances. The `Driver` implementation is thread-safe and, as such, is able
36 /// to handle callers from across threads.
37 ///
38 /// After creating the `Driver` instance, the caller must repeatedly call `park`
39 /// or `park_timeout`. The time driver will perform no work unless `park` or
40 /// `park_timeout` is called repeatedly.
41 ///
42 /// The driver has a resolution of one millisecond. Any unit of time that falls
43 /// between milliseconds are rounded up to the next millisecond.
44 ///
45 /// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
46 /// elapsed will be notified with an error. At this point, calling `poll` on the
47 /// [`Sleep`][sleep] instance will result in panic.
48 ///
49 /// # Implementation
50 ///
51 /// The time driver is based on the [paper by Varghese and Lauck][paper].
52 ///
53 /// A hashed timing wheel is a vector of slots, where each slot handles a time
54 /// slice. As time progresses, the timer walks over the slot for the current
55 /// instant, and processes each entry for that slot. When the timer reaches the
56 /// end of the wheel, it starts again at the beginning.
57 ///
58 /// The implementation maintains six wheels arranged in a set of levels. As the
59 /// levels go up, the slots of the associated wheel represent larger intervals
60 /// of time. At each level, the wheel has 64 slots. Each slot covers a range of
61 /// time equal to the wheel at the lower level. At level zero, each slot
62 /// represents one millisecond of time.
63 ///
64 /// The wheels are:
65 ///
66 /// * Level 0: 64 x 1 millisecond slots.
67 /// * Level 1: 64 x 64 millisecond slots.
68 /// * Level 2: 64 x ~4 second slots.
69 /// * Level 3: 64 x ~4 minute slots.
70 /// * Level 4: 64 x ~4 hour slots.
71 /// * Level 5: 64 x ~12 day slots.
72 ///
73 /// When the timer processes entries at level zero, it will notify all the
74 /// `Sleep` instances as their deadlines have been reached. For all higher
75 /// levels, all entries will be redistributed across the wheel at the next level
76 /// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
77 /// either be canceled (dropped) or their associated entries will reach level
78 /// zero and be notified.
79 ///
80 /// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
81 /// [sleep]: crate::time::Sleep
82 /// [timeout]: crate::time::Timeout
83 /// [interval]: crate::time::Interval
84 #[derive(Debug)]
85 pub(crate) struct Driver<P: Park + 'static> {
86     /// Timing backend in use
87     time_source: ClockTime,
88 
89     /// Shared state
90     handle: Handle,
91 
92     /// Parker to delegate to
93     park: P,
94 
95     // When `true`, a call to `park_timeout` should immediately return and time
96     // should not advance. One reason for this to be `true` is if the task
97     // passed to `Runtime::block_on` called `task::yield_now()`.
98     //
99     // While it may look racy, it only has any effect when the clock is paused
100     // and pausing the clock is restricted to a single-threaded runtime.
101     #[cfg(feature = "test-util")]
102     did_wake: Arc<AtomicBool>,
103 }
104 
105 /// A structure which handles conversion from Instants to u64 timestamps.
106 #[derive(Debug, Clone)]
107 pub(self) struct ClockTime {
108     clock: super::clock::Clock,
109     start_time: Instant,
110 }
111 
112 impl ClockTime {
new(clock: Clock) -> Self113     pub(self) fn new(clock: Clock) -> Self {
114         Self {
115             start_time: clock.now(),
116             clock,
117         }
118     }
119 
deadline_to_tick(&self, t: Instant) -> u64120     pub(self) fn deadline_to_tick(&self, t: Instant) -> u64 {
121         // Round up to the end of a ms
122         self.instant_to_tick(t + Duration::from_nanos(999_999))
123     }
124 
instant_to_tick(&self, t: Instant) -> u64125     pub(self) fn instant_to_tick(&self, t: Instant) -> u64 {
126         // round up
127         let dur: Duration = t
128             .checked_duration_since(self.start_time)
129             .unwrap_or_else(|| Duration::from_secs(0));
130         let ms = dur.as_millis();
131 
132         ms.try_into().expect("Duration too far into the future")
133     }
134 
tick_to_duration(&self, t: u64) -> Duration135     pub(self) fn tick_to_duration(&self, t: u64) -> Duration {
136         Duration::from_millis(t)
137     }
138 
now(&self) -> u64139     pub(self) fn now(&self) -> u64 {
140         self.instant_to_tick(self.clock.now())
141     }
142 }
143 
144 /// Timer state shared between `Driver`, `Handle`, and `Registration`.
145 struct Inner {
146     // The state is split like this so `Handle` can access `is_shutdown` without locking the mutex
147     pub(super) state: Mutex<InnerState>,
148 
149     /// True if the driver is being shutdown
150     pub(super) is_shutdown: AtomicBool,
151 }
152 
153 /// Time state shared which must be protected by a `Mutex`
154 struct InnerState {
155     /// Timing backend in use
156     time_source: ClockTime,
157 
158     /// The last published timer `elapsed` value.
159     elapsed: u64,
160 
161     /// The earliest time at which we promise to wake up without unparking
162     next_wake: Option<NonZeroU64>,
163 
164     /// Timer wheel
165     wheel: wheel::Wheel,
166 
167     /// Unparker that can be used to wake the time driver
168     unpark: Box<dyn Unpark>,
169 }
170 
171 // ===== impl Driver =====
172 
173 impl<P> Driver<P>
174 where
175     P: Park + 'static,
176 {
177     /// Creates a new `Driver` instance that uses `park` to block the current
178     /// thread and `time_source` to get the current time and convert to ticks.
179     ///
180     /// Specifying the source of time is useful when testing.
new(park: P, clock: Clock) -> Driver<P>181     pub(crate) fn new(park: P, clock: Clock) -> Driver<P> {
182         let time_source = ClockTime::new(clock);
183 
184         let inner = Inner::new(time_source.clone(), Box::new(park.unpark()));
185 
186         Driver {
187             time_source,
188             handle: Handle::new(Arc::new(inner)),
189             park,
190             #[cfg(feature = "test-util")]
191             did_wake: Arc::new(AtomicBool::new(false)),
192         }
193     }
194 
195     /// Returns a handle to the timer.
196     ///
197     /// The `Handle` is how `Sleep` instances are created. The `Sleep` instances
198     /// can either be created directly or the `Handle` instance can be passed to
199     /// `with_default`, setting the timer as the default timer for the execution
200     /// context.
handle(&self) -> Handle201     pub(crate) fn handle(&self) -> Handle {
202         self.handle.clone()
203     }
204 
park_internal(&mut self, limit: Option<Duration>) -> Result<(), P::Error>205     fn park_internal(&mut self, limit: Option<Duration>) -> Result<(), P::Error> {
206         let mut lock = self.handle.get().state.lock();
207 
208         assert!(!self.handle.is_shutdown());
209 
210         let next_wake = lock.wheel.next_expiration_time();
211         lock.next_wake =
212             next_wake.map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap()));
213 
214         drop(lock);
215 
216         match next_wake {
217             Some(when) => {
218                 let now = self.time_source.now();
219                 // Note that we effectively round up to 1ms here - this avoids
220                 // very short-duration microsecond-resolution sleeps that the OS
221                 // might treat as zero-length.
222                 let mut duration = self.time_source.tick_to_duration(when.saturating_sub(now));
223 
224                 if duration > Duration::from_millis(0) {
225                     if let Some(limit) = limit {
226                         duration = std::cmp::min(limit, duration);
227                     }
228 
229                     self.park_timeout(duration)?;
230                 } else {
231                     self.park.park_timeout(Duration::from_secs(0))?;
232                 }
233             }
234             None => {
235                 if let Some(duration) = limit {
236                     self.park_timeout(duration)?;
237                 } else {
238                     self.park.park()?;
239                 }
240             }
241         }
242 
243         // Process pending timers after waking up
244         self.handle.process();
245 
246         Ok(())
247     }
248 
249     cfg_test_util! {
250         fn park_timeout(&mut self, duration: Duration) -> Result<(), P::Error> {
251             let clock = &self.time_source.clock;
252 
253             if clock.is_paused() {
254                 self.park.park_timeout(Duration::from_secs(0))?;
255 
256                 // If the time driver was woken, then the park completed
257                 // before the "duration" elapsed (usually caused by a
258                 // yield in `Runtime::block_on`). In this case, we don't
259                 // advance the clock.
260                 if !self.did_wake() {
261                     // Simulate advancing time
262                     clock.advance(duration);
263                 }
264             } else {
265                 self.park.park_timeout(duration)?;
266             }
267 
268             Ok(())
269         }
270 
271         fn did_wake(&self) -> bool {
272             self.did_wake.swap(false, Ordering::SeqCst)
273         }
274     }
275 
276     cfg_not_test_util! {
277         fn park_timeout(&mut self, duration: Duration) -> Result<(), P::Error> {
278             self.park.park_timeout(duration)
279         }
280     }
281 }
282 
283 impl Handle {
284     /// Runs timer related logic, and returns the next wakeup time
process(&self)285     pub(self) fn process(&self) {
286         let now = self.time_source().now();
287 
288         self.process_at_time(now)
289     }
290 
process_at_time(&self, mut now: u64)291     pub(self) fn process_at_time(&self, mut now: u64) {
292         let mut waker_list: [Option<Waker>; 32] = Default::default();
293         let mut waker_idx = 0;
294 
295         let mut lock = self.get().lock();
296 
297         if now < lock.elapsed {
298             // Time went backwards! This normally shouldn't happen as the Rust language
299             // guarantees that an Instant is monotonic, but can happen when running
300             // Linux in a VM on a Windows host due to std incorrectly trusting the
301             // hardware clock to be monotonic.
302             //
303             // See <https://github.com/tokio-rs/tokio/issues/3619> for more information.
304             now = lock.elapsed;
305         }
306 
307         while let Some(entry) = lock.wheel.poll(now) {
308             debug_assert!(unsafe { entry.is_pending() });
309 
310             // SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
311             if let Some(waker) = unsafe { entry.fire(Ok(())) } {
312                 waker_list[waker_idx] = Some(waker);
313 
314                 waker_idx += 1;
315 
316                 if waker_idx == waker_list.len() {
317                     // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
318                     drop(lock);
319 
320                     for waker in waker_list.iter_mut() {
321                         waker.take().unwrap().wake();
322                     }
323 
324                     waker_idx = 0;
325 
326                     lock = self.get().lock();
327                 }
328             }
329         }
330 
331         // Update the elapsed cache
332         lock.elapsed = lock.wheel.elapsed();
333         lock.next_wake = lock
334             .wheel
335             .poll_at()
336             .map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap()));
337 
338         drop(lock);
339 
340         for waker in waker_list[0..waker_idx].iter_mut() {
341             waker.take().unwrap().wake();
342         }
343     }
344 
345     /// Removes a registered timer from the driver.
346     ///
347     /// The timer will be moved to the cancelled state. Wakers will _not_ be
348     /// invoked. If the timer is already completed, this function is a no-op.
349     ///
350     /// This function always acquires the driver lock, even if the entry does
351     /// not appear to be registered.
352     ///
353     /// SAFETY: The timer must not be registered with some other driver, and
354     /// `add_entry` must not be called concurrently.
clear_entry(&self, entry: NonNull<TimerShared>)355     pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
356         unsafe {
357             let mut lock = self.get().lock();
358 
359             if entry.as_ref().might_be_registered() {
360                 lock.wheel.remove(entry);
361             }
362 
363             entry.as_ref().handle().fire(Ok(()));
364         }
365     }
366 
367     /// Removes and re-adds an entry to the driver.
368     ///
369     /// SAFETY: The timer must be either unregistered, or registered with this
370     /// driver. No other threads are allowed to concurrently manipulate the
371     /// timer at all (the current thread should hold an exclusive reference to
372     /// the `TimerEntry`)
reregister(&self, new_tick: u64, entry: NonNull<TimerShared>)373     pub(self) unsafe fn reregister(&self, new_tick: u64, entry: NonNull<TimerShared>) {
374         let waker = unsafe {
375             let mut lock = self.get().lock();
376 
377             // We may have raced with a firing/deregistration, so check before
378             // deregistering.
379             if unsafe { entry.as_ref().might_be_registered() } {
380                 lock.wheel.remove(entry);
381             }
382 
383             // Now that we have exclusive control of this entry, mint a handle to reinsert it.
384             let entry = entry.as_ref().handle();
385 
386             if self.is_shutdown() {
387                 unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
388             } else {
389                 entry.set_expiration(new_tick);
390 
391                 // Note: We don't have to worry about racing with some other resetting
392                 // thread, because add_entry and reregister require exclusive control of
393                 // the timer entry.
394                 match unsafe { lock.wheel.insert(entry) } {
395                     Ok(when) => {
396                         if lock
397                             .next_wake
398                             .map(|next_wake| when < next_wake.get())
399                             .unwrap_or(true)
400                         {
401                             lock.unpark.unpark();
402                         }
403 
404                         None
405                     }
406                     Err((entry, super::error::InsertError::Elapsed)) => unsafe {
407                         entry.fire(Ok(()))
408                     },
409                 }
410             }
411 
412             // Must release lock before invoking waker to avoid the risk of deadlock.
413         };
414 
415         // The timer was fired synchronously as a result of the reregistration.
416         // Wake the waker; this is needed because we might reset _after_ a poll,
417         // and otherwise the task won't be awoken to poll again.
418         if let Some(waker) = waker {
419             waker.wake();
420         }
421     }
422 }
423 
424 impl<P> Park for Driver<P>
425 where
426     P: Park + 'static,
427 {
428     type Unpark = TimerUnpark<P>;
429     type Error = P::Error;
430 
unpark(&self) -> Self::Unpark431     fn unpark(&self) -> Self::Unpark {
432         TimerUnpark::new(self)
433     }
434 
park(&mut self) -> Result<(), Self::Error>435     fn park(&mut self) -> Result<(), Self::Error> {
436         self.park_internal(None)
437     }
438 
park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error>439     fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
440         self.park_internal(Some(duration))
441     }
442 
shutdown(&mut self)443     fn shutdown(&mut self) {
444         if self.handle.is_shutdown() {
445             return;
446         }
447 
448         self.handle.get().is_shutdown.store(true, Ordering::SeqCst);
449 
450         // Advance time forward to the end of time.
451 
452         self.handle.process_at_time(u64::MAX);
453 
454         self.park.shutdown();
455     }
456 }
457 
458 impl<P> Drop for Driver<P>
459 where
460     P: Park + 'static,
461 {
drop(&mut self)462     fn drop(&mut self) {
463         self.shutdown();
464     }
465 }
466 
467 pub(crate) struct TimerUnpark<P: Park + 'static> {
468     inner: P::Unpark,
469 
470     #[cfg(feature = "test-util")]
471     did_wake: Arc<AtomicBool>,
472 }
473 
474 impl<P: Park + 'static> TimerUnpark<P> {
new(driver: &Driver<P>) -> TimerUnpark<P>475     fn new(driver: &Driver<P>) -> TimerUnpark<P> {
476         TimerUnpark {
477             inner: driver.park.unpark(),
478 
479             #[cfg(feature = "test-util")]
480             did_wake: driver.did_wake.clone(),
481         }
482     }
483 }
484 
485 impl<P: Park + 'static> Unpark for TimerUnpark<P> {
unpark(&self)486     fn unpark(&self) {
487         #[cfg(feature = "test-util")]
488         self.did_wake.store(true, Ordering::SeqCst);
489 
490         self.inner.unpark();
491     }
492 }
493 
494 // ===== impl Inner =====
495 
496 impl Inner {
new(time_source: ClockTime, unpark: Box<dyn Unpark>) -> Self497     pub(self) fn new(time_source: ClockTime, unpark: Box<dyn Unpark>) -> Self {
498         Inner {
499             state: Mutex::new(InnerState {
500                 time_source,
501                 elapsed: 0,
502                 next_wake: None,
503                 unpark,
504                 wheel: wheel::Wheel::new(),
505             }),
506             is_shutdown: AtomicBool::new(false),
507         }
508     }
509 
510     /// Locks the driver's inner structure
lock(&self) -> crate::loom::sync::MutexGuard<'_, InnerState>511     pub(super) fn lock(&self) -> crate::loom::sync::MutexGuard<'_, InnerState> {
512         self.state.lock()
513     }
514 
515     // Check whether the driver has been shutdown
is_shutdown(&self) -> bool516     pub(super) fn is_shutdown(&self) -> bool {
517         self.is_shutdown.load(Ordering::SeqCst)
518     }
519 }
520 
521 impl fmt::Debug for Inner {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result522     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
523         fmt.debug_struct("Inner").finish()
524     }
525 }
526 
527 #[cfg(test)]
528 mod tests;
529