1 // integer.h - originally written and placed in the public domain by Wei Dai
2 
3 /// \file integer.h
4 /// \brief Multiple precision integer with arithmetic operations
5 /// \details The Integer class can represent positive and negative integers
6 ///   with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
7 /// \details Internally, the library uses a sign magnitude representation, and the class
8 ///   has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
9 ///   used to hold the representation. The second is a Sign (an enumeration), and it is
10 ///   used to track the sign of the Integer.
11 /// \details For details on how the Integer class initializes its function pointers using
12 ///   InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
13 ///   Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
14 /// \since Crypto++ 1.0
15 
16 #ifndef CRYPTOPP_INTEGER_H
17 #define CRYPTOPP_INTEGER_H
18 
19 #include "cryptlib.h"
20 #include "secblock.h"
21 #include "stdcpp.h"
22 
23 #include <iosfwd>
24 
25 NAMESPACE_BEGIN(CryptoPP)
26 
27 /// \struct InitializeInteger
28 /// \brief Performs static initialization of the Integer class
29 struct InitializeInteger
30 {
31 	InitializeInteger();
32 };
33 
34 // Always align, http://github.com/weidai11/cryptopp/issues/256
35 typedef SecBlock<word, AllocatorWithCleanup<word, true> > IntegerSecBlock;
36 
37 /// \brief Multiple precision integer with arithmetic operations
38 /// \details The Integer class can represent positive and negative integers
39 ///   with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
40 /// \details Internally, the library uses a sign magnitude representation, and the class
41 ///   has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
42 ///   used to hold the representation. The second is a Sign (an enumeration), and it is
43 ///   used to track the sign of the Integer.
44 /// \details For details on how the Integer class initializes its function pointers using
45 ///   InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
46 ///   Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
47 /// \since Crypto++ 1.0
48 /// \nosubgrouping
49 class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object
50 {
51 public:
52 	/// \name ENUMS, EXCEPTIONS, and TYPEDEFS
53 	//@{
54 		/// \brief Exception thrown when division by 0 is encountered
55 		class DivideByZero : public Exception
56 		{
57 		public:
DivideByZero()58 			DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}
59 		};
60 
61 		/// \brief Exception thrown when a random number cannot be found that
62 		///   satisfies the condition
63 		class RandomNumberNotFound : public Exception
64 		{
65 		public:
RandomNumberNotFound()66 			RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}
67 		};
68 
69 		/// \enum Sign
70 		/// \brief Used internally to represent the integer
71 		/// \details Sign is used internally to represent the integer. It is also used in a few API functions.
72 		/// \sa SetPositive(), SetNegative(), Signedness
73 		enum Sign {
74 			/// \brief the value is positive or 0
75 			POSITIVE=0,
76 			/// \brief the value is negative
77 			NEGATIVE=1};
78 
79 		/// \enum Signedness
80 		/// \brief Used when importing and exporting integers
81 		/// \details Signedness is usually used in API functions.
82 		/// \sa Sign
83 		enum Signedness {
84 			/// \brief an unsigned value
85 			UNSIGNED,
86 			/// \brief a signed value
87 			SIGNED};
88 
89 		/// \enum RandomNumberType
90 		/// \brief Properties of a random integer
91 		enum RandomNumberType {
92 			/// \brief a number with no special properties
93 			ANY,
94 			/// \brief a number which is probabilistically prime
95 			PRIME};
96 	//@}
97 
98 	/// \name CREATORS
99 	//@{
100 		/// \brief Creates the zero integer
101 		Integer();
102 
103 		/// copy constructor
104 		Integer(const Integer& t);
105 
106 		/// \brief Convert from signed long
107 		Integer(signed long value);
108 
109 		/// \brief Convert from lword
110 		/// \param sign enumeration indicating Sign
111 		/// \param value the long word
112 		Integer(Sign sign, lword value);
113 
114 		/// \brief Convert from two words
115 		/// \param sign enumeration indicating Sign
116 		/// \param highWord the high word
117 		/// \param lowWord the low word
118 		Integer(Sign sign, word highWord, word lowWord);
119 
120 		/// \brief Convert from a C-string
121 		/// \param str C-string value
122 		/// \param order the ByteOrder of the string to be processed
123 		/// \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
124 		///   insensitive suffix of 'h', 'o', or 'b'.  No suffix means base 10.
125 		/// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
126 		///   integers with curve25519, Poly1305 and Microsoft CAPI.
127 		explicit Integer(const char *str, ByteOrder order = BIG_ENDIAN_ORDER);
128 
129 		/// \brief Convert from a wide C-string
130 		/// \param str wide C-string value
131 		/// \param order the ByteOrder of the string to be processed
132 		/// \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
133 		///   insensitive suffix of 'h', 'o', or 'b'.  No suffix means base 10.
134 		/// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
135 		///   integers with curve25519, Poly1305 and Microsoft CAPI.
136 		explicit Integer(const wchar_t *str, ByteOrder order = BIG_ENDIAN_ORDER);
137 
138 		/// \brief Convert from a big-endian byte array
139 		/// \param encodedInteger big-endian byte array
140 		/// \param byteCount length of the byte array
141 		/// \param sign enumeration indicating Signedness
142 		/// \param order the ByteOrder of the array to be processed
143 		/// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
144 		///   integers with curve25519, Poly1305 and Microsoft CAPI.
145 		Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER);
146 
147 		/// \brief Convert from a big-endian array
148 		/// \param bt BufferedTransformation object with big-endian byte array
149 		/// \param byteCount length of the byte array
150 		/// \param sign enumeration indicating Signedness
151 		/// \param order the ByteOrder of the data to be processed
152 		/// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
153 		///   integers with curve25519, Poly1305 and Microsoft CAPI.
154 		Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER);
155 
156 		/// \brief Convert from a BER encoded byte array
157 		/// \param bt BufferedTransformation object with BER encoded byte array
158 		explicit Integer(BufferedTransformation &bt);
159 
160 		/// \brief Create a random integer
161 		/// \param rng RandomNumberGenerator used to generate material
162 		/// \param bitCount the number of bits in the resulting integer
163 		/// \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
164 		Integer(RandomNumberGenerator &rng, size_t bitCount);
165 
166 		/// \brief Integer representing 0
167 		/// \return an Integer representing 0
168 		/// \details Zero() avoids calling constructors for frequently used integers
169 		static const Integer & CRYPTOPP_API Zero();
170 		/// \brief Integer representing 1
171 		/// \return an Integer representing 1
172 		/// \details One() avoids calling constructors for frequently used integers
173 		static const Integer & CRYPTOPP_API One();
174 		/// \brief Integer representing 2
175 		/// \return an Integer representing 2
176 		/// \details Two() avoids calling constructors for frequently used integers
177 		static const Integer & CRYPTOPP_API Two();
178 
179 		/// \brief Create a random integer of special form
180 		/// \param rng RandomNumberGenerator used to generate material
181 		/// \param min the minimum value
182 		/// \param max the maximum value
183 		/// \param rnType RandomNumberType to specify the type
184 		/// \param equiv the equivalence class based on the parameter \p mod
185 		/// \param mod the modulus used to reduce the equivalence class
186 		/// \throw RandomNumberNotFound if the set is empty.
187 		/// \details Ideally, the random integer created should be uniformly distributed
188 		///   over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
189 		///   However the actual distribution may not be uniform because sequential
190 		///   search is used to find an appropriate number from a random starting
191 		///   point.
192 		/// \details May return (with very small probability) a pseudoprime when a prime
193 		///   is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
194 		///   is declared in nbtheory.h.
195 		Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());
196 
197 		/// \brief Exponentiates to a power of 2
198 		/// \return the Integer 2<sup>e</sup>
199 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
200 		static Integer CRYPTOPP_API Power2(size_t e);
201 	//@}
202 
203 	/// \name ENCODE/DECODE
204 	//@{
205 		/// \brief Minimum number of bytes to encode this integer
206 		/// \param sign enumeration indicating Signedness
207 		/// \note The MinEncodedSize() of 0 is 1.
208 		size_t MinEncodedSize(Signedness sign=UNSIGNED) const;
209 
210 		/// \brief Encode in big-endian format
211 		/// \param output big-endian byte array
212 		/// \param outputLen length of the byte array
213 		/// \param sign enumeration indicating Signedness
214 		/// \details Unsigned means encode absolute value, signed means encode two's complement if negative.
215 		/// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
216 		///   minimum size). An exact size is useful, for example, when encoding to a field element size.
217 		void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const;
218 
219 		/// \brief Encode in big-endian format
220 		/// \param bt BufferedTransformation object
221 		/// \param outputLen length of the encoding
222 		/// \param sign enumeration indicating Signedness
223 		/// \details Unsigned means encode absolute value, signed means encode two's complement if negative.
224 		/// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
225 		///   minimum size). An exact size is useful, for example, when encoding to a field element size.
226 		void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const;
227 
228 		/// \brief Encode in DER format
229 		/// \param bt BufferedTransformation object
230 		/// \details Encodes the Integer using Distinguished Encoding Rules
231 		///   The result is placed into a BufferedTransformation object
232 		void DEREncode(BufferedTransformation &bt) const;
233 
234 		/// \brief Encode absolute value as big-endian octet string
235 		/// \param bt BufferedTransformation object
236 		/// \param length the number of mytes to decode
237 		void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
238 
239 		/// \brief Encode absolute value in OpenPGP format
240 		/// \param output big-endian byte array
241 		/// \param bufferSize length of the byte array
242 		/// \return length of the output
243 		/// \details OpenPGPEncode places result into the buffer and returns the
244 		///   number of bytes used for the encoding
245 		size_t OpenPGPEncode(byte *output, size_t bufferSize) const;
246 
247 		/// \brief Encode absolute value in OpenPGP format
248 		/// \param bt BufferedTransformation object
249 		/// \return length of the output
250 		/// \details OpenPGPEncode places result into a BufferedTransformation object and returns the
251 		///   number of bytes used for the encoding
252 		size_t OpenPGPEncode(BufferedTransformation &bt) const;
253 
254 		/// \brief Decode from big-endian byte array
255 		/// \param input big-endian byte array
256 		/// \param inputLen length of the byte array
257 		/// \param sign enumeration indicating Signedness
258 		void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED);
259 
260 		/// \brief Decode nonnegative value from big-endian byte array
261 		/// \param bt BufferedTransformation object
262 		/// \param inputLen length of the byte array
263 		/// \param sign enumeration indicating Signedness
264 		/// \note <tt>bt.MaxRetrievable() \>= inputLen</tt>.
265 		void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED);
266 
267 		/// \brief Decode from BER format
268 		/// \param input big-endian byte array
269 		/// \param inputLen length of the byte array
270 		void BERDecode(const byte *input, size_t inputLen);
271 
272 		/// \brief Decode from BER format
273 		/// \param bt BufferedTransformation object
274 		void BERDecode(BufferedTransformation &bt);
275 
276 		/// \brief Decode nonnegative value from big-endian octet string
277 		/// \param bt BufferedTransformation object
278 		/// \param length length of the byte array
279 		void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
280 
281 		/// \brief Exception thrown when an error is encountered decoding an OpenPGP integer
282 		class OpenPGPDecodeErr : public Exception
283 		{
284 		public:
OpenPGPDecodeErr()285 			OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}
286 		};
287 
288 		/// \brief Decode from OpenPGP format
289 		/// \param input big-endian byte array
290 		/// \param inputLen length of the byte array
291 		void OpenPGPDecode(const byte *input, size_t inputLen);
292 		/// \brief Decode from OpenPGP format
293 		/// \param bt BufferedTransformation object
294 		void OpenPGPDecode(BufferedTransformation &bt);
295 	//@}
296 
297 	/// \name ACCESSORS
298 	//@{
299 		/// \brief Determines if the Integer is convertable to Long
300 		/// \return true if *this can be represented as a signed long
301 		/// \sa ConvertToLong()
302 		bool IsConvertableToLong() const;
303 		/// \brief Convert the Integer to Long
304 		/// \return equivalent signed long if possible, otherwise undefined
305 		/// \sa IsConvertableToLong()
306 		signed long ConvertToLong() const;
307 
308 		/// \brief Determines the number of bits required to represent the Integer
309 		/// \return number of significant bits
310 		/// \details BitCount is calculated as <tt>floor(log2(abs(*this))) + 1</tt>.
311 		unsigned int BitCount() const;
312 		/// \brief Determines the number of bytes required to represent the Integer
313 		/// \return number of significant bytes
314 		/// \details ByteCount is calculated as <tt>ceiling(BitCount()/8)</tt>.
315 		unsigned int ByteCount() const;
316 		/// \brief Determines the number of words required to represent the Integer
317 		/// \return number of significant words
318 		/// \details WordCount is calculated as <tt>ceiling(ByteCount()/sizeof(word))</tt>.
319 		unsigned int WordCount() const;
320 
321 		/// \brief Provides the i-th bit of the Integer
322 		/// \return the i-th bit, i=0 being the least significant bit
323 		bool GetBit(size_t i) const;
324 		/// \brief Provides the i-th byte of the Integer
325 		/// \return the i-th byte
326 		byte GetByte(size_t i) const;
327 		/// \brief Provides the low order bits of the Integer
328 		/// \return n lowest bits of *this >> i
329 		lword GetBits(size_t i, size_t n) const;
330 
331 		/// \brief Determines if the Integer is 0
332 		/// \return true if the Integer is 0, false otherwise
IsZero()333 		bool IsZero() const {return !*this;}
334 		/// \brief Determines if the Integer is non-0
335 		/// \return true if the Integer is non-0, false otherwise
NotZero()336 		bool NotZero() const {return !IsZero();}
337 		/// \brief Determines if the Integer is negative
338 		/// \return true if the Integer is negative, false otherwise
IsNegative()339 		bool IsNegative() const {return sign == NEGATIVE;}
340 		/// \brief Determines if the Integer is non-negative
341 		/// \return true if the Integer is non-negative, false otherwise
NotNegative()342 		bool NotNegative() const {return !IsNegative();}
343 		/// \brief Determines if the Integer is positive
344 		/// \return true if the Integer is positive, false otherwise
IsPositive()345 		bool IsPositive() const {return NotNegative() && NotZero();}
346 		/// \brief Determines if the Integer is non-positive
347 		/// \return true if the Integer is non-positive, false otherwise
NotPositive()348 		bool NotPositive() const {return !IsPositive();}
349 		/// \brief Determines if the Integer is even parity
350 		/// \return true if the Integer is even, false otherwise
IsEven()351 		bool IsEven() const {return GetBit(0) == 0;}
352 		/// \brief Determines if the Integer is odd parity
353 		/// \return true if the Integer is odd, false otherwise
IsOdd()354 		bool IsOdd() const	{return GetBit(0) == 1;}
355 	//@}
356 
357 	/// \name MANIPULATORS
358 	//@{
359 		/// \brief Assignment
360 		/// \param t the other Integer
361 		/// \return the result of assignment
362 		Integer&  operator=(const Integer& t);
363 		/// \brief Addition Assignment
364 		/// \param t the other Integer
365 		/// \return the result of <tt>*this + t</tt>
366 		Integer&  operator+=(const Integer& t);
367 		/// \brief Subtraction Assignment
368 		/// \param t the other Integer
369 		/// \return the result of <tt>*this - t</tt>
370 		Integer&  operator-=(const Integer& t);
371 		/// \brief Multiplication Assignment
372 		/// \param t the other Integer
373 		/// \return the result of <tt>*this * t</tt>
374 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
375 		Integer&  operator*=(const Integer& t)	{return *this = Times(t);}
376 		/// \brief Division Assignment
377 		/// \param t the other Integer
378 		/// \return the result of <tt>*this / t</tt>
379 		Integer&  operator/=(const Integer& t)	{return *this = DividedBy(t);}
380 		/// \brief Remainder Assignment
381 		/// \param t the other Integer
382 		/// \return the result of <tt>*this % t</tt>
383 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
384 		Integer&  operator%=(const Integer& t)	{return *this = Modulo(t);}
385 		/// \brief Division Assignment
386 		/// \param t the other word
387 		/// \return the result of <tt>*this / t</tt>
388 		Integer&  operator/=(word t)  {return *this = DividedBy(t);}
389 		/// \brief Remainder Assignment
390 		/// \param t the other word
391 		/// \return the result of <tt>*this % t</tt>
392 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
393 		Integer&  operator%=(word t)  {return *this = Integer(POSITIVE, 0, Modulo(t));}
394 
395 		/// \brief Left-shift Assignment
396 		/// \param n number of bits to shift
397 		/// \return reference to this Integer
398 		Integer&  operator<<=(size_t n);
399 		/// \brief Right-shift Assignment
400 		/// \param n number of bits to shift
401 		/// \return reference to this Integer
402 		Integer&  operator>>=(size_t n);
403 
404 		/// \brief Bitwise AND Assignment
405 		/// \param t the other Integer
406 		/// \return the result of *this & t
407 		/// \details operator&=() performs a bitwise AND on *this. Missing bits are truncated
408 		///   at the most significant bit positions, so the result is as small as the
409 		///   smaller of the operands.
410 		/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
411 		///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
412 		///   the integer should be converted to a 2's compliment representation before performing
413 		///   the operation.
414 		/// \since Crypto++ 6.0
415 		Integer& operator&=(const Integer& t);
416 		/// \brief Bitwise OR Assignment
417 		/// \param t the second Integer
418 		/// \return the result of *this | t
419 		/// \details operator|=() performs a bitwise OR on *this. Missing bits are shifted in
420 		///   at the most significant bit positions, so the result is as large as the
421 		///   larger of the operands.
422 		/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
423 		///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
424 		///   the integer should be converted to a 2's compliment representation before performing
425 		///   the operation.
426 		/// \since Crypto++ 6.0
427 		Integer& operator|=(const Integer& t);
428 		/// \brief Bitwise XOR Assignment
429 		/// \param t the other Integer
430 		/// \return the result of *this ^ t
431 		/// \details operator^=() performs a bitwise XOR on *this. Missing bits are shifted
432 		///   in at the most significant bit positions, so the result is as large as the
433 		///   larger of the operands.
434 		/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
435 		///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
436 		///   the integer should be converted to a 2's compliment representation before performing
437 		///   the operation.
438 		/// \since Crypto++ 6.0
439 		Integer& operator^=(const Integer& t);
440 
441 		/// \brief Set this Integer to random integer
442 		/// \param rng RandomNumberGenerator used to generate material
443 		/// \param bitCount the number of bits in the resulting integer
444 		/// \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
445 		void Randomize(RandomNumberGenerator &rng, size_t bitCount);
446 
447 		/// \brief Set this Integer to random integer
448 		/// \param rng RandomNumberGenerator used to generate material
449 		/// \param min the minimum value
450 		/// \param max the maximum value
451 		/// \details The random integer created is uniformly distributed over <tt>[min, max]</tt>.
452 		void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);
453 
454 		/// \brief Set this Integer to random integer of special form
455 		/// \param rng RandomNumberGenerator used to generate material
456 		/// \param min the minimum value
457 		/// \param max the maximum value
458 		/// \param rnType RandomNumberType to specify the type
459 		/// \param equiv the equivalence class based on the parameter \p mod
460 		/// \param mod the modulus used to reduce the equivalence class
461 		/// \throw RandomNumberNotFound if the set is empty.
462 		/// \details Ideally, the random integer created should be uniformly distributed
463 		///   over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
464 		///   However the actual distribution may not be uniform because sequential
465 		///   search is used to find an appropriate number from a random starting
466 		///   point.
467 		/// \details May return (with very small probability) a pseudoprime when a prime
468 		///   is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
469 		///   is declared in nbtheory.h.
470 		bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());
471 
472 		/// \brief Generate a random number
473 		/// \param rng RandomNumberGenerator used to generate material
474 		/// \param params additional parameters that cannot be passed directly to the function
475 		/// \return true if a random number was generated, false otherwise
476 		/// \details GenerateRandomNoThrow attempts to generate a random number according to the
477 		///   parameters specified in params. The function does not throw RandomNumberNotFound.
478 		/// \details The example below generates a prime number using NameValuePairs that Integer
479 		///   class recognizes. The names are not provided in argnames.h.
480 		/// <pre>
481 		///     AutoSeededRandomPool prng;
482 		///     AlgorithmParameters params = MakeParameters("BitLength", 2048)
483 		///                                                ("RandomNumberType", Integer::PRIME);
484 		///     Integer x;
485 		///     if (x.GenerateRandomNoThrow(prng, params) == false)
486 		///         throw std::runtime_error("Failed to generate prime number");
487 		/// </pre>
488 		bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs);
489 
490 		/// \brief Generate a random number
491 		/// \param rng RandomNumberGenerator used to generate material
492 		/// \param params additional parameters that cannot be passed directly to the function
493 		/// \throw RandomNumberNotFound if a random number is not found
494 		/// \details GenerateRandom attempts to generate a random number according to the
495 		///   parameters specified in params.
496 		/// \details The example below generates a prime number using NameValuePairs that Integer
497 		///   class recognizes. The names are not provided in argnames.h.
498 		/// <pre>
499 		///     AutoSeededRandomPool prng;
500 		///     AlgorithmParameters params = MakeParameters("BitLength", 2048)
501 		///                                                ("RandomNumberType", Integer::PRIME);
502 		///     Integer x;
503 		///     try { x.GenerateRandom(prng, params); }
504 		///     catch (RandomNumberNotFound&) { x = -1; }
505 		/// </pre>
506 		void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs)
507 		{
508 			if (!GenerateRandomNoThrow(rng, params))
509 				throw RandomNumberNotFound();
510 		}
511 
512 		/// \brief Set the n-th bit to value
513 		/// \details 0-based numbering.
514 		void SetBit(size_t n, bool value=1);
515 
516 		/// \brief Set the n-th byte to value
517 		/// \details 0-based numbering.
518 		void SetByte(size_t n, byte value);
519 
520 		/// \brief Reverse the Sign of the Integer
521 		void Negate();
522 
523 		/// \brief Sets the Integer to positive
SetPositive()524 		void SetPositive() {sign = POSITIVE;}
525 
526 		/// \brief Sets the Integer to negative
SetNegative()527 		void SetNegative() {if (!!(*this)) sign = NEGATIVE;}
528 
529 		/// \brief Swaps this Integer with another Integer
530 		void swap(Integer &a);
531 	//@}
532 
533 	/// \name UNARY OPERATORS
534 	//@{
535 		/// \brief Negation
536 		bool		operator!() const;
537 		/// \brief Addition
538 		Integer 	operator+() const {return *this;}
539 		/// \brief Subtraction
540 		Integer 	operator-() const;
541 		/// \brief Pre-increment
542 		Integer&	operator++();
543 		/// \brief Pre-decrement
544 		Integer&	operator--();
545 		/// \brief Post-increment
546 		Integer 	operator++(int) {Integer temp = *this; ++*this; return temp;}
547 		/// \brief Post-decrement
548 		Integer 	operator--(int) {Integer temp = *this; --*this; return temp;}
549 	//@}
550 
551 	/// \name BINARY OPERATORS
552 	//@{
553 		/// \brief Perform signed comparison
554 		/// \param a the Integer to comapre
555 		///   \retval -1 if <tt>*this < a</tt>
556 		///   \retval  0 if <tt>*this = a</tt>
557 		///   \retval  1 if <tt>*this > a</tt>
558 		int Compare(const Integer& a) const;
559 
560 		/// \brief Addition
561 		Integer Plus(const Integer &b) const;
562 		/// \brief Subtraction
563 		Integer Minus(const Integer &b) const;
564 		/// \brief Multiplication
565 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
566 		Integer Times(const Integer &b) const;
567 		/// \brief Division
568 		Integer DividedBy(const Integer &b) const;
569 		/// \brief Remainder
570 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
571 		Integer Modulo(const Integer &b) const;
572 		/// \brief Division
573 		Integer DividedBy(word b) const;
574 		/// \brief Remainder
575 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
576 		word Modulo(word b) const;
577 
578 		/// \brief Bitwise AND
579 		/// \param t the other Integer
580 		/// \return the result of <tt>*this & t</tt>
581 		/// \details And() performs a bitwise AND on the operands. Missing bits are truncated
582 		///   at the most significant bit positions, so the result is as small as the
583 		///   smaller of the operands.
584 		/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
585 		///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
586 		///   the integer should be converted to a 2's compliment representation before performing
587 		///   the operation.
588 		/// \since Crypto++ 6.0
589 		Integer And(const Integer& t) const;
590 
591 		/// \brief Bitwise OR
592 		/// \param t the other Integer
593 		/// \return the result of <tt>*this | t</tt>
594 		/// \details Or() performs a bitwise OR on the operands. Missing bits are shifted in
595 		///   at the most significant bit positions, so the result is as large as the
596 		///   larger of the operands.
597 		/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
598 		///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
599 		///   the integer should be converted to a 2's compliment representation before performing
600 		///   the operation.
601 		/// \since Crypto++ 6.0
602 		Integer Or(const Integer& t) const;
603 
604 		/// \brief Bitwise XOR
605 		/// \param t the other Integer
606 		/// \return the result of <tt>*this ^ t</tt>
607 		/// \details Xor() performs a bitwise XOR on the operands. Missing bits are shifted in
608 		///   at the most significant bit positions, so the result is as large as the
609 		///   larger of the operands.
610 		/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
611 		///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
612 		///   the integer should be converted to a 2's compliment representation before performing
613 		///   the operation.
614 		/// \since Crypto++ 6.0
615 		Integer Xor(const Integer& t) const;
616 
617 		/// \brief Right-shift
618 		Integer operator>>(size_t n) const	{return Integer(*this)>>=n;}
619 		/// \brief Left-shift
620 		Integer operator<<(size_t n) const	{return Integer(*this)<<=n;}
621 	//@}
622 
623 	/// \name OTHER ARITHMETIC FUNCTIONS
624 	//@{
625 		/// \brief Retrieve the absolute value of this integer
626 		Integer AbsoluteValue() const;
627 		/// \brief Add this integer to itself
Doubled()628 		Integer Doubled() const {return Plus(*this);}
629 		/// \brief Multiply this integer by itself
630 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
Squared()631 		Integer Squared() const {return Times(*this);}
632 		/// \brief Extract square root
633 		/// \details if negative return 0, else return floor of square root
634 		Integer SquareRoot() const;
635 		/// \brief Determine whether this integer is a perfect square
636 		bool IsSquare() const;
637 
638 		/// \brief Determine if 1 or -1
639 		/// \return true if this integer is 1 or -1, false otherwise
640 		bool IsUnit() const;
641 		/// \brief Calculate multiplicative inverse
642 		/// \return MultiplicativeInverse inverse if 1 or -1, otherwise return 0.
643 		Integer MultiplicativeInverse() const;
644 
645 		/// \brief Extended Division
646 		/// \param r a reference for the remainder
647 		/// \param q a reference for the quotient
648 		/// \param a a reference to the dividend
649 		/// \param d a reference to the divisor
650 		/// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
651 		static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
652 
653 		/// \brief Extended Division
654 		/// \param r a reference for the remainder
655 		/// \param q a reference for the quotient
656 		/// \param a a reference to the dividend
657 		/// \param d a reference to the divisor
658 		/// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
659 		///   This overload uses a faster division algorithm because the divisor is short.
660 		static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
661 
662 		/// \brief Extended Division
663 		/// \param r a reference for the remainder
664 		/// \param q a reference for the quotient
665 		/// \param a a reference to the dividend
666 		/// \param n a reference to the divisor
667 		/// \details DivideByPowerOf2 calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
668 		///   It returns same result as Divide(r, q, a, Power2(n)), but faster.
669 		///   This overload uses a faster division algorithm because the divisor is a power of 2.
670 		static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
671 
672 		/// \brief Calculate greatest common divisor
673 		/// \param a a reference to the first number
674 		/// \param n a reference to the secind number
675 		/// \return the greatest common divisor <tt>a</tt> and <tt>n</tt>.
676 		static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);
677 
678 		/// \brief Calculate multiplicative inverse
679 		/// \param n a reference to the modulus
680 		/// \return an Integer <tt>*this % n</tt>.
681 		/// \details InverseMod returns the multiplicative inverse of the Integer <tt>*this</tt>
682 		///  modulo the Integer <tt>n</tt>. If no Integer exists then Integer 0 is returned.
683 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
684 		Integer InverseMod(const Integer &n) const;
685 
686 		/// \brief Calculate multiplicative inverse
687 		/// \param n the modulus
688 		/// \return a word <tt>*this % n</tt>.
689 		/// \details InverseMod returns the multiplicative inverse of the Integer <tt>*this</tt>
690 		///  modulo the word <tt>n</tt>. If no Integer exists then word 0 is returned.
691 		/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
692 		word InverseMod(word n) const;
693 	//@}
694 
695 	/// \name INPUT/OUTPUT
696 	//@{
697 		/// \brief Extraction operator
698 		/// \param in a reference to a std::istream
699 		/// \param a a reference to an Integer
700 		/// \return a reference to a std::istream reference
701 		friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a);
702 
703 		/// \brief Insertion operator
704 		/// \param out a reference to a std::ostream
705 		/// \param a a constant reference to an Integer
706 		/// \return a reference to a std::ostream reference
707 		/// \details The output integer responds to std::hex, std::oct, std::hex, std::upper and
708 		///   std::lower. The output includes the suffix \a h (for hex), \a . (\a dot, for dec)
709 		///   and \a o (for octal). There is currently no way to suppress the suffix.
710 		/// \details If you want to print an Integer without the suffix or using an arbitrary base, then
711 		///   use IntToString<Integer>().
712 		/// \sa IntToString<Integer>
713 		friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a);
714 	//@}
715 
716 	/// \brief Modular multiplication
717 	/// \param x a reference to the first term
718 	/// \param y a reference to the second term
719 	/// \param m a reference to the modulus
720 	/// \return an Integer <tt>(a * b) % m</tt>.
721 	CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
722 	/// \brief Modular exponentiation
723 	/// \param x a reference to the base
724 	/// \param e a reference to the exponent
725 	/// \param m a reference to the modulus
726 	/// \return an Integer <tt>(a ^ b) % m</tt>.
727 	CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);
728 
729 protected:
730 
731 	// http://github.com/weidai11/cryptopp/issues/602
732 	Integer InverseModNext(const Integer &n) const;
733 
734 private:
735 
736 	Integer(word value, size_t length);
737 	int PositiveCompare(const Integer &t) const;
738 
739 	IntegerSecBlock reg;
740 	Sign sign;
741 
742 #ifndef CRYPTOPP_DOXYGEN_PROCESSING
743 	friend class ModularArithmetic;
744 	friend class MontgomeryRepresentation;
745 	friend class HalfMontgomeryRepresentation;
746 
747 	friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b);
748 	friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b);
749 	friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b);
750 	friend void PositiveDivide(Integer &remainder, Integer &quotient, const Integer &dividend, const Integer &divisor);
751 #endif
752 };
753 
754 /// \brief Comparison
755 inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
756 /// \brief Comparison
757 inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
758 /// \brief Comparison
759 inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
760 /// \brief Comparison
761 inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
762 /// \brief Comparison
763 inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
764 /// \brief Comparison
765 inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
766 /// \brief Addition
767 inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
768 /// \brief Subtraction
769 inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
770 /// \brief Multiplication
771 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
772 inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
773 /// \brief Division
774 inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
775 /// \brief Remainder
776 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
777 inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
778 /// \brief Division
779 inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
780 /// \brief Remainder
781 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
782 inline CryptoPP::word    operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
783 
784 /// \brief Bitwise AND
785 /// \param a the first Integer
786 /// \param b the second Integer
787 /// \return the result of a & b
788 /// \details operator&() performs a bitwise AND on the operands. Missing bits are truncated
789 ///   at the most significant bit positions, so the result is as small as the
790 ///   smaller of the operands.
791 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
792 ///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
793 ///   the integer should be converted to a 2's compliment representation before performing
794 ///   the operation.
795 /// \since Crypto++ 6.0
796 inline CryptoPP::Integer operator&(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.And(b);}
797 
798 /// \brief Bitwise OR
799 /// \param a the first Integer
800 /// \param b the second Integer
801 /// \return the result of a | b
802 /// \details operator|() performs a bitwise OR on the operands. Missing bits are shifted in
803 ///   at the most significant bit positions, so the result is as large as the
804 ///   larger of the operands.
805 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
806 ///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
807 ///   the integer should be converted to a 2's compliment representation before performing
808 ///   the operation.
809 /// \since Crypto++ 6.0
810 inline CryptoPP::Integer operator|(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Or(b);}
811 
812 /// \brief Bitwise XOR
813 /// \param a the first Integer
814 /// \param b the second Integer
815 /// \return the result of a ^ b
816 /// \details operator^() performs a bitwise XOR on the operands. Missing bits are shifted
817 ///   in at the most significant bit positions, so the result is as large as the
818 ///   larger of the operands.
819 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
820 ///   does not attempt to interpret bits, and the result is always POSITIVE. If needed,
821 ///   the integer should be converted to a 2's compliment representation before performing
822 ///   the operation.
823 /// \since Crypto++ 6.0
824 inline CryptoPP::Integer operator^(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Xor(b);}
825 
826 NAMESPACE_END
827 
828 #ifndef __BORLANDC__
NAMESPACE_BEGIN(std)829 NAMESPACE_BEGIN(std)
830 inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b)
831 {
832 	a.swap(b);
833 }
834 NAMESPACE_END
835 #endif
836 
837 #endif
838