1 /*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13 #include <stddef.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #include "util.h"
19 #include "timefn.h" /* UTIL_clockSpanMicro, SEC_TO_MICRO, UTIL_TIME_INITIALIZER */
20 #include "zstd.h"
21 #include "zstd_internal.h"
22 #include "mem.h"
23 #define ZDICT_STATIC_LINKING_ONLY
24 #include "zdict.h"
25
26 /* Direct access to internal compression functions is required */
27 #include "zstd_compress.c"
28
29 #define XXH_STATIC_LINKING_ONLY
30 #include "xxhash.h" /* XXH64 */
31
32 #ifndef MIN
33 #define MIN(a, b) ((a) < (b) ? (a) : (b))
34 #endif
35
36 #ifndef MAX_PATH
37 #ifdef PATH_MAX
38 #define MAX_PATH PATH_MAX
39 #else
40 #define MAX_PATH 256
41 #endif
42 #endif
43
44 /*-************************************
45 * DISPLAY Macros
46 **************************************/
47 #define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
48 #define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
49 static U32 g_displayLevel = 2;
50
51 #define DISPLAYUPDATE(...) \
52 do { \
53 if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || \
54 (g_displayLevel >= 4)) { \
55 g_displayClock = UTIL_getTime(); \
56 DISPLAY(__VA_ARGS__); \
57 if (g_displayLevel >= 4) fflush(stderr); \
58 } \
59 } while (0)
60
61 static const U64 g_refreshRate = SEC_TO_MICRO / 6;
62 static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
63
64 #define CHECKERR(code) \
65 do { \
66 if (ZSTD_isError(code)) { \
67 DISPLAY("Error occurred while generating data: %s\n", \
68 ZSTD_getErrorName(code)); \
69 exit(1); \
70 } \
71 } while (0)
72
73 /*-*******************************************************
74 * Random function
75 *********************************************************/
RAND(U32 * src)76 static U32 RAND(U32* src)
77 {
78 #define RAND_rotl32(x,r) ((x << r) | (x >> (32 - r)))
79 static const U32 prime1 = 2654435761U;
80 static const U32 prime2 = 2246822519U;
81 U32 rand32 = *src;
82 rand32 *= prime1;
83 rand32 += prime2;
84 rand32 = RAND_rotl32(rand32, 13);
85 *src = rand32;
86 return RAND_rotl32(rand32, 27);
87 #undef RAND_rotl32
88 }
89
90 #define DISTSIZE (8192)
91
92 /* Write `size` bytes into `ptr`, all of which are less than or equal to `maxSymb` */
RAND_bufferMaxSymb(U32 * seed,void * ptr,size_t size,int maxSymb)93 static void RAND_bufferMaxSymb(U32* seed, void* ptr, size_t size, int maxSymb)
94 {
95 size_t i;
96 BYTE* op = ptr;
97
98 for (i = 0; i < size; i++) {
99 op[i] = (BYTE) (RAND(seed) % (maxSymb + 1));
100 }
101 }
102
103 /* Write `size` random bytes into `ptr` */
RAND_buffer(U32 * seed,void * ptr,size_t size)104 static void RAND_buffer(U32* seed, void* ptr, size_t size)
105 {
106 size_t i;
107 BYTE* op = ptr;
108
109 for (i = 0; i + 4 <= size; i += 4) {
110 MEM_writeLE32(op + i, RAND(seed));
111 }
112 for (; i < size; i++) {
113 op[i] = RAND(seed) & 0xff;
114 }
115 }
116
117 /* Write `size` bytes into `ptr` following the distribution `dist` */
RAND_bufferDist(U32 * seed,BYTE * dist,void * ptr,size_t size)118 static void RAND_bufferDist(U32* seed, BYTE* dist, void* ptr, size_t size)
119 {
120 size_t i;
121 BYTE* op = ptr;
122
123 for (i = 0; i < size; i++) {
124 op[i] = dist[RAND(seed) % DISTSIZE];
125 }
126 }
127
128 /* Generate a random distribution where the frequency of each symbol follows a
129 * geometric distribution defined by `weight`
130 * `dist` should have size at least `DISTSIZE` */
RAND_genDist(U32 * seed,BYTE * dist,double weight)131 static void RAND_genDist(U32* seed, BYTE* dist, double weight)
132 {
133 size_t i = 0;
134 size_t statesLeft = DISTSIZE;
135 BYTE symb = (BYTE) (RAND(seed) % 256);
136 BYTE step = (BYTE) ((RAND(seed) % 256) | 1); /* force it to be odd so it's relatively prime to 256 */
137
138 while (i < DISTSIZE) {
139 size_t states = ((size_t)(weight * statesLeft)) + 1;
140 size_t j;
141 for (j = 0; j < states && i < DISTSIZE; j++, i++) {
142 dist[i] = symb;
143 }
144
145 symb += step;
146 statesLeft -= states;
147 }
148 }
149
150 /* Generates a random number in the range [min, max) */
RAND_range(U32 * seed,U32 min,U32 max)151 static inline U32 RAND_range(U32* seed, U32 min, U32 max)
152 {
153 return (RAND(seed) % (max-min)) + min;
154 }
155
156 #define ROUND(x) ((U32)(x + 0.5))
157
158 /* Generates a random number in an exponential distribution with mean `mean` */
RAND_exp(U32 * seed,double mean)159 static double RAND_exp(U32* seed, double mean)
160 {
161 double const u = RAND(seed) / (double) UINT_MAX;
162 return log(1-u) * (-mean);
163 }
164
165 /*-*******************************************************
166 * Constants and Structs
167 *********************************************************/
168 const char *BLOCK_TYPES[] = {"raw", "rle", "compressed"};
169
170 #define MAX_DECOMPRESSED_SIZE_LOG 20
171 #define MAX_DECOMPRESSED_SIZE (1ULL << MAX_DECOMPRESSED_SIZE_LOG)
172
173 #define MAX_WINDOW_LOG 22 /* Recommended support is 8MB, so limit to 4MB + mantissa */
174
175 #define MIN_SEQ_LEN (3)
176 #define MAX_NB_SEQ ((ZSTD_BLOCKSIZE_MAX + MIN_SEQ_LEN - 1) / MIN_SEQ_LEN)
177
178 BYTE CONTENT_BUFFER[MAX_DECOMPRESSED_SIZE];
179 BYTE FRAME_BUFFER[MAX_DECOMPRESSED_SIZE * 2];
180 BYTE LITERAL_BUFFER[ZSTD_BLOCKSIZE_MAX];
181
182 seqDef SEQUENCE_BUFFER[MAX_NB_SEQ];
183 BYTE SEQUENCE_LITERAL_BUFFER[ZSTD_BLOCKSIZE_MAX]; /* storeSeq expects a place to copy literals to */
184 BYTE SEQUENCE_LLCODE[ZSTD_BLOCKSIZE_MAX];
185 BYTE SEQUENCE_MLCODE[ZSTD_BLOCKSIZE_MAX];
186 BYTE SEQUENCE_OFCODE[ZSTD_BLOCKSIZE_MAX];
187
188 unsigned WKSP[HUF_WORKSPACE_SIZE_U32];
189
190 typedef struct {
191 size_t contentSize; /* 0 means unknown (unless contentSize == windowSize == 0) */
192 unsigned windowSize; /* contentSize >= windowSize means single segment */
193 } frameHeader_t;
194
195 /* For repeat modes */
196 typedef struct {
197 U32 rep[ZSTD_REP_NUM];
198
199 int hufInit;
200 /* the distribution used in the previous block for repeat mode */
201 BYTE hufDist[DISTSIZE];
202 HUF_CElt hufTable [256];
203
204 int fseInit;
205 FSE_CTable offcodeCTable [FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
206 FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
207 FSE_CTable litlengthCTable [FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
208
209 /* Symbols that were present in the previous distribution, for use with
210 * set_repeat */
211 BYTE litlengthSymbolSet[36];
212 BYTE offsetSymbolSet[29];
213 BYTE matchlengthSymbolSet[53];
214 } cblockStats_t;
215
216 typedef struct {
217 void* data;
218 void* dataStart;
219 void* dataEnd;
220
221 void* src;
222 void* srcStart;
223 void* srcEnd;
224
225 frameHeader_t header;
226
227 cblockStats_t stats;
228 cblockStats_t oldStats; /* so they can be rolled back if uncompressible */
229 } frame_t;
230
231 typedef struct {
232 int useDict;
233 U32 dictID;
234 size_t dictContentSize;
235 BYTE* dictContent;
236 } dictInfo;
237
238 typedef enum {
239 gt_frame = 0, /* generate frames */
240 gt_block, /* generate compressed blocks without block/frame headers */
241 } genType_e;
242
243 /*-*******************************************************
244 * Global variables (set from command line)
245 *********************************************************/
246 U32 g_maxDecompressedSizeLog = MAX_DECOMPRESSED_SIZE_LOG; /* <= 20 */
247 U32 g_maxBlockSize = ZSTD_BLOCKSIZE_MAX; /* <= 128 KB */
248
249 /*-*******************************************************
250 * Generator Functions
251 *********************************************************/
252
253 struct {
254 int contentSize; /* force the content size to be present */
255 } opts; /* advanced options on generation */
256
257 /* Generate and write a random frame header */
writeFrameHeader(U32 * seed,frame_t * frame,dictInfo info)258 static void writeFrameHeader(U32* seed, frame_t* frame, dictInfo info)
259 {
260 BYTE* const op = frame->data;
261 size_t pos = 0;
262 frameHeader_t fh;
263
264 BYTE windowByte = 0;
265
266 int singleSegment = 0;
267 int contentSizeFlag = 0;
268 int fcsCode = 0;
269
270 memset(&fh, 0, sizeof(fh));
271
272 /* generate window size */
273 {
274 /* Follow window algorithm from specification */
275 int const exponent = RAND(seed) % (MAX_WINDOW_LOG - 10);
276 int const mantissa = RAND(seed) % 8;
277 windowByte = (BYTE) ((exponent << 3) | mantissa);
278 fh.windowSize = (1U << (exponent + 10));
279 fh.windowSize += fh.windowSize / 8 * mantissa;
280 }
281
282 {
283 /* Generate random content size */
284 size_t highBit;
285 if (RAND(seed) & 7 && g_maxDecompressedSizeLog > 7) {
286 /* do content of at least 128 bytes */
287 highBit = 1ULL << RAND_range(seed, 7, g_maxDecompressedSizeLog);
288 } else if (RAND(seed) & 3) {
289 /* do small content */
290 highBit = 1ULL << RAND_range(seed, 0, MIN(7, 1U << g_maxDecompressedSizeLog));
291 } else {
292 /* 0 size frame */
293 highBit = 0;
294 }
295 fh.contentSize = highBit ? highBit + (RAND(seed) % highBit) : 0;
296
297 /* provide size sometimes */
298 contentSizeFlag = opts.contentSize | (RAND(seed) & 1);
299
300 if (contentSizeFlag && (fh.contentSize == 0 || !(RAND(seed) & 7))) {
301 /* do single segment sometimes */
302 fh.windowSize = (U32) fh.contentSize;
303 singleSegment = 1;
304 }
305 }
306
307 if (contentSizeFlag) {
308 /* Determine how large fcs field has to be */
309 int minFcsCode = (fh.contentSize >= 256) +
310 (fh.contentSize >= 65536 + 256) +
311 (fh.contentSize > 0xFFFFFFFFU);
312 if (!singleSegment && !minFcsCode) {
313 minFcsCode = 1;
314 }
315 fcsCode = minFcsCode + (RAND(seed) % (4 - minFcsCode));
316 if (fcsCode == 1 && fh.contentSize < 256) fcsCode++;
317 }
318
319 /* write out the header */
320 MEM_writeLE32(op + pos, ZSTD_MAGICNUMBER);
321 pos += 4;
322
323 {
324 /*
325 * fcsCode: 2-bit flag specifying how many bytes used to represent Frame_Content_Size (bits 7-6)
326 * singleSegment: 1-bit flag describing if data must be regenerated within a single continuous memory segment. (bit 5)
327 * contentChecksumFlag: 1-bit flag that is set if frame includes checksum at the end -- set to 1 below (bit 2)
328 * dictBits: 2-bit flag describing how many bytes Dictionary_ID uses -- set to 3 (bits 1-0)
329 * For more information: https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#frame_header
330 */
331 int const dictBits = info.useDict ? 3 : 0;
332 BYTE const frameHeaderDescriptor =
333 (BYTE) ((fcsCode << 6) | (singleSegment << 5) | (1 << 2) | dictBits);
334 op[pos++] = frameHeaderDescriptor;
335 }
336
337 if (!singleSegment) {
338 op[pos++] = windowByte;
339 }
340 if (info.useDict) {
341 MEM_writeLE32(op + pos, (U32) info.dictID);
342 pos += 4;
343 }
344 if (contentSizeFlag) {
345 switch (fcsCode) {
346 default: /* Impossible */
347 case 0: op[pos++] = (BYTE) fh.contentSize; break;
348 case 1: MEM_writeLE16(op + pos, (U16) (fh.contentSize - 256)); pos += 2; break;
349 case 2: MEM_writeLE32(op + pos, (U32) fh.contentSize); pos += 4; break;
350 case 3: MEM_writeLE64(op + pos, (U64) fh.contentSize); pos += 8; break;
351 }
352 }
353
354 DISPLAYLEVEL(3, " frame content size:\t%u\n", (unsigned)fh.contentSize);
355 DISPLAYLEVEL(3, " frame window size:\t%u\n", fh.windowSize);
356 DISPLAYLEVEL(3, " content size flag:\t%d\n", contentSizeFlag);
357 DISPLAYLEVEL(3, " single segment flag:\t%d\n", singleSegment);
358
359 frame->data = op + pos;
360 frame->header = fh;
361 }
362
363 /* Write a literal block in either raw or RLE form, return the literals size */
writeLiteralsBlockSimple(U32 * seed,frame_t * frame,size_t contentSize)364 static size_t writeLiteralsBlockSimple(U32* seed, frame_t* frame, size_t contentSize)
365 {
366 BYTE* op = (BYTE*)frame->data;
367 int const type = RAND(seed) % 2;
368 int const sizeFormatDesc = RAND(seed) % 8;
369 size_t litSize;
370 size_t maxLitSize = MIN(contentSize, g_maxBlockSize);
371
372 if (sizeFormatDesc == 0) {
373 /* Size_FormatDesc = ?0 */
374 maxLitSize = MIN(maxLitSize, 31);
375 } else if (sizeFormatDesc <= 4) {
376 /* Size_FormatDesc = 01 */
377 maxLitSize = MIN(maxLitSize, 4095);
378 } else {
379 /* Size_Format = 11 */
380 maxLitSize = MIN(maxLitSize, 1048575);
381 }
382
383 litSize = RAND(seed) % (maxLitSize + 1);
384 if (frame->src == frame->srcStart && litSize == 0) {
385 litSize = 1; /* no empty literals if there's nothing preceding this block */
386 }
387 if (litSize + 3 > contentSize) {
388 litSize = contentSize; /* no matches shorter than 3 are allowed */
389 }
390 /* use smallest size format that fits */
391 if (litSize < 32) {
392 op[0] = (type | (0 << 2) | (litSize << 3)) & 0xff;
393 op += 1;
394 } else if (litSize < 4096) {
395 op[0] = (type | (1 << 2) | (litSize << 4)) & 0xff;
396 op[1] = (litSize >> 4) & 0xff;
397 op += 2;
398 } else {
399 op[0] = (type | (3 << 2) | (litSize << 4)) & 0xff;
400 op[1] = (litSize >> 4) & 0xff;
401 op[2] = (litSize >> 12) & 0xff;
402 op += 3;
403 }
404
405 if (type == 0) {
406 /* Raw literals */
407 DISPLAYLEVEL(4, " raw literals\n");
408
409 RAND_buffer(seed, LITERAL_BUFFER, litSize);
410 memcpy(op, LITERAL_BUFFER, litSize);
411 op += litSize;
412 } else {
413 /* RLE literals */
414 BYTE const symb = (BYTE) (RAND(seed) % 256);
415
416 DISPLAYLEVEL(4, " rle literals: 0x%02x\n", (unsigned)symb);
417
418 memset(LITERAL_BUFFER, symb, litSize);
419 op[0] = symb;
420 op++;
421 }
422
423 frame->data = op;
424
425 return litSize;
426 }
427
428 /* Generate a Huffman header for the given source */
writeHufHeader(U32 * seed,HUF_CElt * hufTable,void * dst,size_t dstSize,const void * src,size_t srcSize)429 static size_t writeHufHeader(U32* seed, HUF_CElt* hufTable, void* dst, size_t dstSize,
430 const void* src, size_t srcSize)
431 {
432 BYTE* const ostart = (BYTE*)dst;
433 BYTE* op = ostart;
434
435 unsigned huffLog = 11;
436 unsigned maxSymbolValue = 255;
437
438 unsigned count[HUF_SYMBOLVALUE_MAX+1];
439
440 /* Scan input and build symbol stats */
441 { size_t const largest = HIST_count_wksp (count, &maxSymbolValue, (const BYTE*)src, srcSize, WKSP, sizeof(WKSP));
442 assert(!HIST_isError(largest));
443 if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 0; } /* single symbol, rle */
444 if (largest <= (srcSize >> 7)+1) return 0; /* Fast heuristic : not compressible enough */
445 }
446
447 /* Build Huffman Tree */
448 /* Max Huffman log is 11, min is highbit(maxSymbolValue)+1 */
449 huffLog = RAND_range(seed, ZSTD_highbit32(maxSymbolValue)+1, huffLog+1);
450 DISPLAYLEVEL(6, " huffman log: %u\n", huffLog);
451 { size_t const maxBits = HUF_buildCTable_wksp (hufTable, count, maxSymbolValue, huffLog, WKSP, sizeof(WKSP));
452 CHECKERR(maxBits);
453 huffLog = (U32)maxBits;
454 }
455
456 /* Write table description header */
457 { size_t const hSize = HUF_writeCTable (op, dstSize, hufTable, maxSymbolValue, huffLog);
458 if (hSize + 12 >= srcSize) return 0; /* not useful to try compression */
459 op += hSize;
460 }
461
462 return op - ostart;
463 }
464
465 /* Write a Huffman coded literals block and return the literals size */
writeLiteralsBlockCompressed(U32 * seed,frame_t * frame,size_t contentSize)466 static size_t writeLiteralsBlockCompressed(U32* seed, frame_t* frame, size_t contentSize)
467 {
468 BYTE* origop = (BYTE*)frame->data;
469 BYTE* opend = (BYTE*)frame->dataEnd;
470 BYTE* op;
471 BYTE* const ostart = origop;
472 int const sizeFormat = RAND(seed) % 4;
473 size_t litSize;
474 size_t hufHeaderSize = 0;
475 size_t compressedSize = 0;
476 size_t maxLitSize = MIN(contentSize-3, g_maxBlockSize);
477
478 symbolEncodingType_e hType;
479
480 if (contentSize < 64) {
481 /* make sure we get reasonably-sized literals for compression */
482 return ERROR(GENERIC);
483 }
484
485 DISPLAYLEVEL(4, " compressed literals\n");
486
487 switch (sizeFormat) {
488 case 0: /* fall through, size is the same as case 1 */
489 case 1:
490 maxLitSize = MIN(maxLitSize, 1023);
491 origop += 3;
492 break;
493 case 2:
494 maxLitSize = MIN(maxLitSize, 16383);
495 origop += 4;
496 break;
497 case 3:
498 maxLitSize = MIN(maxLitSize, 262143);
499 origop += 5;
500 break;
501 default:; /* impossible */
502 }
503
504 do {
505 op = origop;
506 do {
507 litSize = RAND(seed) % (maxLitSize + 1);
508 } while (litSize < 32); /* avoid small literal sizes */
509 if (litSize + 3 > contentSize) {
510 litSize = contentSize; /* no matches shorter than 3 are allowed */
511 }
512
513 /* most of the time generate a new distribution */
514 if ((RAND(seed) & 3) || !frame->stats.hufInit) {
515 do {
516 if (RAND(seed) & 3) {
517 /* add 10 to ensure some compressibility */
518 double const weight = ((RAND(seed) % 90) + 10) / 100.0;
519
520 DISPLAYLEVEL(5, " distribution weight: %d%%\n",
521 (int)(weight * 100));
522
523 RAND_genDist(seed, frame->stats.hufDist, weight);
524 } else {
525 /* sometimes do restricted range literals to force
526 * non-huffman headers */
527 DISPLAYLEVEL(5, " small range literals\n");
528 RAND_bufferMaxSymb(seed, frame->stats.hufDist, DISTSIZE,
529 15);
530 }
531 RAND_bufferDist(seed, frame->stats.hufDist, LITERAL_BUFFER,
532 litSize);
533
534 /* generate the header from the distribution instead of the
535 * actual data to avoid bugs with symbols that were in the
536 * distribution but never showed up in the output */
537 hufHeaderSize = writeHufHeader(
538 seed, frame->stats.hufTable, op, opend - op,
539 frame->stats.hufDist, DISTSIZE);
540 CHECKERR(hufHeaderSize);
541 /* repeat until a valid header is written */
542 } while (hufHeaderSize == 0);
543 op += hufHeaderSize;
544 hType = set_compressed;
545
546 frame->stats.hufInit = 1;
547 } else {
548 /* repeat the distribution/table from last time */
549 DISPLAYLEVEL(5, " huffman repeat stats\n");
550 RAND_bufferDist(seed, frame->stats.hufDist, LITERAL_BUFFER,
551 litSize);
552 hufHeaderSize = 0;
553 hType = set_repeat;
554 }
555
556 do {
557 compressedSize =
558 sizeFormat == 0
559 ? HUF_compress1X_usingCTable(
560 op, opend - op, LITERAL_BUFFER, litSize,
561 frame->stats.hufTable)
562 : HUF_compress4X_usingCTable(
563 op, opend - op, LITERAL_BUFFER, litSize,
564 frame->stats.hufTable);
565 CHECKERR(compressedSize);
566 /* this only occurs when it could not compress or similar */
567 } while (compressedSize <= 0);
568
569 op += compressedSize;
570
571 compressedSize += hufHeaderSize;
572 DISPLAYLEVEL(5, " regenerated size: %u\n", (unsigned)litSize);
573 DISPLAYLEVEL(5, " compressed size: %u\n", (unsigned)compressedSize);
574 if (compressedSize >= litSize) {
575 DISPLAYLEVEL(5, " trying again\n");
576 /* if we have to try again, reset the stats so we don't accidentally
577 * try to repeat a distribution we just made */
578 frame->stats = frame->oldStats;
579 } else {
580 break;
581 }
582 } while (1);
583
584 /* write header */
585 switch (sizeFormat) {
586 case 0: /* fall through, size is the same as case 1 */
587 case 1: {
588 U32 const header = hType | (sizeFormat << 2) | ((U32)litSize << 4) |
589 ((U32)compressedSize << 14);
590 MEM_writeLE24(ostart, header);
591 break;
592 }
593 case 2: {
594 U32 const header = hType | (sizeFormat << 2) | ((U32)litSize << 4) |
595 ((U32)compressedSize << 18);
596 MEM_writeLE32(ostart, header);
597 break;
598 }
599 case 3: {
600 U32 const header = hType | (sizeFormat << 2) | ((U32)litSize << 4) |
601 ((U32)compressedSize << 22);
602 MEM_writeLE32(ostart, header);
603 ostart[4] = (BYTE)(compressedSize >> 10);
604 break;
605 }
606 default:; /* impossible */
607 }
608
609 frame->data = op;
610 return litSize;
611 }
612
writeLiteralsBlock(U32 * seed,frame_t * frame,size_t contentSize)613 static size_t writeLiteralsBlock(U32* seed, frame_t* frame, size_t contentSize)
614 {
615 /* only do compressed for larger segments to avoid compressibility issues */
616 if (RAND(seed) & 7 && contentSize >= 64) {
617 return writeLiteralsBlockCompressed(seed, frame, contentSize);
618 } else {
619 return writeLiteralsBlockSimple(seed, frame, contentSize);
620 }
621 }
622
initSeqStore(seqStore_t * seqStore)623 static inline void initSeqStore(seqStore_t *seqStore) {
624 seqStore->maxNbSeq = MAX_NB_SEQ;
625 seqStore->maxNbLit = ZSTD_BLOCKSIZE_MAX;
626 seqStore->sequencesStart = SEQUENCE_BUFFER;
627 seqStore->litStart = SEQUENCE_LITERAL_BUFFER;
628 seqStore->llCode = SEQUENCE_LLCODE;
629 seqStore->mlCode = SEQUENCE_MLCODE;
630 seqStore->ofCode = SEQUENCE_OFCODE;
631
632 ZSTD_resetSeqStore(seqStore);
633 }
634
635 /* Randomly generate sequence commands */
generateSequences(U32 * seed,frame_t * frame,seqStore_t * seqStore,size_t contentSize,size_t literalsSize,dictInfo info)636 static U32 generateSequences(U32* seed, frame_t* frame, seqStore_t* seqStore,
637 size_t contentSize, size_t literalsSize, dictInfo info)
638 {
639 /* The total length of all the matches */
640 size_t const remainingMatch = contentSize - literalsSize;
641 size_t excessMatch = 0;
642 U32 numSequences = 0;
643
644 U32 i;
645
646
647 const BYTE* literals = LITERAL_BUFFER;
648 BYTE* srcPtr = frame->src;
649
650 if (literalsSize != contentSize) {
651 /* each match must be at least MIN_SEQ_LEN, so this is the maximum
652 * number of sequences we can have */
653 U32 const maxSequences = (U32)remainingMatch / MIN_SEQ_LEN;
654 numSequences = (RAND(seed) % maxSequences) + 1;
655
656 /* the extra match lengths we have to allocate to each sequence */
657 excessMatch = remainingMatch - numSequences * MIN_SEQ_LEN;
658 }
659
660 DISPLAYLEVEL(5, " total match lengths: %u\n", (unsigned)remainingMatch);
661 for (i = 0; i < numSequences; i++) {
662 /* Generate match and literal lengths by exponential distribution to
663 * ensure nice numbers */
664 U32 matchLen =
665 MIN_SEQ_LEN +
666 ROUND(RAND_exp(seed, excessMatch / (double)(numSequences - i)));
667 U32 literalLen =
668 (RAND(seed) & 7)
669 ? ROUND(RAND_exp(seed,
670 literalsSize /
671 (double)(numSequences - i)))
672 : 0;
673 /* actual offset, code to send, and point to copy up to when shifting
674 * codes in the repeat offsets history */
675 U32 offset, offsetCode, repIndex;
676
677 /* bounds checks */
678 matchLen = (U32) MIN(matchLen, excessMatch + MIN_SEQ_LEN);
679 literalLen = MIN(literalLen, (U32) literalsSize);
680 if (i == 0 && srcPtr == frame->srcStart && literalLen == 0) literalLen = 1;
681 if (i + 1 == numSequences) matchLen = MIN_SEQ_LEN + (U32) excessMatch;
682
683 memcpy(srcPtr, literals, literalLen);
684 srcPtr += literalLen;
685 do {
686 if (RAND(seed) & 7) {
687 /* do a normal offset */
688 U32 const dataDecompressed = (U32)((BYTE*)srcPtr-(BYTE*)frame->srcStart);
689 offset = (RAND(seed) %
690 MIN(frame->header.windowSize,
691 (size_t)((BYTE*)srcPtr - (BYTE*)frame->srcStart))) +
692 1;
693 if (info.useDict && (RAND(seed) & 1) && i + 1 != numSequences && dataDecompressed < frame->header.windowSize) {
694 /* need to occasionally generate offsets that go past the start */
695 /* including i+1 != numSequences because the last sequences has to adhere to predetermined contentSize */
696 U32 lenPastStart = (RAND(seed) % info.dictContentSize) + 1;
697 offset = (U32)((BYTE*)srcPtr - (BYTE*)frame->srcStart)+lenPastStart;
698 if (offset > frame->header.windowSize) {
699 if (lenPastStart < MIN_SEQ_LEN) {
700 /* when offset > windowSize, matchLen bound by end of dictionary (lenPastStart) */
701 /* this also means that lenPastStart must be greater than MIN_SEQ_LEN */
702 /* make sure lenPastStart does not go past dictionary start though */
703 lenPastStart = MIN(lenPastStart+MIN_SEQ_LEN, (U32)info.dictContentSize);
704 offset = (U32)((BYTE*)srcPtr - (BYTE*)frame->srcStart) + lenPastStart;
705 }
706 {
707 U32 const matchLenBound = MIN(frame->header.windowSize, lenPastStart);
708 matchLen = MIN(matchLen, matchLenBound);
709 }
710 }
711 }
712 offsetCode = offset + ZSTD_REP_MOVE;
713 repIndex = 2;
714 } else {
715 /* do a repeat offset */
716 offsetCode = RAND(seed) % 3;
717 if (literalLen > 0) {
718 offset = frame->stats.rep[offsetCode];
719 repIndex = offsetCode;
720 } else {
721 /* special case */
722 offset = offsetCode == 2 ? frame->stats.rep[0] - 1
723 : frame->stats.rep[offsetCode + 1];
724 repIndex = MIN(2, offsetCode + 1);
725 }
726 }
727 } while (((!info.useDict) && (offset > (size_t)((BYTE*)srcPtr - (BYTE*)frame->srcStart))) || offset == 0);
728
729 {
730 size_t j;
731 BYTE* const dictEnd = info.dictContent + info.dictContentSize;
732 for (j = 0; j < matchLen; j++) {
733 if ((U32)((BYTE*)srcPtr - (BYTE*)frame->srcStart) < offset) {
734 /* copy from dictionary instead of literals */
735 size_t const dictOffset = offset - (srcPtr - (BYTE*)frame->srcStart);
736 *srcPtr = *(dictEnd - dictOffset);
737 }
738 else {
739 *srcPtr = *(srcPtr-offset);
740 }
741 srcPtr++;
742 }
743 }
744
745 { int r;
746 for (r = repIndex; r > 0; r--) {
747 frame->stats.rep[r] = frame->stats.rep[r - 1];
748 }
749 frame->stats.rep[0] = offset;
750 }
751
752 DISPLAYLEVEL(6, " LL: %5u OF: %5u ML: %5u",
753 (unsigned)literalLen, (unsigned)offset, (unsigned)matchLen);
754 DISPLAYLEVEL(7, " srcPos: %8u seqNb: %3u",
755 (unsigned)((BYTE*)srcPtr - (BYTE*)frame->srcStart), (unsigned)i);
756 DISPLAYLEVEL(6, "\n");
757 if (offsetCode < 3) {
758 DISPLAYLEVEL(7, " repeat offset: %d\n", (int)repIndex);
759 }
760 /* use libzstd sequence handling */
761 ZSTD_storeSeq(seqStore, literalLen, literals, literals + literalLen,
762 offsetCode, matchLen - MINMATCH);
763
764 literalsSize -= literalLen;
765 excessMatch -= (matchLen - MIN_SEQ_LEN);
766 literals += literalLen;
767 }
768
769 memcpy(srcPtr, literals, literalsSize);
770 srcPtr += literalsSize;
771 DISPLAYLEVEL(6, " excess literals: %5u", (unsigned)literalsSize);
772 DISPLAYLEVEL(7, " srcPos: %8u", (unsigned)((BYTE*)srcPtr - (BYTE*)frame->srcStart));
773 DISPLAYLEVEL(6, "\n");
774
775 return numSequences;
776 }
777
initSymbolSet(const BYTE * symbols,size_t len,BYTE * set,BYTE maxSymbolValue)778 static void initSymbolSet(const BYTE* symbols, size_t len, BYTE* set, BYTE maxSymbolValue)
779 {
780 size_t i;
781
782 memset(set, 0, (size_t)maxSymbolValue+1);
783
784 for (i = 0; i < len; i++) {
785 set[symbols[i]] = 1;
786 }
787 }
788
isSymbolSubset(const BYTE * symbols,size_t len,const BYTE * set,BYTE maxSymbolValue)789 static int isSymbolSubset(const BYTE* symbols, size_t len, const BYTE* set, BYTE maxSymbolValue)
790 {
791 size_t i;
792
793 for (i = 0; i < len; i++) {
794 if (symbols[i] > maxSymbolValue || !set[symbols[i]]) {
795 return 0;
796 }
797 }
798 return 1;
799 }
800
writeSequences(U32 * seed,frame_t * frame,seqStore_t * seqStorePtr,size_t nbSeq)801 static size_t writeSequences(U32* seed, frame_t* frame, seqStore_t* seqStorePtr,
802 size_t nbSeq)
803 {
804 /* This code is mostly copied from ZSTD_compressSequences in zstd_compress.c */
805 unsigned count[MaxSeq+1];
806 S16 norm[MaxSeq+1];
807 FSE_CTable* CTable_LitLength = frame->stats.litlengthCTable;
808 FSE_CTable* CTable_OffsetBits = frame->stats.offcodeCTable;
809 FSE_CTable* CTable_MatchLength = frame->stats.matchlengthCTable;
810 U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
811 const seqDef* const sequences = seqStorePtr->sequencesStart;
812 const BYTE* const ofCodeTable = seqStorePtr->ofCode;
813 const BYTE* const llCodeTable = seqStorePtr->llCode;
814 const BYTE* const mlCodeTable = seqStorePtr->mlCode;
815 BYTE* const oend = (BYTE*)frame->dataEnd;
816 BYTE* op = (BYTE*)frame->data;
817 BYTE* seqHead;
818 BYTE scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE(MaxSeq, MaxFSELog)];
819
820 /* literals compressing block removed so that can be done separately */
821
822 /* Sequences Header */
823 if ((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead */) return ERROR(dstSize_tooSmall);
824 if (nbSeq < 0x7F) *op++ = (BYTE)nbSeq;
825 else if (nbSeq < LONGNBSEQ) op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
826 else op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
827
828 if (nbSeq==0) {
829 frame->data = op;
830 return 0;
831 }
832
833 /* seqHead : flags for FSE encoding type */
834 seqHead = op++;
835
836 /* convert length/distances into codes */
837 ZSTD_seqToCodes(seqStorePtr);
838
839 /* CTable for Literal Lengths */
840 { unsigned max = MaxLL;
841 size_t const mostFrequent = HIST_countFast_wksp(count, &max, llCodeTable, nbSeq, WKSP, sizeof(WKSP)); /* cannot fail */
842 assert(!HIST_isError(mostFrequent));
843 if (frame->stats.fseInit && !(RAND(seed) & 3) &&
844 isSymbolSubset(llCodeTable, nbSeq,
845 frame->stats.litlengthSymbolSet, 35)) {
846 /* maybe do repeat mode if we're allowed to */
847 LLtype = set_repeat;
848 } else if (mostFrequent == nbSeq) {
849 /* do RLE if we have the chance */
850 *op++ = llCodeTable[0];
851 FSE_buildCTable_rle(CTable_LitLength, (BYTE)max);
852 LLtype = set_rle;
853 } else if (!(RAND(seed) & 3)) {
854 /* maybe use the default distribution */
855 CHECKERR(FSE_buildCTable_wksp(CTable_LitLength, LL_defaultNorm, MaxLL, LL_defaultNormLog, scratchBuffer, sizeof(scratchBuffer)));
856 LLtype = set_basic;
857 } else {
858 /* fall back on a full table */
859 size_t nbSeq_1 = nbSeq;
860 const U32 tableLog = FSE_optimalTableLog(LLFSELog, nbSeq, max);
861 if (count[llCodeTable[nbSeq-1]]>1) { count[llCodeTable[nbSeq-1]]--; nbSeq_1--; }
862 FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max, nbSeq >= 2048);
863 { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */
864 if (FSE_isError(NCountSize)) return ERROR(GENERIC);
865 op += NCountSize; }
866 CHECKERR(FSE_buildCTable_wksp(CTable_LitLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer)));
867 LLtype = set_compressed;
868 } }
869
870 /* CTable for Offsets */
871 /* see Literal Lengths for descriptions of mode choices */
872 { unsigned max = MaxOff;
873 size_t const mostFrequent = HIST_countFast_wksp(count, &max, ofCodeTable, nbSeq, WKSP, sizeof(WKSP)); /* cannot fail */
874 assert(!HIST_isError(mostFrequent));
875 if (frame->stats.fseInit && !(RAND(seed) & 3) &&
876 isSymbolSubset(ofCodeTable, nbSeq,
877 frame->stats.offsetSymbolSet, 28)) {
878 Offtype = set_repeat;
879 } else if (mostFrequent == nbSeq) {
880 *op++ = ofCodeTable[0];
881 FSE_buildCTable_rle(CTable_OffsetBits, (BYTE)max);
882 Offtype = set_rle;
883 } else if (!(RAND(seed) & 3)) {
884 FSE_buildCTable_wksp(CTable_OffsetBits, OF_defaultNorm, DefaultMaxOff, OF_defaultNormLog, scratchBuffer, sizeof(scratchBuffer));
885 Offtype = set_basic;
886 } else {
887 size_t nbSeq_1 = nbSeq;
888 const U32 tableLog = FSE_optimalTableLog(OffFSELog, nbSeq, max);
889 if (count[ofCodeTable[nbSeq-1]]>1) { count[ofCodeTable[nbSeq-1]]--; nbSeq_1--; }
890 FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max, nbSeq >= 2048);
891 { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */
892 if (FSE_isError(NCountSize)) return ERROR(GENERIC);
893 op += NCountSize; }
894 FSE_buildCTable_wksp(CTable_OffsetBits, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer));
895 Offtype = set_compressed;
896 } }
897
898 /* CTable for MatchLengths */
899 /* see Literal Lengths for descriptions of mode choices */
900 { unsigned max = MaxML;
901 size_t const mostFrequent = HIST_countFast_wksp(count, &max, mlCodeTable, nbSeq, WKSP, sizeof(WKSP)); /* cannot fail */
902 assert(!HIST_isError(mostFrequent));
903 if (frame->stats.fseInit && !(RAND(seed) & 3) &&
904 isSymbolSubset(mlCodeTable, nbSeq,
905 frame->stats.matchlengthSymbolSet, 52)) {
906 MLtype = set_repeat;
907 } else if (mostFrequent == nbSeq) {
908 *op++ = *mlCodeTable;
909 FSE_buildCTable_rle(CTable_MatchLength, (BYTE)max);
910 MLtype = set_rle;
911 } else if (!(RAND(seed) & 3)) {
912 /* sometimes do default distribution */
913 FSE_buildCTable_wksp(CTable_MatchLength, ML_defaultNorm, MaxML, ML_defaultNormLog, scratchBuffer, sizeof(scratchBuffer));
914 MLtype = set_basic;
915 } else {
916 /* fall back on table */
917 size_t nbSeq_1 = nbSeq;
918 const U32 tableLog = FSE_optimalTableLog(MLFSELog, nbSeq, max);
919 if (count[mlCodeTable[nbSeq-1]]>1) { count[mlCodeTable[nbSeq-1]]--; nbSeq_1--; }
920 FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max, nbSeq >= 2048);
921 { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */
922 if (FSE_isError(NCountSize)) return ERROR(GENERIC);
923 op += NCountSize; }
924 FSE_buildCTable_wksp(CTable_MatchLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer));
925 MLtype = set_compressed;
926 } }
927 frame->stats.fseInit = 1;
928 initSymbolSet(llCodeTable, nbSeq, frame->stats.litlengthSymbolSet, 35);
929 initSymbolSet(ofCodeTable, nbSeq, frame->stats.offsetSymbolSet, 28);
930 initSymbolSet(mlCodeTable, nbSeq, frame->stats.matchlengthSymbolSet, 52);
931
932 DISPLAYLEVEL(5, " LL type: %d OF type: %d ML type: %d\n", (unsigned)LLtype, (unsigned)Offtype, (unsigned)MLtype);
933
934 *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
935
936 /* Encoding Sequences */
937 { BIT_CStream_t blockStream;
938 FSE_CState_t stateMatchLength;
939 FSE_CState_t stateOffsetBits;
940 FSE_CState_t stateLitLength;
941
942 RETURN_ERROR_IF(
943 ERR_isError(BIT_initCStream(&blockStream, op, oend-op)),
944 dstSize_tooSmall, "not enough space remaining");
945
946 /* first symbols */
947 FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
948 FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
949 FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
950 BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
951 if (MEM_32bits()) BIT_flushBits(&blockStream);
952 BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
953 if (MEM_32bits()) BIT_flushBits(&blockStream);
954 BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
955 BIT_flushBits(&blockStream);
956
957 { size_t n;
958 for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
959 BYTE const llCode = llCodeTable[n];
960 BYTE const ofCode = ofCodeTable[n];
961 BYTE const mlCode = mlCodeTable[n];
962 U32 const llBits = LL_bits[llCode];
963 U32 const ofBits = ofCode; /* 32b*/ /* 64b*/
964 U32 const mlBits = ML_bits[mlCode];
965 /* (7)*/ /* (7)*/
966 FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
967 FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
968 if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
969 FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
970 if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
971 BIT_flushBits(&blockStream); /* (7)*/
972 BIT_addBits(&blockStream, sequences[n].litLength, llBits);
973 if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
974 BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
975 if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
976 BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
977 BIT_flushBits(&blockStream); /* (7)*/
978 } }
979
980 FSE_flushCState(&blockStream, &stateMatchLength);
981 FSE_flushCState(&blockStream, &stateOffsetBits);
982 FSE_flushCState(&blockStream, &stateLitLength);
983
984 { size_t const streamSize = BIT_closeCStream(&blockStream);
985 if (streamSize==0) return ERROR(dstSize_tooSmall); /* not enough space */
986 op += streamSize;
987 } }
988
989 frame->data = op;
990
991 return 0;
992 }
993
writeSequencesBlock(U32 * seed,frame_t * frame,size_t contentSize,size_t literalsSize,dictInfo info)994 static size_t writeSequencesBlock(U32* seed, frame_t* frame, size_t contentSize,
995 size_t literalsSize, dictInfo info)
996 {
997 seqStore_t seqStore;
998 size_t numSequences;
999
1000
1001 initSeqStore(&seqStore);
1002
1003 /* randomly generate sequences */
1004 numSequences = generateSequences(seed, frame, &seqStore, contentSize, literalsSize, info);
1005 /* write them out to the frame data */
1006 CHECKERR(writeSequences(seed, frame, &seqStore, numSequences));
1007
1008 return numSequences;
1009 }
1010
writeCompressedBlock(U32 * seed,frame_t * frame,size_t contentSize,dictInfo info)1011 static size_t writeCompressedBlock(U32* seed, frame_t* frame, size_t contentSize, dictInfo info)
1012 {
1013 BYTE* const blockStart = (BYTE*)frame->data;
1014 size_t literalsSize;
1015 size_t nbSeq;
1016
1017 DISPLAYLEVEL(4, " compressed block:\n");
1018
1019 literalsSize = writeLiteralsBlock(seed, frame, contentSize);
1020
1021 DISPLAYLEVEL(4, " literals size: %u\n", (unsigned)literalsSize);
1022
1023 nbSeq = writeSequencesBlock(seed, frame, contentSize, literalsSize, info);
1024
1025 DISPLAYLEVEL(4, " number of sequences: %u\n", (unsigned)nbSeq);
1026
1027 return (BYTE*)frame->data - blockStart;
1028 }
1029
writeBlock(U32 * seed,frame_t * frame,size_t contentSize,int lastBlock,dictInfo info)1030 static void writeBlock(U32* seed, frame_t* frame, size_t contentSize,
1031 int lastBlock, dictInfo info)
1032 {
1033 int const blockTypeDesc = RAND(seed) % 8;
1034 size_t blockSize;
1035 int blockType;
1036
1037 BYTE *const header = (BYTE*)frame->data;
1038 BYTE *op = header + 3;
1039
1040 DISPLAYLEVEL(4, " block:\n");
1041 DISPLAYLEVEL(4, " block content size: %u\n", (unsigned)contentSize);
1042 DISPLAYLEVEL(4, " last block: %s\n", lastBlock ? "yes" : "no");
1043
1044 if (blockTypeDesc == 0) {
1045 /* Raw data frame */
1046
1047 RAND_buffer(seed, frame->src, contentSize);
1048 memcpy(op, frame->src, contentSize);
1049
1050 op += contentSize;
1051 blockType = 0;
1052 blockSize = contentSize;
1053 } else if (blockTypeDesc == 1 && frame->header.contentSize > 0) {
1054 /* RLE (Don't create RLE block if frame content is 0 since block size of 1 may exceed max block size)*/
1055 BYTE const symbol = RAND(seed) & 0xff;
1056
1057 op[0] = symbol;
1058 memset(frame->src, symbol, contentSize);
1059
1060 op++;
1061 blockType = 1;
1062 blockSize = contentSize;
1063 } else {
1064 /* compressed, most common */
1065 size_t compressedSize;
1066 blockType = 2;
1067
1068 frame->oldStats = frame->stats;
1069
1070 frame->data = op;
1071 compressedSize = writeCompressedBlock(seed, frame, contentSize, info);
1072 if (compressedSize >= contentSize) { /* compressed block must be strictly smaller than uncompressed one */
1073 blockType = 0;
1074 memcpy(op, frame->src, contentSize);
1075
1076 op += contentSize;
1077 blockSize = contentSize; /* fall back on raw block if data doesn't
1078 compress */
1079
1080 frame->stats = frame->oldStats; /* don't update the stats */
1081 } else {
1082 op += compressedSize;
1083 blockSize = compressedSize;
1084 }
1085 }
1086 frame->src = (BYTE*)frame->src + contentSize;
1087
1088 DISPLAYLEVEL(4, " block type: %s\n", BLOCK_TYPES[blockType]);
1089 DISPLAYLEVEL(4, " block size field: %u\n", (unsigned)blockSize);
1090
1091 header[0] = (BYTE) ((lastBlock | (blockType << 1) | (blockSize << 3)) & 0xff);
1092 MEM_writeLE16(header + 1, (U16) (blockSize >> 5));
1093
1094 frame->data = op;
1095 }
1096
writeBlocks(U32 * seed,frame_t * frame,dictInfo info)1097 static void writeBlocks(U32* seed, frame_t* frame, dictInfo info)
1098 {
1099 size_t contentLeft = frame->header.contentSize;
1100 size_t const maxBlockSize = MIN(g_maxBlockSize, frame->header.windowSize);
1101 while (1) {
1102 /* 1 in 4 chance of ending frame */
1103 int const lastBlock = contentLeft > maxBlockSize ? 0 : !(RAND(seed) & 3);
1104 size_t blockContentSize;
1105 if (lastBlock) {
1106 blockContentSize = contentLeft;
1107 } else {
1108 if (contentLeft > 0 && (RAND(seed) & 7)) {
1109 /* some variable size block */
1110 blockContentSize = RAND(seed) % (MIN(maxBlockSize, contentLeft)+1);
1111 } else if (contentLeft > maxBlockSize && (RAND(seed) & 1)) {
1112 /* some full size block */
1113 blockContentSize = maxBlockSize;
1114 } else {
1115 /* some empty block */
1116 blockContentSize = 0;
1117 }
1118 }
1119
1120 writeBlock(seed, frame, blockContentSize, lastBlock, info);
1121
1122 contentLeft -= blockContentSize;
1123 if (lastBlock) break;
1124 }
1125 }
1126
writeChecksum(frame_t * frame)1127 static void writeChecksum(frame_t* frame)
1128 {
1129 /* write checksum so implementations can verify their output */
1130 U64 digest = XXH64(frame->srcStart, (BYTE*)frame->src-(BYTE*)frame->srcStart, 0);
1131 DISPLAYLEVEL(3, " checksum: %08x\n", (unsigned)digest);
1132 MEM_writeLE32(frame->data, (U32)digest);
1133 frame->data = (BYTE*)frame->data + 4;
1134 }
1135
outputBuffer(const void * buf,size_t size,const char * const path)1136 static void outputBuffer(const void* buf, size_t size, const char* const path)
1137 {
1138 /* write data out to file */
1139 const BYTE* ip = (const BYTE*)buf;
1140 FILE* out;
1141 if (path) {
1142 out = fopen(path, "wb");
1143 } else {
1144 out = stdout;
1145 }
1146 if (!out) {
1147 fprintf(stderr, "Failed to open file at %s: ", path);
1148 perror(NULL);
1149 exit(1);
1150 }
1151
1152 { size_t fsize = size;
1153 size_t written = 0;
1154 while (written < fsize) {
1155 written += fwrite(ip + written, 1, fsize - written, out);
1156 if (ferror(out)) {
1157 fprintf(stderr, "Failed to write to file at %s: ", path);
1158 perror(NULL);
1159 exit(1);
1160 }
1161 }
1162 }
1163
1164 if (path) {
1165 fclose(out);
1166 }
1167 }
1168
initFrame(frame_t * fr)1169 static void initFrame(frame_t* fr)
1170 {
1171 memset(fr, 0, sizeof(*fr));
1172 fr->data = fr->dataStart = FRAME_BUFFER;
1173 fr->dataEnd = FRAME_BUFFER + sizeof(FRAME_BUFFER);
1174 fr->src = fr->srcStart = CONTENT_BUFFER;
1175 fr->srcEnd = CONTENT_BUFFER + sizeof(CONTENT_BUFFER);
1176
1177 /* init repeat codes */
1178 fr->stats.rep[0] = 1;
1179 fr->stats.rep[1] = 4;
1180 fr->stats.rep[2] = 8;
1181 }
1182
1183 /**
1184 * Generated a single zstd compressed block with no block/frame header.
1185 * Returns the final seed.
1186 */
generateCompressedBlock(U32 seed,frame_t * frame,dictInfo info)1187 static U32 generateCompressedBlock(U32 seed, frame_t* frame, dictInfo info)
1188 {
1189 size_t blockContentSize;
1190 int blockWritten = 0;
1191 BYTE* op;
1192 DISPLAYLEVEL(4, "block seed: %u\n", (unsigned)seed);
1193 initFrame(frame);
1194 op = (BYTE*)frame->data;
1195
1196 while (!blockWritten) {
1197 size_t cSize;
1198 /* generate window size */
1199 { int const exponent = RAND(&seed) % (MAX_WINDOW_LOG - 10);
1200 int const mantissa = RAND(&seed) % 8;
1201 frame->header.windowSize = (1U << (exponent + 10));
1202 frame->header.windowSize += (frame->header.windowSize / 8) * mantissa;
1203 }
1204
1205 /* generate content size */
1206 { size_t const maxBlockSize = MIN(g_maxBlockSize, frame->header.windowSize);
1207 if (RAND(&seed) & 15) {
1208 /* some full size blocks */
1209 blockContentSize = maxBlockSize;
1210 } else if (RAND(&seed) & 7 && g_maxBlockSize >= (1U << 7)) {
1211 /* some small blocks <= 128 bytes*/
1212 blockContentSize = RAND(&seed) % (1U << 7);
1213 } else {
1214 /* some variable size blocks */
1215 blockContentSize = RAND(&seed) % maxBlockSize;
1216 }
1217 }
1218
1219 /* try generating a compressed block */
1220 frame->oldStats = frame->stats;
1221 frame->data = op;
1222 cSize = writeCompressedBlock(&seed, frame, blockContentSize, info);
1223 if (cSize >= blockContentSize) { /* compressed size must be strictly smaller than decompressed size : https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#blocks */
1224 /* data doesn't compress -- try again */
1225 frame->stats = frame->oldStats; /* don't update the stats */
1226 DISPLAYLEVEL(5, " can't compress block : try again \n");
1227 } else {
1228 blockWritten = 1;
1229 DISPLAYLEVEL(4, " block size: %u \n", (unsigned)cSize);
1230 frame->src = (BYTE*)frame->src + blockContentSize;
1231 }
1232 }
1233 return seed;
1234 }
1235
1236 /* Return the final seed */
generateFrame(U32 seed,frame_t * fr,dictInfo info)1237 static U32 generateFrame(U32 seed, frame_t* fr, dictInfo info)
1238 {
1239 /* generate a complete frame */
1240 DISPLAYLEVEL(3, "frame seed: %u\n", (unsigned)seed);
1241 initFrame(fr);
1242
1243 writeFrameHeader(&seed, fr, info);
1244 writeBlocks(&seed, fr, info);
1245 writeChecksum(fr);
1246
1247 return seed;
1248 }
1249
1250 /*_*******************************************************
1251 * Dictionary Helper Functions
1252 *********************************************************/
1253 /* returns 0 if successful, otherwise returns 1 upon error */
genRandomDict(U32 dictID,U32 seed,size_t dictSize,BYTE * fullDict)1254 static int genRandomDict(U32 dictID, U32 seed, size_t dictSize, BYTE* fullDict)
1255 {
1256 /* allocate space for samples */
1257 int ret = 0;
1258 unsigned const numSamples = 4;
1259 size_t sampleSizes[4];
1260 BYTE* const samples = malloc(5000*sizeof(BYTE));
1261 if (samples == NULL) {
1262 DISPLAY("Error: could not allocate space for samples\n");
1263 return 1;
1264 }
1265
1266 /* generate samples */
1267 { unsigned literalValue = 1;
1268 unsigned samplesPos = 0;
1269 size_t currSize = 1;
1270 while (literalValue <= 4) {
1271 sampleSizes[literalValue - 1] = currSize;
1272 { size_t k;
1273 for (k = 0; k < currSize; k++) {
1274 *(samples + (samplesPos++)) = (BYTE)literalValue;
1275 } }
1276 literalValue++;
1277 currSize *= 16;
1278 } }
1279
1280 { size_t dictWriteSize = 0;
1281 ZDICT_params_t zdictParams;
1282 size_t const headerSize = MAX(dictSize/4, 256);
1283 size_t const dictContentSize = dictSize - headerSize;
1284 BYTE* const dictContent = fullDict + headerSize;
1285 if (dictContentSize < ZDICT_CONTENTSIZE_MIN || dictSize < ZDICT_DICTSIZE_MIN) {
1286 DISPLAY("Error: dictionary size is too small\n");
1287 ret = 1;
1288 goto exitGenRandomDict;
1289 }
1290
1291 /* init dictionary params */
1292 memset(&zdictParams, 0, sizeof(zdictParams));
1293 zdictParams.dictID = dictID;
1294 zdictParams.notificationLevel = 1;
1295
1296 /* fill in dictionary content */
1297 RAND_buffer(&seed, (void*)dictContent, dictContentSize);
1298
1299 /* finalize dictionary with random samples */
1300 dictWriteSize = ZDICT_finalizeDictionary(fullDict, dictSize,
1301 dictContent, dictContentSize,
1302 samples, sampleSizes, numSamples,
1303 zdictParams);
1304
1305 if (ZDICT_isError(dictWriteSize)) {
1306 DISPLAY("Could not finalize dictionary: %s\n", ZDICT_getErrorName(dictWriteSize));
1307 ret = 1;
1308 }
1309 }
1310
1311 exitGenRandomDict:
1312 free(samples);
1313 return ret;
1314 }
1315
initDictInfo(int useDict,size_t dictContentSize,BYTE * dictContent,U32 dictID)1316 static dictInfo initDictInfo(int useDict, size_t dictContentSize, BYTE* dictContent, U32 dictID){
1317 /* allocate space statically */
1318 dictInfo dictOp;
1319 memset(&dictOp, 0, sizeof(dictOp));
1320 dictOp.useDict = useDict;
1321 dictOp.dictContentSize = dictContentSize;
1322 dictOp.dictContent = dictContent;
1323 dictOp.dictID = dictID;
1324 return dictOp;
1325 }
1326
1327 /*-*******************************************************
1328 * Test Mode
1329 *********************************************************/
1330
1331 BYTE DECOMPRESSED_BUFFER[MAX_DECOMPRESSED_SIZE];
1332
testDecodeSimple(frame_t * fr)1333 static size_t testDecodeSimple(frame_t* fr)
1334 {
1335 /* test decoding the generated data with the simple API */
1336 size_t const ret = ZSTD_decompress(DECOMPRESSED_BUFFER, MAX_DECOMPRESSED_SIZE,
1337 fr->dataStart, (BYTE*)fr->data - (BYTE*)fr->dataStart);
1338
1339 if (ZSTD_isError(ret)) return ret;
1340
1341 if (memcmp(DECOMPRESSED_BUFFER, fr->srcStart,
1342 (BYTE*)fr->src - (BYTE*)fr->srcStart) != 0) {
1343 return ERROR(corruption_detected);
1344 }
1345
1346 return ret;
1347 }
1348
testDecodeStreaming(frame_t * fr)1349 static size_t testDecodeStreaming(frame_t* fr)
1350 {
1351 /* test decoding the generated data with the streaming API */
1352 ZSTD_DStream* zd = ZSTD_createDStream();
1353 ZSTD_inBuffer in;
1354 ZSTD_outBuffer out;
1355 size_t ret;
1356
1357 if (!zd) return ERROR(memory_allocation);
1358
1359 in.src = fr->dataStart;
1360 in.pos = 0;
1361 in.size = (BYTE*)fr->data - (BYTE*)fr->dataStart;
1362
1363 out.dst = DECOMPRESSED_BUFFER;
1364 out.pos = 0;
1365 out.size = ZSTD_DStreamOutSize();
1366
1367 ZSTD_initDStream(zd);
1368 while (1) {
1369 ret = ZSTD_decompressStream(zd, &out, &in);
1370 if (ZSTD_isError(ret)) goto cleanup; /* error */
1371 if (ret == 0) break; /* frame is done */
1372
1373 /* force decoding to be done in chunks */
1374 out.size += MIN(ZSTD_DStreamOutSize(), MAX_DECOMPRESSED_SIZE - out.size);
1375 }
1376
1377 ret = out.pos;
1378
1379 if (memcmp(out.dst, fr->srcStart, out.pos) != 0) {
1380 return ERROR(corruption_detected);
1381 }
1382
1383 cleanup:
1384 ZSTD_freeDStream(zd);
1385 return ret;
1386 }
1387
testDecodeWithDict(U32 seed,genType_e genType)1388 static size_t testDecodeWithDict(U32 seed, genType_e genType)
1389 {
1390 /* create variables */
1391 size_t const dictSize = RAND(&seed) % (10 << 20) + ZDICT_DICTSIZE_MIN + ZDICT_CONTENTSIZE_MIN;
1392 U32 const dictID = RAND(&seed);
1393 size_t errorDetected = 0;
1394 BYTE* const fullDict = malloc(dictSize);
1395 if (fullDict == NULL) {
1396 return ERROR(GENERIC);
1397 }
1398
1399 /* generate random dictionary */
1400 if (genRandomDict(dictID, seed, dictSize, fullDict)) { /* return 0 on success */
1401 errorDetected = ERROR(GENERIC);
1402 goto dictTestCleanup;
1403 }
1404
1405
1406 { frame_t fr;
1407 dictInfo info;
1408 ZSTD_DCtx* const dctx = ZSTD_createDCtx();
1409 size_t ret;
1410
1411 /* get dict info */
1412 { size_t const headerSize = MAX(dictSize/4, 256);
1413 size_t const dictContentSize = dictSize-headerSize;
1414 BYTE* const dictContent = fullDict+headerSize;
1415 info = initDictInfo(1, dictContentSize, dictContent, dictID);
1416 }
1417
1418 /* manually decompress and check difference */
1419 if (genType == gt_frame) {
1420 /* Test frame */
1421 generateFrame(seed, &fr, info);
1422 ret = ZSTD_decompress_usingDict(dctx, DECOMPRESSED_BUFFER, MAX_DECOMPRESSED_SIZE,
1423 fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart,
1424 fullDict, dictSize);
1425 } else {
1426 /* Test block */
1427 generateCompressedBlock(seed, &fr, info);
1428 ret = ZSTD_decompressBegin_usingDict(dctx, fullDict, dictSize);
1429 if (ZSTD_isError(ret)) {
1430 errorDetected = ret;
1431 ZSTD_freeDCtx(dctx);
1432 goto dictTestCleanup;
1433 }
1434 ret = ZSTD_decompressBlock(dctx, DECOMPRESSED_BUFFER, MAX_DECOMPRESSED_SIZE,
1435 fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart);
1436 }
1437 ZSTD_freeDCtx(dctx);
1438
1439 if (ZSTD_isError(ret)) {
1440 errorDetected = ret;
1441 goto dictTestCleanup;
1442 }
1443
1444 if (memcmp(DECOMPRESSED_BUFFER, fr.srcStart, (BYTE*)fr.src - (BYTE*)fr.srcStart) != 0) {
1445 errorDetected = ERROR(corruption_detected);
1446 goto dictTestCleanup;
1447 }
1448 }
1449
1450 dictTestCleanup:
1451 free(fullDict);
1452 return errorDetected;
1453 }
1454
testDecodeRawBlock(frame_t * fr)1455 static size_t testDecodeRawBlock(frame_t* fr)
1456 {
1457 ZSTD_DCtx* dctx = ZSTD_createDCtx();
1458 size_t ret = ZSTD_decompressBegin(dctx);
1459 if (ZSTD_isError(ret)) return ret;
1460
1461 ret = ZSTD_decompressBlock(
1462 dctx,
1463 DECOMPRESSED_BUFFER, MAX_DECOMPRESSED_SIZE,
1464 fr->dataStart, (BYTE*)fr->data - (BYTE*)fr->dataStart);
1465 ZSTD_freeDCtx(dctx);
1466 if (ZSTD_isError(ret)) return ret;
1467
1468 if (memcmp(DECOMPRESSED_BUFFER, fr->srcStart,
1469 (BYTE*)fr->src - (BYTE*)fr->srcStart) != 0) {
1470 return ERROR(corruption_detected);
1471 }
1472
1473 return ret;
1474 }
1475
runBlockTest(U32 * seed)1476 static int runBlockTest(U32* seed)
1477 {
1478 frame_t fr;
1479 U32 const seedCopy = *seed;
1480 { dictInfo const info = initDictInfo(0, 0, NULL, 0);
1481 *seed = generateCompressedBlock(*seed, &fr, info);
1482 }
1483
1484 { size_t const r = testDecodeRawBlock(&fr);
1485 if (ZSTD_isError(r)) {
1486 DISPLAY("Error in block mode on test seed %u: %s\n",
1487 (unsigned)seedCopy, ZSTD_getErrorName(r));
1488 return 1;
1489 }
1490 }
1491
1492 { size_t const r = testDecodeWithDict(*seed, gt_block);
1493 if (ZSTD_isError(r)) {
1494 DISPLAY("Error in block mode with dictionary on test seed %u: %s\n",
1495 (unsigned)seedCopy, ZSTD_getErrorName(r));
1496 return 1;
1497 }
1498 }
1499 return 0;
1500 }
1501
runFrameTest(U32 * seed)1502 static int runFrameTest(U32* seed)
1503 {
1504 frame_t fr;
1505 U32 const seedCopy = *seed;
1506 { dictInfo const info = initDictInfo(0, 0, NULL, 0);
1507 *seed = generateFrame(*seed, &fr, info);
1508 }
1509
1510 { size_t const r = testDecodeSimple(&fr);
1511 if (ZSTD_isError(r)) {
1512 DISPLAY("Error in simple mode on test seed %u: %s\n",
1513 (unsigned)seedCopy, ZSTD_getErrorName(r));
1514 return 1;
1515 }
1516 }
1517 { size_t const r = testDecodeStreaming(&fr);
1518 if (ZSTD_isError(r)) {
1519 DISPLAY("Error in streaming mode on test seed %u: %s\n",
1520 (unsigned)seedCopy, ZSTD_getErrorName(r));
1521 return 1;
1522 }
1523 }
1524 { size_t const r = testDecodeWithDict(*seed, gt_frame); /* avoid big dictionaries */
1525 if (ZSTD_isError(r)) {
1526 DISPLAY("Error in dictionary mode on test seed %u: %s\n",
1527 (unsigned)seedCopy, ZSTD_getErrorName(r));
1528 return 1;
1529 }
1530 }
1531 return 0;
1532 }
1533
runTestMode(U32 seed,unsigned numFiles,unsigned const testDurationS,genType_e genType)1534 static int runTestMode(U32 seed, unsigned numFiles, unsigned const testDurationS,
1535 genType_e genType)
1536 {
1537 unsigned fnum;
1538
1539 UTIL_time_t const startClock = UTIL_getTime();
1540 U64 const maxClockSpan = testDurationS * SEC_TO_MICRO;
1541
1542 if (numFiles == 0 && !testDurationS) numFiles = 1;
1543
1544 DISPLAY("seed: %u\n", (unsigned)seed);
1545
1546 for (fnum = 0; fnum < numFiles || UTIL_clockSpanMicro(startClock) < maxClockSpan; fnum++) {
1547 if (fnum < numFiles)
1548 DISPLAYUPDATE("\r%u/%u ", fnum, numFiles);
1549 else
1550 DISPLAYUPDATE("\r%u ", fnum);
1551
1552 { int const ret = (genType == gt_frame) ?
1553 runFrameTest(&seed) :
1554 runBlockTest(&seed);
1555 if (ret) return ret;
1556 }
1557 }
1558
1559 DISPLAY("\r%u tests completed: ", fnum);
1560 DISPLAY("OK\n");
1561
1562 return 0;
1563 }
1564
1565 /*-*******************************************************
1566 * File I/O
1567 *********************************************************/
1568
generateFile(U32 seed,const char * const path,const char * const origPath,genType_e genType)1569 static int generateFile(U32 seed, const char* const path,
1570 const char* const origPath, genType_e genType)
1571 {
1572 frame_t fr;
1573
1574 DISPLAY("seed: %u\n", (unsigned)seed);
1575
1576 { dictInfo const info = initDictInfo(0, 0, NULL, 0);
1577 if (genType == gt_frame) {
1578 generateFrame(seed, &fr, info);
1579 } else {
1580 generateCompressedBlock(seed, &fr, info);
1581 }
1582 }
1583 outputBuffer(fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart, path);
1584 if (origPath) {
1585 outputBuffer(fr.srcStart, (BYTE*)fr.src - (BYTE*)fr.srcStart, origPath);
1586 }
1587 return 0;
1588 }
1589
generateCorpus(U32 seed,unsigned numFiles,const char * const path,const char * const origPath,genType_e genType)1590 static int generateCorpus(U32 seed, unsigned numFiles, const char* const path,
1591 const char* const origPath, genType_e genType)
1592 {
1593 char outPath[MAX_PATH];
1594 unsigned fnum;
1595
1596 DISPLAY("seed: %u\n", (unsigned)seed);
1597
1598 for (fnum = 0; fnum < numFiles; fnum++) {
1599 frame_t fr;
1600
1601 DISPLAYUPDATE("\r%u/%u ", fnum, numFiles);
1602
1603 { dictInfo const info = initDictInfo(0, 0, NULL, 0);
1604 if (genType == gt_frame) {
1605 seed = generateFrame(seed, &fr, info);
1606 } else {
1607 seed = generateCompressedBlock(seed, &fr, info);
1608 }
1609 }
1610
1611 if (snprintf(outPath, MAX_PATH, "%s/z%06u.zst", path, fnum) + 1 > MAX_PATH) {
1612 DISPLAY("Error: path too long\n");
1613 return 1;
1614 }
1615 outputBuffer(fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart, outPath);
1616
1617 if (origPath) {
1618 if (snprintf(outPath, MAX_PATH, "%s/z%06u", origPath, fnum) + 1 > MAX_PATH) {
1619 DISPLAY("Error: path too long\n");
1620 return 1;
1621 }
1622 outputBuffer(fr.srcStart, (BYTE*)fr.src - (BYTE*)fr.srcStart, outPath);
1623 }
1624 }
1625
1626 DISPLAY("\r%u/%u \n", fnum, numFiles);
1627
1628 return 0;
1629 }
1630
generateCorpusWithDict(U32 seed,unsigned numFiles,const char * const path,const char * const origPath,const size_t dictSize,genType_e genType)1631 static int generateCorpusWithDict(U32 seed, unsigned numFiles, const char* const path,
1632 const char* const origPath, const size_t dictSize,
1633 genType_e genType)
1634 {
1635 char outPath[MAX_PATH];
1636 BYTE* fullDict;
1637 U32 const dictID = RAND(&seed);
1638 int errorDetected = 0;
1639
1640 if (snprintf(outPath, MAX_PATH, "%s/dictionary", path) + 1 > MAX_PATH) {
1641 DISPLAY("Error: path too long\n");
1642 return 1;
1643 }
1644
1645 /* allocate space for the dictionary */
1646 fullDict = malloc(dictSize);
1647 if (fullDict == NULL) {
1648 DISPLAY("Error: could not allocate space for full dictionary.\n");
1649 return 1;
1650 }
1651
1652 /* randomly generate the dictionary */
1653 { int const ret = genRandomDict(dictID, seed, dictSize, fullDict);
1654 if (ret != 0) {
1655 errorDetected = ret;
1656 goto dictCleanup;
1657 }
1658 }
1659
1660 /* write out dictionary */
1661 if (numFiles != 0) {
1662 if (snprintf(outPath, MAX_PATH, "%s/dictionary", path) + 1 > MAX_PATH) {
1663 DISPLAY("Error: dictionary path too long\n");
1664 errorDetected = 1;
1665 goto dictCleanup;
1666 }
1667 outputBuffer(fullDict, dictSize, outPath);
1668 }
1669 else {
1670 outputBuffer(fullDict, dictSize, "dictionary");
1671 }
1672
1673 /* generate random compressed/decompressed files */
1674 { unsigned fnum;
1675 for (fnum = 0; fnum < MAX(numFiles, 1); fnum++) {
1676 frame_t fr;
1677 DISPLAYUPDATE("\r%u/%u ", fnum, numFiles);
1678 {
1679 size_t const headerSize = MAX(dictSize/4, 256);
1680 size_t const dictContentSize = dictSize-headerSize;
1681 BYTE* const dictContent = fullDict+headerSize;
1682 dictInfo const info = initDictInfo(1, dictContentSize, dictContent, dictID);
1683 if (genType == gt_frame) {
1684 seed = generateFrame(seed, &fr, info);
1685 } else {
1686 seed = generateCompressedBlock(seed, &fr, info);
1687 }
1688 }
1689
1690 if (numFiles != 0) {
1691 if (snprintf(outPath, MAX_PATH, "%s/z%06u.zst", path, fnum) + 1 > MAX_PATH) {
1692 DISPLAY("Error: path too long\n");
1693 errorDetected = 1;
1694 goto dictCleanup;
1695 }
1696 outputBuffer(fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart, outPath);
1697
1698 if (origPath) {
1699 if (snprintf(outPath, MAX_PATH, "%s/z%06u", origPath, fnum) + 1 > MAX_PATH) {
1700 DISPLAY("Error: path too long\n");
1701 errorDetected = 1;
1702 goto dictCleanup;
1703 }
1704 outputBuffer(fr.srcStart, (BYTE*)fr.src - (BYTE*)fr.srcStart, outPath);
1705 }
1706 }
1707 else {
1708 outputBuffer(fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart, path);
1709 if (origPath) {
1710 outputBuffer(fr.srcStart, (BYTE*)fr.src - (BYTE*)fr.srcStart, origPath);
1711 }
1712 }
1713 }
1714 }
1715
1716 dictCleanup:
1717 free(fullDict);
1718 return errorDetected;
1719 }
1720
1721
1722 /*_*******************************************************
1723 * Command line
1724 *********************************************************/
makeSeed(void)1725 static U32 makeSeed(void)
1726 {
1727 U32 t = (U32) time(NULL);
1728 return XXH32(&t, sizeof(t), 0) % 65536;
1729 }
1730
readInt(const char ** argument)1731 static unsigned readInt(const char** argument)
1732 {
1733 unsigned val = 0;
1734 while ((**argument>='0') && (**argument<='9')) {
1735 val *= 10;
1736 val += **argument - '0';
1737 (*argument)++;
1738 }
1739 return val;
1740 }
1741
usage(const char * programName)1742 static void usage(const char* programName)
1743 {
1744 DISPLAY( "Usage :\n");
1745 DISPLAY( " %s [args]\n", programName);
1746 DISPLAY( "\n");
1747 DISPLAY( "Arguments :\n");
1748 DISPLAY( " -p<path> : select output path (default:stdout)\n");
1749 DISPLAY( " in multiple files mode this should be a directory\n");
1750 DISPLAY( " -o<path> : select path to output original file (default:no output)\n");
1751 DISPLAY( " in multiple files mode this should be a directory\n");
1752 DISPLAY( " -s# : select seed (default:random based on time)\n");
1753 DISPLAY( " -n# : number of files to generate (default:1)\n");
1754 DISPLAY( " -t : activate test mode (test files against libzstd instead of outputting them)\n");
1755 DISPLAY( " -T# : length of time to run tests for\n");
1756 DISPLAY( " -v : increase verbosity level (default:0, max:7)\n");
1757 DISPLAY( " -h/H : display help/long help and exit\n");
1758 }
1759
advancedUsage(const char * programName)1760 static void advancedUsage(const char* programName)
1761 {
1762 usage(programName);
1763 DISPLAY( "\n");
1764 DISPLAY( "Advanced arguments :\n");
1765 DISPLAY( " --content-size : always include the content size in the frame header\n");
1766 DISPLAY( " --use-dict=# : include a dictionary used to decompress the corpus\n");
1767 DISPLAY( " --gen-blocks : generate raw compressed blocks without block/frame headers\n");
1768 DISPLAY( " --max-block-size-log=# : max block size log, must be in range [2, 17]\n");
1769 DISPLAY( " --max-content-size-log=# : max content size log, must be <= 20\n");
1770 DISPLAY( " (this is ignored with gen-blocks)\n");
1771 }
1772
1773 /*! readU32FromChar() :
1774 @return : unsigned integer value read from input in `char` format
1775 allows and interprets K, KB, KiB, M, MB and MiB suffix.
1776 Will also modify `*stringPtr`, advancing it to position where it stopped reading.
1777 Note : function result can overflow if digit string > MAX_UINT */
readU32FromChar(const char ** stringPtr)1778 static unsigned readU32FromChar(const char** stringPtr)
1779 {
1780 unsigned result = 0;
1781 while ((**stringPtr >='0') && (**stringPtr <='9'))
1782 result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
1783 if ((**stringPtr=='K') || (**stringPtr=='M')) {
1784 result <<= 10;
1785 if (**stringPtr=='M') result <<= 10;
1786 (*stringPtr)++ ;
1787 if (**stringPtr=='i') (*stringPtr)++;
1788 if (**stringPtr=='B') (*stringPtr)++;
1789 }
1790 return result;
1791 }
1792
1793 /** longCommandWArg() :
1794 * check if *stringPtr is the same as longCommand.
1795 * If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
1796 * @return 0 and doesn't modify *stringPtr otherwise.
1797 */
longCommandWArg(const char ** stringPtr,const char * longCommand)1798 static unsigned longCommandWArg(const char** stringPtr, const char* longCommand)
1799 {
1800 size_t const comSize = strlen(longCommand);
1801 int const result = !strncmp(*stringPtr, longCommand, comSize);
1802 if (result) *stringPtr += comSize;
1803 return result;
1804 }
1805
main(int argc,char ** argv)1806 int main(int argc, char** argv)
1807 {
1808 U32 seed = 0;
1809 int seedset = 0;
1810 unsigned numFiles = 0;
1811 unsigned testDuration = 0;
1812 int testMode = 0;
1813 const char* path = NULL;
1814 const char* origPath = NULL;
1815 int useDict = 0;
1816 unsigned dictSize = (10 << 10); /* 10 kB default */
1817 genType_e genType = gt_frame;
1818
1819 int argNb;
1820
1821 /* Check command line */
1822 for (argNb=1; argNb<argc; argNb++) {
1823 const char* argument = argv[argNb];
1824 if(!argument) continue; /* Protection if argument empty */
1825
1826 /* Handle commands. Aggregated commands are allowed */
1827 if (argument[0]=='-') {
1828 argument++;
1829 while (*argument!=0) {
1830 switch(*argument)
1831 {
1832 case 'h':
1833 usage(argv[0]);
1834 return 0;
1835 case 'H':
1836 advancedUsage(argv[0]);
1837 return 0;
1838 case 'v':
1839 argument++;
1840 g_displayLevel++;
1841 break;
1842 case 's':
1843 argument++;
1844 seedset=1;
1845 seed = readInt(&argument);
1846 break;
1847 case 'n':
1848 argument++;
1849 numFiles = readInt(&argument);
1850 break;
1851 case 'T':
1852 argument++;
1853 testDuration = readInt(&argument);
1854 if (*argument == 'm') {
1855 testDuration *= 60;
1856 argument++;
1857 if (*argument == 'n') argument++;
1858 }
1859 break;
1860 case 'o':
1861 argument++;
1862 origPath = argument;
1863 argument += strlen(argument);
1864 break;
1865 case 'p':
1866 argument++;
1867 path = argument;
1868 argument += strlen(argument);
1869 break;
1870 case 't':
1871 argument++;
1872 testMode = 1;
1873 break;
1874 case '-':
1875 argument++;
1876 if (strcmp(argument, "content-size") == 0) {
1877 opts.contentSize = 1;
1878 } else if (longCommandWArg(&argument, "use-dict=")) {
1879 dictSize = readU32FromChar(&argument);
1880 useDict = 1;
1881 } else if (strcmp(argument, "gen-blocks") == 0) {
1882 genType = gt_block;
1883 } else if (longCommandWArg(&argument, "max-block-size-log=")) {
1884 U32 value = readU32FromChar(&argument);
1885 if (value >= 2 && value <= ZSTD_BLOCKSIZE_MAX) {
1886 g_maxBlockSize = 1U << value;
1887 }
1888 } else if (longCommandWArg(&argument, "max-content-size-log=")) {
1889 U32 value = readU32FromChar(&argument);
1890 g_maxDecompressedSizeLog =
1891 MIN(MAX_DECOMPRESSED_SIZE_LOG, value);
1892 } else {
1893 advancedUsage(argv[0]);
1894 return 1;
1895 }
1896 argument += strlen(argument);
1897 break;
1898 default:
1899 usage(argv[0]);
1900 return 1;
1901 } } } } /* for (argNb=1; argNb<argc; argNb++) */
1902
1903 if (!seedset) {
1904 seed = makeSeed();
1905 }
1906
1907 if (testMode) {
1908 return runTestMode(seed, numFiles, testDuration, genType);
1909 } else {
1910 if (testDuration) {
1911 DISPLAY("Error: -T requires test mode (-t)\n\n");
1912 usage(argv[0]);
1913 return 1;
1914 }
1915 }
1916
1917 if (!path) {
1918 DISPLAY("Error: path is required in file generation mode\n");
1919 usage(argv[0]);
1920 return 1;
1921 }
1922
1923 if (numFiles == 0 && useDict == 0) {
1924 return generateFile(seed, path, origPath, genType);
1925 } else if (useDict == 0){
1926 return generateCorpus(seed, numFiles, path, origPath, genType);
1927 } else {
1928 /* should generate files with a dictionary */
1929 return generateCorpusWithDict(seed, numFiles, path, origPath, dictSize, genType);
1930 }
1931
1932 }
1933