1 /*****************************************************************************
2  * rdo.c: rate-distortion optimization
3  *****************************************************************************
4  * Copyright (C) 2005-2014 x264 project
5  *
6  * Authors: Loren Merritt <lorenm@u.washington.edu>
7  *          Fiona Glaser <fiona@x264.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
22  *
23  * This program is also available under a commercial proprietary license.
24  * For more information, contact us at licensing@x264.com.
25  *****************************************************************************/
26 
27 /* duplicate all the writer functions, just calculating bit cost
28  * instead of writing the bitstream.
29  * TODO: use these for fast 1st pass too. */
30 
31 #define RDO_SKIP_BS 1
32 
33 /* Transition and size tables for abs<9 MVD and residual coding */
34 /* Consist of i_prefix-2 1s, one zero, and a bypass sign bit */
35 uint8_t x264_cabac_transition_unary[15][128];
36 uint16_t x264_cabac_size_unary[15][128];
37 /* Transition and size tables for abs>9 MVD */
38 /* Consist of 5 1s and a bypass sign bit */
39 static uint8_t cabac_transition_5ones[128];
40 static uint16_t cabac_size_5ones[128];
41 
42 /* CAVLC: produces exactly the same bit count as a normal encode */
43 /* this probably still leaves some unnecessary computations */
44 #define bs_write1(s,v)     ((s)->i_bits_encoded += 1)
45 #define bs_write(s,n,v)    ((s)->i_bits_encoded += (n))
46 #define bs_write_ue(s,v)   ((s)->i_bits_encoded += bs_size_ue(v))
47 #define bs_write_se(s,v)   ((s)->i_bits_encoded += bs_size_se(v))
48 #define bs_write_te(s,v,l) ((s)->i_bits_encoded += bs_size_te(v,l))
49 #define x264_macroblock_write_cavlc  static x264_macroblock_size_cavlc
50 #include "cavlc.c"
51 
52 /* CABAC: not exactly the same. x264_cabac_size_decision() keeps track of
53  * fractional bits, but only finite precision. */
54 #undef  x264_cabac_encode_decision
55 #undef  x264_cabac_encode_decision_noup
56 #undef  x264_cabac_encode_bypass
57 #undef  x264_cabac_encode_terminal
58 #define x264_cabac_encode_decision(c,x,v) x264_cabac_size_decision(c,x,v)
59 #define x264_cabac_encode_decision_noup(c,x,v) x264_cabac_size_decision_noup(c,x,v)
60 #define x264_cabac_encode_terminal(c)     ((c)->f8_bits_encoded += 7)
61 #define x264_cabac_encode_bypass(c,v)     ((c)->f8_bits_encoded += 256)
62 #define x264_cabac_encode_ue_bypass(c,e,v) ((c)->f8_bits_encoded += (bs_size_ue_big(v+(1<<e)-1)-e)<<8)
63 #define x264_macroblock_write_cabac  static x264_macroblock_size_cabac
64 #include "cabac.c"
65 
66 #define COPY_CABAC h->mc.memcpy_aligned( &cabac_tmp.f8_bits_encoded, &h->cabac.f8_bits_encoded, \
67         sizeof(x264_cabac_t) - offsetof(x264_cabac_t,f8_bits_encoded) - (CHROMA444 ? 0 : (1024+12)-460) )
68 #define COPY_CABAC_PART( pos, size )\
69         memcpy( &cb->state[pos], &h->cabac.state[pos], size )
70 
cached_hadamard(x264_t * h,int size,int x,int y)71 static ALWAYS_INLINE uint64_t cached_hadamard( x264_t *h, int size, int x, int y )
72 {
73     static const uint8_t hadamard_shift_x[4] = {4,   4,   3,   3};
74     static const uint8_t hadamard_shift_y[4] = {4-0, 3-0, 4-1, 3-1};
75     static const uint8_t  hadamard_offset[4] = {0,   1,   3,   5};
76     int cache_index = (x >> hadamard_shift_x[size]) + (y >> hadamard_shift_y[size])
77                     + hadamard_offset[size];
78     uint64_t res = h->mb.pic.fenc_hadamard_cache[cache_index];
79     if( res )
80         return res - 1;
81     else
82     {
83         pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
84         res = h->pixf.hadamard_ac[size]( fenc, FENC_STRIDE );
85         h->mb.pic.fenc_hadamard_cache[cache_index] = res + 1;
86         return res;
87     }
88 }
89 
cached_satd(x264_t * h,int size,int x,int y)90 static ALWAYS_INLINE int cached_satd( x264_t *h, int size, int x, int y )
91 {
92     static const uint8_t satd_shift_x[3] = {3,   2,   2};
93     static const uint8_t satd_shift_y[3] = {2-1, 3-2, 2-2};
94     static const uint8_t  satd_offset[3] = {0,   8,   16};
95     ALIGNED_16( static pixel zero[16] ) = {0};
96     int cache_index = (x >> satd_shift_x[size - PIXEL_8x4]) + (y >> satd_shift_y[size - PIXEL_8x4])
97                     + satd_offset[size - PIXEL_8x4];
98     int res = h->mb.pic.fenc_satd_cache[cache_index];
99     if( res )
100         return res - 1;
101     else
102     {
103         pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
104         int dc = h->pixf.sad[size]( fenc, FENC_STRIDE, zero, 0 ) >> 1;
105         res = h->pixf.satd[size]( fenc, FENC_STRIDE, zero, 0 ) - dc;
106         h->mb.pic.fenc_satd_cache[cache_index] = res + 1;
107         return res;
108     }
109 }
110 
111 /* Psy RD distortion metric: SSD plus "Absolute Difference of Complexities" */
112 /* SATD and SA8D are used to measure block complexity. */
113 /* The difference between SATD and SA8D scores are both used to avoid bias from the DCT size.  Using SATD */
114 /* only, for example, results in overusage of 8x8dct, while the opposite occurs when using SA8D. */
115 
116 /* FIXME:  Is there a better metric than averaged SATD/SA8D difference for complexity difference? */
117 /* Hadamard transform is recursive, so a SATD+SA8D can be done faster by taking advantage of this fact. */
118 /* This optimization can also be used in non-RD transform decision. */
119 
ssd_plane(x264_t * h,int size,int p,int x,int y)120 static inline int ssd_plane( x264_t *h, int size, int p, int x, int y )
121 {
122     ALIGNED_16( static pixel zero[16] ) = {0};
123     int satd = 0;
124     pixel *fdec = h->mb.pic.p_fdec[p] + x + y*FDEC_STRIDE;
125     pixel *fenc = h->mb.pic.p_fenc[p] + x + y*FENC_STRIDE;
126     if( p == 0 && h->mb.i_psy_rd )
127     {
128         /* If the plane is smaller than 8x8, we can't do an SA8D; this probably isn't a big problem. */
129         if( size <= PIXEL_8x8 )
130         {
131             uint64_t fdec_acs = h->pixf.hadamard_ac[size]( fdec, FDEC_STRIDE );
132             uint64_t fenc_acs = cached_hadamard( h, size, x, y );
133             satd = abs((int32_t)fdec_acs - (int32_t)fenc_acs)
134                  + abs((int32_t)(fdec_acs>>32) - (int32_t)(fenc_acs>>32));
135             satd >>= 1;
136         }
137         else
138         {
139             int dc = h->pixf.sad[size]( fdec, FDEC_STRIDE, zero, 0 ) >> 1;
140             satd = abs(h->pixf.satd[size]( fdec, FDEC_STRIDE, zero, 0 ) - dc - cached_satd( h, size, x, y ));
141         }
142         satd = (satd * h->mb.i_psy_rd * h->mb.i_psy_rd_lambda + 128) >> 8;
143     }
144     return h->pixf.ssd[size](fenc, FENC_STRIDE, fdec, FDEC_STRIDE) + satd;
145 }
146 
ssd_mb(x264_t * h)147 static inline int ssd_mb( x264_t *h )
148 {
149     int chroma_size = h->luma2chroma_pixel[PIXEL_16x16];
150     int chroma_ssd = ssd_plane(h, chroma_size, 1, 0, 0) + ssd_plane(h, chroma_size, 2, 0, 0);
151     chroma_ssd = ((uint64_t)chroma_ssd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
152     return ssd_plane(h, PIXEL_16x16, 0, 0, 0) + chroma_ssd;
153 }
154 
x264_rd_cost_mb(x264_t * h,int i_lambda2)155 static int x264_rd_cost_mb( x264_t *h, int i_lambda2 )
156 {
157     int b_transform_bak = h->mb.b_transform_8x8;
158     int i_ssd;
159     int i_bits;
160     int type_bak = h->mb.i_type;
161 
162     x264_macroblock_encode( h );
163 
164     if( h->mb.b_deblock_rdo )
165         x264_macroblock_deblock( h );
166 
167     i_ssd = ssd_mb( h );
168 
169     if( IS_SKIP( h->mb.i_type ) )
170     {
171         i_bits = (1 * i_lambda2 + 128) >> 8;
172     }
173     else if( h->param.b_cabac )
174     {
175         x264_cabac_t cabac_tmp;
176         COPY_CABAC;
177         x264_macroblock_size_cabac( h, &cabac_tmp );
178         i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 32768 ) >> 16;
179     }
180     else
181     {
182         x264_macroblock_size_cavlc( h );
183         i_bits = ( h->out.bs.i_bits_encoded * i_lambda2 + 128 ) >> 8;
184     }
185 
186     h->mb.b_transform_8x8 = b_transform_bak;
187     h->mb.i_type = type_bak;
188 
189     return i_ssd + i_bits;
190 }
191 
192 /* partition RD functions use 8 bits more precision to avoid large rounding errors at low QPs */
193 
x264_rd_cost_subpart(x264_t * h,int i_lambda2,int i4,int i_pixel)194 static uint64_t x264_rd_cost_subpart( x264_t *h, int i_lambda2, int i4, int i_pixel )
195 {
196     uint64_t i_ssd, i_bits;
197 
198     x264_macroblock_encode_p4x4( h, i4 );
199     if( i_pixel == PIXEL_8x4 )
200         x264_macroblock_encode_p4x4( h, i4+1 );
201     if( i_pixel == PIXEL_4x8 )
202         x264_macroblock_encode_p4x4( h, i4+2 );
203 
204     i_ssd = ssd_plane( h, i_pixel, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
205     if( CHROMA444 )
206     {
207         int chromassd = ssd_plane( h, i_pixel, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
208                       + ssd_plane( h, i_pixel, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
209         chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
210         i_ssd += chromassd;
211     }
212 
213     if( h->param.b_cabac )
214     {
215         x264_cabac_t cabac_tmp;
216         COPY_CABAC;
217         x264_subpartition_size_cabac( h, &cabac_tmp, i4, i_pixel );
218         i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
219     }
220     else
221         i_bits = x264_subpartition_size_cavlc( h, i4, i_pixel );
222 
223     return (i_ssd<<8) + i_bits;
224 }
225 
x264_rd_cost_part(x264_t * h,int i_lambda2,int i4,int i_pixel)226 uint64_t x264_rd_cost_part( x264_t *h, int i_lambda2, int i4, int i_pixel )
227 {
228     uint64_t i_ssd, i_bits;
229     int i8 = i4 >> 2;
230     int ssd_x;
231     int ssd_y;
232     int chromapix;
233     int chromassd;
234 
235     if( i_pixel == PIXEL_16x16 )
236     {
237         int i_cost = x264_rd_cost_mb( h, i_lambda2 );
238         return i_cost;
239     }
240 
241     if( i_pixel > PIXEL_8x8 )
242         return x264_rd_cost_subpart( h, i_lambda2, i4, i_pixel );
243 
244     h->mb.i_cbp_luma = 0;
245 
246     x264_macroblock_encode_p8x8( h, i8 );
247     if( i_pixel == PIXEL_16x8 )
248         x264_macroblock_encode_p8x8( h, i8+1 );
249     if( i_pixel == PIXEL_8x16 )
250         x264_macroblock_encode_p8x8( h, i8+2 );
251 
252     ssd_x = 8*(i8&1);
253     ssd_y = 8*(i8>>1);
254     i_ssd = ssd_plane( h, i_pixel, 0, ssd_x, ssd_y );
255     chromapix = h->luma2chroma_pixel[i_pixel];
256     chromassd = ssd_plane( h, chromapix, 1, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT )
257                   + ssd_plane( h, chromapix, 2, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT );
258     i_ssd += ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
259 
260     if( h->param.b_cabac )
261     {
262         x264_cabac_t cabac_tmp;
263         COPY_CABAC;
264         x264_partition_size_cabac( h, &cabac_tmp, i8, i_pixel );
265         i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
266     }
267     else
268         i_bits = x264_partition_size_cavlc( h, i8, i_pixel ) * i_lambda2;
269 
270     return (i_ssd<<8) + i_bits;
271 }
272 
x264_rd_cost_i8x8(x264_t * h,int i_lambda2,int i8,int i_mode,pixel edge[4][32])273 static uint64_t x264_rd_cost_i8x8( x264_t *h, int i_lambda2, int i8, int i_mode, pixel edge[4][32] )
274 {
275     uint64_t i_ssd, i_bits;
276     int plane_count = CHROMA444 ? 3 : 1;
277     int i_qp = h->mb.i_qp;
278 	int p;
279 
280 	h->mb.i_cbp_luma &= ~(1<<i8);
281     h->mb.b_transform_8x8 = 1;
282 
283     for( p = 0; p < plane_count; p++ )
284     {
285         x264_mb_encode_i8x8( h, p, i8, i_qp, i_mode, edge[p], 1 );
286         i_qp = h->mb.i_chroma_qp;
287     }
288 
289     i_ssd = ssd_plane( h, PIXEL_8x8, 0, (i8&1)*8, (i8>>1)*8 );
290     if( CHROMA444 )
291     {
292         int chromassd = ssd_plane( h, PIXEL_8x8, 1, (i8&1)*8, (i8>>1)*8 )
293                       + ssd_plane( h, PIXEL_8x8, 2, (i8&1)*8, (i8>>1)*8 );
294         chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
295         i_ssd += chromassd;
296     }
297 
298     if( h->param.b_cabac )
299     {
300         x264_cabac_t cabac_tmp;
301         COPY_CABAC;
302         x264_partition_i8x8_size_cabac( h, &cabac_tmp, i8, i_mode );
303         i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
304     }
305     else
306         i_bits = x264_partition_i8x8_size_cavlc( h, i8, i_mode ) * i_lambda2;
307 
308     return (i_ssd<<8) + i_bits;
309 }
310 
x264_rd_cost_i4x4(x264_t * h,int i_lambda2,int i4,int i_mode)311 static uint64_t x264_rd_cost_i4x4( x264_t *h, int i_lambda2, int i4, int i_mode )
312 {
313     uint64_t i_ssd, i_bits;
314     int plane_count = CHROMA444 ? 3 : 1;
315     int i_qp = h->mb.i_qp;
316 	int p;
317 
318     for( p = 0; p < plane_count; p++ )
319     {
320         x264_mb_encode_i4x4( h, p, i4, i_qp, i_mode, 1 );
321         i_qp = h->mb.i_chroma_qp;
322     }
323 
324     i_ssd = ssd_plane( h, PIXEL_4x4, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
325     if( CHROMA444 )
326     {
327         int chromassd = ssd_plane( h, PIXEL_4x4, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
328                       + ssd_plane( h, PIXEL_4x4, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
329         chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
330         i_ssd += chromassd;
331     }
332 
333     if( h->param.b_cabac )
334     {
335         x264_cabac_t cabac_tmp;
336         COPY_CABAC;
337         x264_partition_i4x4_size_cabac( h, &cabac_tmp, i4, i_mode );
338         i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
339     }
340     else
341         i_bits = x264_partition_i4x4_size_cavlc( h, i4, i_mode ) * i_lambda2;
342 
343     return (i_ssd<<8) + i_bits;
344 }
345 
x264_rd_cost_chroma(x264_t * h,int i_lambda2,int i_mode,int b_dct)346 static uint64_t x264_rd_cost_chroma( x264_t *h, int i_lambda2, int i_mode, int b_dct )
347 {
348     uint64_t i_ssd, i_bits;
349     int chromapix;
350 
351     if( b_dct )
352         x264_mb_encode_chroma( h, 0, h->mb.i_chroma_qp );
353 
354     chromapix = h->luma2chroma_pixel[PIXEL_16x16];
355     i_ssd = ssd_plane( h, chromapix, 1, 0, 0 )
356           + ssd_plane( h, chromapix, 2, 0, 0 );
357 
358     h->mb.i_chroma_pred_mode = i_mode;
359 
360     if( h->param.b_cabac )
361     {
362         x264_cabac_t cabac_tmp;
363         COPY_CABAC;
364         x264_chroma_size_cabac( h, &cabac_tmp );
365         i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
366     }
367     else
368         i_bits = x264_chroma_size_cavlc( h ) * i_lambda2;
369 
370     return (i_ssd<<8) + i_bits;
371 }
372 /****************************************************************************
373  * Trellis RD quantization
374  ****************************************************************************/
375 
376 #define TRELLIS_SCORE_MAX LLN(-1) // negative marks the node as invalid
377 #define TRELLIS_SCORE_BIAS LLN(1)<<60; // bias so that all valid scores are positive, even after negative contributions from psy
378 #define CABAC_SIZE_BITS 8
379 #define LAMBDA_BITS 4
380 
381 /* precalculate the cost of coding various combinations of bits in a single context */
x264_rdo_init(void)382 void x264_rdo_init( void )
383 {
384 	int i_prefix;
385 	int i_ctx;
386 
387 	for( i_prefix = 0; i_prefix < 15; i_prefix++ )
388     {
389         for( i_ctx = 0; i_ctx < 128; i_ctx++ )
390         {
391             int f8_bits = 0;
392             uint8_t ctx = i_ctx;
393 			int i;
394 
395             for( i = 1; i < i_prefix; i++ )
396                 f8_bits += x264_cabac_size_decision2( &ctx, 1 );
397             if( i_prefix > 0 && i_prefix < 14 )
398                 f8_bits += x264_cabac_size_decision2( &ctx, 0 );
399             f8_bits += 1 << CABAC_SIZE_BITS; //sign
400 
401             x264_cabac_size_unary[i_prefix][i_ctx] = f8_bits;
402             x264_cabac_transition_unary[i_prefix][i_ctx] = ctx;
403         }
404     }
405     for( i_ctx = 0; i_ctx < 128; i_ctx++ )
406     {
407         int f8_bits = 0;
408         uint8_t ctx = i_ctx;
409 		int i;
410 
411         for( i = 0; i < 5; i++ )
412             f8_bits += x264_cabac_size_decision2( &ctx, 1 );
413         f8_bits += 1 << CABAC_SIZE_BITS; //sign
414 
415         cabac_size_5ones[i_ctx] = f8_bits;
416         cabac_transition_5ones[i_ctx] = ctx;
417     }
418 }
419 
420 typedef struct
421 {
422     uint64_t score;
423     int level_idx; // index into level_tree[]
424     uint8_t cabac_state[4]; // just contexts 0,4,8,9 of the 10 relevant to coding abs_level_m1
425 } trellis_node_t;
426 
427 typedef struct
428 {
429     uint16_t next;
430     uint16_t abs_level;
431 } trellis_level_t;
432 
433 // TODO:
434 // save cabac state between blocks?
435 // use trellis' RD score instead of x264_mb_decimate_score?
436 // code 8x8 sig/last flags forwards with deadzone and save the contexts at
437 //   each position?
438 // change weights when using CQMs?
439 
440 // possible optimizations:
441 // make scores fit in 32bit
442 // save quantized coefs during rd, to avoid a duplicate trellis in the final encode
443 // if trellissing all MBRD modes, finish SSD calculation so we can skip all of
444 //   the normal dequant/idct/ssd/cabac
445 
446 // the unquant_mf here is not the same as dequant_mf:
447 // in normal operation (dct->quant->dequant->idct) the dct and idct are not
448 // normalized. quant/dequant absorb those scaling factors.
449 // in this function, we just do (quant->unquant) and want the output to be
450 // comparable to the input. so unquant is the direct inverse of quant,
451 // and uses the dct scaling factors, not the idct ones.
452 
453 #define SIGN(x,y) ((x^(y >> 31))-(y >> 31))
454 
455 #define SET_LEVEL(ndst, nsrc, l) {\
456     if( sizeof(trellis_level_t) == sizeof(uint32_t) )\
457         M32( &level_tree[levels_used] ) = pack16to32( nsrc.level_idx, l );\
458     else\
459         level_tree[levels_used] = (trellis_level_t){ nsrc.level_idx, l };\
460     ndst.level_idx = levels_used;\
461     levels_used++;\
462 }
463 
464 // encode all values of the dc coef in a block which is known to have no ac
465 static NOINLINE
trellis_dc_shortcut(int sign_coef,int quant_coef,int unquant_mf,int coef_weight,int lambda2,uint8_t * cabac_state,int cost_sig)466 int trellis_dc_shortcut( int sign_coef, int quant_coef, int unquant_mf, int coef_weight, int lambda2, uint8_t *cabac_state, int cost_sig )
467 {
468     uint64_t bscore = TRELLIS_SCORE_MAX;
469     int ret = 0;
470     int q = abs( quant_coef );
471 	int abs_level;
472 
473 	for( abs_level = q-1; abs_level <= q; abs_level++ )
474     {
475         int unquant_abs_level = (unquant_mf * abs_level + 128) >> 8;
476 
477         /* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */
478         int d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);
479         uint64_t score = (uint64_t)d*d * coef_weight;
480 
481         /* code the proposed level, and count how much entropy it would take */
482         if( abs_level )
483         {
484             unsigned f8_bits = cost_sig;
485             int prefix = X264_MIN( abs_level - 1, 14 );
486             f8_bits += x264_cabac_size_decision_noup2( cabac_state+1, prefix > 0 );
487             f8_bits += x264_cabac_size_unary[prefix][cabac_state[5]];
488             if( abs_level >= 15 )
489                 f8_bits += bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS;
490             score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );
491         }
492 
493         COPY2_IF_LT( bscore, score, ret, abs_level );
494     }
495     return SIGN(ret, sign_coef);
496 }
497 
498 // encode one value of one coef in one context
499 static ALWAYS_INLINE
trellis_coef(int j,int const_level,int abs_level,int prefix,int suffix_cost,int node_ctx,int level1_ctx,int levelgt1_ctx,uint64_t ssd,int cost_siglast[3],trellis_node_t * nodes_cur,trellis_node_t * nodes_prev,trellis_level_t * level_tree,int levels_used,int lambda2,uint8_t * level_state)500 int trellis_coef( int j, int const_level, int abs_level, int prefix, int suffix_cost,
501                   int node_ctx, int level1_ctx, int levelgt1_ctx, uint64_t ssd, int cost_siglast[3],
502                   trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
503                   trellis_level_t *level_tree, int levels_used, int lambda2, uint8_t *level_state )
504 {
505     uint64_t score = nodes_prev[j].score + ssd;
506     /* code the proposed level, and count how much entropy it would take */
507     unsigned f8_bits = cost_siglast[ j ? 1 : 2 ];
508     uint8_t level1_state = (j >= 3) ? nodes_prev[j].cabac_state[level1_ctx>>2] : level_state[level1_ctx];
509     uint8_t levelgt1_state;
510     f8_bits += x264_cabac_entropy[level1_state ^ (const_level > 1)];
511 
512 	if( const_level > 1 )
513     {
514         levelgt1_state = j >= 6 ? nodes_prev[j].cabac_state[levelgt1_ctx-6] : level_state[levelgt1_ctx];
515         f8_bits += x264_cabac_size_unary[prefix][levelgt1_state] + suffix_cost;
516     }
517     else
518         f8_bits += 1 << CABAC_SIZE_BITS;
519     score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );
520 
521     /* save the node if it's better than any existing node with the same cabac ctx */
522     if( score < nodes_cur[node_ctx].score )
523     {
524         nodes_cur[node_ctx].score = score;
525         if( j == 2 || (j <= 3 && node_ctx == 4) ) // init from input state
526             M32(nodes_cur[node_ctx].cabac_state) = M32(level_state+12);
527         else if( j >= 3 )
528             M32(nodes_cur[node_ctx].cabac_state) = M32(nodes_prev[j].cabac_state);
529         if( j >= 3 ) // skip the transition if we're not going to reuse the context
530             nodes_cur[node_ctx].cabac_state[level1_ctx>>2] = x264_cabac_transition[level1_state][const_level > 1];
531         if( const_level > 1 && node_ctx == 7 )
532             nodes_cur[node_ctx].cabac_state[levelgt1_ctx-6] = x264_cabac_transition_unary[prefix][levelgt1_state];
533         nodes_cur[node_ctx].level_idx = nodes_prev[j].level_idx;
534 		SET_LEVEL( nodes_cur[node_ctx], nodes_prev[j], abs_level );
535 	}
536     return levels_used;
537 }
538 
539 // encode one value of one coef in all contexts, templated by which value that is.
540 // in ctx_lo, the set of live nodes is contiguous and starts at ctx0, so return as soon as we've seen one failure.
541 // in ctx_hi, they're contiguous within each block of 4 ctxs, but not necessarily starting at the beginning,
542 // so exploiting that would be more complicated.
543 static NOINLINE
trellis_coef0_0(uint64_t ssd0,trellis_node_t * nodes_cur,trellis_node_t * nodes_prev,trellis_level_t * level_tree,int levels_used)544 int trellis_coef0_0( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
545                      trellis_level_t *level_tree, int levels_used )
546 {
547 	int j;
548 
549 	nodes_cur[0].score = nodes_prev[0].score + ssd0;
550     nodes_cur[0].level_idx = nodes_prev[0].level_idx;
551     for( j = 1; j < 4 && (int64_t)nodes_prev[j].score >= 0; j++ )
552     {
553         nodes_cur[j].score = nodes_prev[j].score;
554         if( j >= 3 )
555             M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
556 		SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
557 	}
558     return levels_used;
559 }
560 
561 static NOINLINE
trellis_coef0_1(uint64_t ssd0,trellis_node_t * nodes_cur,trellis_node_t * nodes_prev,trellis_level_t * level_tree,int levels_used)562 int trellis_coef0_1( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
563                      trellis_level_t *level_tree, int levels_used )
564 {
565 	int j;
566 	for( j = 1; j < 8; j++ )
567         // this branch only affects speed, not function; there's nothing wrong with updating invalid nodes in coef0.
568         if( (int64_t)nodes_prev[j].score >= 0 )
569         {
570             nodes_cur[j].score = nodes_prev[j].score;
571             if( j >= 3 )
572                 M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
573 			SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
574 		}
575     return levels_used;
576 }
577 
578 #define COEF(const_level, ctx_hi, j, ...)\
579     if( !j || (int64_t)nodes_prev[j].score >= 0 )\
580         levels_used = trellis_coef( j, const_level, abs_level, prefix, suffix_cost, __VA_ARGS__,\
581                                     j?ssd1:ssd0, cost_siglast, nodes_cur, nodes_prev,\
582                                     level_tree, levels_used, lambda2, level_state );\
583     else if( !ctx_hi )\
584         return levels_used;
585 
586 static NOINLINE
trellis_coef1_0(uint64_t ssd0,uint64_t ssd1,int cost_siglast[3],trellis_node_t * nodes_cur,trellis_node_t * nodes_prev,trellis_level_t * level_tree,int levels_used,int lambda2,uint8_t * level_state)587 int trellis_coef1_0( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
588                      trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
589                      trellis_level_t *level_tree, int levels_used, int lambda2,
590                      uint8_t *level_state )
591 {
592     int abs_level = 1, prefix = 1, suffix_cost = 0;
593     COEF( 1, 0, 0, 1, 1, 0 );
594     COEF( 1, 0, 1, 2, 2, 0 );
595     COEF( 1, 0, 2, 3, 3, 0 );
596     COEF( 1, 0, 3, 3, 4, 0 );
597     return levels_used;
598 }
599 
600 static NOINLINE
trellis_coef1_1(uint64_t ssd0,uint64_t ssd1,int cost_siglast[3],trellis_node_t * nodes_cur,trellis_node_t * nodes_prev,trellis_level_t * level_tree,int levels_used,int lambda2,uint8_t * level_state)601 int trellis_coef1_1( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
602                      trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
603                      trellis_level_t *level_tree, int levels_used, int lambda2,
604                      uint8_t *level_state )
605 {
606     int abs_level = 1, prefix = 1, suffix_cost = 0;
607     COEF( 1, 1, 1, 2, 2, 0 );
608     COEF( 1, 1, 2, 3, 3, 0 );
609     COEF( 1, 1, 3, 3, 4, 0 );
610     COEF( 1, 1, 4, 4, 0, 0 );
611     COEF( 1, 1, 5, 5, 0, 0 );
612     COEF( 1, 1, 6, 6, 0, 0 );
613     COEF( 1, 1, 7, 7, 0, 0 );
614     return levels_used;
615 }
616 
617 static NOINLINE
trellis_coefn_0(int abs_level,uint64_t ssd0,uint64_t ssd1,int cost_siglast[3],trellis_node_t * nodes_cur,trellis_node_t * nodes_prev,trellis_level_t * level_tree,int levels_used,int lambda2,uint8_t * level_state,int levelgt1_ctx)618 int trellis_coefn_0( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
619                      trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
620                      trellis_level_t *level_tree, int levels_used, int lambda2,
621                      uint8_t *level_state, int levelgt1_ctx )
622 {
623     int prefix = X264_MIN( abs_level-1, 14 );
624     int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
625     COEF( 2, 0, 0, 4, 1, 5 );
626     COEF( 2, 0, 1, 4, 2, 5 );
627     COEF( 2, 0, 2, 4, 3, 5 );
628     COEF( 2, 0, 3, 4, 4, 5 );
629     return levels_used;
630 }
631 
632 static NOINLINE
trellis_coefn_1(int abs_level,uint64_t ssd0,uint64_t ssd1,int cost_siglast[3],trellis_node_t * nodes_cur,trellis_node_t * nodes_prev,trellis_level_t * level_tree,int levels_used,int lambda2,uint8_t * level_state,int levelgt1_ctx)633 int trellis_coefn_1( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
634                      trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
635                      trellis_level_t *level_tree, int levels_used, int lambda2,
636                      uint8_t *level_state, int levelgt1_ctx )
637 {
638     int prefix = X264_MIN( abs_level-1, 14 );
639     int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
640     COEF( 2, 1, 1, 4, 2, 5 );
641     COEF( 2, 1, 2, 4, 3, 5 );
642     COEF( 2, 1, 3, 4, 4, 5 );
643     COEF( 2, 1, 4, 5, 0, 6 );
644     COEF( 2, 1, 5, 6, 0, 7 );
645     COEF( 2, 1, 6, 7, 0, 8 );
646     COEF( 2, 1, 7, 7, 0, levelgt1_ctx );
647     return levels_used;
648 }
649 
650 static ALWAYS_INLINE
quant_trellis_cabac(x264_t * h,dctcoef * dct,udctcoef * quant_mf,udctcoef * quant_bias,const int * unquant_mf,const uint8_t * zigzag,int ctx_block_cat,int lambda2,int b_ac,int b_chroma,int dc,int num_coefs,int idx)651 int quant_trellis_cabac( x264_t *h, dctcoef *dct,
652                          udctcoef *quant_mf, udctcoef *quant_bias, const int *unquant_mf,
653                          const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
654                          int b_chroma, int dc, int num_coefs, int idx )
655 {
656     ALIGNED_ARRAY_N( dctcoef, orig_coefs, [64] );
657     ALIGNED_ARRAY_N( dctcoef, quant_coefs, [64] );
658 
659 	const uint32_t *coef_weight1 = num_coefs == 64 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
660     const uint32_t *coef_weight2 = num_coefs == 64 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
661     const int b_interlaced = MB_INTERLACED;
662     uint8_t *cabac_state_sig = &h->cabac.state[ x264_significant_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
663     uint8_t *cabac_state_last = &h->cabac.state[ x264_last_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
664     int levelgt1_ctx = b_chroma && dc ? 8 : 9;
665     int last_nnz;
666     uint8_t *cabac_state;
667     trellis_level_t level_tree[64*8*2];
668     int levels_used;
669     trellis_node_t nodes[2][8];
670     trellis_node_t *nodes_cur;
671     trellis_node_t *nodes_prev;
672     trellis_node_t *bnode;
673     int i;
674 	int j2;
675     ALIGNED_4( uint8_t level_state[16] );
676     int level;
677 
678     if( dc )
679     {
680         if( num_coefs == 16 )
681         {
682             memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
683             if( !h->quantf.quant_4x4_dc( dct, quant_mf[0] >> 1, quant_bias[0] << 1 ) )
684                 return 0;
685             h->zigzagf.scan_4x4( quant_coefs, dct );
686         }
687         else
688         {
689             int nz;
690 			int i2;
691 
692 			memcpy( orig_coefs, dct, sizeof(dctcoef)*num_coefs );
693             nz = h->quantf.quant_2x2_dc( &dct[0], quant_mf[0] >> 1, quant_bias[0] << 1 );
694             if( num_coefs == 8 )
695                 nz |= h->quantf.quant_2x2_dc( &dct[4], quant_mf[0] >> 1, quant_bias[0] << 1 );
696             if( !nz )
697                 return 0;
698             for( i2 = 0; i2 < num_coefs; i2++ )
699                 quant_coefs[i2] = dct[zigzag[i2]];
700         }
701     }
702     else
703     {
704         if( num_coefs == 64 )
705         {
706             h->mc.memcpy_aligned( orig_coefs, dct, sizeof(dctcoef)*64 );
707             if( !h->quantf.quant_8x8( dct, quant_mf, quant_bias ) )
708                 return 0;
709             h->zigzagf.scan_8x8( quant_coefs, dct );
710         }
711         else //if( num_coefs == 16 )
712         {
713             memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
714             if( !h->quantf.quant_4x4( dct, quant_mf, quant_bias ) )
715                 return 0;
716             h->zigzagf.scan_4x4( quant_coefs, dct );
717         }
718     }
719 
720     last_nnz = h->quantf.coeff_last[ctx_block_cat]( quant_coefs+b_ac )+b_ac;
721     cabac_state = &h->cabac.state[ x264_coeff_abs_level_m1_offset[ctx_block_cat] ];
722 
723     /* shortcut for dc-only blocks.
724      * this doesn't affect the output, but saves some unnecessary computation. */
725     if( last_nnz == 0 && !dc )
726     {
727         int cost_sig = x264_cabac_size_decision_noup2( &cabac_state_sig[0], 1 )
728                      + x264_cabac_size_decision_noup2( &cabac_state_last[0], 1 );
729         dct[0] = trellis_dc_shortcut( orig_coefs[0], quant_coefs[0], unquant_mf[0], coef_weight2[0], lambda2, cabac_state, cost_sig );
730         return !!dct[0];
731     }
732 
733 #if HAVE_MMX && ARCH_X86_64
734 #define TRELLIS_ARGS unquant_mf, zigzag, lambda2, last_nnz, orig_coefs, quant_coefs, dct,\
735                      cabac_state_sig, cabac_state_last, M64(cabac_state), M16(cabac_state+8)
736     if( num_coefs == 16 && !dc )
737         if( b_chroma || !h->mb.i_psy_trellis )
738             return h->quantf.trellis_cabac_4x4( TRELLIS_ARGS, b_ac );
739         else
740             return h->quantf.trellis_cabac_4x4_psy( TRELLIS_ARGS, b_ac, h->mb.pic.fenc_dct4[idx&15], h->mb.i_psy_trellis );
741     else if( num_coefs == 64 && !dc )
742         if( b_chroma || !h->mb.i_psy_trellis )
743             return h->quantf.trellis_cabac_8x8( TRELLIS_ARGS, b_interlaced );
744         else
745             return h->quantf.trellis_cabac_8x8_psy( TRELLIS_ARGS, b_interlaced, h->mb.pic.fenc_dct8[idx&3], h->mb.i_psy_trellis);
746     else if( num_coefs == 8 && dc )
747         return h->quantf.trellis_cabac_chroma_422_dc( TRELLIS_ARGS );
748     else if( dc )
749         return h->quantf.trellis_cabac_dc( TRELLIS_ARGS, num_coefs-1 );
750 #endif
751 
752     // (# of coefs) * (# of ctx) * (# of levels tried) = 1024
753     // we don't need to keep all of those: (# of coefs) * (# of ctx) would be enough,
754     // but it takes more time to remove dead states than you gain in reduced memory.
755     levels_used = 1;
756     /* init trellis */
757     nodes_cur = nodes[0];
758     nodes_prev = nodes[1];
759     for( j2 = 1; j2 < 4; j2++ )
760         nodes_cur[j2].score = TRELLIS_SCORE_MAX;
761     nodes_cur[0].score = TRELLIS_SCORE_BIAS;
762     nodes_cur[0].level_idx = 0;
763     level_tree[0].abs_level = 0;
764     level_tree[0].next = 0;
765     memcpy( level_state, cabac_state, 10 );
766     level_state[12] = cabac_state[0]; // packed subset for copying into trellis_node_t
767     level_state[13] = cabac_state[4];
768     level_state[14] = cabac_state[8];
769     level_state[15] = cabac_state[9];
770 
771     idx &= num_coefs == 64 ? 3 : 15;
772 
773     // coefs are processed in reverse order, because that's how the abs value is coded.
774     // last_coef and significant_coef flags are normally coded in forward order, but
775     // we have to reverse them to match the levels.
776     // in 4x4 blocks, last_coef and significant_coef use a separate context for each
777     // position, so the order doesn't matter, and we don't even have to update their contexts.
778     // in 8x8 blocks, some positions share contexts, so we'll just have to hope that
779     // cabac isn't too sensitive.
780     i = last_nnz;
781 #define TRELLIS_LOOP(ctx_hi)\
782     for( ; i >= b_ac; i-- )\
783     {\
784         /* skip 0s: this doesn't affect the output, but saves some unnecessary computation. */\
785         if( !quant_coefs[i] )\
786         {\
787             /* no need to calculate ssd of 0s: it's the same in all nodes.\
788              * no need to modify level_tree for ctx=0: it starts with an infinite loop of 0s.
789              * subtracting from one score is equivalent to adding to the rest. */\
790             if( !ctx_hi )\
791             {\
792                 int sigindex = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
793                                b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
794                 uint64_t cost_sig0 = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 )\
795                                    * (uint64_t)lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
796                 nodes_cur[0].score -= cost_sig0;\
797             }\
798             for( int j = 1; j < (ctx_hi?8:4); j++ )\
799                 SET_LEVEL( nodes_cur[j], nodes_cur[j], 0 );\
800             continue;\
801         }\
802 \
803         int sign_coef = orig_coefs[zigzag[i]];\
804         int abs_coef = abs( sign_coef );\
805         int q = abs( quant_coefs[i] );\
806         int cost_siglast[3]; /* { zero, nonzero, nonzero-and-last } */\
807         XCHG( trellis_node_t*, nodes_cur, nodes_prev );\
808         for( int j = ctx_hi; j < 8; j++ )\
809             nodes_cur[j].score = TRELLIS_SCORE_MAX;\
810 \
811         if( i < num_coefs-1 || ctx_hi )\
812         {\
813             int sigindex  = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
814                             b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
815             int lastindex = !dc && num_coefs == 64 ? x264_last_coeff_flag_offset_8x8[i] :\
816                             b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
817             cost_siglast[0] = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 );\
818             int cost_sig1   = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 1 );\
819             cost_siglast[1] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 0 ) + cost_sig1;\
820             if( !ctx_hi )\
821                 cost_siglast[2] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 1 ) + cost_sig1;\
822         }\
823         else\
824         {\
825             cost_siglast[0] = cost_siglast[1] = cost_siglast[2] = 0;\
826         }\
827 \
828         /* there are a few cases where increasing the coeff magnitude helps,\
829          * but it's only around .003 dB, and skipping them ~doubles the speed of trellis.\
830          * could also try q-2: that sometimes helps, but also sometimes decimates blocks\
831          * that are better left coded, especially at QP > 40. */\
832         uint64_t ssd0[2], ssd1[2];\
833         for( int k = 0; k < 2; k++ )\
834         {\
835             int abs_level = q-1+k;\
836             int unquant_abs_level = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[i]]) * abs_level + 128) >> 8);\
837             int d = abs_coef - unquant_abs_level;\
838             /* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */\
839             if( h->mb.i_psy_trellis && i && !dc && !b_chroma )\
840             {\
841                 int orig_coef = (num_coefs == 64) ? h->mb.pic.fenc_dct8[idx][zigzag[i]] : h->mb.pic.fenc_dct4[idx][zigzag[i]];\
842                 int predicted_coef = orig_coef - sign_coef;\
843                 int psy_value = abs(unquant_abs_level + SIGN(predicted_coef, sign_coef));\
844                 int psy_weight = coef_weight1[zigzag[i]] * h->mb.i_psy_trellis;\
845                 ssd1[k] = (uint64_t)d*d * coef_weight2[zigzag[i]] - psy_weight * psy_value;\
846             }\
847             else\
848             /* FIXME: for i16x16 dc is this weight optimal? */\
849                 ssd1[k] = (uint64_t)d*d * (dc?256:coef_weight2[zigzag[i]]);\
850             ssd0[k] = ssd1[k];\
851             if( !i && !dc && !ctx_hi )\
852             {\
853                 /* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */\
854                 d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);\
855                 ssd0[k] = (uint64_t)d*d * coef_weight2[zigzag[i]];\
856             }\
857         }\
858 \
859         /* argument passing imposes some significant overhead here. gcc's interprocedural register allocation isn't up to it. */\
860         switch( q )\
861         {\
862         case 1:\
863             ssd1[0] += (uint64_t)cost_siglast[0] * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
864             levels_used = trellis_coef0_##ctx_hi( ssd0[0]-ssd1[0], nodes_cur, nodes_prev, level_tree, levels_used );\
865             levels_used = trellis_coef1_##ctx_hi( ssd0[1]-ssd1[0], ssd1[1]-ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
866             goto next##ctx_hi;\
867         case 2:\
868             levels_used = trellis_coef1_##ctx_hi( ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
869             levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
870             goto next1;\
871         default:\
872             levels_used = trellis_coefn_##ctx_hi( q-1, ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
873             levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
874             goto next1;\
875         }\
876         next##ctx_hi:;\
877     }\
878     /* output levels from the best path through the trellis */\
879     bnode = &nodes_cur[ctx_hi];\
880     for( int j = ctx_hi+1; j < (ctx_hi?8:4); j++ )\
881         if( nodes_cur[j].score < bnode->score )\
882             bnode = &nodes_cur[j];
883 
884     // keep 2 versions of the main quantization loop, depending on which subsets of the node_ctxs are live
885     // node_ctx 0..3, i.e. having not yet encountered any coefs that might be quantized to >1
886 	TRELLIS_LOOP(0);
887 
888     if( bnode == &nodes_cur[0] )
889     {
890         /* We only need to zero an empty 4x4 block. 8x8 can be
891            implicitly emptied via zero nnz, as can dc. */
892         if( num_coefs == 16 && !dc )
893             memset( dct, 0, 16 * sizeof(dctcoef) );
894         return 0;
895     }
896 
897     if(0) // accessible only by goto, not fallthrough
898     {
899         // node_ctx 1..7 (ctx0 ruled out because we never try both level0 and level2+ on the same coef)
900 		TRELLIS_LOOP(1);
901 	}
902 
903     level = bnode->level_idx;
904     for( i = b_ac; i <= last_nnz; i++ )
905     {
906         dct[zigzag[i]] = SIGN(level_tree[level].abs_level, dct[zigzag[i]]);
907         level = level_tree[level].next;
908     }
909 
910     return 1;
911 }
912 
913 /* FIXME: This is a gigantic hack.  See below.
914  *
915  * CAVLC is much more difficult to trellis than CABAC.
916  *
917  * CABAC has only three states to track: significance map, last, and the
918  * level state machine.
919  * CAVLC, by comparison, has five: coeff_token (trailing + total),
920  * total_zeroes, zero_run, and the level state machine.
921  *
922  * I know of no paper that has managed to design a close-to-optimal trellis
923  * that covers all five of these and isn't exponential-time.  As a result, this
924  * "trellis" isn't: it's just a QNS search.  Patches welcome for something better.
925  * It's actually surprisingly fast, albeit not quite optimal.  It's pretty close
926  * though; since CAVLC only has 2^16 possible rounding modes (assuming only two
927  * roundings as options), a bruteforce search is feasible.  Testing shows
928  * that this QNS is reasonably close to optimal in terms of compression.
929  *
930  * TODO:
931  *  Don't bother changing large coefficients when it wouldn't affect bit cost
932  *  (e.g. only affecting bypassed suffix bits).
933  *  Don't re-run all parts of CAVLC bit cost calculation when not necessary.
934  *  e.g. when changing a coefficient from one non-zero value to another in
935  *  such a way that trailing ones and suffix length isn't affected. */
936 static ALWAYS_INLINE
quant_trellis_cavlc(x264_t * h,dctcoef * dct,const udctcoef * quant_mf,const int * unquant_mf,const uint8_t * zigzag,int ctx_block_cat,int lambda2,int b_ac,int b_chroma,int dc,int num_coefs,int idx,int b_8x8)937 int quant_trellis_cavlc( x264_t *h, dctcoef *dct,
938                          const udctcoef *quant_mf, const int *unquant_mf,
939                          const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
940                          int b_chroma, int dc, int num_coefs, int idx, int b_8x8 )
941 {
942     ALIGNED_16( dctcoef quant_coefs[2][16] );
943     ALIGNED_16( dctcoef coefs[16] ) = {0};
944     const uint32_t *coef_weight1 = b_8x8 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
945     const uint32_t *coef_weight2 = b_8x8 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
946     int delta_distortion[16];
947     int64_t score = ULLN(1)<<62;
948     int i, j;
949     const int f = 1<<15;
950     int nC = b_chroma && dc ? 3 + (num_coefs>>2)
951                             : ct_index[x264_mb_predict_non_zero_code( h, !b_chroma && dc ? (idx - LUMA_DC)*16 : idx )];
952 
953     /* Code for handling 8x8dct -> 4x4dct CAVLC munging.  Input/output use a different
954      * step/start/end than internal processing. */
955     int step = 1;
956     int start = b_ac;
957     int end = num_coefs - 1;
958     int last_nnz;
959     int coef_mask;
960     int round_mask;
961 
962 
963 	if( b_8x8 )
964     {
965         start = idx&3;
966         end = 60 + start;
967         step = 4;
968     }
969     idx &= 15;
970 
971     lambda2 <<= LAMBDA_BITS;
972 
973     /* Find last non-zero coefficient. */
974     for( i = end; i >= start; i -= step )
975         if( (unsigned)(dct[zigzag[i]] * (dc?quant_mf[0]>>1:quant_mf[zigzag[i]]) + f-1) >= 2*f )
976             break;
977 
978     if( i < start )
979         goto zeroblock;
980 
981     /* Prepare for QNS search: calculate distortion caused by each DCT coefficient
982      * rounding to be searched.
983      *
984      * We only search two roundings (nearest and nearest-1) like in CABAC trellis,
985      * so we just store the difference in distortion between them. */
986     last_nnz = b_8x8 ? i >> 2 : i;
987     coef_mask = 0;
988     round_mask = 0;
989     for( i = b_ac, j = start; i <= last_nnz; i++, j += step )
990     {
991         int coef = dct[zigzag[j]];
992         int abs_coef = abs(coef);
993         int sign = coef < 0 ? -1 : 1;
994         int nearest_quant = ( f + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
995         quant_coefs[1][i] = quant_coefs[0][i] = sign * nearest_quant;
996         coefs[i] = quant_coefs[1][i];
997         if( nearest_quant )
998         {
999             /* We initialize the trellis with a deadzone halfway between nearest rounding
1000              * and always-round-down.  This gives much better results than initializing to either
1001              * extreme.
1002              * FIXME: should we initialize to the deadzones used by deadzone quant? */
1003             int deadzone_quant = ( f/2 + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
1004             int unquant1 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-0) + 128) >> 8);
1005             int unquant0 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-1) + 128) >> 8);
1006             int d1 = abs_coef - unquant1;
1007             int d0 = abs_coef - unquant0;
1008             delta_distortion[i] = (d0*d0 - d1*d1) * (dc?256:coef_weight2[zigzag[j]]);
1009 
1010             /* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */
1011             if( h->mb.i_psy_trellis && j && !dc && !b_chroma )
1012             {
1013                 int orig_coef = b_8x8 ? h->mb.pic.fenc_dct8[idx>>2][zigzag[j]] : h->mb.pic.fenc_dct4[idx][zigzag[j]];
1014                 int predicted_coef = orig_coef - coef;
1015                 int psy_weight = coef_weight1[zigzag[j]];
1016                 int psy_value0 = h->mb.i_psy_trellis * abs(predicted_coef + unquant0 * sign);
1017                 int psy_value1 = h->mb.i_psy_trellis * abs(predicted_coef + unquant1 * sign);
1018                 delta_distortion[i] += (psy_value0 - psy_value1) * psy_weight;
1019             }
1020 
1021             quant_coefs[0][i] = sign * (nearest_quant-1);
1022             if( deadzone_quant != nearest_quant )
1023                 coefs[i] = quant_coefs[0][i];
1024             else
1025                 round_mask |= 1 << i;
1026         }
1027         else
1028             delta_distortion[i] = 0;
1029         coef_mask |= (!!coefs[i]) << i;
1030     }
1031 
1032     /* Calculate the cost of the starting state. */
1033     h->out.bs.i_bits_encoded = 0;
1034     if( !coef_mask )
1035         bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
1036     else
1037         x264_cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
1038     score = (int64_t)h->out.bs.i_bits_encoded * lambda2;
1039 
1040     /* QNS loop: pick the change that improves RD the most, apply it, repeat.
1041      * coef_mask and round_mask are used to simplify tracking of nonzeroness
1042      * and rounding modes chosen. */
1043     while( 1 )
1044     {
1045         int64_t iter_score = score;
1046         int iter_distortion_delta = 0;
1047         int iter_coef = -1;
1048         int iter_mask = coef_mask;
1049         int iter_round = round_mask;
1050         for( i = b_ac; i <= last_nnz; i++ )
1051         {
1052             int cur_round;
1053             int round_change;
1054             int old_coef;
1055             int new_coef;
1056             int cur_mask;
1057             int cur_distortion_delta;
1058             int64_t cur_score;
1059 
1060 			if( !delta_distortion[i] )
1061                 continue;
1062 
1063             /* Set up all the variables for this iteration. */
1064             cur_round = round_mask ^ (1 << i);
1065             round_change = (cur_round >> i)&1;
1066             old_coef = coefs[i];
1067             new_coef = quant_coefs[round_change][i];
1068             cur_mask = (coef_mask&~(1 << i))|(!!new_coef << i);
1069             cur_distortion_delta = delta_distortion[i] * (round_change ? -1 : 1);
1070             cur_score = cur_distortion_delta;
1071             coefs[i] = new_coef;
1072 
1073             /* Count up bits. */
1074             h->out.bs.i_bits_encoded = 0;
1075             if( !cur_mask )
1076                 bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
1077             else
1078                 x264_cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
1079             cur_score += (int64_t)h->out.bs.i_bits_encoded * lambda2;
1080 
1081             coefs[i] = old_coef;
1082             if( cur_score < iter_score )
1083             {
1084                 iter_score = cur_score;
1085                 iter_coef = i;
1086                 iter_mask = cur_mask;
1087                 iter_round = cur_round;
1088                 iter_distortion_delta = cur_distortion_delta;
1089             }
1090         }
1091         if( iter_coef >= 0 )
1092         {
1093             score = iter_score - iter_distortion_delta;
1094             coef_mask = iter_mask;
1095             round_mask = iter_round;
1096             coefs[iter_coef] = quant_coefs[((round_mask >> iter_coef)&1)][iter_coef];
1097             /* Don't try adjusting coefficients we've already adjusted.
1098              * Testing suggests this doesn't hurt results -- and sometimes actually helps. */
1099             delta_distortion[iter_coef] = 0;
1100         }
1101         else
1102             break;
1103     }
1104 
1105     if( coef_mask )
1106     {
1107         for( i = b_ac, j = start; i < num_coefs; i++, j += step )
1108             dct[zigzag[j]] = coefs[i];
1109         return 1;
1110     }
1111 
1112 zeroblock:
1113     if( !dc )
1114     {
1115         if( b_8x8 )
1116             for( i = start; i <= end; i+=step )
1117                 dct[zigzag[i]] = 0;
1118         else
1119             memset( dct, 0, 16*sizeof(dctcoef) );
1120     }
1121     return 0;
1122 }
1123 
x264_quant_luma_dc_trellis(x264_t * h,dctcoef * dct,int i_quant_cat,int i_qp,int ctx_block_cat,int b_intra,int idx)1124 int x264_quant_luma_dc_trellis( x264_t *h, dctcoef *dct, int i_quant_cat, int i_qp, int ctx_block_cat, int b_intra, int idx )
1125 {
1126     if( h->param.b_cabac )
1127         return quant_trellis_cabac( h, dct,
1128             h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
1129             h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
1130             ctx_block_cat, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx );
1131 
1132     return quant_trellis_cavlc( h, dct,
1133         h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
1134         DCT_LUMA_DC, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx, 0 );
1135 }
1136 
1137 static const uint8_t x264_zigzag_scan2x2[4] = { 0, 1, 2, 3 };
1138 static const uint8_t x264_zigzag_scan2x4[8] = { 0, 2, 1, 4, 6, 3, 5, 7 };
1139 
x264_quant_chroma_dc_trellis(x264_t * h,dctcoef * dct,int i_qp,int b_intra,int idx)1140 int x264_quant_chroma_dc_trellis( x264_t *h, dctcoef *dct, int i_qp, int b_intra, int idx )
1141 {
1142     const uint8_t *zigzag;
1143     int num_coefs;
1144     int quant_cat = CQM_4IC+1 - b_intra;
1145 
1146     if( CHROMA_FORMAT == CHROMA_422 )
1147     {
1148         zigzag = x264_zigzag_scan2x4;
1149         num_coefs = 8;
1150     }
1151     else
1152     {
1153         zigzag = x264_zigzag_scan2x2;
1154         num_coefs = 4;
1155     }
1156 
1157     if( h->param.b_cabac )
1158         return quant_trellis_cabac( h, dct,
1159             h->quant4_mf[quant_cat][i_qp], h->quant4_bias0[quant_cat][i_qp],
1160             h->unquant4_mf[quant_cat][i_qp], zigzag,
1161             DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx );
1162 
1163     return quant_trellis_cavlc( h, dct,
1164         h->quant4_mf[quant_cat][i_qp], h->unquant4_mf[quant_cat][i_qp], zigzag,
1165         DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx, 0 );
1166 }
1167 
x264_quant_4x4_trellis(x264_t * h,dctcoef * dct,int i_quant_cat,int i_qp,int ctx_block_cat,int b_intra,int b_chroma,int idx)1168 int x264_quant_4x4_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
1169                             int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
1170 {
1171     static const uint8_t ctx_ac[14] = {0,1,0,0,1,0,0,1,0,0,0,1,0,0};
1172     int b_ac = ctx_ac[ctx_block_cat];
1173     if( h->param.b_cabac )
1174         return quant_trellis_cabac( h, dct,
1175             h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
1176             h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
1177             ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx );
1178 
1179     return quant_trellis_cavlc( h, dct,
1180             h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp],
1181             x264_zigzag_scan4[MB_INTERLACED],
1182             ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx, 0 );
1183 }
1184 
x264_quant_8x8_trellis(x264_t * h,dctcoef * dct,int i_quant_cat,int i_qp,int ctx_block_cat,int b_intra,int b_chroma,int idx)1185 int x264_quant_8x8_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
1186                             int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
1187 {
1188     int nzaccum;
1189 	int i;
1190 
1191 	if( h->param.b_cabac )
1192     {
1193         return quant_trellis_cabac( h, dct,
1194             h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias0[i_quant_cat][i_qp],
1195             h->unquant8_mf[i_quant_cat][i_qp], x264_zigzag_scan8[MB_INTERLACED],
1196             ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 64, idx );
1197     }
1198 
1199     /* 8x8 CAVLC is split into 4 4x4 blocks */
1200     nzaccum = 0;
1201     for( i = 0; i < 4; i++ )
1202     {
1203         int nz = quant_trellis_cavlc( h, dct,
1204             h->quant8_mf[i_quant_cat][i_qp], h->unquant8_mf[i_quant_cat][i_qp],
1205             x264_zigzag_scan8[MB_INTERLACED],
1206             DCT_LUMA_4x4, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 16, idx*4+i, 1 );
1207         /* Set up nonzero count for future calls */
1208         h->mb.cache.non_zero_count[x264_scan8[idx*4+i]] = nz;
1209         nzaccum |= nz;
1210     }
1211     STORE_8x8_NNZ( 0, idx, 0 );
1212     return nzaccum;
1213 }
1214