1 /*****************************************************************************
2 * checkasm.c: assembly check tool
3 *****************************************************************************
4 * Copyright (C) 2003-2014 x264 project
5 *
6 * Authors: Loren Merritt <lorenm@u.washington.edu>
7 * Laurent Aimar <fenrir@via.ecp.fr>
8 * Fiona Glaser <fiona@x264.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
23 *
24 * This program is also available under a commercial proprietary license.
25 * For more information, contact us at licensing@x264.com.
26 *****************************************************************************/
27
28 #include <ctype.h>
29 #include "common/common.h"
30 #include "common/cpu.h"
31
32 // GCC doesn't align stack variables on ARM, so use .bss
33 #if ARCH_ARM
34 #undef ALIGNED_16
35 #define ALIGNED_16( var ) DECLARE_ALIGNED( static var, 16 )
36 #endif
37
38 /* buf1, buf2: initialised to random data and shouldn't write into them */
39 uint8_t *buf1, *buf2;
40 /* buf3, buf4: used to store output */
41 uint8_t *buf3, *buf4;
42 /* pbuf1, pbuf2: initialised to random pixel data and shouldn't write into them. */
43 pixel *pbuf1, *pbuf2;
44 /* pbuf3, pbuf4: point to buf3, buf4, just for type convenience */
45 pixel *pbuf3, *pbuf4;
46
47 int quiet = 0;
48
49 #define report( name ) { \
50 if( used_asm && !quiet ) \
51 fprintf( stderr, " - %-21s [%s]\n", name, ok ? "OK" : "FAILED" ); \
52 if( !ok ) ret = -1; \
53 }
54
55 #define BENCH_RUNS 100 // tradeoff between accuracy and speed
56 #define BENCH_ALIGNS 16 // number of stack+heap data alignments (another accuracy vs speed tradeoff)
57 #define MAX_FUNCS 1000 // just has to be big enough to hold all the existing functions
58 #define MAX_CPUS 30 // number of different combinations of cpu flags
59
60 typedef struct
61 {
62 void *pointer; // just for detecting duplicates
63 uint32_t cpu;
64 uint64_t cycles;
65 uint32_t den;
66 } bench_t;
67
68 typedef struct
69 {
70 char *name;
71 bench_t vers[MAX_CPUS];
72 } bench_func_t;
73
74 int do_bench = 0;
75 int bench_pattern_len = 0;
76 const char *bench_pattern = "";
77 char func_name[100];
78 static bench_func_t benchs[MAX_FUNCS];
79
80 static const char *pixel_names[12] = { "16x16", "16x8", "8x16", "8x8", "8x4", "4x8", "4x4", "4x16", "4x2", "2x8", "2x4", "2x2" };
81 static const char *intra_predict_16x16_names[7] = { "v", "h", "dc", "p", "dcl", "dct", "dc8" };
82 static const char *intra_predict_8x8c_names[7] = { "dc", "h", "v", "p", "dcl", "dct", "dc8" };
83 static const char *intra_predict_4x4_names[12] = { "v", "h", "dc", "ddl", "ddr", "vr", "hd", "vl", "hu", "dcl", "dct", "dc8" };
84 static const char **intra_predict_8x8_names = intra_predict_4x4_names;
85 static const char **intra_predict_8x16c_names = intra_predict_8x8c_names;
86
87 #define set_func_name(...) snprintf( func_name, sizeof(func_name), __VA_ARGS__ )
88
read_time(void)89 static inline uint32_t read_time(void)
90 {
91 uint32_t a = 0;
92 #if HAVE_X86_INLINE_ASM
93 asm volatile( "rdtsc" : "=a"(a) :: "edx", "memory" );
94 #elif ARCH_PPC
95 asm volatile( "mftb %0" : "=r"(a) :: "memory" );
96 #elif ARCH_ARM // ARMv7 only
97 asm volatile( "mrc p15, 0, %0, c9, c13, 0" : "=r"(a) :: "memory" );
98 #endif
99 return a;
100 }
101
get_bench(const char * name,int cpu)102 static bench_t* get_bench( const char *name, int cpu )
103 {
104 int i, j;
105 for( i = 0; benchs[i].name && strcmp(name, benchs[i].name); i++ )
106 assert( i < MAX_FUNCS );
107 if( !benchs[i].name )
108 benchs[i].name = strdup( name );
109 if( !cpu )
110 return &benchs[i].vers[0];
111 for( j = 1; benchs[i].vers[j].cpu && benchs[i].vers[j].cpu != cpu; j++ )
112 assert( j < MAX_CPUS );
113 benchs[i].vers[j].cpu = cpu;
114 return &benchs[i].vers[j];
115 }
116
cmp_nop(const void * a,const void * b)117 static int cmp_nop( const void *a, const void *b )
118 {
119 return *(uint16_t*)a - *(uint16_t*)b;
120 }
121
cmp_bench(const void * a,const void * b)122 static int cmp_bench( const void *a, const void *b )
123 {
124 // asciibetical sort except preserving numbers
125 const char *sa = ((bench_func_t*)a)->name;
126 const char *sb = ((bench_func_t*)b)->name;
127 for( ;; sa++, sb++ )
128 {
129 if( !*sa && !*sb )
130 return 0;
131 if( isdigit( *sa ) && isdigit( *sb ) && isdigit( sa[1] ) != isdigit( sb[1] ) )
132 return isdigit( sa[1] ) - isdigit( sb[1] );
133 if( *sa != *sb )
134 return *sa - *sb;
135 }
136 }
137
print_bench(void)138 static void print_bench(void)
139 {
140 uint16_t nops[10000];
141 int nfuncs, nop_time=0;
142
143 for( int i = 0; i < 10000; i++ )
144 {
145 uint32_t t = read_time();
146 nops[i] = read_time() - t;
147 }
148 qsort( nops, 10000, sizeof(uint16_t), cmp_nop );
149 for( int i = 500; i < 9500; i++ )
150 nop_time += nops[i];
151 nop_time /= 900;
152 printf( "nop: %d\n", nop_time );
153
154 for( nfuncs = 0; nfuncs < MAX_FUNCS && benchs[nfuncs].name; nfuncs++ );
155 qsort( benchs, nfuncs, sizeof(bench_func_t), cmp_bench );
156 for( int i = 0; i < nfuncs; i++ )
157 for( int j = 0; j < MAX_CPUS && (!j || benchs[i].vers[j].cpu); j++ )
158 {
159 int k;
160 bench_t *b = &benchs[i].vers[j];
161 if( !b->den )
162 continue;
163 for( k = 0; k < j && benchs[i].vers[k].pointer != b->pointer; k++ );
164 if( k < j )
165 continue;
166 printf( "%s_%s%s: %"PRId64"\n", benchs[i].name,
167 #if HAVE_MMX
168 b->cpu&X264_CPU_AVX2 && b->cpu&X264_CPU_FMA3 ? "avx2_fma3" :
169 b->cpu&X264_CPU_AVX2 ? "avx2" :
170 b->cpu&X264_CPU_FMA3 ? "fma3" :
171 b->cpu&X264_CPU_FMA4 ? "fma4" :
172 b->cpu&X264_CPU_XOP ? "xop" :
173 b->cpu&X264_CPU_AVX ? "avx" :
174 b->cpu&X264_CPU_SSE4 ? "sse4" :
175 b->cpu&X264_CPU_SSSE3 ? "ssse3" :
176 b->cpu&X264_CPU_SSE3 ? "sse3" :
177 /* print sse2slow only if there's also a sse2fast version of the same func */
178 b->cpu&X264_CPU_SSE2_IS_SLOW && j<MAX_CPUS-1 && b[1].cpu&X264_CPU_SSE2_IS_FAST && !(b[1].cpu&X264_CPU_SSE3) ? "sse2slow" :
179 b->cpu&X264_CPU_SSE2 ? "sse2" :
180 b->cpu&X264_CPU_SSE ? "sse" :
181 b->cpu&X264_CPU_MMX ? "mmx" :
182 #elif ARCH_PPC
183 b->cpu&X264_CPU_ALTIVEC ? "altivec" :
184 #elif ARCH_ARM
185 b->cpu&X264_CPU_NEON ? "neon" :
186 b->cpu&X264_CPU_ARMV6 ? "armv6" :
187 #elif ARCH_AARCH64
188 b->cpu&X264_CPU_NEON ? "neon" :
189 b->cpu&X264_CPU_ARMV8 ? "armv8" :
190 #endif
191 "c",
192 #if HAVE_MMX
193 b->cpu&X264_CPU_CACHELINE_32 ? "_c32" :
194 b->cpu&X264_CPU_SLOW_ATOM && b->cpu&X264_CPU_CACHELINE_64 ? "_c64_atom" :
195 b->cpu&X264_CPU_CACHELINE_64 ? "_c64" :
196 b->cpu&X264_CPU_SLOW_SHUFFLE ? "_slowshuffle" :
197 b->cpu&X264_CPU_LZCNT ? "_lzcnt" :
198 b->cpu&X264_CPU_BMI2 ? "_bmi2" :
199 b->cpu&X264_CPU_BMI1 ? "_bmi1" :
200 b->cpu&X264_CPU_SLOW_CTZ ? "_slow_ctz" :
201 b->cpu&X264_CPU_SLOW_ATOM ? "_atom" :
202 #elif ARCH_ARM
203 b->cpu&X264_CPU_FAST_NEON_MRC ? "_fast_mrc" :
204 #endif
205 "",
206 (int64_t)(10*b->cycles/b->den - nop_time)/4 );
207 }
208 }
209
210 #if ARCH_X86 || ARCH_X86_64
211 int x264_stack_pagealign( int (*func)(), int align );
212
213 /* detect when callee-saved regs aren't saved
214 * needs an explicit asm check because it only sometimes crashes in normal use. */
215 intptr_t x264_checkasm_call( intptr_t (*func)(), int *ok, ... );
216 #else
217 #define x264_stack_pagealign( func, align ) func()
218 #endif
219
220 #define call_c1(func,...) func(__VA_ARGS__)
221
222 #if ARCH_X86_64
223 /* Evil hack: detect incorrect assumptions that 32-bit ints are zero-extended to 64-bit.
224 * This is done by clobbering the stack with junk around the stack pointer and calling the
225 * assembly function through x264_checkasm_call with added dummy arguments which forces all
226 * real arguments to be passed on the stack and not in registers. For 32-bit argument the
227 * upper half of the 64-bit register location on the stack will now contain junk. Note that
228 * this is dependant on compiler behaviour and that interrupts etc. at the wrong time may
229 * overwrite the junk written to the stack so there's no guarantee that it will always
230 * detect all functions that assumes zero-extension.
231 */
232 void x264_checkasm_stack_clobber( uint64_t clobber, ... );
233 #define call_a1(func,...) ({ \
234 uint64_t r = (rand() & 0xffff) * 0x0001000100010001ULL; \
235 x264_checkasm_stack_clobber( r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r,r ); /* max_args+6 */ \
236 x264_checkasm_call(( intptr_t(*)())func, &ok, 0, 0, 0, 0, __VA_ARGS__ ); })
237 #elif ARCH_X86
238 #define call_a1(func,...) x264_checkasm_call( (intptr_t(*)())func, &ok, __VA_ARGS__ )
239 #else
240 #define call_a1 call_c1
241 #endif
242
243 #define call_bench(func,cpu,...)\
244 if( do_bench && !strncmp(func_name, bench_pattern, bench_pattern_len) )\
245 {\
246 uint64_t tsum = 0;\
247 int tcount = 0;\
248 call_a1(func, __VA_ARGS__);\
249 for( int ti = 0; ti < (cpu?BENCH_RUNS:BENCH_RUNS/4); ti++ )\
250 {\
251 uint32_t t = read_time();\
252 func(__VA_ARGS__);\
253 func(__VA_ARGS__);\
254 func(__VA_ARGS__);\
255 func(__VA_ARGS__);\
256 t = read_time() - t;\
257 if( (uint64_t)t*tcount <= tsum*4 && ti > 0 )\
258 {\
259 tsum += t;\
260 tcount++;\
261 }\
262 }\
263 bench_t *b = get_bench( func_name, cpu );\
264 b->cycles += tsum;\
265 b->den += tcount;\
266 b->pointer = func;\
267 }
268
269 /* for most functions, run benchmark and correctness test at the same time.
270 * for those that modify their inputs, run the above macros separately */
271 #define call_a(func,...) ({ call_a2(func,__VA_ARGS__); call_a1(func,__VA_ARGS__); })
272 #define call_c(func,...) ({ call_c2(func,__VA_ARGS__); call_c1(func,__VA_ARGS__); })
273 #define call_a2(func,...) ({ call_bench(func,cpu_new,__VA_ARGS__); })
274 #define call_c2(func,...) ({ call_bench(func,0,__VA_ARGS__); })
275
276
check_pixel(int cpu_ref,int cpu_new)277 static int check_pixel( int cpu_ref, int cpu_new )
278 {
279 x264_pixel_function_t pixel_c;
280 x264_pixel_function_t pixel_ref;
281 x264_pixel_function_t pixel_asm;
282 x264_predict_t predict_4x4[12];
283 x264_predict8x8_t predict_8x8[12];
284 x264_predict_8x8_filter_t predict_8x8_filter;
285 ALIGNED_16( pixel edge[36] );
286 uint16_t cost_mv[32];
287 int ret = 0, ok, used_asm;
288
289 x264_pixel_init( 0, &pixel_c );
290 x264_pixel_init( cpu_ref, &pixel_ref );
291 x264_pixel_init( cpu_new, &pixel_asm );
292 x264_predict_4x4_init( 0, predict_4x4 );
293 x264_predict_8x8_init( 0, predict_8x8, &predict_8x8_filter );
294 predict_8x8_filter( pbuf2+40, edge, ALL_NEIGHBORS, ALL_NEIGHBORS );
295
296 // maximize sum
297 for( int i = 0; i < 256; i++ )
298 {
299 int z = i|(i>>4);
300 z ^= z>>2;
301 z ^= z>>1;
302 pbuf4[i] = -(z&1) & PIXEL_MAX;
303 pbuf3[i] = ~pbuf4[i] & PIXEL_MAX;
304 }
305 // random pattern made of maxed pixel differences, in case an intermediate value overflows
306 for( int i = 256; i < 0x1000; i++ )
307 {
308 pbuf4[i] = -(pbuf1[i&~0x88]&1) & PIXEL_MAX;
309 pbuf3[i] = ~(pbuf4[i]) & PIXEL_MAX;
310 }
311
312 #define TEST_PIXEL( name, align ) \
313 ok = 1, used_asm = 0; \
314 for( int i = 0; i < ARRAY_ELEMS(pixel_c.name); i++ ) \
315 { \
316 int res_c, res_asm; \
317 if( pixel_asm.name[i] != pixel_ref.name[i] ) \
318 { \
319 set_func_name( "%s_%s", #name, pixel_names[i] ); \
320 used_asm = 1; \
321 for( int j = 0; j < 64; j++ ) \
322 { \
323 res_c = call_c( pixel_c.name[i], pbuf1, (intptr_t)16, pbuf2+j*!align, (intptr_t)64 ); \
324 res_asm = call_a( pixel_asm.name[i], pbuf1, (intptr_t)16, pbuf2+j*!align, (intptr_t)64 ); \
325 if( res_c != res_asm ) \
326 { \
327 ok = 0; \
328 fprintf( stderr, #name "[%d]: %d != %d [FAILED]\n", i, res_c, res_asm ); \
329 break; \
330 } \
331 } \
332 for( int j = 0; j < 0x1000 && ok; j += 256 ) \
333 { \
334 res_c = pixel_c .name[i]( pbuf3+j, 16, pbuf4+j, 16 ); \
335 res_asm = pixel_asm.name[i]( pbuf3+j, 16, pbuf4+j, 16 ); \
336 if( res_c != res_asm ) \
337 { \
338 ok = 0; \
339 fprintf( stderr, #name "[%d]: overflow %d != %d\n", i, res_c, res_asm ); \
340 } \
341 } \
342 } \
343 } \
344 report( "pixel " #name " :" );
345
346 TEST_PIXEL( sad, 0 );
347 TEST_PIXEL( sad_aligned, 1 );
348 TEST_PIXEL( ssd, 1 );
349 TEST_PIXEL( satd, 0 );
350 TEST_PIXEL( sa8d, 1 );
351
352 ok = 1, used_asm = 0;
353 if( pixel_asm.sa8d_satd[PIXEL_16x16] != pixel_ref.sa8d_satd[PIXEL_16x16] )
354 {
355 set_func_name( "sa8d_satd_%s", pixel_names[PIXEL_16x16] );
356 used_asm = 1;
357 for( int j = 0; j < 64; j++ )
358 {
359 uint32_t cost8_c = pixel_c.sa8d[PIXEL_16x16]( pbuf1, 16, pbuf2, 64 );
360 uint32_t cost4_c = pixel_c.satd[PIXEL_16x16]( pbuf1, 16, pbuf2, 64 );
361 uint64_t res_a = call_a( pixel_asm.sa8d_satd[PIXEL_16x16], pbuf1, (intptr_t)16, pbuf2, (intptr_t)64 );
362 uint32_t cost8_a = res_a;
363 uint32_t cost4_a = res_a >> 32;
364 if( cost8_a != cost8_c || cost4_a != cost4_c )
365 {
366 ok = 0;
367 fprintf( stderr, "sa8d_satd [%d]: (%d,%d) != (%d,%d) [FAILED]\n", PIXEL_16x16,
368 cost8_c, cost4_c, cost8_a, cost4_a );
369 break;
370 }
371 }
372 for( int j = 0; j < 0x1000 && ok; j += 256 ) \
373 {
374 uint32_t cost8_c = pixel_c.sa8d[PIXEL_16x16]( pbuf3+j, 16, pbuf4+j, 16 );
375 uint32_t cost4_c = pixel_c.satd[PIXEL_16x16]( pbuf3+j, 16, pbuf4+j, 16 );
376 uint64_t res_a = pixel_asm.sa8d_satd[PIXEL_16x16]( pbuf3+j, 16, pbuf4+j, 16 );
377 uint32_t cost8_a = res_a;
378 uint32_t cost4_a = res_a >> 32;
379 if( cost8_a != cost8_c || cost4_a != cost4_c )
380 {
381 ok = 0;
382 fprintf( stderr, "sa8d_satd [%d]: overflow (%d,%d) != (%d,%d) [FAILED]\n", PIXEL_16x16,
383 cost8_c, cost4_c, cost8_a, cost4_a );
384 }
385 }
386 }
387 report( "pixel sa8d_satd :" );
388
389 #define TEST_PIXEL_X( N ) \
390 ok = 1; used_asm = 0; \
391 for( int i = 0; i < 7; i++ ) \
392 { \
393 ALIGNED_16( int res_c[4] ) = {0}; \
394 ALIGNED_16( int res_asm[4] ) = {0}; \
395 if( pixel_asm.sad_x##N[i] && pixel_asm.sad_x##N[i] != pixel_ref.sad_x##N[i] ) \
396 { \
397 set_func_name( "sad_x%d_%s", N, pixel_names[i] ); \
398 used_asm = 1; \
399 for( int j = 0; j < 64; j++ ) \
400 { \
401 pixel *pix2 = pbuf2+j; \
402 res_c[0] = pixel_c.sad[i]( pbuf1, 16, pix2, 64 ); \
403 res_c[1] = pixel_c.sad[i]( pbuf1, 16, pix2+6, 64 ); \
404 res_c[2] = pixel_c.sad[i]( pbuf1, 16, pix2+1, 64 ); \
405 if( N == 4 ) \
406 { \
407 res_c[3] = pixel_c.sad[i]( pbuf1, 16, pix2+10, 64 ); \
408 call_a( pixel_asm.sad_x4[i], pbuf1, pix2, pix2+6, pix2+1, pix2+10, (intptr_t)64, res_asm ); \
409 } \
410 else \
411 call_a( pixel_asm.sad_x3[i], pbuf1, pix2, pix2+6, pix2+1, (intptr_t)64, res_asm ); \
412 if( memcmp(res_c, res_asm, N*sizeof(int)) ) \
413 { \
414 ok = 0; \
415 fprintf( stderr, "sad_x"#N"[%d]: %d,%d,%d,%d != %d,%d,%d,%d [FAILED]\n", \
416 i, res_c[0], res_c[1], res_c[2], res_c[3], \
417 res_asm[0], res_asm[1], res_asm[2], res_asm[3] ); \
418 } \
419 if( N == 4 ) \
420 call_c2( pixel_c.sad_x4[i], pbuf1, pix2, pix2+6, pix2+1, pix2+10, (intptr_t)64, res_asm ); \
421 else \
422 call_c2( pixel_c.sad_x3[i], pbuf1, pix2, pix2+6, pix2+1, (intptr_t)64, res_asm ); \
423 } \
424 } \
425 } \
426 report( "pixel sad_x"#N" :" );
427
428 TEST_PIXEL_X(3);
429 TEST_PIXEL_X(4);
430
431 #define TEST_PIXEL_VAR( i ) \
432 if( pixel_asm.var[i] != pixel_ref.var[i] ) \
433 { \
434 set_func_name( "%s_%s", "var", pixel_names[i] ); \
435 used_asm = 1; \
436 /* abi-check wrapper can't return uint64_t, so separate it from return value check */ \
437 call_c1( pixel_c.var[i], pbuf1, 16 ); \
438 call_a1( pixel_asm.var[i], pbuf1, (intptr_t)16 ); \
439 uint64_t res_c = pixel_c.var[i]( pbuf1, 16 ); \
440 uint64_t res_asm = pixel_asm.var[i]( pbuf1, 16 ); \
441 if( res_c != res_asm ) \
442 { \
443 ok = 0; \
444 fprintf( stderr, "var[%d]: %d %d != %d %d [FAILED]\n", i, (int)res_c, (int)(res_c>>32), (int)res_asm, (int)(res_asm>>32) ); \
445 } \
446 call_c2( pixel_c.var[i], pbuf1, (intptr_t)16 ); \
447 call_a2( pixel_asm.var[i], pbuf1, (intptr_t)16 ); \
448 }
449
450 ok = 1; used_asm = 0;
451 TEST_PIXEL_VAR( PIXEL_16x16 );
452 TEST_PIXEL_VAR( PIXEL_8x16 );
453 TEST_PIXEL_VAR( PIXEL_8x8 );
454 report( "pixel var :" );
455
456 #define TEST_PIXEL_VAR2( i ) \
457 if( pixel_asm.var2[i] != pixel_ref.var2[i] ) \
458 { \
459 int res_c, res_asm, ssd_c, ssd_asm; \
460 set_func_name( "%s_%s", "var2", pixel_names[i] ); \
461 used_asm = 1; \
462 res_c = call_c( pixel_c.var2[i], pbuf1, (intptr_t)16, pbuf2, (intptr_t)16, &ssd_c ); \
463 res_asm = call_a( pixel_asm.var2[i], pbuf1, (intptr_t)16, pbuf2, (intptr_t)16, &ssd_asm ); \
464 if( res_c != res_asm || ssd_c != ssd_asm ) \
465 { \
466 ok = 0; \
467 fprintf( stderr, "var2[%d]: %d != %d or %d != %d [FAILED]\n", i, res_c, res_asm, ssd_c, ssd_asm ); \
468 } \
469 }
470
471 ok = 1; used_asm = 0;
472 TEST_PIXEL_VAR2( PIXEL_8x16 );
473 TEST_PIXEL_VAR2( PIXEL_8x8 );
474 report( "pixel var2 :" );
475
476 ok = 1; used_asm = 0;
477 for( int i = 0; i < 4; i++ )
478 if( pixel_asm.hadamard_ac[i] != pixel_ref.hadamard_ac[i] )
479 {
480 set_func_name( "hadamard_ac_%s", pixel_names[i] );
481 used_asm = 1;
482 for( int j = 0; j < 32; j++ )
483 {
484 pixel *pix = (j&16 ? pbuf1 : pbuf3) + (j&15)*256;
485 call_c1( pixel_c.hadamard_ac[i], pbuf1, (intptr_t)16 );
486 call_a1( pixel_asm.hadamard_ac[i], pbuf1, (intptr_t)16 );
487 uint64_t rc = pixel_c.hadamard_ac[i]( pix, 16 );
488 uint64_t ra = pixel_asm.hadamard_ac[i]( pix, 16 );
489 if( rc != ra )
490 {
491 ok = 0;
492 fprintf( stderr, "hadamard_ac[%d]: %d,%d != %d,%d\n", i, (int)rc, (int)(rc>>32), (int)ra, (int)(ra>>32) );
493 break;
494 }
495 }
496 call_c2( pixel_c.hadamard_ac[i], pbuf1, (intptr_t)16 );
497 call_a2( pixel_asm.hadamard_ac[i], pbuf1, (intptr_t)16 );
498 }
499 report( "pixel hadamard_ac :" );
500
501 // maximize sum
502 for( int i = 0; i < 32; i++ )
503 for( int j = 0; j < 16; j++ )
504 pbuf4[16*i+j] = -((i+j)&1) & PIXEL_MAX;
505 ok = 1; used_asm = 0;
506 if( pixel_asm.vsad != pixel_ref.vsad )
507 {
508 for( int h = 2; h <= 32; h += 2 )
509 {
510 int res_c, res_asm;
511 set_func_name( "vsad" );
512 used_asm = 1;
513 for( int j = 0; j < 2 && ok; j++ )
514 {
515 pixel *p = j ? pbuf4 : pbuf1;
516 res_c = call_c( pixel_c.vsad, p, (intptr_t)16, h );
517 res_asm = call_a( pixel_asm.vsad, p, (intptr_t)16, h );
518 if( res_c != res_asm )
519 {
520 ok = 0;
521 fprintf( stderr, "vsad: height=%d, %d != %d\n", h, res_c, res_asm );
522 break;
523 }
524 }
525 }
526 }
527 report( "pixel vsad :" );
528
529 ok = 1; used_asm = 0;
530 if( pixel_asm.asd8 != pixel_ref.asd8 )
531 {
532 set_func_name( "asd8" );
533 used_asm = 1;
534 int res_c = call_c( pixel_c.asd8, pbuf1, (intptr_t)8, pbuf2, (intptr_t)8, 16 );
535 int res_a = call_a( pixel_asm.asd8, pbuf1, (intptr_t)8, pbuf2, (intptr_t)8, 16 );
536 if( res_c != res_a )
537 {
538 ok = 0;
539 fprintf( stderr, "asd: %d != %d\n", res_c, res_a );
540 }
541 }
542 report( "pixel asd :" );
543
544 #define TEST_INTRA_X3( name, i8x8, ... ) \
545 if( pixel_asm.name && pixel_asm.name != pixel_ref.name ) \
546 { \
547 ALIGNED_16( int res_c[3] ); \
548 ALIGNED_16( int res_asm[3] ); \
549 set_func_name( #name ); \
550 used_asm = 1; \
551 call_c( pixel_c.name, pbuf1+48, i8x8 ? edge : pbuf3+48, res_c ); \
552 call_a( pixel_asm.name, pbuf1+48, i8x8 ? edge : pbuf3+48, res_asm ); \
553 if( memcmp(res_c, res_asm, sizeof(res_c)) ) \
554 { \
555 ok = 0; \
556 fprintf( stderr, #name": %d,%d,%d != %d,%d,%d [FAILED]\n", \
557 res_c[0], res_c[1], res_c[2], \
558 res_asm[0], res_asm[1], res_asm[2] ); \
559 } \
560 }
561
562 #define TEST_INTRA_X9( name, cmp ) \
563 if( pixel_asm.name && pixel_asm.name != pixel_ref.name ) \
564 { \
565 set_func_name( #name ); \
566 used_asm = 1; \
567 ALIGNED_ARRAY_64( uint16_t, bitcosts,[17] ); \
568 for( int i=0; i<17; i++ ) \
569 bitcosts[i] = 9*(i!=8); \
570 memcpy( pbuf3, pbuf2, 20*FDEC_STRIDE*sizeof(pixel) ); \
571 memcpy( pbuf4, pbuf2, 20*FDEC_STRIDE*sizeof(pixel) ); \
572 for( int i=0; i<32; i++ ) \
573 { \
574 pixel *fenc = pbuf1+48+i*12; \
575 pixel *fdec1 = pbuf3+48+i*12; \
576 pixel *fdec2 = pbuf4+48+i*12; \
577 int pred_mode = i%9; \
578 int res_c = INT_MAX; \
579 for( int j=0; j<9; j++ ) \
580 { \
581 predict_4x4[j]( fdec1 ); \
582 int cost = pixel_c.cmp[PIXEL_4x4]( fenc, FENC_STRIDE, fdec1, FDEC_STRIDE ) + 9*(j!=pred_mode); \
583 if( cost < (uint16_t)res_c ) \
584 res_c = cost + (j<<16); \
585 } \
586 predict_4x4[res_c>>16]( fdec1 ); \
587 int res_a = call_a( pixel_asm.name, fenc, fdec2, bitcosts+8-pred_mode ); \
588 if( res_c != res_a ) \
589 { \
590 ok = 0; \
591 fprintf( stderr, #name": %d,%d != %d,%d [FAILED]\n", res_c>>16, res_c&0xffff, res_a>>16, res_a&0xffff ); \
592 break; \
593 } \
594 if( memcmp(fdec1, fdec2, 4*FDEC_STRIDE*sizeof(pixel)) ) \
595 { \
596 ok = 0; \
597 fprintf( stderr, #name" [FAILED]\n" ); \
598 for( int j=0; j<16; j++ ) \
599 fprintf( stderr, "%02x ", fdec1[(j&3)+(j>>2)*FDEC_STRIDE] ); \
600 fprintf( stderr, "\n" ); \
601 for( int j=0; j<16; j++ ) \
602 fprintf( stderr, "%02x ", fdec2[(j&3)+(j>>2)*FDEC_STRIDE] ); \
603 fprintf( stderr, "\n" ); \
604 break; \
605 } \
606 } \
607 }
608
609 #define TEST_INTRA8_X9( name, cmp ) \
610 if( pixel_asm.name && pixel_asm.name != pixel_ref.name ) \
611 { \
612 set_func_name( #name ); \
613 used_asm = 1; \
614 ALIGNED_ARRAY_64( uint16_t, bitcosts,[17] ); \
615 ALIGNED_ARRAY_16( uint16_t, satds_c,[16] ); \
616 ALIGNED_ARRAY_16( uint16_t, satds_a,[16] ); \
617 memset( satds_c, 0, 16 * sizeof(*satds_c) ); \
618 memset( satds_a, 0, 16 * sizeof(*satds_a) ); \
619 for( int i=0; i<17; i++ ) \
620 bitcosts[i] = 9*(i!=8); \
621 for( int i=0; i<32; i++ ) \
622 { \
623 pixel *fenc = pbuf1+48+i*12; \
624 pixel *fdec1 = pbuf3+48+i*12; \
625 pixel *fdec2 = pbuf4+48+i*12; \
626 int pred_mode = i%9; \
627 int res_c = INT_MAX; \
628 predict_8x8_filter( fdec1, edge, ALL_NEIGHBORS, ALL_NEIGHBORS ); \
629 for( int j=0; j<9; j++ ) \
630 { \
631 predict_8x8[j]( fdec1, edge ); \
632 satds_c[j] = pixel_c.cmp[PIXEL_8x8]( fenc, FENC_STRIDE, fdec1, FDEC_STRIDE ) + 9*(j!=pred_mode); \
633 if( satds_c[j] < (uint16_t)res_c ) \
634 res_c = satds_c[j] + (j<<16); \
635 } \
636 predict_8x8[res_c>>16]( fdec1, edge ); \
637 int res_a = call_a( pixel_asm.name, fenc, fdec2, edge, bitcosts+8-pred_mode, satds_a ); \
638 if( res_c != res_a || memcmp(satds_c, satds_a, sizeof(satds_c)) ) \
639 { \
640 ok = 0; \
641 fprintf( stderr, #name": %d,%d != %d,%d [FAILED]\n", res_c>>16, res_c&0xffff, res_a>>16, res_a&0xffff ); \
642 for( int j = 0; j < 9; j++ ) \
643 fprintf( stderr, "%5d ", satds_c[j]); \
644 fprintf( stderr, "\n" ); \
645 for( int j = 0; j < 9; j++ ) \
646 fprintf( stderr, "%5d ", satds_a[j]); \
647 fprintf( stderr, "\n" ); \
648 break; \
649 } \
650 for( int j=0; j<8; j++ ) \
651 if( memcmp(fdec1+j*FDEC_STRIDE, fdec2+j*FDEC_STRIDE, 8*sizeof(pixel)) ) \
652 ok = 0; \
653 if( !ok ) \
654 { \
655 fprintf( stderr, #name" [FAILED]\n" ); \
656 for( int j=0; j<8; j++ ) \
657 { \
658 for( int k=0; k<8; k++ ) \
659 fprintf( stderr, "%02x ", fdec1[k+j*FDEC_STRIDE] ); \
660 fprintf( stderr, "\n" ); \
661 } \
662 fprintf( stderr, "\n" ); \
663 for( int j=0; j<8; j++ ) \
664 { \
665 for( int k=0; k<8; k++ ) \
666 fprintf( stderr, "%02x ", fdec2[k+j*FDEC_STRIDE] ); \
667 fprintf( stderr, "\n" ); \
668 } \
669 fprintf( stderr, "\n" ); \
670 break; \
671 } \
672 } \
673 }
674
675 memcpy( pbuf3, pbuf2, 20*FDEC_STRIDE*sizeof(pixel) );
676 ok = 1; used_asm = 0;
677 TEST_INTRA_X3( intra_satd_x3_16x16, 0 );
678 TEST_INTRA_X3( intra_satd_x3_8x16c, 0 );
679 TEST_INTRA_X3( intra_satd_x3_8x8c, 0 );
680 TEST_INTRA_X3( intra_sa8d_x3_8x8, 1, edge );
681 TEST_INTRA_X3( intra_satd_x3_4x4, 0 );
682 report( "intra satd_x3 :" );
683 ok = 1; used_asm = 0;
684 TEST_INTRA_X3( intra_sad_x3_16x16, 0 );
685 TEST_INTRA_X3( intra_sad_x3_8x16c, 0 );
686 TEST_INTRA_X3( intra_sad_x3_8x8c, 0 );
687 TEST_INTRA_X3( intra_sad_x3_8x8, 1, edge );
688 TEST_INTRA_X3( intra_sad_x3_4x4, 0 );
689 report( "intra sad_x3 :" );
690 ok = 1; used_asm = 0;
691 TEST_INTRA_X9( intra_satd_x9_4x4, satd );
692 TEST_INTRA8_X9( intra_sa8d_x9_8x8, sa8d );
693 report( "intra satd_x9 :" );
694 ok = 1; used_asm = 0;
695 TEST_INTRA_X9( intra_sad_x9_4x4, sad );
696 TEST_INTRA8_X9( intra_sad_x9_8x8, sad );
697 report( "intra sad_x9 :" );
698
699 ok = 1; used_asm = 0;
700 if( pixel_asm.ssd_nv12_core != pixel_ref.ssd_nv12_core )
701 {
702 used_asm = 1;
703 set_func_name( "ssd_nv12" );
704 uint64_t res_u_c, res_v_c, res_u_a, res_v_a;
705 pixel_c.ssd_nv12_core( pbuf1, 368, pbuf2, 368, 360, 8, &res_u_c, &res_v_c );
706 pixel_asm.ssd_nv12_core( pbuf1, 368, pbuf2, 368, 360, 8, &res_u_a, &res_v_a );
707 if( res_u_c != res_u_a || res_v_c != res_v_a )
708 {
709 ok = 0;
710 fprintf( stderr, "ssd_nv12: %"PRIu64",%"PRIu64" != %"PRIu64",%"PRIu64"\n",
711 res_u_c, res_v_c, res_u_a, res_v_a );
712 }
713 call_c( pixel_c.ssd_nv12_core, pbuf1, (intptr_t)368, pbuf2, (intptr_t)368, 360, 8, &res_u_c, &res_v_c );
714 call_a( pixel_asm.ssd_nv12_core, pbuf1, (intptr_t)368, pbuf2, (intptr_t)368, 360, 8, &res_u_a, &res_v_a );
715 }
716 report( "ssd_nv12 :" );
717
718 if( pixel_asm.ssim_4x4x2_core != pixel_ref.ssim_4x4x2_core ||
719 pixel_asm.ssim_end4 != pixel_ref.ssim_end4 )
720 {
721 int cnt;
722 float res_c, res_a;
723 ALIGNED_16( int sums[5][4] ) = {{0}};
724 used_asm = ok = 1;
725 x264_emms();
726 res_c = x264_pixel_ssim_wxh( &pixel_c, pbuf1+2, 32, pbuf2+2, 32, 32, 28, pbuf3, &cnt );
727 res_a = x264_pixel_ssim_wxh( &pixel_asm, pbuf1+2, 32, pbuf2+2, 32, 32, 28, pbuf3, &cnt );
728 if( fabs( res_c - res_a ) > 1e-6 )
729 {
730 ok = 0;
731 fprintf( stderr, "ssim: %.7f != %.7f [FAILED]\n", res_c, res_a );
732 }
733 set_func_name( "ssim_core" );
734 call_c( pixel_c.ssim_4x4x2_core, pbuf1+2, (intptr_t)32, pbuf2+2, (intptr_t)32, sums );
735 call_a( pixel_asm.ssim_4x4x2_core, pbuf1+2, (intptr_t)32, pbuf2+2, (intptr_t)32, sums );
736 set_func_name( "ssim_end" );
737 call_c2( pixel_c.ssim_end4, sums, sums, 4 );
738 call_a2( pixel_asm.ssim_end4, sums, sums, 4 );
739 /* check incorrect assumptions that 32-bit ints are zero-extended to 64-bit */
740 call_c1( pixel_c.ssim_end4, sums, sums, 3 );
741 call_a1( pixel_asm.ssim_end4, sums, sums, 3 );
742 report( "ssim :" );
743 }
744
745 ok = 1; used_asm = 0;
746 for( int i = 0; i < 32; i++ )
747 cost_mv[i] = i*10;
748 for( int i = 0; i < 100 && ok; i++ )
749 if( pixel_asm.ads[i&3] != pixel_ref.ads[i&3] )
750 {
751 ALIGNED_16( uint16_t sums[72] );
752 ALIGNED_16( int dc[4] );
753 ALIGNED_16( int16_t mvs_a[48] );
754 ALIGNED_16( int16_t mvs_c[48] );
755 int mvn_a, mvn_c;
756 int thresh = rand() & 0x3fff;
757 set_func_name( "esa_ads" );
758 for( int j = 0; j < 72; j++ )
759 sums[j] = rand() & 0x3fff;
760 for( int j = 0; j < 4; j++ )
761 dc[j] = rand() & 0x3fff;
762 used_asm = 1;
763 mvn_c = call_c( pixel_c.ads[i&3], dc, sums, 32, cost_mv, mvs_c, 28, thresh );
764 mvn_a = call_a( pixel_asm.ads[i&3], dc, sums, 32, cost_mv, mvs_a, 28, thresh );
765 if( mvn_c != mvn_a || memcmp( mvs_c, mvs_a, mvn_c*sizeof(*mvs_c) ) )
766 {
767 ok = 0;
768 printf( "c%d: ", i&3 );
769 for( int j = 0; j < mvn_c; j++ )
770 printf( "%d ", mvs_c[j] );
771 printf( "\na%d: ", i&3 );
772 for( int j = 0; j < mvn_a; j++ )
773 printf( "%d ", mvs_a[j] );
774 printf( "\n\n" );
775 }
776 }
777 report( "esa ads:" );
778
779 return ret;
780 }
781
check_dct(int cpu_ref,int cpu_new)782 static int check_dct( int cpu_ref, int cpu_new )
783 {
784 x264_dct_function_t dct_c;
785 x264_dct_function_t dct_ref;
786 x264_dct_function_t dct_asm;
787 x264_quant_function_t qf;
788 int ret = 0, ok, used_asm, interlace = 0;
789 ALIGNED_ARRAY_N( dctcoef, dct1, [16],[16] );
790 ALIGNED_ARRAY_N( dctcoef, dct2, [16],[16] );
791 ALIGNED_ARRAY_N( dctcoef, dct4, [16],[16] );
792 ALIGNED_ARRAY_N( dctcoef, dct8, [4],[64] );
793 ALIGNED_16( dctcoef dctdc[2][8] );
794 x264_t h_buf;
795 x264_t *h = &h_buf;
796
797 x264_dct_init( 0, &dct_c );
798 x264_dct_init( cpu_ref, &dct_ref);
799 x264_dct_init( cpu_new, &dct_asm );
800
801 memset( h, 0, sizeof(*h) );
802 x264_param_default( &h->param );
803 h->sps->i_chroma_format_idc = 1;
804 h->chroma_qp_table = i_chroma_qp_table + 12;
805 h->param.analyse.i_luma_deadzone[0] = 0;
806 h->param.analyse.i_luma_deadzone[1] = 0;
807 h->param.analyse.b_transform_8x8 = 1;
808 for( int i = 0; i < 6; i++ )
809 h->pps->scaling_list[i] = x264_cqm_flat16;
810 x264_cqm_init( h );
811 x264_quant_init( h, 0, &qf );
812
813 /* overflow test cases */
814 for( int i = 0; i < 5; i++ )
815 {
816 pixel *enc = &pbuf3[16*i*FENC_STRIDE];
817 pixel *dec = &pbuf4[16*i*FDEC_STRIDE];
818
819 for( int j = 0; j < 16; j++ )
820 {
821 int cond_a = (i < 2) ? 1 : ((j&3) == 0 || (j&3) == (i-1));
822 int cond_b = (i == 0) ? 1 : !cond_a;
823 enc[0] = enc[1] = enc[4] = enc[5] = enc[8] = enc[9] = enc[12] = enc[13] = cond_a ? PIXEL_MAX : 0;
824 enc[2] = enc[3] = enc[6] = enc[7] = enc[10] = enc[11] = enc[14] = enc[15] = cond_b ? PIXEL_MAX : 0;
825
826 for( int k = 0; k < 4; k++ )
827 dec[k] = PIXEL_MAX - enc[k];
828
829 enc += FENC_STRIDE;
830 dec += FDEC_STRIDE;
831 }
832 }
833
834 #define TEST_DCT( name, t1, t2, size ) \
835 if( dct_asm.name != dct_ref.name ) \
836 { \
837 set_func_name( #name ); \
838 used_asm = 1; \
839 pixel *enc = pbuf3; \
840 pixel *dec = pbuf4; \
841 for( int j = 0; j < 5; j++) \
842 { \
843 call_c( dct_c.name, t1, &pbuf1[j*64], &pbuf2[j*64] ); \
844 call_a( dct_asm.name, t2, &pbuf1[j*64], &pbuf2[j*64] ); \
845 if( memcmp( t1, t2, size*sizeof(dctcoef) ) ) \
846 { \
847 ok = 0; \
848 fprintf( stderr, #name " [FAILED]\n" ); \
849 for( int k = 0; k < size; k++ )\
850 printf( "%d ", ((dctcoef*)t1)[k] );\
851 printf("\n");\
852 for( int k = 0; k < size; k++ )\
853 printf( "%d ", ((dctcoef*)t2)[k] );\
854 printf("\n");\
855 break; \
856 } \
857 call_c( dct_c.name, t1, enc, dec ); \
858 call_a( dct_asm.name, t2, enc, dec ); \
859 if( memcmp( t1, t2, size*sizeof(dctcoef) ) ) \
860 { \
861 ok = 0; \
862 fprintf( stderr, #name " [FAILED] (overflow)\n" ); \
863 break; \
864 } \
865 enc += 16*FENC_STRIDE; \
866 dec += 16*FDEC_STRIDE; \
867 } \
868 }
869 ok = 1; used_asm = 0;
870 TEST_DCT( sub4x4_dct, dct1[0], dct2[0], 16 );
871 TEST_DCT( sub8x8_dct, dct1, dct2, 16*4 );
872 TEST_DCT( sub8x8_dct_dc, dctdc[0], dctdc[1], 4 );
873 TEST_DCT( sub8x16_dct_dc, dctdc[0], dctdc[1], 8 );
874 TEST_DCT( sub16x16_dct, dct1, dct2, 16*16 );
875 report( "sub_dct4 :" );
876
877 ok = 1; used_asm = 0;
878 TEST_DCT( sub8x8_dct8, (void*)dct1[0], (void*)dct2[0], 64 );
879 TEST_DCT( sub16x16_dct8, (void*)dct1, (void*)dct2, 64*4 );
880 report( "sub_dct8 :" );
881 #undef TEST_DCT
882
883 // fdct and idct are denormalized by different factors, so quant/dequant
884 // is needed to force the coefs into the right range.
885 dct_c.sub16x16_dct( dct4, pbuf1, pbuf2 );
886 dct_c.sub16x16_dct8( dct8, pbuf1, pbuf2 );
887 for( int i = 0; i < 16; i++ )
888 {
889 qf.quant_4x4( dct4[i], h->quant4_mf[CQM_4IY][20], h->quant4_bias[CQM_4IY][20] );
890 qf.dequant_4x4( dct4[i], h->dequant4_mf[CQM_4IY], 20 );
891 }
892 for( int i = 0; i < 4; i++ )
893 {
894 qf.quant_8x8( dct8[i], h->quant8_mf[CQM_8IY][20], h->quant8_bias[CQM_8IY][20] );
895 qf.dequant_8x8( dct8[i], h->dequant8_mf[CQM_8IY], 20 );
896 }
897 x264_cqm_delete( h );
898
899 #define TEST_IDCT( name, src ) \
900 if( dct_asm.name != dct_ref.name ) \
901 { \
902 set_func_name( #name ); \
903 used_asm = 1; \
904 memcpy( pbuf3, pbuf1, 32*32 * sizeof(pixel) ); \
905 memcpy( pbuf4, pbuf1, 32*32 * sizeof(pixel) ); \
906 memcpy( dct1, src, 256 * sizeof(dctcoef) ); \
907 memcpy( dct2, src, 256 * sizeof(dctcoef) ); \
908 call_c1( dct_c.name, pbuf3, (void*)dct1 ); \
909 call_a1( dct_asm.name, pbuf4, (void*)dct2 ); \
910 if( memcmp( pbuf3, pbuf4, 32*32 * sizeof(pixel) ) ) \
911 { \
912 ok = 0; \
913 fprintf( stderr, #name " [FAILED]\n" ); \
914 } \
915 call_c2( dct_c.name, pbuf3, (void*)dct1 ); \
916 call_a2( dct_asm.name, pbuf4, (void*)dct2 ); \
917 }
918 ok = 1; used_asm = 0;
919 TEST_IDCT( add4x4_idct, dct4 );
920 TEST_IDCT( add8x8_idct, dct4 );
921 TEST_IDCT( add8x8_idct_dc, dct4 );
922 TEST_IDCT( add16x16_idct, dct4 );
923 TEST_IDCT( add16x16_idct_dc, dct4 );
924 report( "add_idct4 :" );
925
926 ok = 1; used_asm = 0;
927 TEST_IDCT( add8x8_idct8, dct8 );
928 TEST_IDCT( add16x16_idct8, dct8 );
929 report( "add_idct8 :" );
930 #undef TEST_IDCT
931
932 #define TEST_DCTDC( name )\
933 ok = 1; used_asm = 0;\
934 if( dct_asm.name != dct_ref.name )\
935 {\
936 set_func_name( #name );\
937 used_asm = 1;\
938 uint16_t *p = (uint16_t*)buf1;\
939 for( int i = 0; i < 16 && ok; i++ )\
940 {\
941 for( int j = 0; j < 16; j++ )\
942 dct1[0][j] = !i ? (j^j>>1^j>>2^j>>3)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max dc */\
943 : i<8 ? (*p++)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max elements */\
944 : ((*p++)&0x1fff)-0x1000; /* general case */\
945 memcpy( dct2, dct1, 16 * sizeof(dctcoef) );\
946 call_c1( dct_c.name, dct1[0] );\
947 call_a1( dct_asm.name, dct2[0] );\
948 if( memcmp( dct1, dct2, 16 * sizeof(dctcoef) ) )\
949 ok = 0;\
950 }\
951 call_c2( dct_c.name, dct1[0] );\
952 call_a2( dct_asm.name, dct2[0] );\
953 }\
954 report( #name " :" );
955
956 TEST_DCTDC( dct4x4dc );
957 TEST_DCTDC( idct4x4dc );
958 #undef TEST_DCTDC
959
960 #define TEST_DCTDC_CHROMA( name )\
961 ok = 1; used_asm = 0;\
962 if( dct_asm.name != dct_ref.name )\
963 {\
964 set_func_name( #name );\
965 used_asm = 1;\
966 uint16_t *p = (uint16_t*)buf1;\
967 for( int i = 0; i < 16 && ok; i++ )\
968 {\
969 for( int j = 0; j < 8; j++ )\
970 dct1[j][0] = !i ? (j^j>>1^j>>2)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max dc */\
971 : i<8 ? (*p++)&1 ? PIXEL_MAX*16 : -PIXEL_MAX*16 /* max elements */\
972 : ((*p++)&0x1fff)-0x1000; /* general case */\
973 memcpy( dct2, dct1, 8*16 * sizeof(dctcoef) );\
974 call_c1( dct_c.name, dctdc[0], dct1 );\
975 call_a1( dct_asm.name, dctdc[1], dct2 );\
976 if( memcmp( dctdc[0], dctdc[1], 8 * sizeof(dctcoef) ) || memcmp( dct1, dct2, 8*16 * sizeof(dctcoef) ) )\
977 {\
978 ok = 0;\
979 fprintf( stderr, #name " [FAILED]\n" ); \
980 }\
981 }\
982 call_c2( dct_c.name, dctdc[0], dct1 );\
983 call_a2( dct_asm.name, dctdc[1], dct2 );\
984 }\
985 report( #name " :" );
986
987 TEST_DCTDC_CHROMA( dct2x4dc );
988 #undef TEST_DCTDC_CHROMA
989
990 x264_zigzag_function_t zigzag_c[2];
991 x264_zigzag_function_t zigzag_ref[2];
992 x264_zigzag_function_t zigzag_asm[2];
993
994 ALIGNED_16( dctcoef level1[64] );
995 ALIGNED_16( dctcoef level2[64] );
996
997 #define TEST_ZIGZAG_SCAN( name, t1, t2, dct, size ) \
998 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
999 { \
1000 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1001 used_asm = 1; \
1002 for( int i = 0; i < size*size; i++ ) \
1003 dct[i] = i; \
1004 call_c( zigzag_c[interlace].name, t1, dct ); \
1005 call_a( zigzag_asm[interlace].name, t2, dct ); \
1006 if( memcmp( t1, t2, size*size*sizeof(dctcoef) ) ) \
1007 { \
1008 ok = 0; \
1009 for( int i = 0; i < 2; i++ ) \
1010 { \
1011 dctcoef *d = (dctcoef*)(i ? t2 : t1); \
1012 for( int j = 0; j < size; j++ ) \
1013 { \
1014 for( int k = 0; k < size; k++ ) \
1015 fprintf( stderr, "%2d ", d[k+j*8] ); \
1016 fprintf( stderr, "\n" ); \
1017 } \
1018 fprintf( stderr, "\n" ); \
1019 } \
1020 fprintf( stderr, #name " [FAILED]\n" ); \
1021 } \
1022 }
1023
1024 #define TEST_ZIGZAG_SUB( name, t1, t2, size ) \
1025 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
1026 { \
1027 int nz_a, nz_c; \
1028 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1029 used_asm = 1; \
1030 memcpy( pbuf3, pbuf1, 16*FDEC_STRIDE * sizeof(pixel) ); \
1031 memcpy( pbuf4, pbuf1, 16*FDEC_STRIDE * sizeof(pixel) ); \
1032 nz_c = call_c1( zigzag_c[interlace].name, t1, pbuf2, pbuf3 ); \
1033 nz_a = call_a1( zigzag_asm[interlace].name, t2, pbuf2, pbuf4 ); \
1034 if( memcmp( t1, t2, size*sizeof(dctcoef) ) || memcmp( pbuf3, pbuf4, 16*FDEC_STRIDE*sizeof(pixel) ) || nz_c != nz_a ) \
1035 { \
1036 ok = 0; \
1037 fprintf( stderr, #name " [FAILED]\n" ); \
1038 } \
1039 call_c2( zigzag_c[interlace].name, t1, pbuf2, pbuf3 ); \
1040 call_a2( zigzag_asm[interlace].name, t2, pbuf2, pbuf4 ); \
1041 }
1042
1043 #define TEST_ZIGZAG_SUBAC( name, t1, t2 ) \
1044 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
1045 { \
1046 int nz_a, nz_c; \
1047 dctcoef dc_a, dc_c; \
1048 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1049 used_asm = 1; \
1050 for( int i = 0; i < 2; i++ ) \
1051 { \
1052 memcpy( pbuf3, pbuf2, 16*FDEC_STRIDE * sizeof(pixel) ); \
1053 memcpy( pbuf4, pbuf2, 16*FDEC_STRIDE * sizeof(pixel) ); \
1054 for( int j = 0; j < 4; j++ ) \
1055 { \
1056 memcpy( pbuf3 + j*FDEC_STRIDE, (i?pbuf1:pbuf2) + j*FENC_STRIDE, 4 * sizeof(pixel) ); \
1057 memcpy( pbuf4 + j*FDEC_STRIDE, (i?pbuf1:pbuf2) + j*FENC_STRIDE, 4 * sizeof(pixel) ); \
1058 } \
1059 nz_c = call_c1( zigzag_c[interlace].name, t1, pbuf2, pbuf3, &dc_c ); \
1060 nz_a = call_a1( zigzag_asm[interlace].name, t2, pbuf2, pbuf4, &dc_a ); \
1061 if( memcmp( t1+1, t2+1, 15*sizeof(dctcoef) ) || memcmp( pbuf3, pbuf4, 16*FDEC_STRIDE * sizeof(pixel) ) || nz_c != nz_a || dc_c != dc_a ) \
1062 { \
1063 ok = 0; \
1064 fprintf( stderr, #name " [FAILED]\n" ); \
1065 break; \
1066 } \
1067 } \
1068 call_c2( zigzag_c[interlace].name, t1, pbuf2, pbuf3, &dc_c ); \
1069 call_a2( zigzag_asm[interlace].name, t2, pbuf2, pbuf4, &dc_a ); \
1070 }
1071
1072 #define TEST_INTERLEAVE( name, t1, t2, dct, size ) \
1073 if( zigzag_asm[interlace].name != zigzag_ref[interlace].name ) \
1074 { \
1075 for( int j = 0; j < 100; j++ ) \
1076 { \
1077 set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" ); \
1078 used_asm = 1; \
1079 memcpy(dct, buf1, size*sizeof(dctcoef)); \
1080 for( int i = 0; i < size; i++ ) \
1081 dct[i] = rand()&0x1F ? 0 : dct[i]; \
1082 memcpy(buf3, buf4, 10); \
1083 call_c( zigzag_c[interlace].name, t1, dct, buf3 ); \
1084 call_a( zigzag_asm[interlace].name, t2, dct, buf4 ); \
1085 if( memcmp( t1, t2, size*sizeof(dctcoef) ) || memcmp( buf3, buf4, 10 ) ) \
1086 { \
1087 ok = 0; printf("%d: %d %d %d %d\n%d %d %d %d\n\n",memcmp( t1, t2, size*sizeof(dctcoef) ),buf3[0], buf3[1], buf3[8], buf3[9], buf4[0], buf4[1], buf4[8], buf4[9]);break;\
1088 } \
1089 } \
1090 }
1091
1092 x264_zigzag_init( 0, &zigzag_c[0], &zigzag_c[1] );
1093 x264_zigzag_init( cpu_ref, &zigzag_ref[0], &zigzag_ref[1] );
1094 x264_zigzag_init( cpu_new, &zigzag_asm[0], &zigzag_asm[1] );
1095
1096 ok = 1; used_asm = 0;
1097 TEST_INTERLEAVE( interleave_8x8_cavlc, level1, level2, dct8[0], 64 );
1098 report( "zigzag_interleave :" );
1099
1100 for( interlace = 0; interlace <= 1; interlace++ )
1101 {
1102 ok = 1; used_asm = 0;
1103 TEST_ZIGZAG_SCAN( scan_8x8, level1, level2, dct8[0], 8 );
1104 TEST_ZIGZAG_SCAN( scan_4x4, level1, level2, dct1[0], 4 );
1105 TEST_ZIGZAG_SUB( sub_4x4, level1, level2, 16 );
1106 TEST_ZIGZAG_SUB( sub_8x8, level1, level2, 64 );
1107 TEST_ZIGZAG_SUBAC( sub_4x4ac, level1, level2 );
1108 report( interlace ? "zigzag_field :" : "zigzag_frame :" );
1109 }
1110 #undef TEST_ZIGZAG_SCAN
1111 #undef TEST_ZIGZAG_SUB
1112
1113 return ret;
1114 }
1115
check_mc(int cpu_ref,int cpu_new)1116 static int check_mc( int cpu_ref, int cpu_new )
1117 {
1118 x264_mc_functions_t mc_c;
1119 x264_mc_functions_t mc_ref;
1120 x264_mc_functions_t mc_a;
1121 x264_pixel_function_t pixf;
1122
1123 pixel *src = &(pbuf1)[2*64+2];
1124 pixel *src2[4] = { &(pbuf1)[3*64+2], &(pbuf1)[5*64+2],
1125 &(pbuf1)[7*64+2], &(pbuf1)[9*64+2] };
1126 pixel *dst1 = pbuf3;
1127 pixel *dst2 = pbuf4;
1128
1129 int ret = 0, ok, used_asm;
1130
1131 x264_mc_init( 0, &mc_c, 0 );
1132 x264_mc_init( cpu_ref, &mc_ref, 0 );
1133 x264_mc_init( cpu_new, &mc_a, 0 );
1134 x264_pixel_init( 0, &pixf );
1135
1136 #define MC_TEST_LUMA( w, h ) \
1137 if( mc_a.mc_luma != mc_ref.mc_luma && !(w&(w-1)) && h<=16 ) \
1138 { \
1139 const x264_weight_t *weight = x264_weight_none; \
1140 set_func_name( "mc_luma_%dx%d", w, h ); \
1141 used_asm = 1; \
1142 for( int i = 0; i < 1024; i++ ) \
1143 pbuf3[i] = pbuf4[i] = 0xCD; \
1144 call_c( mc_c.mc_luma, dst1, (intptr_t)32, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1145 call_a( mc_a.mc_luma, dst2, (intptr_t)32, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1146 if( memcmp( pbuf3, pbuf4, 1024 * sizeof(pixel) ) ) \
1147 { \
1148 fprintf( stderr, "mc_luma[mv(%d,%d) %2dx%-2d] [FAILED]\n", dx, dy, w, h ); \
1149 ok = 0; \
1150 } \
1151 } \
1152 if( mc_a.get_ref != mc_ref.get_ref ) \
1153 { \
1154 pixel *ref = dst2; \
1155 intptr_t ref_stride = 32; \
1156 int w_checked = ( ( sizeof(pixel) == 2 && (w == 12 || w == 20)) ? w-2 : w ); \
1157 const x264_weight_t *weight = x264_weight_none; \
1158 set_func_name( "get_ref_%dx%d", w_checked, h ); \
1159 used_asm = 1; \
1160 for( int i = 0; i < 1024; i++ ) \
1161 pbuf3[i] = pbuf4[i] = 0xCD; \
1162 call_c( mc_c.mc_luma, dst1, (intptr_t)32, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1163 ref = (pixel*)call_a( mc_a.get_ref, ref, &ref_stride, src2, (intptr_t)64, dx, dy, w, h, weight ); \
1164 for( int i = 0; i < h; i++ ) \
1165 if( memcmp( dst1+i*32, ref+i*ref_stride, w_checked * sizeof(pixel) ) ) \
1166 { \
1167 fprintf( stderr, "get_ref[mv(%d,%d) %2dx%-2d] [FAILED]\n", dx, dy, w_checked, h ); \
1168 ok = 0; \
1169 break; \
1170 } \
1171 }
1172
1173 #define MC_TEST_CHROMA( w, h ) \
1174 if( mc_a.mc_chroma != mc_ref.mc_chroma ) \
1175 { \
1176 set_func_name( "mc_chroma_%dx%d", w, h ); \
1177 used_asm = 1; \
1178 for( int i = 0; i < 1024; i++ ) \
1179 pbuf3[i] = pbuf4[i] = 0xCD; \
1180 call_c( mc_c.mc_chroma, dst1, dst1+8, (intptr_t)16, src, (intptr_t)64, dx, dy, w, h ); \
1181 call_a( mc_a.mc_chroma, dst2, dst2+8, (intptr_t)16, src, (intptr_t)64, dx, dy, w, h ); \
1182 /* mc_chroma width=2 may write garbage to the right of dst. ignore that. */ \
1183 for( int j = 0; j < h; j++ ) \
1184 for( int i = w; i < 8; i++ ) \
1185 { \
1186 dst2[i+j*16+8] = dst1[i+j*16+8]; \
1187 dst2[i+j*16 ] = dst1[i+j*16 ]; \
1188 } \
1189 if( memcmp( pbuf3, pbuf4, 1024 * sizeof(pixel) ) ) \
1190 { \
1191 fprintf( stderr, "mc_chroma[mv(%d,%d) %2dx%-2d] [FAILED]\n", dx, dy, w, h ); \
1192 ok = 0; \
1193 } \
1194 }
1195 ok = 1; used_asm = 0;
1196 for( int dy = -8; dy < 8; dy++ )
1197 for( int dx = -128; dx < 128; dx++ )
1198 {
1199 if( rand()&15 ) continue; // running all of them is too slow
1200 MC_TEST_LUMA( 20, 18 );
1201 MC_TEST_LUMA( 16, 16 );
1202 MC_TEST_LUMA( 16, 8 );
1203 MC_TEST_LUMA( 12, 10 );
1204 MC_TEST_LUMA( 8, 16 );
1205 MC_TEST_LUMA( 8, 8 );
1206 MC_TEST_LUMA( 8, 4 );
1207 MC_TEST_LUMA( 4, 8 );
1208 MC_TEST_LUMA( 4, 4 );
1209 }
1210 report( "mc luma :" );
1211
1212 ok = 1; used_asm = 0;
1213 for( int dy = -1; dy < 9; dy++ )
1214 for( int dx = -128; dx < 128; dx++ )
1215 {
1216 if( rand()&15 ) continue;
1217 MC_TEST_CHROMA( 8, 8 );
1218 MC_TEST_CHROMA( 8, 4 );
1219 MC_TEST_CHROMA( 4, 8 );
1220 MC_TEST_CHROMA( 4, 4 );
1221 MC_TEST_CHROMA( 4, 2 );
1222 MC_TEST_CHROMA( 2, 4 );
1223 MC_TEST_CHROMA( 2, 2 );
1224 }
1225 report( "mc chroma :" );
1226 #undef MC_TEST_LUMA
1227 #undef MC_TEST_CHROMA
1228
1229 #define MC_TEST_AVG( name, weight ) \
1230 { \
1231 for( int i = 0; i < 12; i++ ) \
1232 { \
1233 memcpy( pbuf3, pbuf1+320, 320 * sizeof(pixel) ); \
1234 memcpy( pbuf4, pbuf1+320, 320 * sizeof(pixel) ); \
1235 if( mc_a.name[i] != mc_ref.name[i] ) \
1236 { \
1237 set_func_name( "%s_%s", #name, pixel_names[i] ); \
1238 used_asm = 1; \
1239 call_c1( mc_c.name[i], pbuf3, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1240 call_a1( mc_a.name[i], pbuf4, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1241 if( memcmp( pbuf3, pbuf4, 320 * sizeof(pixel) ) ) \
1242 { \
1243 ok = 0; \
1244 fprintf( stderr, #name "[%d]: [FAILED]\n", i ); \
1245 } \
1246 call_c2( mc_c.name[i], pbuf3, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1247 call_a2( mc_a.name[i], pbuf4, (intptr_t)16, pbuf2+1, (intptr_t)16, pbuf1+18, (intptr_t)16, weight ); \
1248 } \
1249 } \
1250 }
1251
1252 ok = 1, used_asm = 0;
1253 for( int w = -63; w <= 127 && ok; w++ )
1254 MC_TEST_AVG( avg, w );
1255 report( "mc wpredb :" );
1256
1257 #define MC_TEST_WEIGHT( name, weight, aligned ) \
1258 int align_off = (aligned ? 0 : rand()%16); \
1259 for( int i = 1; i <= 5; i++ ) \
1260 { \
1261 ALIGNED_16( pixel buffC[640] ); \
1262 ALIGNED_16( pixel buffA[640] ); \
1263 int j = X264_MAX( i*4, 2 ); \
1264 memset( buffC, 0, 640 * sizeof(pixel) ); \
1265 memset( buffA, 0, 640 * sizeof(pixel) ); \
1266 x264_t ha; \
1267 ha.mc = mc_a; \
1268 /* w12 is the same as w16 in some cases */ \
1269 if( i == 3 && mc_a.name[i] == mc_a.name[i+1] ) \
1270 continue; \
1271 if( mc_a.name[i] != mc_ref.name[i] ) \
1272 { \
1273 set_func_name( "%s_w%d", #name, j ); \
1274 used_asm = 1; \
1275 call_c1( mc_c.weight[i], buffC, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1276 mc_a.weight_cache(&ha, &weight); \
1277 call_a1( weight.weightfn[i], buffA, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1278 for( int k = 0; k < 16; k++ ) \
1279 if( memcmp( &buffC[k*32], &buffA[k*32], j * sizeof(pixel) ) ) \
1280 { \
1281 ok = 0; \
1282 fprintf( stderr, #name "[%d]: [FAILED] s:%d o:%d d%d\n", i, s, o, d ); \
1283 break; \
1284 } \
1285 /* omit unlikely high scales for benchmarking */ \
1286 if( (s << (8-d)) < 512 ) \
1287 { \
1288 call_c2( mc_c.weight[i], buffC, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1289 call_a2( weight.weightfn[i], buffA, (intptr_t)32, pbuf2+align_off, (intptr_t)32, &weight, 16 ); \
1290 } \
1291 } \
1292 }
1293
1294 ok = 1; used_asm = 0;
1295
1296 int align_cnt = 0;
1297 for( int s = 0; s <= 127 && ok; s++ )
1298 {
1299 for( int o = -128; o <= 127 && ok; o++ )
1300 {
1301 if( rand() & 2047 ) continue;
1302 for( int d = 0; d <= 7 && ok; d++ )
1303 {
1304 if( s == 1<<d )
1305 continue;
1306 x264_weight_t weight = { .i_scale = s, .i_denom = d, .i_offset = o };
1307 MC_TEST_WEIGHT( weight, weight, (align_cnt++ % 4) );
1308 }
1309 }
1310
1311 }
1312 report( "mc weight :" );
1313
1314 ok = 1; used_asm = 0;
1315 for( int o = 0; o <= 127 && ok; o++ )
1316 {
1317 int s = 1, d = 0;
1318 if( rand() & 15 ) continue;
1319 x264_weight_t weight = { .i_scale = 1, .i_denom = 0, .i_offset = o };
1320 MC_TEST_WEIGHT( offsetadd, weight, (align_cnt++ % 4) );
1321 }
1322 report( "mc offsetadd :" );
1323 ok = 1; used_asm = 0;
1324 for( int o = -128; o < 0 && ok; o++ )
1325 {
1326 int s = 1, d = 0;
1327 if( rand() & 15 ) continue;
1328 x264_weight_t weight = { .i_scale = 1, .i_denom = 0, .i_offset = o };
1329 MC_TEST_WEIGHT( offsetsub, weight, (align_cnt++ % 4) );
1330 }
1331 report( "mc offsetsub :" );
1332
1333 ok = 1; used_asm = 0;
1334 for( int height = 8; height <= 16; height += 8 )
1335 {
1336 if( mc_a.store_interleave_chroma != mc_ref.store_interleave_chroma )
1337 {
1338 set_func_name( "store_interleave_chroma" );
1339 used_asm = 1;
1340 memset( pbuf3, 0, 64*height );
1341 memset( pbuf4, 0, 64*height );
1342 call_c( mc_c.store_interleave_chroma, pbuf3, (intptr_t)64, pbuf1, pbuf1+16, height );
1343 call_a( mc_a.store_interleave_chroma, pbuf4, (intptr_t)64, pbuf1, pbuf1+16, height );
1344 if( memcmp( pbuf3, pbuf4, 64*height ) )
1345 {
1346 ok = 0;
1347 fprintf( stderr, "store_interleave_chroma FAILED: h=%d\n", height );
1348 break;
1349 }
1350 }
1351 if( mc_a.load_deinterleave_chroma_fenc != mc_ref.load_deinterleave_chroma_fenc )
1352 {
1353 set_func_name( "load_deinterleave_chroma_fenc" );
1354 used_asm = 1;
1355 call_c( mc_c.load_deinterleave_chroma_fenc, pbuf3, pbuf1, (intptr_t)64, height );
1356 call_a( mc_a.load_deinterleave_chroma_fenc, pbuf4, pbuf1, (intptr_t)64, height );
1357 if( memcmp( pbuf3, pbuf4, FENC_STRIDE*height ) )
1358 {
1359 ok = 0;
1360 fprintf( stderr, "load_deinterleave_chroma_fenc FAILED: h=%d\n", height );
1361 break;
1362 }
1363 }
1364 if( mc_a.load_deinterleave_chroma_fdec != mc_ref.load_deinterleave_chroma_fdec )
1365 {
1366 set_func_name( "load_deinterleave_chroma_fdec" );
1367 used_asm = 1;
1368 call_c( mc_c.load_deinterleave_chroma_fdec, pbuf3, pbuf1, (intptr_t)64, height );
1369 call_a( mc_a.load_deinterleave_chroma_fdec, pbuf4, pbuf1, (intptr_t)64, height );
1370 if( memcmp( pbuf3, pbuf4, FDEC_STRIDE*height ) )
1371 {
1372 ok = 0;
1373 fprintf( stderr, "load_deinterleave_chroma_fdec FAILED: h=%d\n", height );
1374 break;
1375 }
1376 }
1377 }
1378 report( "store_interleave :" );
1379
1380 struct plane_spec {
1381 int w, h, src_stride;
1382 } plane_specs[] = { {2,2,2}, {8,6,8}, {20,31,24}, {32,8,40}, {256,10,272}, {504,7,505}, {528,6,528}, {256,10,-256}, {263,9,-264}, {1904,1,0} };
1383 ok = 1; used_asm = 0;
1384 if( mc_a.plane_copy != mc_ref.plane_copy )
1385 {
1386 set_func_name( "plane_copy" );
1387 used_asm = 1;
1388 for( int i = 0; i < sizeof(plane_specs)/sizeof(*plane_specs); i++ )
1389 {
1390 int w = plane_specs[i].w;
1391 int h = plane_specs[i].h;
1392 intptr_t src_stride = plane_specs[i].src_stride;
1393 intptr_t dst_stride = (w + 127) & ~63;
1394 assert( dst_stride * h <= 0x1000 );
1395 pixel *src1 = pbuf1 + X264_MAX(0, -src_stride) * (h-1);
1396 memset( pbuf3, 0, 0x1000*sizeof(pixel) );
1397 memset( pbuf4, 0, 0x1000*sizeof(pixel) );
1398 call_c( mc_c.plane_copy, pbuf3, dst_stride, src1, src_stride, w, h );
1399 call_a( mc_a.plane_copy, pbuf4, dst_stride, src1, src_stride, w, h );
1400 for( int y = 0; y < h; y++ )
1401 if( memcmp( pbuf3+y*dst_stride, pbuf4+y*dst_stride, w*sizeof(pixel) ) )
1402 {
1403 ok = 0;
1404 fprintf( stderr, "plane_copy FAILED: w=%d h=%d stride=%d\n", w, h, (int)src_stride );
1405 break;
1406 }
1407 }
1408 }
1409
1410 if( mc_a.plane_copy_interleave != mc_ref.plane_copy_interleave )
1411 {
1412 set_func_name( "plane_copy_interleave" );
1413 used_asm = 1;
1414 for( int i = 0; i < sizeof(plane_specs)/sizeof(*plane_specs); i++ )
1415 {
1416 int w = (plane_specs[i].w + 1) >> 1;
1417 int h = plane_specs[i].h;
1418 intptr_t src_stride = (plane_specs[i].src_stride + 1) >> 1;
1419 intptr_t dst_stride = (2*w + 127) & ~63;
1420 assert( dst_stride * h <= 0x1000 );
1421 pixel *src1 = pbuf1 + X264_MAX(0, -src_stride) * (h-1);
1422 memset( pbuf3, 0, 0x1000*sizeof(pixel) );
1423 memset( pbuf4, 0, 0x1000*sizeof(pixel) );
1424 call_c( mc_c.plane_copy_interleave, pbuf3, dst_stride, src1, src_stride, src1+1024, src_stride+16, w, h );
1425 call_a( mc_a.plane_copy_interleave, pbuf4, dst_stride, src1, src_stride, src1+1024, src_stride+16, w, h );
1426 for( int y = 0; y < h; y++ )
1427 if( memcmp( pbuf3+y*dst_stride, pbuf4+y*dst_stride, 2*w*sizeof(pixel) ) )
1428 {
1429 ok = 0;
1430 fprintf( stderr, "plane_copy_interleave FAILED: w=%d h=%d stride=%d\n", w, h, (int)src_stride );
1431 break;
1432 }
1433 }
1434 }
1435
1436 if( mc_a.plane_copy_deinterleave != mc_ref.plane_copy_deinterleave )
1437 {
1438 set_func_name( "plane_copy_deinterleave" );
1439 used_asm = 1;
1440 for( int i = 0; i < sizeof(plane_specs)/sizeof(*plane_specs); i++ )
1441 {
1442 int w = (plane_specs[i].w + 1) >> 1;
1443 int h = plane_specs[i].h;
1444 intptr_t dst_stride = w;
1445 intptr_t src_stride = (2*w + 127) & ~63;
1446 intptr_t offv = (dst_stride*h + 31) & ~15;
1447 memset( pbuf3, 0, 0x1000 );
1448 memset( pbuf4, 0, 0x1000 );
1449 call_c( mc_c.plane_copy_deinterleave, pbuf3, dst_stride, pbuf3+offv, dst_stride, pbuf1, src_stride, w, h );
1450 call_a( mc_a.plane_copy_deinterleave, pbuf4, dst_stride, pbuf4+offv, dst_stride, pbuf1, src_stride, w, h );
1451 for( int y = 0; y < h; y++ )
1452 if( memcmp( pbuf3+y*dst_stride, pbuf4+y*dst_stride, w ) ||
1453 memcmp( pbuf3+y*dst_stride+offv, pbuf4+y*dst_stride+offv, w ) )
1454 {
1455 ok = 0;
1456 fprintf( stderr, "plane_copy_deinterleave FAILED: w=%d h=%d stride=%d\n", w, h, (int)src_stride );
1457 break;
1458 }
1459 }
1460 }
1461
1462 if( mc_a.plane_copy_deinterleave_rgb != mc_ref.plane_copy_deinterleave_rgb )
1463 {
1464 set_func_name( "plane_copy_deinterleave_rgb" );
1465 used_asm = 1;
1466 for( int i = 0; i < sizeof(plane_specs)/sizeof(*plane_specs); i++ )
1467 {
1468 int w = (plane_specs[i].w + 2) >> 2;
1469 int h = plane_specs[i].h;
1470 intptr_t src_stride = plane_specs[i].src_stride;
1471 intptr_t dst_stride = ALIGN( w, 16 );
1472 intptr_t offv = dst_stride*h + 16;
1473
1474 for( int pw = 3; pw <= 4; pw++ )
1475 {
1476 memset( pbuf3, 0, 0x1000 );
1477 memset( pbuf4, 0, 0x1000 );
1478 call_c( mc_c.plane_copy_deinterleave_rgb, pbuf3, dst_stride, pbuf3+offv, dst_stride, pbuf3+2*offv, dst_stride, pbuf1, src_stride, pw, w, h );
1479 call_a( mc_a.plane_copy_deinterleave_rgb, pbuf4, dst_stride, pbuf4+offv, dst_stride, pbuf4+2*offv, dst_stride, pbuf1, src_stride, pw, w, h );
1480 for( int y = 0; y < h; y++ )
1481 if( memcmp( pbuf3+y*dst_stride+0*offv, pbuf4+y*dst_stride+0*offv, w ) ||
1482 memcmp( pbuf3+y*dst_stride+1*offv, pbuf4+y*dst_stride+1*offv, w ) ||
1483 memcmp( pbuf3+y*dst_stride+2*offv, pbuf4+y*dst_stride+2*offv, w ) )
1484 {
1485 ok = 0;
1486 fprintf( stderr, "plane_copy_deinterleave_rgb FAILED: w=%d h=%d stride=%d pw=%d\n", w, h, (int)src_stride, pw );
1487 break;
1488 }
1489 }
1490 }
1491 }
1492 report( "plane_copy :" );
1493
1494 if( mc_a.plane_copy_deinterleave_v210 != mc_ref.plane_copy_deinterleave_v210 )
1495 {
1496 set_func_name( "plane_copy_deinterleave_v210" );
1497 used_asm = 1;
1498 for( int i = 0; i < sizeof(plane_specs)/sizeof(*plane_specs); i++ )
1499 {
1500 int w = (plane_specs[i].w + 1) >> 1;
1501 int h = plane_specs[i].h;
1502 intptr_t dst_stride = ALIGN( w, 16 );
1503 intptr_t src_stride = (w + 47) / 48 * 128 / sizeof(uint32_t);
1504 intptr_t offv = dst_stride*h + 32;
1505 memset( pbuf3, 0, 0x1000 );
1506 memset( pbuf4, 0, 0x1000 );
1507 call_c( mc_c.plane_copy_deinterleave_v210, pbuf3, dst_stride, pbuf3+offv, dst_stride, (uint32_t *)buf1, src_stride, w, h );
1508 call_a( mc_a.plane_copy_deinterleave_v210, pbuf4, dst_stride, pbuf4+offv, dst_stride, (uint32_t *)buf1, src_stride, w, h );
1509 for( int y = 0; y < h; y++ )
1510 if( memcmp( pbuf3+y*dst_stride, pbuf4+y*dst_stride, w*sizeof(uint16_t) ) ||
1511 memcmp( pbuf3+y*dst_stride+offv, pbuf4+y*dst_stride+offv, w*sizeof(uint16_t) ) )
1512 {
1513 ok = 0;
1514 fprintf( stderr, "plane_copy_deinterleave_v210 FAILED: w=%d h=%d stride=%d\n", w, h, (int)src_stride );
1515 break;
1516 }
1517 }
1518 }
1519 report( "v210 :" );
1520
1521 if( mc_a.hpel_filter != mc_ref.hpel_filter )
1522 {
1523 pixel *srchpel = pbuf1+8+2*64;
1524 pixel *dstc[3] = { pbuf3+8, pbuf3+8+16*64, pbuf3+8+32*64 };
1525 pixel *dsta[3] = { pbuf4+8, pbuf4+8+16*64, pbuf4+8+32*64 };
1526 void *tmp = pbuf3+49*64;
1527 set_func_name( "hpel_filter" );
1528 ok = 1; used_asm = 1;
1529 memset( pbuf3, 0, 4096 * sizeof(pixel) );
1530 memset( pbuf4, 0, 4096 * sizeof(pixel) );
1531 call_c( mc_c.hpel_filter, dstc[0], dstc[1], dstc[2], srchpel, (intptr_t)64, 48, 10, tmp );
1532 call_a( mc_a.hpel_filter, dsta[0], dsta[1], dsta[2], srchpel, (intptr_t)64, 48, 10, tmp );
1533 for( int i = 0; i < 3; i++ )
1534 for( int j = 0; j < 10; j++ )
1535 //FIXME ideally the first pixels would match too, but they aren't actually used
1536 if( memcmp( dstc[i]+j*64+2, dsta[i]+j*64+2, 43 * sizeof(pixel) ) )
1537 {
1538 ok = 0;
1539 fprintf( stderr, "hpel filter differs at plane %c line %d\n", "hvc"[i], j );
1540 for( int k = 0; k < 48; k++ )
1541 printf( "%02x%s", dstc[i][j*64+k], (k+1)&3 ? "" : " " );
1542 printf( "\n" );
1543 for( int k = 0; k < 48; k++ )
1544 printf( "%02x%s", dsta[i][j*64+k], (k+1)&3 ? "" : " " );
1545 printf( "\n" );
1546 break;
1547 }
1548 report( "hpel filter :" );
1549 }
1550
1551 if( mc_a.frame_init_lowres_core != mc_ref.frame_init_lowres_core )
1552 {
1553 pixel *dstc[4] = { pbuf3, pbuf3+1024, pbuf3+2048, pbuf3+3072 };
1554 pixel *dsta[4] = { pbuf4, pbuf4+1024, pbuf4+2048, pbuf4+3072 };
1555 set_func_name( "lowres_init" );
1556 ok = 1; used_asm = 1;
1557 for( int w = 96; w <= 96+24; w += 8 )
1558 {
1559 intptr_t stride = (w*2+31)&~31;
1560 intptr_t stride_lowres = (w+31)&~31;
1561 call_c( mc_c.frame_init_lowres_core, pbuf1, dstc[0], dstc[1], dstc[2], dstc[3], stride, stride_lowres, w, 8 );
1562 call_a( mc_a.frame_init_lowres_core, pbuf1, dsta[0], dsta[1], dsta[2], dsta[3], stride, stride_lowres, w, 8 );
1563 for( int i = 0; i < 8; i++ )
1564 {
1565 for( int j = 0; j < 4; j++ )
1566 if( memcmp( dstc[j]+i*stride_lowres, dsta[j]+i*stride_lowres, w * sizeof(pixel) ) )
1567 {
1568 ok = 0;
1569 fprintf( stderr, "frame_init_lowres differs at plane %d line %d\n", j, i );
1570 for( int k = 0; k < w; k++ )
1571 printf( "%d ", dstc[j][k+i*stride_lowres] );
1572 printf( "\n" );
1573 for( int k = 0; k < w; k++ )
1574 printf( "%d ", dsta[j][k+i*stride_lowres] );
1575 printf( "\n" );
1576 break;
1577 }
1578 }
1579 }
1580 report( "lowres init :" );
1581 }
1582
1583 #define INTEGRAL_INIT( name, size, ... )\
1584 if( mc_a.name != mc_ref.name )\
1585 {\
1586 intptr_t stride = 96;\
1587 set_func_name( #name );\
1588 used_asm = 1;\
1589 memcpy( buf3, buf1, size*2*stride );\
1590 memcpy( buf4, buf1, size*2*stride );\
1591 uint16_t *sum = (uint16_t*)buf3;\
1592 call_c1( mc_c.name, __VA_ARGS__ );\
1593 sum = (uint16_t*)buf4;\
1594 call_a1( mc_a.name, __VA_ARGS__ );\
1595 if( memcmp( buf3, buf4, (stride-8)*2 ) \
1596 || (size>9 && memcmp( buf3+18*stride, buf4+18*stride, (stride-8)*2 )))\
1597 ok = 0;\
1598 call_c2( mc_c.name, __VA_ARGS__ );\
1599 call_a2( mc_a.name, __VA_ARGS__ );\
1600 }
1601 ok = 1; used_asm = 0;
1602 INTEGRAL_INIT( integral_init4h, 2, sum+stride, pbuf2, stride );
1603 INTEGRAL_INIT( integral_init8h, 2, sum+stride, pbuf2, stride );
1604 INTEGRAL_INIT( integral_init4v, 14, sum, sum+9*stride, stride );
1605 INTEGRAL_INIT( integral_init8v, 9, sum, stride );
1606 report( "integral init :" );
1607
1608 ok = 1; used_asm = 0;
1609 if( mc_a.mbtree_propagate_cost != mc_ref.mbtree_propagate_cost )
1610 {
1611 used_asm = 1;
1612 x264_emms();
1613 for( int i = 0; i < 10; i++ )
1614 {
1615 float fps_factor = (rand()&65535) / 65535.0f;
1616 set_func_name( "mbtree_propagate_cost" );
1617 int16_t *dsta = (int16_t*)buf3;
1618 int16_t *dstc = dsta+400;
1619 uint16_t *prop = (uint16_t*)buf1;
1620 uint16_t *intra = (uint16_t*)buf4;
1621 uint16_t *inter = intra+128;
1622 uint16_t *qscale = inter+128;
1623 uint16_t *rnd = (uint16_t*)buf2;
1624 x264_emms();
1625 for( int j = 0; j < 100; j++ )
1626 {
1627 intra[j] = *rnd++ & 0x7fff;
1628 intra[j] += !intra[j];
1629 inter[j] = *rnd++ & 0x7fff;
1630 qscale[j] = *rnd++ & 0x7fff;
1631 }
1632 call_c( mc_c.mbtree_propagate_cost, dstc, prop, intra, inter, qscale, &fps_factor, 100 );
1633 call_a( mc_a.mbtree_propagate_cost, dsta, prop, intra, inter, qscale, &fps_factor, 100 );
1634 // I don't care about exact rounding, this is just how close the floating-point implementation happens to be
1635 x264_emms();
1636 for( int j = 0; j < 100 && ok; j++ )
1637 {
1638 ok &= abs( dstc[j]-dsta[j] ) <= 1 || fabs( (double)dstc[j]/dsta[j]-1 ) < 1e-4;
1639 if( !ok )
1640 fprintf( stderr, "mbtree_propagate_cost FAILED: %f !~= %f\n", (double)dstc[j], (double)dsta[j] );
1641 }
1642 }
1643 }
1644
1645 if( mc_a.mbtree_propagate_list != mc_ref.mbtree_propagate_list )
1646 {
1647 used_asm = 1;
1648 for( int i = 0; i < 8; i++ )
1649 {
1650 set_func_name( "mbtree_propagate_list" );
1651 x264_t h;
1652 int height = 4;
1653 int width = 128;
1654 int size = width*height;
1655 h.mb.i_mb_stride = width;
1656 h.mb.i_mb_width = width;
1657 h.mb.i_mb_height = height;
1658
1659 uint16_t *ref_costsc = (uint16_t*)buf3;
1660 uint16_t *ref_costsa = (uint16_t*)buf4;
1661 int16_t (*mvs)[2] = (int16_t(*)[2])(ref_costsc + size);
1662 int16_t *propagate_amount = (int16_t*)(mvs + width);
1663 uint16_t *lowres_costs = (uint16_t*)(propagate_amount + width);
1664 h.scratch_buffer2 = (uint8_t*)(ref_costsa + size);
1665 int bipred_weight = (rand()%63)+1;
1666 int list = i&1;
1667 for( int j = 0; j < size; j++ )
1668 ref_costsc[j] = ref_costsa[j] = rand()&32767;
1669 for( int j = 0; j < width; j++ )
1670 {
1671 static const uint8_t list_dist[2][8] = {{0,1,1,1,1,1,1,1},{1,1,3,3,3,3,3,2}};
1672 for( int k = 0; k < 2; k++ )
1673 mvs[j][k] = (rand()&127) - 64;
1674 propagate_amount[j] = rand()&32767;
1675 lowres_costs[j] = list_dist[list][rand()&7] << LOWRES_COST_SHIFT;
1676 }
1677
1678 call_c1( mc_c.mbtree_propagate_list, &h, ref_costsc, mvs, propagate_amount, lowres_costs, bipred_weight, 0, width, list );
1679 call_a1( mc_a.mbtree_propagate_list, &h, ref_costsa, mvs, propagate_amount, lowres_costs, bipred_weight, 0, width, list );
1680
1681 for( int j = 0; j < size && ok; j++ )
1682 {
1683 ok &= abs(ref_costsa[j] - ref_costsc[j]) <= 1;
1684 if( !ok )
1685 fprintf( stderr, "mbtree_propagate_list FAILED at %d: %d !~= %d\n", j, ref_costsc[j], ref_costsa[j] );
1686 }
1687
1688 call_c2( mc_c.mbtree_propagate_list, &h, ref_costsc, mvs, propagate_amount, lowres_costs, bipred_weight, 0, width, list );
1689 call_a2( mc_a.mbtree_propagate_list, &h, ref_costsa, mvs, propagate_amount, lowres_costs, bipred_weight, 0, width, list );
1690 }
1691 }
1692 report( "mbtree :" );
1693
1694 if( mc_a.memcpy_aligned != mc_ref.memcpy_aligned )
1695 {
1696 set_func_name( "memcpy_aligned" );
1697 ok = 1; used_asm = 1;
1698 for( size_t size = 16; size < 256; size += 16 )
1699 {
1700 memset( buf4, 0xAA, size + 1 );
1701 call_c( mc_c.memcpy_aligned, buf3, buf1, size );
1702 call_a( mc_a.memcpy_aligned, buf4, buf1, size );
1703 if( memcmp( buf3, buf4, size ) || buf4[size] != 0xAA )
1704 {
1705 ok = 0;
1706 fprintf( stderr, "memcpy_aligned FAILED: size=%d\n", (int)size );
1707 break;
1708 }
1709 }
1710 report( "memcpy aligned :" );
1711 }
1712
1713 if( mc_a.memzero_aligned != mc_ref.memzero_aligned )
1714 {
1715 set_func_name( "memzero_aligned" );
1716 ok = 1; used_asm = 1;
1717 for( size_t size = 128; size < 1024; size += 128 )
1718 {
1719 memset( buf4, 0xAA, size + 1 );
1720 call_c( mc_c.memzero_aligned, buf3, size );
1721 call_a( mc_a.memzero_aligned, buf4, size );
1722 if( memcmp( buf3, buf4, size ) || buf4[size] != 0xAA )
1723 {
1724 ok = 0;
1725 fprintf( stderr, "memzero_aligned FAILED: size=%d\n", (int)size );
1726 break;
1727 }
1728 }
1729 report( "memzero aligned :" );
1730 }
1731
1732 return ret;
1733 }
1734
check_deblock(int cpu_ref,int cpu_new)1735 static int check_deblock( int cpu_ref, int cpu_new )
1736 {
1737 x264_deblock_function_t db_c;
1738 x264_deblock_function_t db_ref;
1739 x264_deblock_function_t db_a;
1740 int ret = 0, ok = 1, used_asm = 0;
1741 int alphas[36], betas[36];
1742 int8_t tcs[36][4];
1743
1744 x264_deblock_init( 0, &db_c, 0 );
1745 x264_deblock_init( cpu_ref, &db_ref, 0 );
1746 x264_deblock_init( cpu_new, &db_a, 0 );
1747
1748 /* not exactly the real values of a,b,tc but close enough */
1749 for( int i = 35, a = 255, c = 250; i >= 0; i-- )
1750 {
1751 alphas[i] = a << (BIT_DEPTH-8);
1752 betas[i] = (i+1)/2 << (BIT_DEPTH-8);
1753 tcs[i][0] = tcs[i][3] = (c+6)/10 << (BIT_DEPTH-8);
1754 tcs[i][1] = (c+7)/15 << (BIT_DEPTH-8);
1755 tcs[i][2] = (c+9)/20 << (BIT_DEPTH-8);
1756 a = a*9/10;
1757 c = c*9/10;
1758 }
1759
1760 #define TEST_DEBLOCK( name, align, ... ) \
1761 for( int i = 0; i < 36; i++ ) \
1762 { \
1763 intptr_t off = 8*32 + (i&15)*4*!align; /* benchmark various alignments of h filter */ \
1764 for( int j = 0; j < 1024; j++ ) \
1765 /* two distributions of random to excersize different failure modes */ \
1766 pbuf3[j] = rand() & (i&1 ? 0xf : PIXEL_MAX ); \
1767 memcpy( pbuf4, pbuf3, 1024 * sizeof(pixel) ); \
1768 if( db_a.name != db_ref.name ) \
1769 { \
1770 set_func_name( #name ); \
1771 used_asm = 1; \
1772 call_c1( db_c.name, pbuf3+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1773 call_a1( db_a.name, pbuf4+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1774 if( memcmp( pbuf3, pbuf4, 1024 * sizeof(pixel) ) ) \
1775 { \
1776 ok = 0; \
1777 fprintf( stderr, #name "(a=%d, b=%d): [FAILED]\n", alphas[i], betas[i] ); \
1778 break; \
1779 } \
1780 call_c2( db_c.name, pbuf3+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1781 call_a2( db_a.name, pbuf4+off, (intptr_t)32, alphas[i], betas[i], ##__VA_ARGS__ ); \
1782 } \
1783 }
1784
1785 TEST_DEBLOCK( deblock_luma[0], 0, tcs[i] );
1786 TEST_DEBLOCK( deblock_luma[1], 1, tcs[i] );
1787 TEST_DEBLOCK( deblock_h_chroma_420, 0, tcs[i] );
1788 TEST_DEBLOCK( deblock_h_chroma_422, 0, tcs[i] );
1789 TEST_DEBLOCK( deblock_chroma_420_mbaff, 0, tcs[i] );
1790 TEST_DEBLOCK( deblock_chroma_422_mbaff, 0, tcs[i] );
1791 TEST_DEBLOCK( deblock_chroma[1], 1, tcs[i] );
1792 TEST_DEBLOCK( deblock_luma_intra[0], 0 );
1793 TEST_DEBLOCK( deblock_luma_intra[1], 1 );
1794 TEST_DEBLOCK( deblock_h_chroma_420_intra, 0 );
1795 TEST_DEBLOCK( deblock_h_chroma_422_intra, 0 );
1796 TEST_DEBLOCK( deblock_chroma_420_intra_mbaff, 0 );
1797 TEST_DEBLOCK( deblock_chroma_422_intra_mbaff, 0 );
1798 TEST_DEBLOCK( deblock_chroma_intra[1], 1 );
1799
1800 if( db_a.deblock_strength != db_ref.deblock_strength )
1801 {
1802 for( int i = 0; i < 100; i++ )
1803 {
1804 ALIGNED_ARRAY_16( uint8_t, nnz, [X264_SCAN8_SIZE] );
1805 ALIGNED_4( int8_t ref[2][X264_SCAN8_LUMA_SIZE] );
1806 ALIGNED_ARRAY_16( int16_t, mv, [2],[X264_SCAN8_LUMA_SIZE][2] );
1807 ALIGNED_ARRAY_N( uint8_t, bs, [2],[2][8][4] );
1808 memset( bs, 99, sizeof(uint8_t)*2*4*8*2 );
1809 for( int j = 0; j < X264_SCAN8_SIZE; j++ )
1810 nnz[j] = ((rand()&7) == 7) * rand() & 0xf;
1811 for( int j = 0; j < 2; j++ )
1812 for( int k = 0; k < X264_SCAN8_LUMA_SIZE; k++ )
1813 {
1814 ref[j][k] = ((rand()&3) != 3) ? 0 : (rand() & 31) - 2;
1815 for( int l = 0; l < 2; l++ )
1816 mv[j][k][l] = ((rand()&7) != 7) ? (rand()&7) - 3 : (rand()&1023) - 512;
1817 }
1818 set_func_name( "deblock_strength" );
1819 call_c( db_c.deblock_strength, nnz, ref, mv, bs[0], 2<<(i&1), ((i>>1)&1) );
1820 call_a( db_a.deblock_strength, nnz, ref, mv, bs[1], 2<<(i&1), ((i>>1)&1) );
1821 if( memcmp( bs[0], bs[1], sizeof(uint8_t)*2*4*8 ) )
1822 {
1823 ok = 0;
1824 fprintf( stderr, "deblock_strength: [FAILED]\n" );
1825 for( int j = 0; j < 2; j++ )
1826 {
1827 for( int k = 0; k < 2; k++ )
1828 for( int l = 0; l < 4; l++ )
1829 {
1830 for( int m = 0; m < 4; m++ )
1831 printf("%d ",bs[j][k][l][m]);
1832 printf("\n");
1833 }
1834 printf("\n");
1835 }
1836 break;
1837 }
1838 }
1839 }
1840
1841 report( "deblock :" );
1842
1843 return ret;
1844 }
1845
check_quant(int cpu_ref,int cpu_new)1846 static int check_quant( int cpu_ref, int cpu_new )
1847 {
1848 x264_quant_function_t qf_c;
1849 x264_quant_function_t qf_ref;
1850 x264_quant_function_t qf_a;
1851 ALIGNED_ARRAY_N( dctcoef, dct1,[64] );
1852 ALIGNED_ARRAY_N( dctcoef, dct2,[64] );
1853 ALIGNED_ARRAY_N( dctcoef, dct3,[8],[16] );
1854 ALIGNED_ARRAY_N( dctcoef, dct4,[8],[16] );
1855 ALIGNED_ARRAY_N( uint8_t, cqm_buf,[64] );
1856 int ret = 0, ok, used_asm;
1857 int oks[3] = {1,1,1}, used_asms[3] = {0,0,0};
1858 x264_t h_buf;
1859 x264_t *h = &h_buf;
1860 memset( h, 0, sizeof(*h) );
1861 h->sps->i_chroma_format_idc = 1;
1862 x264_param_default( &h->param );
1863 h->chroma_qp_table = i_chroma_qp_table + 12;
1864 h->param.analyse.b_transform_8x8 = 1;
1865
1866 for( int i_cqm = 0; i_cqm < 4; i_cqm++ )
1867 {
1868 if( i_cqm == 0 )
1869 {
1870 for( int i = 0; i < 6; i++ )
1871 h->pps->scaling_list[i] = x264_cqm_flat16;
1872 h->param.i_cqm_preset = h->pps->i_cqm_preset = X264_CQM_FLAT;
1873 }
1874 else if( i_cqm == 1 )
1875 {
1876 for( int i = 0; i < 6; i++ )
1877 h->pps->scaling_list[i] = x264_cqm_jvt[i];
1878 h->param.i_cqm_preset = h->pps->i_cqm_preset = X264_CQM_JVT;
1879 }
1880 else
1881 {
1882 int max_scale = BIT_DEPTH < 10 ? 255 : 228;
1883 if( i_cqm == 2 )
1884 for( int i = 0; i < 64; i++ )
1885 cqm_buf[i] = 10 + rand() % (max_scale - 9);
1886 else
1887 for( int i = 0; i < 64; i++ )
1888 cqm_buf[i] = 1;
1889 for( int i = 0; i < 6; i++ )
1890 h->pps->scaling_list[i] = cqm_buf;
1891 h->param.i_cqm_preset = h->pps->i_cqm_preset = X264_CQM_CUSTOM;
1892 }
1893
1894 h->param.rc.i_qp_min = 0;
1895 h->param.rc.i_qp_max = QP_MAX_SPEC;
1896 x264_cqm_init( h );
1897 x264_quant_init( h, 0, &qf_c );
1898 x264_quant_init( h, cpu_ref, &qf_ref );
1899 x264_quant_init( h, cpu_new, &qf_a );
1900
1901 #define INIT_QUANT8(j,max) \
1902 { \
1903 static const int scale1d[8] = {32,31,24,31,32,31,24,31}; \
1904 for( int i = 0; i < max; i++ ) \
1905 { \
1906 unsigned int scale = (255*scale1d[(i>>3)&7]*scale1d[i&7])/16; \
1907 dct1[i] = dct2[i] = (j>>(i>>6))&1 ? (rand()%(2*scale+1))-scale : 0; \
1908 } \
1909 }
1910
1911 #define INIT_QUANT4(j,max) \
1912 { \
1913 static const int scale1d[4] = {4,6,4,6}; \
1914 for( int i = 0; i < max; i++ ) \
1915 { \
1916 unsigned int scale = 255*scale1d[(i>>2)&3]*scale1d[i&3]; \
1917 dct1[i] = dct2[i] = (j>>(i>>4))&1 ? (rand()%(2*scale+1))-scale : 0; \
1918 } \
1919 }
1920
1921 #define TEST_QUANT_DC( name, cqm ) \
1922 if( qf_a.name != qf_ref.name ) \
1923 { \
1924 set_func_name( #name ); \
1925 used_asms[0] = 1; \
1926 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
1927 { \
1928 for( int j = 0; j < 2; j++ ) \
1929 { \
1930 int result_c, result_a; \
1931 for( int i = 0; i < 16; i++ ) \
1932 dct1[i] = dct2[i] = j ? (rand() & 0x1fff) - 0xfff : 0; \
1933 result_c = call_c1( qf_c.name, dct1, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
1934 result_a = call_a1( qf_a.name, dct2, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
1935 if( memcmp( dct1, dct2, 16*sizeof(dctcoef) ) || result_c != result_a ) \
1936 { \
1937 oks[0] = 0; \
1938 fprintf( stderr, #name "(cqm=%d): [FAILED]\n", i_cqm ); \
1939 break; \
1940 } \
1941 call_c2( qf_c.name, dct1, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
1942 call_a2( qf_a.name, dct2, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] ); \
1943 } \
1944 } \
1945 }
1946
1947 #define TEST_QUANT( qname, block, type, w, maxj ) \
1948 if( qf_a.qname != qf_ref.qname ) \
1949 { \
1950 set_func_name( #qname ); \
1951 used_asms[0] = 1; \
1952 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
1953 { \
1954 for( int j = 0; j < maxj; j++ ) \
1955 { \
1956 INIT_QUANT##type(j, w*w) \
1957 int result_c = call_c1( qf_c.qname, (void*)dct1, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
1958 int result_a = call_a1( qf_a.qname, (void*)dct2, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
1959 if( memcmp( dct1, dct2, w*w*sizeof(dctcoef) ) || result_c != result_a ) \
1960 { \
1961 oks[0] = 0; \
1962 fprintf( stderr, #qname "(qp=%d, cqm=%d, block="#block"): [FAILED]\n", qp, i_cqm ); \
1963 break; \
1964 } \
1965 call_c2( qf_c.qname, (void*)dct1, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
1966 call_a2( qf_a.qname, (void*)dct2, h->quant##type##_mf[block][qp], h->quant##type##_bias[block][qp] ); \
1967 } \
1968 } \
1969 }
1970
1971 TEST_QUANT( quant_8x8, CQM_8IY, 8, 8, 2 );
1972 TEST_QUANT( quant_8x8, CQM_8PY, 8, 8, 2 );
1973 TEST_QUANT( quant_4x4, CQM_4IY, 4, 4, 2 );
1974 TEST_QUANT( quant_4x4, CQM_4PY, 4, 4, 2 );
1975 TEST_QUANT( quant_4x4x4, CQM_4IY, 4, 8, 16 );
1976 TEST_QUANT( quant_4x4x4, CQM_4PY, 4, 8, 16 );
1977 TEST_QUANT_DC( quant_4x4_dc, **h->quant4_mf[CQM_4IY] );
1978 TEST_QUANT_DC( quant_2x2_dc, **h->quant4_mf[CQM_4IC] );
1979
1980 #define TEST_DEQUANT( qname, dqname, block, w ) \
1981 if( qf_a.dqname != qf_ref.dqname ) \
1982 { \
1983 set_func_name( "%s_%s", #dqname, i_cqm?"cqm":"flat" ); \
1984 used_asms[1] = 1; \
1985 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
1986 { \
1987 INIT_QUANT##w(1, w*w) \
1988 qf_c.qname( dct1, h->quant##w##_mf[block][qp], h->quant##w##_bias[block][qp] ); \
1989 memcpy( dct2, dct1, w*w*sizeof(dctcoef) ); \
1990 call_c1( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
1991 call_a1( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
1992 if( memcmp( dct1, dct2, w*w*sizeof(dctcoef) ) ) \
1993 { \
1994 oks[1] = 0; \
1995 fprintf( stderr, #dqname "(qp=%d, cqm=%d, block="#block"): [FAILED]\n", qp, i_cqm ); \
1996 break; \
1997 } \
1998 call_c2( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
1999 call_a2( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
2000 } \
2001 }
2002
2003 TEST_DEQUANT( quant_8x8, dequant_8x8, CQM_8IY, 8 );
2004 TEST_DEQUANT( quant_8x8, dequant_8x8, CQM_8PY, 8 );
2005 TEST_DEQUANT( quant_4x4, dequant_4x4, CQM_4IY, 4 );
2006 TEST_DEQUANT( quant_4x4, dequant_4x4, CQM_4PY, 4 );
2007
2008 #define TEST_DEQUANT_DC( qname, dqname, block, w ) \
2009 if( qf_a.dqname != qf_ref.dqname ) \
2010 { \
2011 set_func_name( "%s_%s", #dqname, i_cqm?"cqm":"flat" ); \
2012 used_asms[1] = 1; \
2013 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
2014 { \
2015 for( int i = 0; i < 16; i++ ) \
2016 dct1[i] = rand()%(PIXEL_MAX*16*2+1) - PIXEL_MAX*16; \
2017 qf_c.qname( dct1, h->quant##w##_mf[block][qp][0]>>1, h->quant##w##_bias[block][qp][0]>>1 ); \
2018 memcpy( dct2, dct1, w*w*sizeof(dctcoef) ); \
2019 call_c1( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
2020 call_a1( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
2021 if( memcmp( dct1, dct2, w*w*sizeof(dctcoef) ) ) \
2022 { \
2023 oks[1] = 0; \
2024 fprintf( stderr, #dqname "(qp=%d, cqm=%d, block="#block"): [FAILED]\n", qp, i_cqm ); \
2025 } \
2026 call_c2( qf_c.dqname, dct1, h->dequant##w##_mf[block], qp ); \
2027 call_a2( qf_a.dqname, dct2, h->dequant##w##_mf[block], qp ); \
2028 } \
2029 }
2030
2031 TEST_DEQUANT_DC( quant_4x4_dc, dequant_4x4_dc, CQM_4IY, 4 );
2032
2033 if( qf_a.idct_dequant_2x4_dc != qf_ref.idct_dequant_2x4_dc )
2034 {
2035 set_func_name( "idct_dequant_2x4_dc_%s", i_cqm?"cqm":"flat" );
2036 used_asms[1] = 1;
2037 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- )
2038 {
2039 for( int i = 0; i < 8; i++ )
2040 dct1[i] = rand()%(PIXEL_MAX*16*2+1) - PIXEL_MAX*16;
2041 qf_c.quant_2x2_dc( &dct1[0], h->quant4_mf[CQM_4IC][qp+3][0]>>1, h->quant4_bias[CQM_4IC][qp+3][0]>>1 );
2042 qf_c.quant_2x2_dc( &dct1[4], h->quant4_mf[CQM_4IC][qp+3][0]>>1, h->quant4_bias[CQM_4IC][qp+3][0]>>1 );
2043 call_c( qf_c.idct_dequant_2x4_dc, dct1, dct3, h->dequant4_mf[CQM_4IC], qp+3 );
2044 call_a( qf_a.idct_dequant_2x4_dc, dct1, dct4, h->dequant4_mf[CQM_4IC], qp+3 );
2045 for( int i = 0; i < 8; i++ )
2046 if( dct3[i][0] != dct4[i][0] )
2047 {
2048 oks[1] = 0;
2049 fprintf( stderr, "idct_dequant_2x4_dc (qp=%d, cqm=%d): [FAILED]\n", qp, i_cqm );
2050 break;
2051 }
2052 }
2053 }
2054
2055 if( qf_a.idct_dequant_2x4_dconly != qf_ref.idct_dequant_2x4_dconly )
2056 {
2057 set_func_name( "idct_dequant_2x4_dc_%s", i_cqm?"cqm":"flat" );
2058 used_asms[1] = 1;
2059 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- )
2060 {
2061 for( int i = 0; i < 8; i++ )
2062 dct1[i] = rand()%(PIXEL_MAX*16*2+1) - PIXEL_MAX*16;
2063 qf_c.quant_2x2_dc( &dct1[0], h->quant4_mf[CQM_4IC][qp+3][0]>>1, h->quant4_bias[CQM_4IC][qp+3][0]>>1 );
2064 qf_c.quant_2x2_dc( &dct1[4], h->quant4_mf[CQM_4IC][qp+3][0]>>1, h->quant4_bias[CQM_4IC][qp+3][0]>>1 );
2065 memcpy( dct2, dct1, 8*sizeof(dctcoef) );
2066 call_c1( qf_c.idct_dequant_2x4_dconly, dct1, h->dequant4_mf[CQM_4IC], qp+3 );
2067 call_a1( qf_a.idct_dequant_2x4_dconly, dct2, h->dequant4_mf[CQM_4IC], qp+3 );
2068 if( memcmp( dct1, dct2, 8*sizeof(dctcoef) ) )
2069 {
2070 oks[1] = 0;
2071 fprintf( stderr, "idct_dequant_2x4_dconly (qp=%d, cqm=%d): [FAILED]\n", qp, i_cqm );
2072 break;
2073 }
2074 call_c2( qf_c.idct_dequant_2x4_dconly, dct1, h->dequant4_mf[CQM_4IC], qp+3 );
2075 call_a2( qf_a.idct_dequant_2x4_dconly, dct2, h->dequant4_mf[CQM_4IC], qp+3 );
2076 }
2077 }
2078
2079 #define TEST_OPTIMIZE_CHROMA_DC( optname, size ) \
2080 if( qf_a.optname != qf_ref.optname ) \
2081 { \
2082 set_func_name( #optname ); \
2083 used_asms[2] = 1; \
2084 for( int qp = h->param.rc.i_qp_max; qp >= h->param.rc.i_qp_min; qp-- ) \
2085 { \
2086 int qpdc = qp + (size == 8 ? 3 : 0); \
2087 int dmf = h->dequant4_mf[CQM_4IC][qpdc%6][0] << qpdc/6; \
2088 if( dmf > 32*64 ) \
2089 continue; \
2090 for( int i = 16; ; i <<= 1 ) \
2091 { \
2092 int res_c, res_asm; \
2093 int max = X264_MIN( i, PIXEL_MAX*16 ); \
2094 for( int j = 0; j < size; j++ ) \
2095 dct1[j] = rand()%(max*2+1) - max; \
2096 for( int j = 0; i <= size; j += 4 ) \
2097 qf_c.quant_2x2_dc( &dct1[j], h->quant4_mf[CQM_4IC][qpdc][0]>>1, h->quant4_bias[CQM_4IC][qpdc][0]>>1 ); \
2098 memcpy( dct2, dct1, size*sizeof(dctcoef) ); \
2099 res_c = call_c1( qf_c.optname, dct1, dmf ); \
2100 res_asm = call_a1( qf_a.optname, dct2, dmf ); \
2101 if( res_c != res_asm || memcmp( dct1, dct2, size*sizeof(dctcoef) ) ) \
2102 { \
2103 oks[2] = 0; \
2104 fprintf( stderr, #optname "(qp=%d, res_c=%d, res_asm=%d): [FAILED]\n", qp, res_c, res_asm ); \
2105 } \
2106 call_c2( qf_c.optname, dct1, dmf ); \
2107 call_a2( qf_a.optname, dct2, dmf ); \
2108 if( i >= PIXEL_MAX*16 ) \
2109 break; \
2110 } \
2111 } \
2112 }
2113
2114 TEST_OPTIMIZE_CHROMA_DC( optimize_chroma_2x2_dc, 4 );
2115 TEST_OPTIMIZE_CHROMA_DC( optimize_chroma_2x4_dc, 8 );
2116
2117 x264_cqm_delete( h );
2118 }
2119
2120 ok = oks[0]; used_asm = used_asms[0];
2121 report( "quant :" );
2122
2123 ok = oks[1]; used_asm = used_asms[1];
2124 report( "dequant :" );
2125
2126 ok = oks[2]; used_asm = used_asms[2];
2127 report( "optimize chroma dc :" );
2128
2129 ok = 1; used_asm = 0;
2130 if( qf_a.denoise_dct != qf_ref.denoise_dct )
2131 {
2132 used_asm = 1;
2133 for( int size = 16; size <= 64; size += 48 )
2134 {
2135 set_func_name( "denoise_dct" );
2136 memcpy( dct1, buf1, size*sizeof(dctcoef) );
2137 memcpy( dct2, buf1, size*sizeof(dctcoef) );
2138 memcpy( buf3+256, buf3, 256 );
2139 call_c1( qf_c.denoise_dct, dct1, (uint32_t*)buf3, (udctcoef*)buf2, size );
2140 call_a1( qf_a.denoise_dct, dct2, (uint32_t*)(buf3+256), (udctcoef*)buf2, size );
2141 if( memcmp( dct1, dct2, size*sizeof(dctcoef) ) || memcmp( buf3+4, buf3+256+4, (size-1)*sizeof(uint32_t) ) )
2142 ok = 0;
2143 call_c2( qf_c.denoise_dct, dct1, (uint32_t*)buf3, (udctcoef*)buf2, size );
2144 call_a2( qf_a.denoise_dct, dct2, (uint32_t*)(buf3+256), (udctcoef*)buf2, size );
2145 }
2146 }
2147 report( "denoise dct :" );
2148
2149 #define TEST_DECIMATE( decname, w, ac, thresh ) \
2150 if( qf_a.decname != qf_ref.decname ) \
2151 { \
2152 set_func_name( #decname ); \
2153 used_asm = 1; \
2154 for( int i = 0; i < 100; i++ ) \
2155 { \
2156 static const int distrib[16] = {1,1,1,1,1,1,1,1,1,1,1,1,2,3,4};\
2157 static const int zerorate_lut[4] = {3,7,15,31};\
2158 int zero_rate = zerorate_lut[i&3];\
2159 for( int idx = 0; idx < w*w; idx++ ) \
2160 { \
2161 int sign = (rand()&1) ? -1 : 1; \
2162 int abs_level = distrib[rand()&15]; \
2163 if( abs_level == 4 ) abs_level = rand()&0x3fff; \
2164 int zero = !(rand()&zero_rate); \
2165 dct1[idx] = zero * abs_level * sign; \
2166 } \
2167 if( ac ) \
2168 dct1[0] = 0; \
2169 int result_c = call_c( qf_c.decname, dct1 ); \
2170 int result_a = call_a( qf_a.decname, dct1 ); \
2171 if( X264_MIN(result_c,thresh) != X264_MIN(result_a,thresh) ) \
2172 { \
2173 ok = 0; \
2174 fprintf( stderr, #decname ": [FAILED]\n" ); \
2175 break; \
2176 } \
2177 } \
2178 }
2179
2180 ok = 1; used_asm = 0;
2181 TEST_DECIMATE( decimate_score64, 8, 0, 6 );
2182 TEST_DECIMATE( decimate_score16, 4, 0, 6 );
2183 TEST_DECIMATE( decimate_score15, 4, 1, 7 );
2184 report( "decimate_score :" );
2185
2186 #define TEST_LAST( last, lastname, size, ac ) \
2187 if( qf_a.last != qf_ref.last ) \
2188 { \
2189 set_func_name( #lastname ); \
2190 used_asm = 1; \
2191 for( int i = 0; i < 100; i++ ) \
2192 { \
2193 int nnz = 0; \
2194 int max = rand() & (size-1); \
2195 memset( dct1, 0, size*sizeof(dctcoef) ); \
2196 for( int idx = ac; idx < max; idx++ ) \
2197 nnz |= dct1[idx] = !(rand()&3) + (!(rand()&15))*rand(); \
2198 if( !nnz ) \
2199 dct1[ac] = 1; \
2200 int result_c = call_c( qf_c.last, dct1+ac ); \
2201 int result_a = call_a( qf_a.last, dct1+ac ); \
2202 if( result_c != result_a ) \
2203 { \
2204 ok = 0; \
2205 fprintf( stderr, #lastname ": [FAILED]\n" ); \
2206 break; \
2207 } \
2208 } \
2209 }
2210
2211 ok = 1; used_asm = 0;
2212 TEST_LAST( coeff_last4 , coeff_last4, 4, 0 );
2213 TEST_LAST( coeff_last8 , coeff_last8, 8, 0 );
2214 TEST_LAST( coeff_last[ DCT_LUMA_AC], coeff_last15, 16, 1 );
2215 TEST_LAST( coeff_last[ DCT_LUMA_4x4], coeff_last16, 16, 0 );
2216 TEST_LAST( coeff_last[ DCT_LUMA_8x8], coeff_last64, 64, 0 );
2217 report( "coeff_last :" );
2218
2219 #define TEST_LEVELRUN( lastname, name, size, ac ) \
2220 if( qf_a.lastname != qf_ref.lastname ) \
2221 { \
2222 set_func_name( #name ); \
2223 used_asm = 1; \
2224 for( int i = 0; i < 100; i++ ) \
2225 { \
2226 x264_run_level_t runlevel_c, runlevel_a; \
2227 int nnz = 0; \
2228 int max = rand() & (size-1); \
2229 memset( dct1, 0, size*sizeof(dctcoef) ); \
2230 memcpy( &runlevel_a, buf1+i, sizeof(x264_run_level_t) ); \
2231 memcpy( &runlevel_c, buf1+i, sizeof(x264_run_level_t) ); \
2232 for( int idx = ac; idx < max; idx++ ) \
2233 nnz |= dct1[idx] = !(rand()&3) + (!(rand()&15))*rand(); \
2234 if( !nnz ) \
2235 dct1[ac] = 1; \
2236 int result_c = call_c( qf_c.lastname, dct1+ac, &runlevel_c ); \
2237 int result_a = call_a( qf_a.lastname, dct1+ac, &runlevel_a ); \
2238 if( result_c != result_a || runlevel_c.last != runlevel_a.last || \
2239 runlevel_c.mask != runlevel_a.mask || \
2240 memcmp(runlevel_c.level, runlevel_a.level, sizeof(dctcoef)*result_c)) \
2241 { \
2242 ok = 0; \
2243 fprintf( stderr, #name ": [FAILED]\n" ); \
2244 break; \
2245 } \
2246 } \
2247 }
2248
2249 ok = 1; used_asm = 0;
2250 TEST_LEVELRUN( coeff_level_run4 , coeff_level_run4, 4, 0 );
2251 TEST_LEVELRUN( coeff_level_run8 , coeff_level_run8, 8, 0 );
2252 TEST_LEVELRUN( coeff_level_run[ DCT_LUMA_AC], coeff_level_run15, 16, 1 );
2253 TEST_LEVELRUN( coeff_level_run[ DCT_LUMA_4x4], coeff_level_run16, 16, 0 );
2254 report( "coeff_level_run :" );
2255
2256 return ret;
2257 }
2258
check_intra(int cpu_ref,int cpu_new)2259 static int check_intra( int cpu_ref, int cpu_new )
2260 {
2261 int ret = 0, ok = 1, used_asm = 0;
2262 ALIGNED_ARRAY_32( pixel, edge,[36] );
2263 ALIGNED_ARRAY_32( pixel, edge2,[36] );
2264 ALIGNED_ARRAY_32( pixel, fdec,[FDEC_STRIDE*20] );
2265 struct
2266 {
2267 x264_predict_t predict_16x16[4+3];
2268 x264_predict_t predict_8x8c[4+3];
2269 x264_predict_t predict_8x16c[4+3];
2270 x264_predict8x8_t predict_8x8[9+3];
2271 x264_predict_t predict_4x4[9+3];
2272 x264_predict_8x8_filter_t predict_8x8_filter;
2273 } ip_c, ip_ref, ip_a;
2274
2275 x264_predict_16x16_init( 0, ip_c.predict_16x16 );
2276 x264_predict_8x8c_init( 0, ip_c.predict_8x8c );
2277 x264_predict_8x16c_init( 0, ip_c.predict_8x16c );
2278 x264_predict_8x8_init( 0, ip_c.predict_8x8, &ip_c.predict_8x8_filter );
2279 x264_predict_4x4_init( 0, ip_c.predict_4x4 );
2280
2281 x264_predict_16x16_init( cpu_ref, ip_ref.predict_16x16 );
2282 x264_predict_8x8c_init( cpu_ref, ip_ref.predict_8x8c );
2283 x264_predict_8x16c_init( cpu_ref, ip_ref.predict_8x16c );
2284 x264_predict_8x8_init( cpu_ref, ip_ref.predict_8x8, &ip_ref.predict_8x8_filter );
2285 x264_predict_4x4_init( cpu_ref, ip_ref.predict_4x4 );
2286
2287 x264_predict_16x16_init( cpu_new, ip_a.predict_16x16 );
2288 x264_predict_8x8c_init( cpu_new, ip_a.predict_8x8c );
2289 x264_predict_8x16c_init( cpu_new, ip_a.predict_8x16c );
2290 x264_predict_8x8_init( cpu_new, ip_a.predict_8x8, &ip_a.predict_8x8_filter );
2291 x264_predict_4x4_init( cpu_new, ip_a.predict_4x4 );
2292
2293 memcpy( fdec, pbuf1, 32*20 * sizeof(pixel) );\
2294
2295 ip_c.predict_8x8_filter( fdec+48, edge, ALL_NEIGHBORS, ALL_NEIGHBORS );
2296
2297 #define INTRA_TEST( name, dir, w, h, align, bench, ... )\
2298 if( ip_a.name[dir] != ip_ref.name[dir] )\
2299 {\
2300 set_func_name( "intra_%s_%s", #name, intra_##name##_names[dir] );\
2301 used_asm = 1;\
2302 memcpy( pbuf3, fdec, FDEC_STRIDE*20 * sizeof(pixel) );\
2303 memcpy( pbuf4, fdec, FDEC_STRIDE*20 * sizeof(pixel) );\
2304 for( int a = 0; a < (do_bench ? 64/sizeof(pixel) : 1); a += align )\
2305 {\
2306 call_c##bench( ip_c.name[dir], pbuf3+48+a, ##__VA_ARGS__ );\
2307 call_a##bench( ip_a.name[dir], pbuf4+48+a, ##__VA_ARGS__ );\
2308 if( memcmp( pbuf3, pbuf4, FDEC_STRIDE*20 * sizeof(pixel) ) )\
2309 {\
2310 fprintf( stderr, #name "[%d] : [FAILED]\n", dir );\
2311 ok = 0;\
2312 for( int k = -1; k < 16; k++ )\
2313 printf( "%2x ", edge[16+k] );\
2314 printf( "\n" );\
2315 for( int j = 0; j < h; j++ )\
2316 {\
2317 printf( "%2x ", edge[14-j] );\
2318 for( int k = 0; k < w; k++ )\
2319 printf( "%2x ", pbuf4[48+k+j*FDEC_STRIDE] );\
2320 printf( "\n" );\
2321 }\
2322 printf( "\n" );\
2323 for( int j = 0; j < h; j++ )\
2324 {\
2325 printf( " " );\
2326 for( int k = 0; k < w; k++ )\
2327 printf( "%2x ", pbuf3[48+k+j*FDEC_STRIDE] );\
2328 printf( "\n" );\
2329 }\
2330 break;\
2331 }\
2332 }\
2333 }
2334
2335 for( int i = 0; i < 12; i++ )
2336 INTRA_TEST( predict_4x4, i, 4, 4, 4, );
2337 for( int i = 0; i < 7; i++ )
2338 INTRA_TEST( predict_8x8c, i, 8, 8, 16, );
2339 for( int i = 0; i < 7; i++ )
2340 INTRA_TEST( predict_8x16c, i, 8, 16, 16, );
2341 for( int i = 0; i < 7; i++ )
2342 INTRA_TEST( predict_16x16, i, 16, 16, 16, );
2343 for( int i = 0; i < 12; i++ )
2344 INTRA_TEST( predict_8x8, i, 8, 8, 8, , edge );
2345
2346 set_func_name("intra_predict_8x8_filter");
2347 if( ip_a.predict_8x8_filter != ip_ref.predict_8x8_filter )
2348 {
2349 used_asm = 1;
2350 for( int i = 0; i < 32; i++ )
2351 {
2352 if( !(i&7) || ((i&MB_TOPRIGHT) && !(i&MB_TOP)) )
2353 continue;
2354 int neighbor = (i&24)>>1;
2355 memset( edge, 0, 36*sizeof(pixel) );
2356 memset( edge2, 0, 36*sizeof(pixel) );
2357 call_c( ip_c.predict_8x8_filter, pbuf1+48, edge, neighbor, i&7 );
2358 call_a( ip_a.predict_8x8_filter, pbuf1+48, edge2, neighbor, i&7 );
2359 if( !(neighbor&MB_TOPLEFT) )
2360 edge[15] = edge2[15] = 0;
2361 if( memcmp( edge+7, edge2+7, (i&MB_TOPRIGHT ? 26 : i&MB_TOP ? 17 : 8) * sizeof(pixel) ) )
2362 {
2363 fprintf( stderr, "predict_8x8_filter : [FAILED] %d %d\n", (i&24)>>1, i&7);
2364 ok = 0;
2365 }
2366 }
2367 }
2368
2369 #define EXTREMAL_PLANE( w, h ) \
2370 { \
2371 int max[7]; \
2372 for( int j = 0; j < 7; j++ ) \
2373 max[j] = test ? rand()&PIXEL_MAX : PIXEL_MAX; \
2374 fdec[48-1-FDEC_STRIDE] = (i&1)*max[0]; \
2375 for( int j = 0; j < w/2; j++ ) \
2376 fdec[48+j-FDEC_STRIDE] = (!!(i&2))*max[1]; \
2377 for( int j = w/2; j < w-1; j++ ) \
2378 fdec[48+j-FDEC_STRIDE] = (!!(i&4))*max[2]; \
2379 fdec[48+(w-1)-FDEC_STRIDE] = (!!(i&8))*max[3]; \
2380 for( int j = 0; j < h/2; j++ ) \
2381 fdec[48+j*FDEC_STRIDE-1] = (!!(i&16))*max[4]; \
2382 for( int j = h/2; j < h-1; j++ ) \
2383 fdec[48+j*FDEC_STRIDE-1] = (!!(i&32))*max[5]; \
2384 fdec[48+(h-1)*FDEC_STRIDE-1] = (!!(i&64))*max[6]; \
2385 }
2386 /* Extremal test case for planar prediction. */
2387 for( int test = 0; test < 100 && ok; test++ )
2388 for( int i = 0; i < 128 && ok; i++ )
2389 {
2390 EXTREMAL_PLANE( 8, 8 );
2391 INTRA_TEST( predict_8x8c, I_PRED_CHROMA_P, 8, 8, 64, 1 );
2392 EXTREMAL_PLANE( 8, 16 );
2393 INTRA_TEST( predict_8x16c, I_PRED_CHROMA_P, 8, 16, 64, 1 );
2394 EXTREMAL_PLANE( 16, 16 );
2395 INTRA_TEST( predict_16x16, I_PRED_16x16_P, 16, 16, 64, 1 );
2396 }
2397 report( "intra pred :" );
2398 return ret;
2399 }
2400
2401 #define DECL_CABAC(cpu) \
2402 static void run_cabac_decision_##cpu( x264_t *h, uint8_t *dst )\
2403 {\
2404 x264_cabac_t cb;\
2405 x264_cabac_context_init( h, &cb, SLICE_TYPE_P, 26, 0 );\
2406 x264_cabac_encode_init( &cb, dst, dst+0xff0 );\
2407 for( int i = 0; i < 0x1000; i++ )\
2408 x264_cabac_encode_decision_##cpu( &cb, buf1[i]>>1, buf1[i]&1 );\
2409 }\
2410 static void run_cabac_bypass_##cpu( x264_t *h, uint8_t *dst )\
2411 {\
2412 x264_cabac_t cb;\
2413 x264_cabac_context_init( h, &cb, SLICE_TYPE_P, 26, 0 );\
2414 x264_cabac_encode_init( &cb, dst, dst+0xff0 );\
2415 for( int i = 0; i < 0x1000; i++ )\
2416 x264_cabac_encode_bypass_##cpu( &cb, buf1[i]&1 );\
2417 }\
2418 static void run_cabac_terminal_##cpu( x264_t *h, uint8_t *dst )\
2419 {\
2420 x264_cabac_t cb;\
2421 x264_cabac_context_init( h, &cb, SLICE_TYPE_P, 26, 0 );\
2422 x264_cabac_encode_init( &cb, dst, dst+0xff0 );\
2423 for( int i = 0; i < 0x1000; i++ )\
2424 x264_cabac_encode_terminal_##cpu( &cb );\
2425 }
2426 DECL_CABAC(c)
2427 #if HAVE_MMX
2428 DECL_CABAC(asm)
2429 #else
2430 #define run_cabac_decision_asm run_cabac_decision_c
2431 #define run_cabac_bypass_asm run_cabac_bypass_c
2432 #define run_cabac_terminal_asm run_cabac_terminal_c
2433 #endif
2434
2435 extern const uint8_t x264_count_cat_m1[14];
2436 void x264_cabac_block_residual_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
2437 void x264_cabac_block_residual_8x8_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
2438 void x264_cabac_block_residual_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
2439
check_cabac(int cpu_ref,int cpu_new)2440 static int check_cabac( int cpu_ref, int cpu_new )
2441 {
2442 int ret = 0, ok = 1, used_asm = 0;
2443 x264_t h;
2444 h.sps->i_chroma_format_idc = 3;
2445
2446 x264_bitstream_function_t bs_ref;
2447 x264_bitstream_function_t bs_a;
2448 x264_bitstream_init( cpu_ref, &bs_ref );
2449 x264_bitstream_init( cpu_new, &bs_a );
2450 x264_quant_init( &h, cpu_new, &h.quantf );
2451 h.quantf.coeff_last[DCT_CHROMA_DC] = h.quantf.coeff_last4;
2452
2453 #define CABAC_RESIDUAL(name, start, end, rd)\
2454 {\
2455 if( bs_a.name##_internal && (bs_a.name##_internal != bs_ref.name##_internal || (cpu_new&X264_CPU_SSE2_IS_SLOW)) )\
2456 {\
2457 used_asm = 1;\
2458 set_func_name( #name );\
2459 for( int i = 0; i < 2; i++ )\
2460 {\
2461 for( intptr_t ctx_block_cat = start; ctx_block_cat <= end; ctx_block_cat++ )\
2462 {\
2463 for( int j = 0; j < 256; j++ )\
2464 {\
2465 ALIGNED_ARRAY_N( dctcoef, dct, [2],[64] );\
2466 uint8_t bitstream[2][1<<16];\
2467 static const uint8_t ctx_ac[14] = {0,1,0,0,1,0,0,1,0,0,0,1,0,0};\
2468 int ac = ctx_ac[ctx_block_cat];\
2469 int nz = 0;\
2470 while( !nz )\
2471 {\
2472 for( int k = 0; k <= x264_count_cat_m1[ctx_block_cat]; k++ )\
2473 {\
2474 /* Very rough distribution that covers possible inputs */\
2475 int rnd = rand();\
2476 int coef = !(rnd&3);\
2477 coef += !(rnd& 15) * (rand()&0x0006);\
2478 coef += !(rnd& 63) * (rand()&0x0008);\
2479 coef += !(rnd& 255) * (rand()&0x00F0);\
2480 coef += !(rnd&1023) * (rand()&0x7F00);\
2481 nz |= dct[0][ac+k] = dct[1][ac+k] = coef * ((rand()&1) ? 1 : -1);\
2482 }\
2483 }\
2484 h.mb.b_interlaced = i;\
2485 x264_cabac_t cb[2];\
2486 x264_cabac_context_init( &h, &cb[0], SLICE_TYPE_P, 26, 0 );\
2487 x264_cabac_context_init( &h, &cb[1], SLICE_TYPE_P, 26, 0 );\
2488 x264_cabac_encode_init( &cb[0], bitstream[0], bitstream[0]+0xfff0 );\
2489 x264_cabac_encode_init( &cb[1], bitstream[1], bitstream[1]+0xfff0 );\
2490 cb[0].f8_bits_encoded = 0;\
2491 cb[1].f8_bits_encoded = 0;\
2492 if( !rd ) memcpy( bitstream[1], bitstream[0], 0x400 );\
2493 call_c1( x264_##name##_c, &h, &cb[0], ctx_block_cat, dct[0]+ac );\
2494 call_a1( bs_a.name##_internal, dct[1]+ac, i, ctx_block_cat, &cb[1] );\
2495 ok = cb[0].f8_bits_encoded == cb[1].f8_bits_encoded && !memcmp(cb[0].state, cb[1].state, 1024);\
2496 if( !rd ) ok |= !memcmp( bitstream[1], bitstream[0], 0x400 ) && !memcmp( &cb[1], &cb[0], offsetof(x264_cabac_t, p_start) );\
2497 if( !ok )\
2498 {\
2499 fprintf( stderr, #name " : [FAILED] ctx_block_cat %d", (int)ctx_block_cat );\
2500 if( rd && cb[0].f8_bits_encoded != cb[1].f8_bits_encoded )\
2501 fprintf( stderr, " (%d != %d)", cb[0].f8_bits_encoded, cb[1].f8_bits_encoded );\
2502 fprintf( stderr, "\n");\
2503 goto name##fail;\
2504 }\
2505 if( (j&15) == 0 )\
2506 {\
2507 call_c2( x264_##name##_c, &h, &cb[0], ctx_block_cat, dct[0]+ac );\
2508 call_a2( bs_a.name##_internal, dct[1]+ac, i, ctx_block_cat, &cb[1] );\
2509 }\
2510 }\
2511 }\
2512 }\
2513 }\
2514 }\
2515 name##fail:
2516
2517 CABAC_RESIDUAL( cabac_block_residual, 0, DCT_LUMA_8x8, 0 )
2518 report( "cabac residual:" );
2519
2520 ok = 1; used_asm = 0;
2521 CABAC_RESIDUAL( cabac_block_residual_rd, 0, DCT_LUMA_8x8-1, 1 )
2522 CABAC_RESIDUAL( cabac_block_residual_8x8_rd, DCT_LUMA_8x8, DCT_LUMA_8x8, 1 )
2523 report( "cabac residual rd:" );
2524
2525 if( cpu_ref || run_cabac_decision_c == run_cabac_decision_asm )
2526 return ret;
2527 ok = 1; used_asm = 0;
2528 x264_cabac_init( &h );
2529
2530 set_func_name( "cabac_encode_decision" );
2531 memcpy( buf4, buf3, 0x1000 );
2532 call_c( run_cabac_decision_c, &h, buf3 );
2533 call_a( run_cabac_decision_asm, &h, buf4 );
2534 ok = !memcmp( buf3, buf4, 0x1000 );
2535 report( "cabac decision:" );
2536
2537 set_func_name( "cabac_encode_bypass" );
2538 memcpy( buf4, buf3, 0x1000 );
2539 call_c( run_cabac_bypass_c, &h, buf3 );
2540 call_a( run_cabac_bypass_asm, &h, buf4 );
2541 ok = !memcmp( buf3, buf4, 0x1000 );
2542 report( "cabac bypass:" );
2543
2544 set_func_name( "cabac_encode_terminal" );
2545 memcpy( buf4, buf3, 0x1000 );
2546 call_c( run_cabac_terminal_c, &h, buf3 );
2547 call_a( run_cabac_terminal_asm, &h, buf4 );
2548 ok = !memcmp( buf3, buf4, 0x1000 );
2549 report( "cabac terminal:" );
2550
2551 return ret;
2552 }
2553
check_bitstream(int cpu_ref,int cpu_new)2554 static int check_bitstream( int cpu_ref, int cpu_new )
2555 {
2556 x264_bitstream_function_t bs_c;
2557 x264_bitstream_function_t bs_ref;
2558 x264_bitstream_function_t bs_a;
2559
2560 int ret = 0, ok = 1, used_asm = 0;
2561
2562 x264_bitstream_init( 0, &bs_c );
2563 x264_bitstream_init( cpu_ref, &bs_ref );
2564 x264_bitstream_init( cpu_new, &bs_a );
2565 if( bs_a.nal_escape != bs_ref.nal_escape )
2566 {
2567 int size = 0x4000;
2568 uint8_t *input = malloc(size+100);
2569 uint8_t *output1 = malloc(size*2);
2570 uint8_t *output2 = malloc(size*2);
2571 used_asm = 1;
2572 set_func_name( "nal_escape" );
2573 for( int i = 0; i < 100; i++ )
2574 {
2575 /* Test corner-case sizes */
2576 int test_size = i < 10 ? i+1 : rand() & 0x3fff;
2577 /* Test 8 different probability distributions of zeros */
2578 for( int j = 0; j < test_size+32; j++ )
2579 input[j] = (rand()&((1 << ((i&7)+1)) - 1)) * rand();
2580 uint8_t *end_c = (uint8_t*)call_c1( bs_c.nal_escape, output1, input, input+test_size );
2581 uint8_t *end_a = (uint8_t*)call_a1( bs_a.nal_escape, output2, input, input+test_size );
2582 int size_c = end_c-output1;
2583 int size_a = end_a-output2;
2584 if( size_c != size_a || memcmp( output1, output2, size_c ) )
2585 {
2586 fprintf( stderr, "nal_escape : [FAILED] %d %d\n", size_c, size_a );
2587 ok = 0;
2588 break;
2589 }
2590 }
2591 for( int j = 0; j < size+32; j++ )
2592 input[j] = rand();
2593 call_c2( bs_c.nal_escape, output1, input, input+size );
2594 call_a2( bs_a.nal_escape, output2, input, input+size );
2595 free(input);
2596 free(output1);
2597 free(output2);
2598 }
2599 report( "nal escape:" );
2600
2601 return ret;
2602 }
2603
check_all_funcs(int cpu_ref,int cpu_new)2604 static int check_all_funcs( int cpu_ref, int cpu_new )
2605 {
2606 return check_pixel( cpu_ref, cpu_new )
2607 + check_dct( cpu_ref, cpu_new )
2608 + check_mc( cpu_ref, cpu_new )
2609 + check_intra( cpu_ref, cpu_new )
2610 + check_deblock( cpu_ref, cpu_new )
2611 + check_quant( cpu_ref, cpu_new )
2612 + check_cabac( cpu_ref, cpu_new )
2613 + check_bitstream( cpu_ref, cpu_new );
2614 }
2615
add_flags(int * cpu_ref,int * cpu_new,int flags,const char * name)2616 static int add_flags( int *cpu_ref, int *cpu_new, int flags, const char *name )
2617 {
2618 *cpu_ref = *cpu_new;
2619 *cpu_new |= flags;
2620 #if STACK_ALIGNMENT < 16
2621 *cpu_new |= X264_CPU_STACK_MOD4;
2622 #endif
2623 if( *cpu_new & X264_CPU_SSE2_IS_FAST )
2624 *cpu_new &= ~X264_CPU_SSE2_IS_SLOW;
2625 if( !quiet )
2626 fprintf( stderr, "x264: %s\n", name );
2627 return check_all_funcs( *cpu_ref, *cpu_new );
2628 }
2629
check_all_flags(void)2630 static int check_all_flags( void )
2631 {
2632 int ret = 0;
2633 int cpu0 = 0, cpu1 = 0;
2634 uint32_t cpu_detect = x264_cpu_detect();
2635 #if HAVE_MMX
2636 if( cpu_detect & X264_CPU_MMX2 )
2637 {
2638 ret |= add_flags( &cpu0, &cpu1, X264_CPU_MMX | X264_CPU_MMX2, "MMX" );
2639 ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_64, "MMX Cache64" );
2640 cpu1 &= ~X264_CPU_CACHELINE_64;
2641 #if ARCH_X86
2642 ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_32, "MMX Cache32" );
2643 cpu1 &= ~X264_CPU_CACHELINE_32;
2644 #endif
2645 if( cpu_detect & X264_CPU_LZCNT )
2646 {
2647 ret |= add_flags( &cpu0, &cpu1, X264_CPU_LZCNT, "MMX_LZCNT" );
2648 cpu1 &= ~X264_CPU_LZCNT;
2649 }
2650 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SLOW_CTZ, "MMX SlowCTZ" );
2651 cpu1 &= ~X264_CPU_SLOW_CTZ;
2652 }
2653 if( cpu_detect & X264_CPU_SSE )
2654 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE, "SSE" );
2655 if( cpu_detect & X264_CPU_SSE2 )
2656 {
2657 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE2 | X264_CPU_SSE2_IS_SLOW, "SSE2Slow" );
2658 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE2_IS_FAST, "SSE2Fast" );
2659 ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_64, "SSE2Fast Cache64" );
2660 cpu1 &= ~X264_CPU_CACHELINE_64;
2661 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SLOW_SHUFFLE, "SSE2 SlowShuffle" );
2662 cpu1 &= ~X264_CPU_SLOW_SHUFFLE;
2663 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SLOW_CTZ, "SSE2 SlowCTZ" );
2664 cpu1 &= ~X264_CPU_SLOW_CTZ;
2665 }
2666 if( cpu_detect & X264_CPU_LZCNT )
2667 {
2668 ret |= add_flags( &cpu0, &cpu1, X264_CPU_LZCNT, "SSE_LZCNT" );
2669 cpu1 &= ~X264_CPU_LZCNT;
2670 }
2671 if( cpu_detect & X264_CPU_SSE3 )
2672 {
2673 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE3 | X264_CPU_CACHELINE_64, "SSE3" );
2674 cpu1 &= ~X264_CPU_CACHELINE_64;
2675 }
2676 if( cpu_detect & X264_CPU_SSSE3 )
2677 {
2678 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSSE3, "SSSE3" );
2679 ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_64, "SSSE3 Cache64" );
2680 cpu1 &= ~X264_CPU_CACHELINE_64;
2681 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SLOW_SHUFFLE, "SSSE3 SlowShuffle" );
2682 cpu1 &= ~X264_CPU_SLOW_SHUFFLE;
2683 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SLOW_CTZ, "SSSE3 SlowCTZ" );
2684 cpu1 &= ~X264_CPU_SLOW_CTZ;
2685 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SLOW_ATOM, "SSSE3 SlowAtom" );
2686 ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_64, "SSSE3 Cache64 SlowAtom" );
2687 cpu1 &= ~X264_CPU_CACHELINE_64;
2688 cpu1 &= ~X264_CPU_SLOW_ATOM;
2689 }
2690 if( cpu_detect & X264_CPU_SSE4 )
2691 ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE4, "SSE4" );
2692 if( cpu_detect & X264_CPU_AVX )
2693 ret |= add_flags( &cpu0, &cpu1, X264_CPU_AVX, "AVX" );
2694 if( cpu_detect & X264_CPU_XOP )
2695 ret |= add_flags( &cpu0, &cpu1, X264_CPU_XOP, "XOP" );
2696 if( cpu_detect & X264_CPU_FMA4 )
2697 {
2698 ret |= add_flags( &cpu0, &cpu1, X264_CPU_FMA4, "FMA4" );
2699 cpu1 &= ~X264_CPU_FMA4;
2700 }
2701 if( cpu_detect & X264_CPU_BMI1 )
2702 {
2703 ret |= add_flags( &cpu0, &cpu1, X264_CPU_BMI1, "BMI1" );
2704 cpu1 &= ~X264_CPU_BMI1;
2705 }
2706 if( cpu_detect & X264_CPU_AVX2 )
2707 {
2708 ret |= add_flags( &cpu0, &cpu1, X264_CPU_AVX2, "AVX2" );
2709 if( cpu_detect & X264_CPU_LZCNT )
2710 {
2711 ret |= add_flags( &cpu0, &cpu1, X264_CPU_LZCNT, "AVX2_LZCNT" );
2712 cpu1 &= ~X264_CPU_LZCNT;
2713 }
2714 }
2715 if( cpu_detect & X264_CPU_BMI2 )
2716 {
2717 ret |= add_flags( &cpu0, &cpu1, X264_CPU_BMI1|X264_CPU_BMI2, "BMI2" );
2718 cpu1 &= ~(X264_CPU_BMI1|X264_CPU_BMI2);
2719 }
2720 if( cpu_detect & X264_CPU_FMA3 )
2721 {
2722 ret |= add_flags( &cpu0, &cpu1, X264_CPU_FMA3, "FMA3" );
2723 cpu1 &= ~X264_CPU_FMA3;
2724 }
2725 #elif ARCH_PPC
2726 if( cpu_detect & X264_CPU_ALTIVEC )
2727 {
2728 fprintf( stderr, "x264: ALTIVEC against C\n" );
2729 ret = check_all_funcs( 0, X264_CPU_ALTIVEC );
2730 }
2731 #elif ARCH_ARM
2732 if( cpu_detect & X264_CPU_ARMV6 )
2733 ret |= add_flags( &cpu0, &cpu1, X264_CPU_ARMV6, "ARMv6" );
2734 if( cpu_detect & X264_CPU_NEON )
2735 ret |= add_flags( &cpu0, &cpu1, X264_CPU_NEON, "NEON" );
2736 if( cpu_detect & X264_CPU_FAST_NEON_MRC )
2737 ret |= add_flags( &cpu0, &cpu1, X264_CPU_FAST_NEON_MRC, "Fast NEON MRC" );
2738 #elif ARCH_AARCH64
2739 if( cpu_detect & X264_CPU_ARMV8 )
2740 ret |= add_flags( &cpu0, &cpu1, X264_CPU_ARMV8, "ARMv8" );
2741 if( cpu_detect & X264_CPU_NEON )
2742 ret |= add_flags( &cpu0, &cpu1, X264_CPU_NEON, "NEON" );
2743 #endif
2744 return ret;
2745 }
2746
main(int argc,char * argv[])2747 int main(int argc, char *argv[])
2748 {
2749 int ret = 0;
2750
2751 if( argc > 1 && !strncmp( argv[1], "--bench", 7 ) )
2752 {
2753 #if !ARCH_X86 && !ARCH_X86_64 && !ARCH_PPC && !ARCH_ARM
2754 fprintf( stderr, "no --bench for your cpu until you port rdtsc\n" );
2755 return 1;
2756 #endif
2757 do_bench = 1;
2758 if( argv[1][7] == '=' )
2759 {
2760 bench_pattern = argv[1]+8;
2761 bench_pattern_len = strlen(bench_pattern);
2762 }
2763 argc--;
2764 argv++;
2765 }
2766
2767 int seed = ( argc > 1 ) ? atoi(argv[1]) : x264_mdate();
2768 fprintf( stderr, "x264: using random seed %u\n", seed );
2769 srand( seed );
2770
2771 buf1 = x264_malloc( 0x1e00 + 0x2000*sizeof(pixel) + 32*BENCH_ALIGNS );
2772 pbuf1 = x264_malloc( 0x1e00*sizeof(pixel) + 32*BENCH_ALIGNS );
2773 if( !buf1 || !pbuf1 )
2774 {
2775 fprintf( stderr, "malloc failed, unable to initiate tests!\n" );
2776 return -1;
2777 }
2778 #define INIT_POINTER_OFFSETS\
2779 buf2 = buf1 + 0xf00;\
2780 buf3 = buf2 + 0xf00;\
2781 buf4 = buf3 + 0x1000*sizeof(pixel);\
2782 pbuf2 = pbuf1 + 0xf00;\
2783 pbuf3 = (pixel*)buf3;\
2784 pbuf4 = (pixel*)buf4;
2785 INIT_POINTER_OFFSETS;
2786 for( int i = 0; i < 0x1e00; i++ )
2787 {
2788 buf1[i] = rand() & 0xFF;
2789 pbuf1[i] = rand() & PIXEL_MAX;
2790 }
2791 memset( buf1+0x1e00, 0, 0x2000*sizeof(pixel) );
2792
2793 /* 32-byte alignment is guaranteed whenever it's useful, but some functions also vary in speed depending on %64 */
2794 if( do_bench )
2795 for( int i = 0; i < BENCH_ALIGNS && !ret; i++ )
2796 {
2797 INIT_POINTER_OFFSETS;
2798 ret |= x264_stack_pagealign( check_all_flags, i*32 );
2799 buf1 += 32;
2800 pbuf1 += 32;
2801 quiet = 1;
2802 fprintf( stderr, "%d/%d\r", i+1, BENCH_ALIGNS );
2803 }
2804 else
2805 ret = x264_stack_pagealign( check_all_flags, 0 );
2806
2807 if( ret )
2808 {
2809 fprintf( stderr, "x264: at least one test has failed. Go and fix that Right Now!\n" );
2810 return -1;
2811 }
2812 fprintf( stderr, "x264: All tests passed Yeah :)\n" );
2813 if( do_bench )
2814 print_bench();
2815 return 0;
2816 }
2817
2818