1 // Copyright (c) 2017 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_OPT_IR_CONTEXT_H_
16 #define SOURCE_OPT_IR_CONTEXT_H_
17 
18 #include <algorithm>
19 #include <iostream>
20 #include <limits>
21 #include <map>
22 #include <memory>
23 #include <queue>
24 #include <unordered_map>
25 #include <unordered_set>
26 #include <utility>
27 #include <vector>
28 
29 #include "source/assembly_grammar.h"
30 #include "source/opt/cfg.h"
31 #include "source/opt/constants.h"
32 #include "source/opt/decoration_manager.h"
33 #include "source/opt/def_use_manager.h"
34 #include "source/opt/dominator_analysis.h"
35 #include "source/opt/feature_manager.h"
36 #include "source/opt/fold.h"
37 #include "source/opt/loop_descriptor.h"
38 #include "source/opt/module.h"
39 #include "source/opt/register_pressure.h"
40 #include "source/opt/scalar_analysis.h"
41 #include "source/opt/struct_cfg_analysis.h"
42 #include "source/opt/type_manager.h"
43 #include "source/opt/value_number_table.h"
44 #include "source/util/make_unique.h"
45 
46 namespace spvtools {
47 namespace opt {
48 
49 class IRContext {
50  public:
51   // Available analyses.
52   //
53   // When adding a new analysis:
54   //
55   // 1. Enum values should be powers of 2. These are cast into uint32_t
56   //    bitmasks, so we can have at most 31 analyses represented.
57   //
58   // 2. Make sure it gets invalidated or preserved by IRContext methods that add
59   //    or remove IR elements (e.g., KillDef, KillInst, ReplaceAllUsesWith).
60   //
61   // 3. Add handling code in BuildInvalidAnalyses and InvalidateAnalyses
62   enum Analysis {
63     kAnalysisNone = 0 << 0,
64     kAnalysisBegin = 1 << 0,
65     kAnalysisDefUse = kAnalysisBegin,
66     kAnalysisInstrToBlockMapping = 1 << 1,
67     kAnalysisDecorations = 1 << 2,
68     kAnalysisCombinators = 1 << 3,
69     kAnalysisCFG = 1 << 4,
70     kAnalysisDominatorAnalysis = 1 << 5,
71     kAnalysisLoopAnalysis = 1 << 6,
72     kAnalysisNameMap = 1 << 7,
73     kAnalysisScalarEvolution = 1 << 8,
74     kAnalysisRegisterPressure = 1 << 9,
75     kAnalysisValueNumberTable = 1 << 10,
76     kAnalysisStructuredCFG = 1 << 11,
77     kAnalysisBuiltinVarId = 1 << 12,
78     kAnalysisIdToFuncMapping = 1 << 13,
79     kAnalysisConstants = 1 << 14,
80     kAnalysisTypes = 1 << 15,
81     kAnalysisEnd = 1 << 16
82   };
83 
84   using ProcessFunction = std::function<bool(Function*)>;
85 
86   friend inline Analysis operator|(Analysis lhs, Analysis rhs);
87   friend inline Analysis& operator|=(Analysis& lhs, Analysis rhs);
88   friend inline Analysis operator<<(Analysis a, int shift);
89   friend inline Analysis& operator<<=(Analysis& a, int shift);
90 
91   // Creates an |IRContext| that contains an owned |Module|
IRContext(spv_target_env env,MessageConsumer c)92   IRContext(spv_target_env env, MessageConsumer c)
93       : syntax_context_(spvContextCreate(env)),
94         grammar_(syntax_context_),
95         unique_id_(0),
96         module_(new Module()),
97         consumer_(std::move(c)),
98         def_use_mgr_(nullptr),
99         valid_analyses_(kAnalysisNone),
100         constant_mgr_(nullptr),
101         type_mgr_(nullptr),
102         id_to_name_(nullptr),
103         max_id_bound_(kDefaultMaxIdBound),
104         preserve_bindings_(false),
105         preserve_spec_constants_(false) {
106     SetContextMessageConsumer(syntax_context_, consumer_);
107     module_->SetContext(this);
108   }
109 
IRContext(spv_target_env env,std::unique_ptr<Module> && m,MessageConsumer c)110   IRContext(spv_target_env env, std::unique_ptr<Module>&& m, MessageConsumer c)
111       : syntax_context_(spvContextCreate(env)),
112         grammar_(syntax_context_),
113         unique_id_(0),
114         module_(std::move(m)),
115         consumer_(std::move(c)),
116         def_use_mgr_(nullptr),
117         valid_analyses_(kAnalysisNone),
118         type_mgr_(nullptr),
119         id_to_name_(nullptr),
120         max_id_bound_(kDefaultMaxIdBound),
121         preserve_bindings_(false),
122         preserve_spec_constants_(false) {
123     SetContextMessageConsumer(syntax_context_, consumer_);
124     module_->SetContext(this);
125     InitializeCombinators();
126   }
127 
~IRContext()128   ~IRContext() { spvContextDestroy(syntax_context_); }
129 
module()130   Module* module() const { return module_.get(); }
131 
132   // Returns a vector of pointers to constant-creation instructions in this
133   // context.
134   inline std::vector<Instruction*> GetConstants();
135   inline std::vector<const Instruction*> GetConstants() const;
136 
137   // Iterators for annotation instructions contained in this context.
138   inline Module::inst_iterator annotation_begin();
139   inline Module::inst_iterator annotation_end();
140   inline IteratorRange<Module::inst_iterator> annotations();
141   inline IteratorRange<Module::const_inst_iterator> annotations() const;
142 
143   // Iterators for capabilities instructions contained in this module.
144   inline Module::inst_iterator capability_begin();
145   inline Module::inst_iterator capability_end();
146   inline IteratorRange<Module::inst_iterator> capabilities();
147   inline IteratorRange<Module::const_inst_iterator> capabilities() const;
148 
149   // Iterators for types, constants and global variables instructions.
150   inline Module::inst_iterator types_values_begin();
151   inline Module::inst_iterator types_values_end();
152   inline IteratorRange<Module::inst_iterator> types_values();
153   inline IteratorRange<Module::const_inst_iterator> types_values() const;
154 
155   // Iterators for extension instructions contained in this module.
156   inline Module::inst_iterator ext_inst_import_begin();
157   inline Module::inst_iterator ext_inst_import_end();
158   inline IteratorRange<Module::inst_iterator> ext_inst_imports();
159   inline IteratorRange<Module::const_inst_iterator> ext_inst_imports() const;
160 
161   // There are several kinds of debug instructions, according to where they can
162   // appear in the logical layout of a module:
163   //  - Section 7a:  OpString, OpSourceExtension, OpSource, OpSourceContinued
164   //  - Section 7b:  OpName, OpMemberName
165   //  - Section 7c:  OpModuleProcessed
166   //  - Mostly anywhere: OpLine and OpNoLine
167   //
168 
169   // Iterators for debug 1 instructions (excluding OpLine & OpNoLine) contained
170   // in this module.  These are for layout section 7a.
171   inline Module::inst_iterator debug1_begin();
172   inline Module::inst_iterator debug1_end();
173   inline IteratorRange<Module::inst_iterator> debugs1();
174   inline IteratorRange<Module::const_inst_iterator> debugs1() const;
175 
176   // Iterators for debug 2 instructions (excluding OpLine & OpNoLine) contained
177   // in this module.  These are for layout section 7b.
178   inline Module::inst_iterator debug2_begin();
179   inline Module::inst_iterator debug2_end();
180   inline IteratorRange<Module::inst_iterator> debugs2();
181   inline IteratorRange<Module::const_inst_iterator> debugs2() const;
182 
183   // Iterators for debug 3 instructions (excluding OpLine & OpNoLine) contained
184   // in this module.  These are for layout section 7c.
185   inline Module::inst_iterator debug3_begin();
186   inline Module::inst_iterator debug3_end();
187   inline IteratorRange<Module::inst_iterator> debugs3();
188   inline IteratorRange<Module::const_inst_iterator> debugs3() const;
189 
190   // Add |capability| to the module, if it is not already enabled.
191   inline void AddCapability(SpvCapability capability);
192 
193   // Appends a capability instruction to this module.
194   inline void AddCapability(std::unique_ptr<Instruction>&& c);
195   // Appends an extension instruction to this module.
196   inline void AddExtension(const std::string& ext_name);
197   inline void AddExtension(std::unique_ptr<Instruction>&& e);
198   // Appends an extended instruction set instruction to this module.
199   inline void AddExtInstImport(const std::string& name);
200   inline void AddExtInstImport(std::unique_ptr<Instruction>&& e);
201   // Set the memory model for this module.
202   inline void SetMemoryModel(std::unique_ptr<Instruction>&& m);
203   // Appends an entry point instruction to this module.
204   inline void AddEntryPoint(std::unique_ptr<Instruction>&& e);
205   // Appends an execution mode instruction to this module.
206   inline void AddExecutionMode(std::unique_ptr<Instruction>&& e);
207   // Appends a debug 1 instruction (excluding OpLine & OpNoLine) to this module.
208   // "debug 1" instructions are the ones in layout section 7.a), see section
209   // 2.4 Logical Layout of a Module from the SPIR-V specification.
210   inline void AddDebug1Inst(std::unique_ptr<Instruction>&& d);
211   // Appends a debug 2 instruction (excluding OpLine & OpNoLine) to this module.
212   // "debug 2" instructions are the ones in layout section 7.b), see section
213   // 2.4 Logical Layout of a Module from the SPIR-V specification.
214   inline void AddDebug2Inst(std::unique_ptr<Instruction>&& d);
215   // Appends a debug 3 instruction (OpModuleProcessed) to this module.
216   // This is due to decision by the SPIR Working Group, pending publication.
217   inline void AddDebug3Inst(std::unique_ptr<Instruction>&& d);
218   // Appends an annotation instruction to this module.
219   inline void AddAnnotationInst(std::unique_ptr<Instruction>&& a);
220   // Appends a type-declaration instruction to this module.
221   inline void AddType(std::unique_ptr<Instruction>&& t);
222   // Appends a constant, global variable, or OpUndef instruction to this module.
223   inline void AddGlobalValue(std::unique_ptr<Instruction>&& v);
224   // Appends a function to this module.
225   inline void AddFunction(std::unique_ptr<Function>&& f);
226 
227   // Returns a pointer to a def-use manager.  If the def-use manager is
228   // invalid, it is rebuilt first.
get_def_use_mgr()229   analysis::DefUseManager* get_def_use_mgr() {
230     if (!AreAnalysesValid(kAnalysisDefUse)) {
231       BuildDefUseManager();
232     }
233     return def_use_mgr_.get();
234   }
235 
236   // Returns a pointer to a value number table.  If the liveness analysis is
237   // invalid, it is rebuilt first.
GetValueNumberTable()238   ValueNumberTable* GetValueNumberTable() {
239     if (!AreAnalysesValid(kAnalysisValueNumberTable)) {
240       BuildValueNumberTable();
241     }
242     return vn_table_.get();
243   }
244 
245   // Returns a pointer to a StructuredCFGAnalysis.  If the analysis is invalid,
246   // it is rebuilt first.
GetStructuredCFGAnalysis()247   StructuredCFGAnalysis* GetStructuredCFGAnalysis() {
248     if (!AreAnalysesValid(kAnalysisStructuredCFG)) {
249       BuildStructuredCFGAnalysis();
250     }
251     return struct_cfg_analysis_.get();
252   }
253 
254   // Returns a pointer to a liveness analysis.  If the liveness analysis is
255   // invalid, it is rebuilt first.
GetLivenessAnalysis()256   LivenessAnalysis* GetLivenessAnalysis() {
257     if (!AreAnalysesValid(kAnalysisRegisterPressure)) {
258       BuildRegPressureAnalysis();
259     }
260     return reg_pressure_.get();
261   }
262 
263   // Returns the basic block for instruction |instr|. Re-builds the instruction
264   // block map, if needed.
get_instr_block(Instruction * instr)265   BasicBlock* get_instr_block(Instruction* instr) {
266     if (!AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
267       BuildInstrToBlockMapping();
268     }
269     auto entry = instr_to_block_.find(instr);
270     return (entry != instr_to_block_.end()) ? entry->second : nullptr;
271   }
272 
273   // Returns the basic block for |id|. Re-builds the instruction block map, if
274   // needed.
275   //
276   // |id| must be a registered definition.
get_instr_block(uint32_t id)277   BasicBlock* get_instr_block(uint32_t id) {
278     Instruction* def = get_def_use_mgr()->GetDef(id);
279     return get_instr_block(def);
280   }
281 
282   // Sets the basic block for |inst|. Re-builds the mapping if it has become
283   // invalid.
set_instr_block(Instruction * inst,BasicBlock * block)284   void set_instr_block(Instruction* inst, BasicBlock* block) {
285     if (AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
286       instr_to_block_[inst] = block;
287     }
288   }
289 
290   // Returns a pointer the decoration manager.  If the decoration manger is
291   // invalid, it is rebuilt first.
get_decoration_mgr()292   analysis::DecorationManager* get_decoration_mgr() {
293     if (!AreAnalysesValid(kAnalysisDecorations)) {
294       BuildDecorationManager();
295     }
296     return decoration_mgr_.get();
297   }
298 
299   // Returns a pointer to the constant manager.  If no constant manager has been
300   // created yet, it creates one.  NOTE: Once created, the constant manager
301   // remains active and it is never re-built.
get_constant_mgr()302   analysis::ConstantManager* get_constant_mgr() {
303     if (!AreAnalysesValid(kAnalysisConstants)) {
304       BuildConstantManager();
305     }
306     return constant_mgr_.get();
307   }
308 
309   // Returns a pointer to the type manager.  If no type manager has been created
310   // yet, it creates one. NOTE: Once created, the type manager remains active it
311   // is never re-built.
get_type_mgr()312   analysis::TypeManager* get_type_mgr() {
313     if (!AreAnalysesValid(kAnalysisTypes)) {
314       BuildTypeManager();
315     }
316     return type_mgr_.get();
317   }
318 
319   // Returns a pointer to the scalar evolution analysis. If it is invalid it
320   // will be rebuilt first.
GetScalarEvolutionAnalysis()321   ScalarEvolutionAnalysis* GetScalarEvolutionAnalysis() {
322     if (!AreAnalysesValid(kAnalysisScalarEvolution)) {
323       BuildScalarEvolutionAnalysis();
324     }
325     return scalar_evolution_analysis_.get();
326   }
327 
328   // Build the map from the ids to the OpName and OpMemberName instruction
329   // associated with it.
330   inline void BuildIdToNameMap();
331 
332   // Returns a range of instrucions that contain all of the OpName and
333   // OpMemberNames associated with the given id.
334   inline IteratorRange<std::multimap<uint32_t, Instruction*>::iterator>
335   GetNames(uint32_t id);
336 
337   // Sets the message consumer to the given |consumer|. |consumer| which will be
338   // invoked every time there is a message to be communicated to the outside.
SetMessageConsumer(MessageConsumer c)339   void SetMessageConsumer(MessageConsumer c) { consumer_ = std::move(c); }
340 
341   // Returns the reference to the message consumer for this pass.
consumer()342   const MessageConsumer& consumer() const { return consumer_; }
343 
344   // Rebuilds the analyses in |set| that are invalid.
345   void BuildInvalidAnalyses(Analysis set);
346 
347   // Invalidates all of the analyses except for those in |preserved_analyses|.
348   void InvalidateAnalysesExceptFor(Analysis preserved_analyses);
349 
350   // Invalidates the analyses marked in |analyses_to_invalidate|.
351   void InvalidateAnalyses(Analysis analyses_to_invalidate);
352 
353   // Deletes the instruction defining the given |id|. Returns true on
354   // success, false if the given |id| is not defined at all. This method also
355   // erases the name, decorations, and defintion of |id|.
356   //
357   // Pointers and iterators pointing to the deleted instructions become invalid.
358   // However other pointers and iterators are still valid.
359   bool KillDef(uint32_t id);
360 
361   // Deletes the given instruction |inst|. This method erases the
362   // information of the given instruction's uses of its operands. If |inst|
363   // defines a result id, its name and decorations will also be deleted.
364   //
365   // Pointer and iterator pointing to the deleted instructions become invalid.
366   // However other pointers and iterators are still valid.
367   //
368   // Note that if an instruction is not in an instruction list, the memory may
369   // not be safe to delete, so the instruction is turned into a OpNop instead.
370   // This can happen with OpLabel.
371   //
372   // Returns a pointer to the instruction after |inst| or |nullptr| if no such
373   // instruction exists.
374   Instruction* KillInst(Instruction* inst);
375 
376   // Returns true if all of the given analyses are valid.
AreAnalysesValid(Analysis set)377   bool AreAnalysesValid(Analysis set) { return (set & valid_analyses_) == set; }
378 
379   // Replaces all uses of |before| id with |after| id. Returns true if any
380   // replacement happens. This method does not kill the definition of the
381   // |before| id. If |after| is the same as |before|, does nothing and returns
382   // false.
383   //
384   // |before| and |after| must be registered definitions in the DefUseManager.
385   bool ReplaceAllUsesWith(uint32_t before, uint32_t after);
386 
387   // Replace all uses of |before| id with |after| id if those uses
388   // (instruction, operand pair) return true for |predicate|. Returns true if
389   // any replacement happens. This method does not kill the definition of the
390   // |before| id. If |after| is the same as |before|, does nothing and return
391   // false.
392   bool ReplaceAllUsesWithPredicate(
393       uint32_t before, uint32_t after,
394       const std::function<bool(Instruction*, uint32_t)>& predicate);
395 
396   // Returns true if all of the analyses that are suppose to be valid are
397   // actually valid.
398   bool IsConsistent();
399 
400   // The IRContext will look at the def and uses of |inst| and update any valid
401   // analyses will be updated accordingly.
402   inline void AnalyzeDefUse(Instruction* inst);
403 
404   // Informs the IRContext that the uses of |inst| are going to change, and that
405   // is should forget everything it know about the current uses.  Any valid
406   // analyses will be updated accordingly.
407   void ForgetUses(Instruction* inst);
408 
409   // The IRContext will look at the uses of |inst| and update any valid analyses
410   // will be updated accordingly.
411   void AnalyzeUses(Instruction* inst);
412 
413   // Kill all name and decorate ops targeting |id|.
414   void KillNamesAndDecorates(uint32_t id);
415 
416   // Kill all name and decorate ops targeting the result id of |inst|.
417   void KillNamesAndDecorates(Instruction* inst);
418 
419   // Returns the next unique id for use by an instruction.
TakeNextUniqueId()420   inline uint32_t TakeNextUniqueId() {
421     assert(unique_id_ != std::numeric_limits<uint32_t>::max());
422 
423     // Skip zero.
424     return ++unique_id_;
425   }
426 
427   // Returns true if |inst| is a combinator in the current context.
428   // |combinator_ops_| is built if it has not been already.
IsCombinatorInstruction(const Instruction * inst)429   inline bool IsCombinatorInstruction(const Instruction* inst) {
430     if (!AreAnalysesValid(kAnalysisCombinators)) {
431       InitializeCombinators();
432     }
433     const uint32_t kExtInstSetIdInIndx = 0;
434     const uint32_t kExtInstInstructionInIndx = 1;
435 
436     if (inst->opcode() != SpvOpExtInst) {
437       return combinator_ops_[0].count(inst->opcode()) != 0;
438     } else {
439       uint32_t set = inst->GetSingleWordInOperand(kExtInstSetIdInIndx);
440       uint32_t op = inst->GetSingleWordInOperand(kExtInstInstructionInIndx);
441       return combinator_ops_[set].count(op) != 0;
442     }
443   }
444 
445   // Returns a pointer to the CFG for all the functions in |module_|.
cfg()446   CFG* cfg() {
447     if (!AreAnalysesValid(kAnalysisCFG)) {
448       BuildCFG();
449     }
450     return cfg_.get();
451   }
452 
453   // Gets the loop descriptor for function |f|.
454   LoopDescriptor* GetLoopDescriptor(const Function* f);
455 
456   // Gets the dominator analysis for function |f|.
457   DominatorAnalysis* GetDominatorAnalysis(const Function* f);
458 
459   // Gets the postdominator analysis for function |f|.
460   PostDominatorAnalysis* GetPostDominatorAnalysis(const Function* f);
461 
462   // Remove the dominator tree of |f| from the cache.
RemoveDominatorAnalysis(const Function * f)463   inline void RemoveDominatorAnalysis(const Function* f) {
464     dominator_trees_.erase(f);
465   }
466 
467   // Remove the postdominator tree of |f| from the cache.
RemovePostDominatorAnalysis(const Function * f)468   inline void RemovePostDominatorAnalysis(const Function* f) {
469     post_dominator_trees_.erase(f);
470   }
471 
472   // Return the next available SSA id and increment it.  Returns 0 if the
473   // maximum SSA id has been reached.
TakeNextId()474   inline uint32_t TakeNextId() {
475     uint32_t next_id = module()->TakeNextIdBound();
476     if (next_id == 0) {
477       if (consumer()) {
478         std::string message = "ID overflow. Try running compact-ids.";
479         consumer()(SPV_MSG_ERROR, "", {0, 0, 0}, message.c_str());
480       }
481     }
482     return next_id;
483   }
484 
get_feature_mgr()485   FeatureManager* get_feature_mgr() {
486     if (!feature_mgr_.get()) {
487       AnalyzeFeatures();
488     }
489     return feature_mgr_.get();
490   }
491 
ResetFeatureManager()492   void ResetFeatureManager() { feature_mgr_.reset(nullptr); }
493 
494   // Returns the grammar for this context.
grammar()495   const AssemblyGrammar& grammar() const { return grammar_; }
496 
497   // If |inst| has not yet been analysed by the def-use manager, then analyse
498   // its definitions and uses.
499   inline void UpdateDefUse(Instruction* inst);
500 
get_instruction_folder()501   const InstructionFolder& get_instruction_folder() {
502     if (!inst_folder_) {
503       inst_folder_ = MakeUnique<InstructionFolder>(this);
504     }
505     return *inst_folder_;
506   }
507 
max_id_bound()508   uint32_t max_id_bound() const { return max_id_bound_; }
set_max_id_bound(uint32_t new_bound)509   void set_max_id_bound(uint32_t new_bound) { max_id_bound_ = new_bound; }
510 
preserve_bindings()511   bool preserve_bindings() const { return preserve_bindings_; }
set_preserve_bindings(bool should_preserve_bindings)512   void set_preserve_bindings(bool should_preserve_bindings) {
513     preserve_bindings_ = should_preserve_bindings;
514   }
515 
preserve_spec_constants()516   bool preserve_spec_constants() const { return preserve_spec_constants_; }
set_preserve_spec_constants(bool should_preserve_spec_constants)517   void set_preserve_spec_constants(bool should_preserve_spec_constants) {
518     preserve_spec_constants_ = should_preserve_spec_constants;
519   }
520 
521   // Return id of input variable only decorated with |builtin|, if in module.
522   // Create variable and return its id otherwise. If builtin not currently
523   // supported, return 0.
524   uint32_t GetBuiltinInputVarId(uint32_t builtin);
525 
526   // Returns the function whose id is |id|, if one exists.  Returns |nullptr|
527   // otherwise.
GetFunction(uint32_t id)528   Function* GetFunction(uint32_t id) {
529     if (!AreAnalysesValid(kAnalysisIdToFuncMapping)) {
530       BuildIdToFuncMapping();
531     }
532     auto entry = id_to_func_.find(id);
533     return (entry != id_to_func_.end()) ? entry->second : nullptr;
534   }
535 
GetFunction(Instruction * inst)536   Function* GetFunction(Instruction* inst) {
537     if (inst->opcode() != SpvOpFunction) {
538       return nullptr;
539     }
540     return GetFunction(inst->result_id());
541   }
542 
543   // Add to |todo| all ids of functions called directly from |func|.
544   void AddCalls(const Function* func, std::queue<uint32_t>* todo);
545 
546   // Applies |pfn| to every function in the call trees that are rooted at the
547   // entry points.  Returns true if any call |pfn| returns true.  By convention
548   // |pfn| should return true if it modified the module.
549   bool ProcessEntryPointCallTree(ProcessFunction& pfn);
550 
551   // Applies |pfn| to every function in the call trees rooted at the entry
552   // points and exported functions.  Returns true if any call |pfn| returns
553   // true.  By convention |pfn| should return true if it modified the module.
554   bool ProcessReachableCallTree(ProcessFunction& pfn);
555 
556   // Applies |pfn| to every function in the call trees rooted at the elements of
557   // |roots|.  Returns true if any call to |pfn| returns true.  By convention
558   // |pfn| should return true if it modified the module.  After returning
559   // |roots| will be empty.
560   bool ProcessCallTreeFromRoots(ProcessFunction& pfn,
561                                 std::queue<uint32_t>* roots);
562 
563   // Emmits a error message to the message consumer indicating the error
564   // described by |message| occurred in |inst|.
565   void EmitErrorMessage(std::string message, Instruction* inst);
566 
567  private:
568   // Builds the def-use manager from scratch, even if it was already valid.
BuildDefUseManager()569   void BuildDefUseManager() {
570     def_use_mgr_ = MakeUnique<analysis::DefUseManager>(module());
571     valid_analyses_ = valid_analyses_ | kAnalysisDefUse;
572   }
573 
574   // Builds the instruction-block map for the whole module.
BuildInstrToBlockMapping()575   void BuildInstrToBlockMapping() {
576     instr_to_block_.clear();
577     for (auto& fn : *module_) {
578       for (auto& block : fn) {
579         block.ForEachInst([this, &block](Instruction* inst) {
580           instr_to_block_[inst] = &block;
581         });
582       }
583     }
584     valid_analyses_ = valid_analyses_ | kAnalysisInstrToBlockMapping;
585   }
586 
587   // Builds the instruction-function map for the whole module.
BuildIdToFuncMapping()588   void BuildIdToFuncMapping() {
589     id_to_func_.clear();
590     for (auto& fn : *module_) {
591       id_to_func_[fn.result_id()] = &fn;
592     }
593     valid_analyses_ = valid_analyses_ | kAnalysisIdToFuncMapping;
594   }
595 
BuildDecorationManager()596   void BuildDecorationManager() {
597     decoration_mgr_ = MakeUnique<analysis::DecorationManager>(module());
598     valid_analyses_ = valid_analyses_ | kAnalysisDecorations;
599   }
600 
BuildCFG()601   void BuildCFG() {
602     cfg_ = MakeUnique<CFG>(module());
603     valid_analyses_ = valid_analyses_ | kAnalysisCFG;
604   }
605 
BuildScalarEvolutionAnalysis()606   void BuildScalarEvolutionAnalysis() {
607     scalar_evolution_analysis_ = MakeUnique<ScalarEvolutionAnalysis>(this);
608     valid_analyses_ = valid_analyses_ | kAnalysisScalarEvolution;
609   }
610 
611   // Builds the liveness analysis from scratch, even if it was already valid.
BuildRegPressureAnalysis()612   void BuildRegPressureAnalysis() {
613     reg_pressure_ = MakeUnique<LivenessAnalysis>(this);
614     valid_analyses_ = valid_analyses_ | kAnalysisRegisterPressure;
615   }
616 
617   // Builds the value number table analysis from scratch, even if it was already
618   // valid.
BuildValueNumberTable()619   void BuildValueNumberTable() {
620     vn_table_ = MakeUnique<ValueNumberTable>(this);
621     valid_analyses_ = valid_analyses_ | kAnalysisValueNumberTable;
622   }
623 
624   // Builds the structured CFG analysis from scratch, even if it was already
625   // valid.
BuildStructuredCFGAnalysis()626   void BuildStructuredCFGAnalysis() {
627     struct_cfg_analysis_ = MakeUnique<StructuredCFGAnalysis>(this);
628     valid_analyses_ = valid_analyses_ | kAnalysisStructuredCFG;
629   }
630 
631   // Builds the constant manager from scratch, even if it was already
632   // valid.
BuildConstantManager()633   void BuildConstantManager() {
634     constant_mgr_ = MakeUnique<analysis::ConstantManager>(this);
635     valid_analyses_ = valid_analyses_ | kAnalysisConstants;
636   }
637 
638   // Builds the type manager from scratch, even if it was already
639   // valid.
BuildTypeManager()640   void BuildTypeManager() {
641     type_mgr_ = MakeUnique<analysis::TypeManager>(consumer(), this);
642     valid_analyses_ = valid_analyses_ | kAnalysisTypes;
643   }
644 
645   // Removes all computed dominator and post-dominator trees. This will force
646   // the context to rebuild the trees on demand.
ResetDominatorAnalysis()647   void ResetDominatorAnalysis() {
648     // Clear the cache.
649     dominator_trees_.clear();
650     post_dominator_trees_.clear();
651     valid_analyses_ = valid_analyses_ | kAnalysisDominatorAnalysis;
652   }
653 
654   // Removes all computed loop descriptors.
ResetLoopAnalysis()655   void ResetLoopAnalysis() {
656     // Clear the cache.
657     loop_descriptors_.clear();
658     valid_analyses_ = valid_analyses_ | kAnalysisLoopAnalysis;
659   }
660 
661   // Removes all computed loop descriptors.
ResetBuiltinAnalysis()662   void ResetBuiltinAnalysis() {
663     // Clear the cache.
664     builtin_var_id_map_.clear();
665     valid_analyses_ = valid_analyses_ | kAnalysisBuiltinVarId;
666   }
667 
668   // Analyzes the features in the owned module. Builds the manager if required.
AnalyzeFeatures()669   void AnalyzeFeatures() {
670     feature_mgr_ = MakeUnique<FeatureManager>(grammar_);
671     feature_mgr_->Analyze(module());
672   }
673 
674   // Scans a module looking for it capabilities, and initializes combinator_ops_
675   // accordingly.
676   void InitializeCombinators();
677 
678   // Add the combinator opcode for the given capability to combinator_ops_.
679   void AddCombinatorsForCapability(uint32_t capability);
680 
681   // Add the combinator opcode for the given extension to combinator_ops_.
682   void AddCombinatorsForExtension(Instruction* extension);
683 
684   // Remove |inst| from |id_to_name_| if it is in map.
685   void RemoveFromIdToName(const Instruction* inst);
686 
687   // Returns true if it is suppose to be valid but it is incorrect.  Returns
688   // true if the cfg is invalidated.
689   bool CheckCFG();
690 
691   // Return id of input variable only decorated with |builtin|, if in module.
692   // Return 0 otherwise.
693   uint32_t FindBuiltinInputVar(uint32_t builtin);
694 
695   // Add |var_id| to all entry points in module.
696   void AddVarToEntryPoints(uint32_t var_id);
697 
698   // The SPIR-V syntax context containing grammar tables for opcodes and
699   // operands.
700   spv_context syntax_context_;
701 
702   // Auxiliary object for querying SPIR-V grammar facts.
703   AssemblyGrammar grammar_;
704 
705   // An unique identifier for instructions in |module_|. Can be used to order
706   // instructions in a container.
707   //
708   // This member is initialized to 0, but always issues this value plus one.
709   // Therefore, 0 is not a valid unique id for an instruction.
710   uint32_t unique_id_;
711 
712   // The module being processed within this IR context.
713   std::unique_ptr<Module> module_;
714 
715   // A message consumer for diagnostics.
716   MessageConsumer consumer_;
717 
718   // The def-use manager for |module_|.
719   std::unique_ptr<analysis::DefUseManager> def_use_mgr_;
720 
721   // The instruction decoration manager for |module_|.
722   std::unique_ptr<analysis::DecorationManager> decoration_mgr_;
723   std::unique_ptr<FeatureManager> feature_mgr_;
724 
725   // A map from instructions to the basic block they belong to. This mapping is
726   // built on-demand when get_instr_block() is called.
727   //
728   // NOTE: Do not traverse this map. Ever. Use the function and basic block
729   // iterators to traverse instructions.
730   std::unordered_map<Instruction*, BasicBlock*> instr_to_block_;
731 
732   // A map from ids to the function they define. This mapping is
733   // built on-demand when GetFunction() is called.
734   //
735   // NOTE: Do not traverse this map. Ever. Use the function and basic block
736   // iterators to traverse instructions.
737   std::unordered_map<uint32_t, Function*> id_to_func_;
738 
739   // A bitset indicating which analyes are currently valid.
740   Analysis valid_analyses_;
741 
742   // Opcodes of shader capability core executable instructions
743   // without side-effect.
744   std::unordered_map<uint32_t, std::unordered_set<uint32_t>> combinator_ops_;
745 
746   // Opcodes of shader capability core executable instructions
747   // without side-effect.
748   std::unordered_map<uint32_t, uint32_t> builtin_var_id_map_;
749 
750   // The CFG for all the functions in |module_|.
751   std::unique_ptr<CFG> cfg_;
752 
753   // Each function in the module will create its own dominator tree. We cache
754   // the result so it doesn't need to be rebuilt each time.
755   std::map<const Function*, DominatorAnalysis> dominator_trees_;
756   std::map<const Function*, PostDominatorAnalysis> post_dominator_trees_;
757 
758   // Cache of loop descriptors for each function.
759   std::unordered_map<const Function*, LoopDescriptor> loop_descriptors_;
760 
761   // Constant manager for |module_|.
762   std::unique_ptr<analysis::ConstantManager> constant_mgr_;
763 
764   // Type manager for |module_|.
765   std::unique_ptr<analysis::TypeManager> type_mgr_;
766 
767   // A map from an id to its corresponding OpName and OpMemberName instructions.
768   std::unique_ptr<std::multimap<uint32_t, Instruction*>> id_to_name_;
769 
770   // The cache scalar evolution analysis node.
771   std::unique_ptr<ScalarEvolutionAnalysis> scalar_evolution_analysis_;
772 
773   // The liveness analysis |module_|.
774   std::unique_ptr<LivenessAnalysis> reg_pressure_;
775 
776   std::unique_ptr<ValueNumberTable> vn_table_;
777 
778   std::unique_ptr<InstructionFolder> inst_folder_;
779 
780   std::unique_ptr<StructuredCFGAnalysis> struct_cfg_analysis_;
781 
782   // The maximum legal value for the id bound.
783   uint32_t max_id_bound_;
784 
785   // Whether all bindings within |module_| should be preserved.
786   bool preserve_bindings_;
787 
788   // Whether all specialization constants within |module_|
789   // should be preserved.
790   bool preserve_spec_constants_;
791 };
792 
793 inline IRContext::Analysis operator|(IRContext::Analysis lhs,
794                                      IRContext::Analysis rhs) {
795   return static_cast<IRContext::Analysis>(static_cast<int>(lhs) |
796                                           static_cast<int>(rhs));
797 }
798 
799 inline IRContext::Analysis& operator|=(IRContext::Analysis& lhs,
800                                        IRContext::Analysis rhs) {
801   lhs = static_cast<IRContext::Analysis>(static_cast<int>(lhs) |
802                                          static_cast<int>(rhs));
803   return lhs;
804 }
805 
806 inline IRContext::Analysis operator<<(IRContext::Analysis a, int shift) {
807   return static_cast<IRContext::Analysis>(static_cast<int>(a) << shift);
808 }
809 
810 inline IRContext::Analysis& operator<<=(IRContext::Analysis& a, int shift) {
811   a = static_cast<IRContext::Analysis>(static_cast<int>(a) << shift);
812   return a;
813 }
814 
GetConstants()815 std::vector<Instruction*> IRContext::GetConstants() {
816   return module()->GetConstants();
817 }
818 
GetConstants()819 std::vector<const Instruction*> IRContext::GetConstants() const {
820   return ((const Module*)module())->GetConstants();
821 }
822 
annotation_begin()823 Module::inst_iterator IRContext::annotation_begin() {
824   return module()->annotation_begin();
825 }
826 
annotation_end()827 Module::inst_iterator IRContext::annotation_end() {
828   return module()->annotation_end();
829 }
830 
annotations()831 IteratorRange<Module::inst_iterator> IRContext::annotations() {
832   return module_->annotations();
833 }
834 
annotations()835 IteratorRange<Module::const_inst_iterator> IRContext::annotations() const {
836   return ((const Module*)module_.get())->annotations();
837 }
838 
capability_begin()839 Module::inst_iterator IRContext::capability_begin() {
840   return module()->capability_begin();
841 }
842 
capability_end()843 Module::inst_iterator IRContext::capability_end() {
844   return module()->capability_end();
845 }
846 
capabilities()847 IteratorRange<Module::inst_iterator> IRContext::capabilities() {
848   return module()->capabilities();
849 }
850 
capabilities()851 IteratorRange<Module::const_inst_iterator> IRContext::capabilities() const {
852   return ((const Module*)module())->capabilities();
853 }
854 
types_values_begin()855 Module::inst_iterator IRContext::types_values_begin() {
856   return module()->types_values_begin();
857 }
858 
types_values_end()859 Module::inst_iterator IRContext::types_values_end() {
860   return module()->types_values_end();
861 }
862 
types_values()863 IteratorRange<Module::inst_iterator> IRContext::types_values() {
864   return module()->types_values();
865 }
866 
types_values()867 IteratorRange<Module::const_inst_iterator> IRContext::types_values() const {
868   return ((const Module*)module_.get())->types_values();
869 }
870 
ext_inst_import_begin()871 Module::inst_iterator IRContext::ext_inst_import_begin() {
872   return module()->ext_inst_import_begin();
873 }
874 
ext_inst_import_end()875 Module::inst_iterator IRContext::ext_inst_import_end() {
876   return module()->ext_inst_import_end();
877 }
878 
ext_inst_imports()879 IteratorRange<Module::inst_iterator> IRContext::ext_inst_imports() {
880   return module()->ext_inst_imports();
881 }
882 
ext_inst_imports()883 IteratorRange<Module::const_inst_iterator> IRContext::ext_inst_imports() const {
884   return ((const Module*)module_.get())->ext_inst_imports();
885 }
886 
debug1_begin()887 Module::inst_iterator IRContext::debug1_begin() {
888   return module()->debug1_begin();
889 }
890 
debug1_end()891 Module::inst_iterator IRContext::debug1_end() { return module()->debug1_end(); }
892 
debugs1()893 IteratorRange<Module::inst_iterator> IRContext::debugs1() {
894   return module()->debugs1();
895 }
896 
debugs1()897 IteratorRange<Module::const_inst_iterator> IRContext::debugs1() const {
898   return ((const Module*)module_.get())->debugs1();
899 }
900 
debug2_begin()901 Module::inst_iterator IRContext::debug2_begin() {
902   return module()->debug2_begin();
903 }
debug2_end()904 Module::inst_iterator IRContext::debug2_end() { return module()->debug2_end(); }
905 
debugs2()906 IteratorRange<Module::inst_iterator> IRContext::debugs2() {
907   return module()->debugs2();
908 }
909 
debugs2()910 IteratorRange<Module::const_inst_iterator> IRContext::debugs2() const {
911   return ((const Module*)module_.get())->debugs2();
912 }
913 
debug3_begin()914 Module::inst_iterator IRContext::debug3_begin() {
915   return module()->debug3_begin();
916 }
917 
debug3_end()918 Module::inst_iterator IRContext::debug3_end() { return module()->debug3_end(); }
919 
debugs3()920 IteratorRange<Module::inst_iterator> IRContext::debugs3() {
921   return module()->debugs3();
922 }
923 
debugs3()924 IteratorRange<Module::const_inst_iterator> IRContext::debugs3() const {
925   return ((const Module*)module_.get())->debugs3();
926 }
927 
AddCapability(SpvCapability capability)928 void IRContext::AddCapability(SpvCapability capability) {
929   if (!get_feature_mgr()->HasCapability(capability)) {
930     std::unique_ptr<Instruction> capability_inst(new Instruction(
931         this, SpvOpCapability, 0, 0,
932         {{SPV_OPERAND_TYPE_CAPABILITY, {static_cast<uint32_t>(capability)}}}));
933     AddCapability(std::move(capability_inst));
934   }
935 }
936 
AddCapability(std::unique_ptr<Instruction> && c)937 void IRContext::AddCapability(std::unique_ptr<Instruction>&& c) {
938   AddCombinatorsForCapability(c->GetSingleWordInOperand(0));
939   if (feature_mgr_ != nullptr) {
940     feature_mgr_->AddCapability(
941         static_cast<SpvCapability>(c->GetSingleWordInOperand(0)));
942   }
943   if (AreAnalysesValid(kAnalysisDefUse)) {
944     get_def_use_mgr()->AnalyzeInstDefUse(c.get());
945   }
946   module()->AddCapability(std::move(c));
947 }
948 
AddExtension(const std::string & ext_name)949 void IRContext::AddExtension(const std::string& ext_name) {
950   const auto num_chars = ext_name.size();
951   // Compute num words, accommodate the terminating null character.
952   const auto num_words = (num_chars + 1 + 3) / 4;
953   std::vector<uint32_t> ext_words(num_words, 0u);
954   std::memcpy(ext_words.data(), ext_name.data(), num_chars);
955   AddExtension(std::unique_ptr<Instruction>(
956       new Instruction(this, SpvOpExtension, 0u, 0u,
957                       {{SPV_OPERAND_TYPE_LITERAL_STRING, ext_words}})));
958 }
959 
AddExtension(std::unique_ptr<Instruction> && e)960 void IRContext::AddExtension(std::unique_ptr<Instruction>&& e) {
961   if (AreAnalysesValid(kAnalysisDefUse)) {
962     get_def_use_mgr()->AnalyzeInstDefUse(e.get());
963   }
964   if (feature_mgr_ != nullptr) {
965     feature_mgr_->AddExtension(&*e);
966   }
967   module()->AddExtension(std::move(e));
968 }
969 
AddExtInstImport(const std::string & name)970 void IRContext::AddExtInstImport(const std::string& name) {
971   const auto num_chars = name.size();
972   // Compute num words, accommodate the terminating null character.
973   const auto num_words = (num_chars + 1 + 3) / 4;
974   std::vector<uint32_t> ext_words(num_words, 0u);
975   std::memcpy(ext_words.data(), name.data(), num_chars);
976   AddExtInstImport(std::unique_ptr<Instruction>(
977       new Instruction(this, SpvOpExtInstImport, 0u, TakeNextId(),
978                       {{SPV_OPERAND_TYPE_LITERAL_STRING, ext_words}})));
979 }
980 
AddExtInstImport(std::unique_ptr<Instruction> && e)981 void IRContext::AddExtInstImport(std::unique_ptr<Instruction>&& e) {
982   AddCombinatorsForExtension(e.get());
983   if (AreAnalysesValid(kAnalysisDefUse)) {
984     get_def_use_mgr()->AnalyzeInstDefUse(e.get());
985   }
986   module()->AddExtInstImport(std::move(e));
987   if (feature_mgr_ != nullptr) {
988     feature_mgr_->AddExtInstImportIds(module());
989   }
990 }
991 
SetMemoryModel(std::unique_ptr<Instruction> && m)992 void IRContext::SetMemoryModel(std::unique_ptr<Instruction>&& m) {
993   module()->SetMemoryModel(std::move(m));
994 }
995 
AddEntryPoint(std::unique_ptr<Instruction> && e)996 void IRContext::AddEntryPoint(std::unique_ptr<Instruction>&& e) {
997   module()->AddEntryPoint(std::move(e));
998 }
999 
AddExecutionMode(std::unique_ptr<Instruction> && e)1000 void IRContext::AddExecutionMode(std::unique_ptr<Instruction>&& e) {
1001   module()->AddExecutionMode(std::move(e));
1002 }
1003 
AddDebug1Inst(std::unique_ptr<Instruction> && d)1004 void IRContext::AddDebug1Inst(std::unique_ptr<Instruction>&& d) {
1005   module()->AddDebug1Inst(std::move(d));
1006 }
1007 
AddDebug2Inst(std::unique_ptr<Instruction> && d)1008 void IRContext::AddDebug2Inst(std::unique_ptr<Instruction>&& d) {
1009   if (AreAnalysesValid(kAnalysisNameMap)) {
1010     if (d->opcode() == SpvOpName || d->opcode() == SpvOpMemberName) {
1011       id_to_name_->insert({d->result_id(), d.get()});
1012     }
1013   }
1014   module()->AddDebug2Inst(std::move(d));
1015 }
1016 
AddDebug3Inst(std::unique_ptr<Instruction> && d)1017 void IRContext::AddDebug3Inst(std::unique_ptr<Instruction>&& d) {
1018   module()->AddDebug3Inst(std::move(d));
1019 }
1020 
AddAnnotationInst(std::unique_ptr<Instruction> && a)1021 void IRContext::AddAnnotationInst(std::unique_ptr<Instruction>&& a) {
1022   if (AreAnalysesValid(kAnalysisDecorations)) {
1023     get_decoration_mgr()->AddDecoration(a.get());
1024   }
1025   if (AreAnalysesValid(kAnalysisDefUse)) {
1026     get_def_use_mgr()->AnalyzeInstDefUse(a.get());
1027   }
1028   module()->AddAnnotationInst(std::move(a));
1029 }
1030 
AddType(std::unique_ptr<Instruction> && t)1031 void IRContext::AddType(std::unique_ptr<Instruction>&& t) {
1032   module()->AddType(std::move(t));
1033   if (AreAnalysesValid(kAnalysisDefUse)) {
1034     get_def_use_mgr()->AnalyzeInstDefUse(&*(--types_values_end()));
1035   }
1036 }
1037 
AddGlobalValue(std::unique_ptr<Instruction> && v)1038 void IRContext::AddGlobalValue(std::unique_ptr<Instruction>&& v) {
1039   if (AreAnalysesValid(kAnalysisDefUse)) {
1040     get_def_use_mgr()->AnalyzeInstDefUse(&*v);
1041   }
1042   module()->AddGlobalValue(std::move(v));
1043 }
1044 
AddFunction(std::unique_ptr<Function> && f)1045 void IRContext::AddFunction(std::unique_ptr<Function>&& f) {
1046   module()->AddFunction(std::move(f));
1047 }
1048 
AnalyzeDefUse(Instruction * inst)1049 void IRContext::AnalyzeDefUse(Instruction* inst) {
1050   if (AreAnalysesValid(kAnalysisDefUse)) {
1051     get_def_use_mgr()->AnalyzeInstDefUse(inst);
1052   }
1053 }
1054 
UpdateDefUse(Instruction * inst)1055 void IRContext::UpdateDefUse(Instruction* inst) {
1056   if (AreAnalysesValid(kAnalysisDefUse)) {
1057     get_def_use_mgr()->UpdateDefUse(inst);
1058   }
1059 }
1060 
BuildIdToNameMap()1061 void IRContext::BuildIdToNameMap() {
1062   id_to_name_ = MakeUnique<std::multimap<uint32_t, Instruction*>>();
1063   for (Instruction& debug_inst : debugs2()) {
1064     if (debug_inst.opcode() == SpvOpMemberName ||
1065         debug_inst.opcode() == SpvOpName) {
1066       id_to_name_->insert({debug_inst.GetSingleWordInOperand(0), &debug_inst});
1067     }
1068   }
1069   valid_analyses_ = valid_analyses_ | kAnalysisNameMap;
1070 }
1071 
1072 IteratorRange<std::multimap<uint32_t, Instruction*>::iterator>
GetNames(uint32_t id)1073 IRContext::GetNames(uint32_t id) {
1074   if (!AreAnalysesValid(kAnalysisNameMap)) {
1075     BuildIdToNameMap();
1076   }
1077   auto result = id_to_name_->equal_range(id);
1078   return make_range(std::move(result.first), std::move(result.second));
1079 }
1080 
1081 }  // namespace opt
1082 }  // namespace spvtools
1083 
1084 #endif  // SOURCE_OPT_IR_CONTEXT_H_
1085