1 // Copyright (c) 2018 Google LLC.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_OPT_SSA_REWRITE_PASS_H_
16 #define SOURCE_OPT_SSA_REWRITE_PASS_H_
17 
18 #include <queue>
19 #include <string>
20 #include <unordered_map>
21 #include <unordered_set>
22 #include <utility>
23 #include <vector>
24 
25 #include "source/opt/basic_block.h"
26 #include "source/opt/ir_context.h"
27 #include "source/opt/mem_pass.h"
28 
29 namespace spvtools {
30 namespace opt {
31 
32 // Utility class for passes that need to rewrite a function into SSA.  This
33 // converts load/store operations on function-local variables into SSA IDs,
34 // which allows them to be the target of optimizing transformations.
35 //
36 // Store and load operations to these variables are converted into
37 // operations on SSA IDs.  Phi instructions are added when needed.  See the
38 // SSA construction paper for algorithmic details
39 // (https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6)
40 class SSARewriter {
41  public:
SSARewriter(MemPass * pass)42   SSARewriter(MemPass* pass)
43       : pass_(pass), first_phi_id_(pass_->get_module()->IdBound()) {}
44 
45   // Rewrites SSA-target variables in function |fp| into SSA.  This is the
46   // entry point for the SSA rewrite algorithm.  SSA-target variables are
47   // locally defined variables that meet the criteria set by IsSSATargetVar.
48   //
49   // Returns whether the function was modified or not, and whether or not the
50   // rewrite was successful.
51   Pass::Status RewriteFunctionIntoSSA(Function* fp);
52 
53  private:
54   class PhiCandidate {
55    public:
PhiCandidate(uint32_t var,uint32_t result,BasicBlock * block)56     explicit PhiCandidate(uint32_t var, uint32_t result, BasicBlock* block)
57         : var_id_(var),
58           result_id_(result),
59           bb_(block),
60           phi_args_(),
61           copy_of_(0),
62           is_complete_(false),
63           users_() {}
64 
var_id()65     uint32_t var_id() const { return var_id_; }
result_id()66     uint32_t result_id() const { return result_id_; }
bb()67     BasicBlock* bb() const { return bb_; }
phi_args()68     std::vector<uint32_t>& phi_args() { return phi_args_; }
phi_args()69     const std::vector<uint32_t>& phi_args() const { return phi_args_; }
copy_of()70     uint32_t copy_of() const { return copy_of_; }
is_complete()71     bool is_complete() const { return is_complete_; }
users()72     std::vector<uint32_t>& users() { return users_; }
users()73     const std::vector<uint32_t>& users() const { return users_; }
74 
75     // Marks this phi candidate as a trivial copy of |orig_id|.
MarkCopyOf(uint32_t orig_id)76     void MarkCopyOf(uint32_t orig_id) { copy_of_ = orig_id; }
77 
78     // Marks this phi candidate as incomplete.
MarkIncomplete()79     void MarkIncomplete() { is_complete_ = false; }
80 
81     // Marks this phi candidate as complete.
MarkComplete()82     void MarkComplete() { is_complete_ = true; }
83 
84     // Returns true if this Phi candidate is ready to be emitted.
IsReady()85     bool IsReady() const { return is_complete() && copy_of() == 0; }
86 
87     // Pretty prints this Phi candidate into a string and returns it. |cfg| is
88     // needed to lookup basic block predecessors.
89     std::string PrettyPrint(const CFG* cfg) const;
90 
91     // Registers |operand_id| as a user of this Phi candidate.
AddUser(uint32_t operand_id)92     void AddUser(uint32_t operand_id) { users_.push_back(operand_id); }
93 
94    private:
95     // Variable ID that this Phi is merging.
96     uint32_t var_id_;
97 
98     // SSA ID generated by this Phi (i.e., this is the result ID of the eventual
99     // Phi instruction).
100     uint32_t result_id_;
101 
102     // Basic block to hold this Phi.
103     BasicBlock* bb_;
104 
105     // Vector of operands for every predecessor block of |bb|.  This vector is
106     // organized so that the Ith slot contains the argument coming from the Ith
107     // predecessor of |bb|.
108     std::vector<uint32_t> phi_args_;
109 
110     // If this Phi is a trivial copy of another Phi, this is the ID of the
111     // original. If this is 0, it means that this is not a trivial Phi.
112     uint32_t copy_of_;
113 
114     // False, if this Phi candidate has no arguments or at least one argument is
115     // %0.
116     bool is_complete_;
117 
118     // List of all users for this Phi instruction. Each element is the result ID
119     // of the load instruction replaced by this Phi, or the result ID of a Phi
120     // candidate that has this Phi in its list of operands.
121     std::vector<uint32_t> users_;
122   };
123 
124   // Type used to keep track of store operations in each basic block.
125   typedef std::unordered_map<BasicBlock*,
126                              std::unordered_map<uint32_t, uint32_t>>
127       BlockDefsMap;
128 
129   // Generates all the SSA rewriting decisions for basic block |bb|.  This
130   // populates the Phi candidate table (|phi_candidate_|) and the load
131   // replacement table (|load_replacement_).  Returns true if successful.
132   bool GenerateSSAReplacements(BasicBlock* bb);
133 
134   // Seals block |bb|.  Sealing a basic block means |bb| and all its
135   // predecessors of |bb| have been scanned for loads/stores.
136   void SealBlock(BasicBlock* bb);
137 
138   // Returns true if |bb| has been sealed.
IsBlockSealed(BasicBlock * bb)139   bool IsBlockSealed(BasicBlock* bb) { return sealed_blocks_.count(bb) != 0; }
140 
141   // Returns the Phi candidate with result ID |id| if it exists in the table
142   // |phi_candidates_|. If no such Phi candidate exists, it returns nullptr.
GetPhiCandidate(uint32_t id)143   PhiCandidate* GetPhiCandidate(uint32_t id) {
144     auto it = phi_candidates_.find(id);
145     return (it != phi_candidates_.end()) ? &it->second : nullptr;
146   }
147 
148   // Replaces all the users of Phi candidate |phi_cand| to be users of
149   // |repl_id|.
150   void ReplacePhiUsersWith(const PhiCandidate& phi_cand, uint32_t repl_id);
151 
152   // Returns the value ID that should replace the load ID in the given
153   // replacement pair |repl|.  The replacement is a pair (|load_id|, |val_id|).
154   // If |val_id| is itself replaced by another value in the table, this function
155   // will look the replacement for |val_id| until it finds one that is not
156   // itself replaced.  For instance, given:
157   //
158   //            %34 = OpLoad %float %f1
159   //            OpStore %t %34
160   //            %36 = OpLoad %float %t
161   //
162   // Assume that %f1 is reached by a Phi candidate %42, the load
163   // replacement table will have the following entries:
164   //
165   //            %34 -> %42
166   //            %36 -> %34
167   //
168   // So, when looking for the replacement for %36, we should not use
169   // %34. Rather, we should use %42.  To do this, the chain of
170   // replacements must be followed until we reach an element that has
171   // no replacement.
172   uint32_t GetReplacement(std::pair<uint32_t, uint32_t> repl);
173 
174   // Returns the argument at index |ix| from |phi_candidate|. If argument |ix|
175   // comes from a trivial Phi, it follows the copy-of chain from that trivial
176   // Phi until it finds the original Phi candidate.
177   //
178   // This is only valid after all Phi candidates have been completed. It can
179   // only be called when generating the IR for these Phis.
180   uint32_t GetPhiArgument(const PhiCandidate* phi_candidate, uint32_t ix);
181 
182   // Applies all the SSA replacement decisions.  This replaces loads/stores to
183   // SSA target variables with their corresponding SSA IDs, and inserts Phi
184   // instructions for them.
185   bool ApplyReplacements();
186 
187   // Registers a definition for variable |var_id| in basic block |bb| with
188   // value |val_id|.
WriteVariable(uint32_t var_id,BasicBlock * bb,uint32_t val_id)189   void WriteVariable(uint32_t var_id, BasicBlock* bb, uint32_t val_id) {
190     defs_at_block_[bb][var_id] = val_id;
191     if (auto* pc = GetPhiCandidate(val_id)) {
192       pc->AddUser(bb->id());
193     }
194   }
195 
196   // Processes the store operation |inst| in basic block |bb|. This extracts
197   // the variable ID being stored into, determines whether the variable is an
198   // SSA-target variable, and, if it is, it stores its value in the
199   // |defs_at_block_| map.
200   void ProcessStore(Instruction* inst, BasicBlock* bb);
201 
202   // Processes the load operation |inst| in basic block |bb|. This extracts
203   // the variable ID being stored into, determines whether the variable is an
204   // SSA-target variable, and, if it is, it reads its reaching definition by
205   // calling |GetReachingDef|.  Returns true if successful.
206   bool ProcessLoad(Instruction* inst, BasicBlock* bb);
207 
208   // Reads the current definition for variable |var_id| in basic block |bb|.
209   // If |var_id| is not defined in block |bb| it walks up the predecessors of
210   // |bb|, creating new Phi candidates along the way, if needed.
211   //
212   // It returns the value for |var_id| from the RHS of the current reaching
213   // definition for |var_id|.
214   uint32_t GetReachingDef(uint32_t var_id, BasicBlock* bb);
215 
216   // Adds arguments to |phi_candidate| by getting the reaching definition of
217   // |phi_candidate|'s variable on each of the predecessors of its basic
218   // block. After populating the argument list, it determines whether all its
219   // arguments are the same.  If so, it returns the ID of the argument that
220   // this Phi copies.
221   uint32_t AddPhiOperands(PhiCandidate* phi_candidate);
222 
223   // Creates a Phi candidate instruction for variable |var_id| in basic block
224   // |bb|.
225   //
226   // Since the rewriting algorithm may remove Phi candidates when it finds
227   // them to be trivial, we avoid the expense of creating actual Phi
228   // instructions by keeping a pool of Phi candidates (|phi_candidates_|)
229   // during rewriting.
230   //
231   // Once the candidate Phi is created, it returns its ID.
232   PhiCandidate& CreatePhiCandidate(uint32_t var_id, BasicBlock* bb);
233 
234   // Attempts to remove a trivial Phi candidate |phi_cand|. Trivial Phis are
235   // those that only reference themselves and one other value |val| any number
236   // of times. This will try to remove any other Phis that become trivial
237   // after |phi_cand| is removed.
238   //
239   // If |phi_cand| is trivial, it returns the SSA ID for the value that should
240   // replace it.  Otherwise, it returns the SSA ID for |phi_cand|.
241   uint32_t TryRemoveTrivialPhi(PhiCandidate* phi_cand);
242 
243   // Finalizes |phi_candidate| by replacing every argument that is still %0
244   // with its reaching definition.
245   void FinalizePhiCandidate(PhiCandidate* phi_candidate);
246 
247   // Finalizes processing of Phi candidates.  Once the whole function has been
248   // scanned for loads and stores, the CFG will still have some incomplete and
249   // trivial Phis.  This will add missing arguments and remove trivial Phi
250   // candidates.
251   void FinalizePhiCandidates();
252 
253   // Prints the table of Phi candidates to std::cerr.
254   void PrintPhiCandidates() const;
255 
256   // Prints the load replacement table to std::cerr.
257   void PrintReplacementTable() const;
258 
259   // Map holding the value of every SSA-target variable at every basic block
260   // where the variable is stored. defs_at_block_[block][var_id] = val_id
261   // means that there is a store or Phi instruction for variable |var_id| at
262   // basic block |block| with value |val_id|.
263   BlockDefsMap defs_at_block_;
264 
265   // Map, indexed by Phi ID, holding all the Phi candidates created during SSA
266   // rewriting.  |phi_candidates_[id]| returns the Phi candidate whose result
267   // is |id|.
268   std::unordered_map<uint32_t, PhiCandidate> phi_candidates_;
269 
270   // Queue of incomplete Phi candidates. These are Phi candidates created at
271   // unsealed blocks. They need to be completed before they are instantiated
272   // in ApplyReplacements.
273   std::queue<PhiCandidate*> incomplete_phis_;
274 
275   // List of completed Phi candidates.  These are the only candidates that
276   // will become real Phi instructions.
277   std::vector<PhiCandidate*> phis_to_generate_;
278 
279   // SSA replacement table.  This maps variable IDs, resulting from a load
280   // operation, to the value IDs that will replace them after SSA rewriting.
281   // After all the rewriting decisions are made, a final scan through the IR
282   // is done to replace all uses of the original load ID with the value ID.
283   std::unordered_map<uint32_t, uint32_t> load_replacement_;
284 
285   // Set of blocks that have been sealed already.
286   std::unordered_set<BasicBlock*> sealed_blocks_;
287 
288   // Memory pass requesting the SSA rewriter.
289   MemPass* pass_;
290 
291   // ID of the first Phi created by the SSA rewriter.  During rewriting, any
292   // ID bigger than this corresponds to a Phi candidate.
293   uint32_t first_phi_id_;
294 };
295 
296 class SSARewritePass : public MemPass {
297  public:
298   SSARewritePass() = default;
299 
name()300   const char* name() const override { return "ssa-rewrite"; }
301   Status Process() override;
302 };
303 
304 }  // namespace opt
305 }  // namespace spvtools
306 
307 #endif  // SOURCE_OPT_SSA_REWRITE_PASS_H_
308