1 // Copyright 2018 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "src/decoder/partition.h"
16 #include "src/base/bottom_n.h"
17 #include "src/base/utils.h"
18 #include "src/decoder/footprint.h"
19
20 #include <algorithm>
21 #include <array>
22 #include <limits>
23 #include <memory>
24 #include <numeric>
25 #include <queue>
26 #include <set>
27 #include <unordered_set>
28 #include <utility>
29
30 namespace astc_codec {
31
32 namespace {
33
34 // The maximum number of partitions supported by ASTC is four.
35 constexpr int kMaxNumSubsets = 4;
36
37 // Partition selection function based on the ASTC specification.
38 // See section C.2.21
SelectASTCPartition(int seed,int x,int y,int z,int partitioncount,int num_pixels)39 int SelectASTCPartition(int seed, int x, int y, int z, int partitioncount,
40 int num_pixels) {
41 if (partitioncount <= 1) {
42 return 0;
43 }
44
45 if (num_pixels < 31) {
46 x <<= 1;
47 y <<= 1;
48 z <<= 1;
49 }
50
51 seed += (partitioncount - 1) * 1024;
52
53 uint32_t rnum = seed;
54 rnum ^= rnum >> 15;
55 rnum -= rnum << 17;
56 rnum += rnum << 7;
57 rnum += rnum << 4;
58 rnum ^= rnum >> 5;
59 rnum += rnum << 16;
60 rnum ^= rnum >> 7;
61 rnum ^= rnum >> 3;
62 rnum ^= rnum << 6;
63 rnum ^= rnum >> 17;
64
65 uint8_t seed1 = rnum & 0xF;
66 uint8_t seed2 = (rnum >> 4) & 0xF;
67 uint8_t seed3 = (rnum >> 8) & 0xF;
68 uint8_t seed4 = (rnum >> 12) & 0xF;
69 uint8_t seed5 = (rnum >> 16) & 0xF;
70 uint8_t seed6 = (rnum >> 20) & 0xF;
71 uint8_t seed7 = (rnum >> 24) & 0xF;
72 uint8_t seed8 = (rnum >> 28) & 0xF;
73 uint8_t seed9 = (rnum >> 18) & 0xF;
74 uint8_t seed10 = (rnum >> 22) & 0xF;
75 uint8_t seed11 = (rnum >> 26) & 0xF;
76 uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
77
78 seed1 *= seed1;
79 seed2 *= seed2;
80 seed3 *= seed3;
81 seed4 *= seed4;
82 seed5 *= seed5;
83 seed6 *= seed6;
84 seed7 *= seed7;
85 seed8 *= seed8;
86 seed9 *= seed9;
87 seed10 *= seed10;
88 seed11 *= seed11;
89 seed12 *= seed12;
90
91 int sh1, sh2, sh3;
92 if (seed & 1) {
93 sh1 = (seed & 2 ? 4 : 5);
94 sh2 = (partitioncount == 3 ? 6 : 5);
95 } else {
96 sh1 = (partitioncount == 3 ? 6 : 5);
97 sh2 = (seed & 2 ? 4 : 5);
98 }
99 sh3 = (seed & 0x10) ? sh1 : sh2;
100
101 seed1 >>= sh1;
102 seed2 >>= sh2;
103 seed3 >>= sh1;
104 seed4 >>= sh2;
105 seed5 >>= sh1;
106 seed6 >>= sh2;
107 seed7 >>= sh1;
108 seed8 >>= sh2;
109
110 seed9 >>= sh3;
111 seed10 >>= sh3;
112 seed11 >>= sh3;
113 seed12 >>= sh3;
114
115 int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
116 int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
117 int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 06);
118 int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 02);
119
120 a &= 0x3F;
121 b &= 0x3F;
122 c &= 0x3F;
123 d &= 0x3F;
124
125 if (partitioncount <= 3) {
126 d = 0;
127 }
128 if (partitioncount <= 2) {
129 c = 0;
130 }
131
132 if (a >= b && a >= c && a >= d) {
133 return 0;
134 } else if (b >= c && b >= d) {
135 return 1;
136 } else if (c >= d) {
137 return 2;
138 } else {
139 return 3;
140 }
141 }
142
143 // A partition hash that we can pass to containers like std::unordered_set
144 struct PartitionHasher {
operator ()astc_codec::__anon57d69f970111::PartitionHasher145 size_t operator()(const Partition& part) const {
146 // The issue here is that if we have two different partitions, A and B, then
147 // their hash should be equal if A and B are equal. We define the distance
148 // between A and B using PartitionMetric, but internally that finds a 1-1
149 // mapping from labels in A to labels in B.
150 //
151 // With that in mind, when we define a hash for partitions, we need to find
152 // a 1-1 mapping to a 'universal' labeling scheme. Here we define that as
153 // the heuristic: the first encountered label will be 0, the second will be
154 // 1, etc. This creates a unique 1-1 mapping scheme from any partition.
155 //
156 // Note, we can't use this heuristic for the PartitionMetric, as it will
157 // generate very large discrepancies between similar labellings (for example
158 // 000...001 vs 011...111). We are just looking for a boolean distinction
159 // whether or not two partitions are different and don't care how different
160 // they are.
161 std::array<int, kMaxNumSubsets> mapping {{ -1, -1, -1, -1 }};
162 int next_subset = 0;
163 for (int subset : part.assignment) {
164 if (mapping[subset] < 0) {
165 mapping[subset] = next_subset++;
166 }
167 }
168 assert(next_subset <= kMaxNumSubsets);
169
170 // The return value will be the hash of the assignment according to this
171 // mapping
172 const size_t seed0 = 0;
173 return std::accumulate(part.assignment.begin(), part.assignment.end(), seed0,
174 [&mapping](size_t seed, const int& subset) {
175 std::hash<size_t> hasher;
176 const int s = mapping[subset];
177 return hasher(seed) ^ hasher(static_cast<size_t>(s));
178 });
179 }
180 };
181
182 // Construct a VP-Tree of partitions. Since our PartitionMetric satisfies
183 // the triangle inequality, we can use this general higher-dimensional space
184 // partitioning tree to organize our partitions.
185 //
186 // TODO(google): !SPEED! Right now this tree stores an actual linked
187 // structure of pointers which is likely very slow during construction and
188 // very not cache-coherent during traversal, so it'd probably be good to
189 // switch to a flattened binary tree structure if performance becomes an
190 // issue.
191 class PartitionTree {
192 public:
193 // Unclear what it means to have an uninitialized tree, so delete default
194 // constructors, but allow the tree to be moved
195 PartitionTree() = delete;
196 PartitionTree(const PartitionTree&) = delete;
197 PartitionTree(PartitionTree&& t) = default;
198
199 // Generate a PartitionTree from iterators over |Partition|s
200 template<typename Itr>
PartitionTree(Itr begin,Itr end)201 PartitionTree(Itr begin, Itr end) : parts_(begin, end) {
202 std::vector<int> part_indices(parts_.size());
203 std::iota(part_indices.begin(), part_indices.end(), 0);
204 root_ = std::unique_ptr<PartitionTreeNode>(
205 new PartitionTreeNode(parts_, part_indices));
206 }
207
208 // Search for the k-nearest partitions that are closest to part based on
209 // the result of PartitionMetric
Search(const Partition & part,int k,std::vector<const Partition * > * const results,std::vector<int> * const distances) const210 void Search(const Partition& part, int k,
211 std::vector<const Partition*>* const results,
212 std::vector<int>* const distances) const {
213 ResultHeap heap(k);
214 SearchNode(root_, part, &heap);
215
216 results->clear();
217 if (nullptr != distances) {
218 distances->clear();
219 }
220
221 std::vector<ResultNode> search_results = heap.Pop();
222 for (const auto& result : search_results) {
223 results->push_back(&parts_[result.part_idx]);
224 if (nullptr != distances) {
225 distances->push_back(result.distance);
226 }
227 }
228
229 assert(results->size() == size_t(k));
230 }
231
232 private:
233 // Heap elements to be stored while searching the tree. The two relevant
234 // pieces of information are the partition index and it's distance from the
235 // queried partition.
236 struct ResultNode {
237 int part_idx;
238 int distance;
239
240 // Heap based on distance from query point.
operator <astc_codec::__anon57d69f970111::PartitionTree::ResultNode241 bool operator<(const ResultNode& other) const {
242 return distance < other.distance;
243 }
244 };
245
246 using ResultHeap = base::BottomN<ResultNode>;
247
248 struct PartitionTreeNode {
249 int part_idx;
250 int split_dist;
251
252 std::unique_ptr<PartitionTreeNode> left;
253 std::unique_ptr<PartitionTreeNode> right;
254
PartitionTreeNodeastc_codec::__anon57d69f970111::PartitionTree::PartitionTreeNode255 PartitionTreeNode(const std::vector<Partition> &parts,
256 const std::vector<int> &part_indices)
257 : split_dist(-1) {
258 assert(part_indices.size() > 0);
259
260 right.reset(nullptr);
261 left.reset(nullptr);
262
263 // Store the first node as our vantage point
264 part_idx = part_indices[0];
265 const Partition& vantage_point = parts[part_indices[0]];
266
267 // Calculate the distances of the remaining nodes against the vantage
268 // point.
269 std::vector<std::pair<int, int>> part_dists;
270 for (size_t i = 1; i < part_indices.size(); ++i) {
271 const int idx = part_indices[i];
272 const int dist = PartitionMetric(vantage_point, parts[idx]);
273 if (dist > 0) {
274 part_dists.push_back(std::make_pair(idx, dist));
275 }
276 }
277
278 // If there are no more different parts, then this is a leaf node
279 if (part_dists.empty()) {
280 return;
281 }
282
283 struct OrderBySecond {
284 typedef std::pair<int, int> PairType;
285 bool operator()(const PairType& lhs, const PairType& rhs) {
286 return lhs.second < rhs.second;
287 }
288 };
289
290 // We want to partition the set such that the points are ordered
291 // based on their distances from the vantage point. We can do this
292 // using the partial sort of nth element.
293 std::nth_element(
294 part_dists.begin(), part_dists.begin() + part_dists.size() / 2,
295 part_dists.end(), OrderBySecond());
296
297 // Once that's done, our split position is in the middle
298 const auto split_iter = part_dists.begin() + part_dists.size() / 2;
299 split_dist = split_iter->second;
300
301 // Recurse down the right and left sub-trees with the indices of the
302 // parts that are farther and closer respectively
303 std::vector<int> right_indices;
304 for (auto itr = split_iter; itr != part_dists.end(); ++itr) {
305 right_indices.push_back(itr->first);
306 }
307
308 if (!right_indices.empty()) {
309 right.reset(new PartitionTreeNode(parts, right_indices));
310 }
311
312 std::vector<int> left_indices;
313 for (auto itr = part_dists.begin(); itr != split_iter; ++itr) {
314 left_indices.push_back(itr->first);
315 }
316
317 if (!left_indices.empty()) {
318 left.reset(new PartitionTreeNode(parts, left_indices));
319 }
320 }
321 };
322
SearchNode(const std::unique_ptr<PartitionTreeNode> & node,const Partition & p,ResultHeap * const heap) const323 void SearchNode(const std::unique_ptr<PartitionTreeNode>& node,
324 const Partition& p, ResultHeap* const heap) const {
325 if (nullptr == node) {
326 return;
327 }
328
329 // Calculate distance against current node
330 const int dist = PartitionMetric(parts_[node->part_idx], p);
331
332 // Push it onto the heap and remove the top-most nodes to maintain
333 // closest k indices.
334 ResultNode result;
335 result.part_idx = node->part_idx;
336 result.distance = dist;
337 heap->Push(result);
338
339 // If the split distance is uninitialized, it means we have no children.
340 if (node->split_dist < 0) {
341 assert(nullptr == node->left);
342 assert(nullptr == node->right);
343 return;
344 }
345
346 // Next we need to check the left and right trees if their distance
347 // is closer/farther than the farthest element on the heap
348 const int tau = heap->Top().distance;
349 if (dist + tau < node->split_dist || dist - tau < node->split_dist) {
350 SearchNode(node->left, p, heap);
351 }
352
353 if (dist + tau > node->split_dist || dist - tau > node->split_dist) {
354 SearchNode(node->right, p, heap);
355 }
356 }
357
358 std::vector<Partition> parts_;
359 std::unique_ptr<PartitionTreeNode> root_;
360 };
361
362 // A helper function that generates all of the partitions for each number of
363 // subsets in ASTC blocks and stores them in a PartitionTree for fast retrieval.
364 const int kNumASTCPartitionIDBits = 10;
GenerateASTCPartitionTree(Footprint footprint)365 PartitionTree GenerateASTCPartitionTree(Footprint footprint) {
366 std::unordered_set<Partition, PartitionHasher> parts;
367 for (int num_parts = 2; num_parts <= kMaxNumSubsets; ++num_parts) {
368 for (int id = 0; id < (1 << kNumASTCPartitionIDBits); ++id) {
369 Partition part = GetASTCPartition(footprint, num_parts, id);
370
371 // Make sure we're not using a degenerate partition assignment that wastes
372 // an endpoint pair...
373 bool valid_part = true;
374 for (int i = 0; i < num_parts; ++i) {
375 if (std::find(part.assignment.begin(), part.assignment.end(), i) ==
376 part.assignment.end()) {
377 valid_part = false;
378 break;
379 }
380 }
381
382 if (valid_part) {
383 parts.insert(std::move(part));
384 }
385 }
386 }
387
388 return PartitionTree(parts.begin(), parts.end());
389 }
390
391 // To avoid needing any fancy boilerplate for mapping from a width, height
392 // tuple, we can define a simple encoding for the block mode:
EncodeDims(int width,int height)393 constexpr int EncodeDims(int width, int height) {
394 return (width << 16) | height;
395 }
396
397 } // namespace
398
399 ////////////////////////////////////////////////////////////////////////////////
400
PartitionMetric(const Partition & a,const Partition & b)401 int PartitionMetric(const Partition& a, const Partition& b) {
402 // Make sure that one partition is at least a subset of the other...
403 UTILS_RELEASE_ASSERT(a.footprint == b.footprint);
404
405 // Make sure that the number of parts is within our limits. ASTC has a maximum
406 // of four subsets per block according to the specification.
407 UTILS_RELEASE_ASSERT(a.num_parts <= kMaxNumSubsets);
408 UTILS_RELEASE_ASSERT(b.num_parts <= kMaxNumSubsets);
409
410 const int w = a.footprint.Width();
411 const int h = b.footprint.Height();
412
413 struct PairCount {
414 int a;
415 int b;
416 int count;
417
418 // Comparison needed for sort below.
419 bool operator>(const PairCount& other) const {
420 return count > other.count;
421 }
422 };
423
424 // Since we need to find the smallest mapping from labels in A to labels in B,
425 // we need to store each label pair in a structure that can later be sorted.
426 // The maximum number of subsets in an ASTC block is four, meaning that
427 // between the two partitions, we can have up to sixteen different pairs.
428 std::array<PairCount, 16> pair_counts;
429 for (int y = 0; y < 4; ++y) {
430 for (int x = 0; x < 4; ++x) {
431 const int idx = y * 4 + x;
432 pair_counts[idx].a = x;
433 pair_counts[idx].b = y;
434 pair_counts[idx].count = 0;
435 }
436 }
437
438 // Count how many times we see each pair of assigned values (order matters!)
439 for (int y = 0; y < h; ++y) {
440 for (int x = 0; x < w; ++x) {
441 const int idx = y * w + x;
442
443 const int a_val = a.assignment[idx];
444 const int b_val = b.assignment[idx];
445
446 assert(a_val >= 0);
447 assert(b_val >= 0);
448
449 assert(a_val < 4);
450 assert(b_val < 4);
451
452 ++(pair_counts[b_val * 4 + a_val].count);
453 }
454 }
455
456 // Sort the pairs in descending order based on their count
457 std::sort(pair_counts.begin(), pair_counts.end(), std::greater<PairCount>());
458
459 // Now assign pairs one by one until we have no more pairs to assign. Once
460 // a value from A is assigned to a value in B, it can no longer be reassigned,
461 // so we can keep track of this in a matrix. Similarly, to keep the assignment
462 // one-to-one, once a value in B has been assigned to, it cannot be assigned
463 // to again.
464 std::array<std::array<bool, kMaxNumSubsets>, kMaxNumSubsets> assigned { };
465
466 int pixels_matched = 0;
467 for (const auto& pair_count : pair_counts) {
468 bool is_assigned = false;
469 for (int i = 0; i < kMaxNumSubsets; ++i) {
470 is_assigned |= assigned.at(pair_count.a).at(i);
471 is_assigned |= assigned.at(i).at(pair_count.b);
472 }
473
474 if (!is_assigned) {
475 assigned.at(pair_count.a).at(pair_count.b) = true;
476 pixels_matched += pair_count.count;
477 }
478 }
479
480 // The difference is the number of pixels that had an assignment versus the
481 // total number of pixels.
482 return w * h - pixels_matched;
483 }
484
485 // Generates the partition assignment for the given block attributes.
GetASTCPartition(const Footprint & footprint,int num_parts,int partition_id)486 Partition GetASTCPartition(const Footprint& footprint, int num_parts,
487 int partition_id) {
488 // Partitions must have at least one subset but may have at most four
489 assert(num_parts >= 0);
490 assert(num_parts <= kMaxNumSubsets);
491
492 // Partition ID can be no more than 10 bits.
493 assert(partition_id >= 0);
494 assert(partition_id < 1 << 10);
495
496 Partition part = {footprint, num_parts, partition_id, /* assignment = */ {}};
497 part.assignment.reserve(footprint.NumPixels());
498
499 // Maintain column-major order so that we match all of the image processing
500 // algorithms that depend on this class.
501 for (int y = 0; y < footprint.Height(); ++y) {
502 for (int x = 0; x < footprint.Width(); ++x) {
503 const int p = SelectASTCPartition(partition_id, x, y, 0, num_parts,
504 footprint.NumPixels());
505 part.assignment.push_back(p);
506 }
507 }
508
509 return part;
510 }
511
FindKClosestASTCPartitions(const Partition & candidate,int k)512 const std::vector<const Partition*> FindKClosestASTCPartitions(
513 const Partition& candidate, int k) {
514 const int encoded_dims = EncodeDims(candidate.footprint.Width(),
515 candidate.footprint.Height());
516
517 int index = 0;
518 switch (encoded_dims) {
519 case EncodeDims(4, 4): index = 0; break;
520 case EncodeDims(5, 4): index = 1; break;
521 case EncodeDims(5, 5): index = 2; break;
522 case EncodeDims(6, 5): index = 3; break;
523 case EncodeDims(6, 6): index = 4; break;
524 case EncodeDims(8, 5): index = 5; break;
525 case EncodeDims(8, 6): index = 6; break;
526 case EncodeDims(8, 8): index = 7; break;
527 case EncodeDims(10, 5): index = 8; break;
528 case EncodeDims(10, 6): index = 9; break;
529 case EncodeDims(10, 8): index = 10; break;
530 case EncodeDims(10, 10): index = 11; break;
531 case EncodeDims(12, 10): index = 12; break;
532 case EncodeDims(12, 12): index = 13; break;
533 default:
534 assert(false && "Unknown footprint dimensions. This should have been caught sooner.");
535 break;
536 }
537
538 static const auto* const kASTCPartitionTrees =
539 new std::array<PartitionTree, Footprint::NumValidFootprints()> {{
540 GenerateASTCPartitionTree(Footprint::Get4x4()),
541 GenerateASTCPartitionTree(Footprint::Get5x4()),
542 GenerateASTCPartitionTree(Footprint::Get5x5()),
543 GenerateASTCPartitionTree(Footprint::Get6x5()),
544 GenerateASTCPartitionTree(Footprint::Get6x6()),
545 GenerateASTCPartitionTree(Footprint::Get8x5()),
546 GenerateASTCPartitionTree(Footprint::Get8x6()),
547 GenerateASTCPartitionTree(Footprint::Get8x8()),
548 GenerateASTCPartitionTree(Footprint::Get10x5()),
549 GenerateASTCPartitionTree(Footprint::Get10x6()),
550 GenerateASTCPartitionTree(Footprint::Get10x8()),
551 GenerateASTCPartitionTree(Footprint::Get10x10()),
552 GenerateASTCPartitionTree(Footprint::Get12x10()),
553 GenerateASTCPartitionTree(Footprint::Get12x12()),
554 }};
555
556 const PartitionTree& parts_vptree = kASTCPartitionTrees->at(index);
557 std::vector<const Partition*> results;
558 parts_vptree.Search(candidate, k, &results, nullptr);
559 return results;
560 }
561
562 // Returns the valid ASTC partition that is closest to the candidate based on
563 // the PartitionMetric defined above.
FindClosestASTCPartition(const Partition & candidate)564 const Partition& FindClosestASTCPartition(const Partition& candidate) {
565 // Given a candidate, the closest valid partition will likely not be an exact
566 // match. Consider all of the texels for which this valid partition differs
567 // with the candidate.
568 //
569 // If the valid partition has more subsets than the candidate, then all of the
570 // highest subset will be included in the mismatched texels. Since the number
571 // of possible partitions with increasing subsets grows exponentially, the
572 // chance that a valid partition with fewer subsets appears within the first
573 // few closest partitions is relatively high. Empirically, we can usually find
574 // a partition with at most |candidate.num_parts| number of subsets within the
575 // first four closest partitions.
576 constexpr int kSearchItems = 4;
577
578 const std::vector<const Partition*> results =
579 FindKClosestASTCPartitions(candidate, kSearchItems);
580
581 // Optimistically, look for result with the same number of subsets.
582 for (const auto& result : results) {
583 if (result->num_parts == candidate.num_parts) {
584 return *result;
585 }
586 }
587
588 // If all else fails, then at least find the result with fewer subsets than
589 // we asked for.
590 for (const auto& result : results) {
591 if (result->num_parts < candidate.num_parts) {
592 return *result;
593 }
594 }
595
596 assert(false &&
597 "Could not find partition with acceptable number of subsets!");
598 return *(results[0]);
599 }
600
601 } // namespace astc_codec
602