1 /*
2  * Copyright © 2009,2012 Intel Corporation
3  * Copyright © 1988-2004 Keith Packard and Bart Massey.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  * Except as contained in this notice, the names of the authors
25  * or their institutions shall not be used in advertising or
26  * otherwise to promote the sale, use or other dealings in this
27  * Software without prior written authorization from the
28  * authors.
29  *
30  * Authors:
31  *    Eric Anholt <eric@anholt.net>
32  *    Keith Packard <keithp@keithp.com>
33  */
34 
35 /**
36  * Implements an open-addressing, linear-reprobing hash table.
37  *
38  * For more information, see:
39  *
40  * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41  */
42 
43 #include <stdlib.h>
44 #include <string.h>
45 
46 #include "hash_table.h"
47 #include "ralloc.h"
48 #include "macros.h"
49 
50 static const uint32_t deleted_key_value;
51 
52 /**
53  * From Knuth -- a good choice for hash/rehash values is p, p-2 where
54  * p and p-2 are both prime.  These tables are sized to have an extra 10%
55  * free to avoid exponential performance degradation as the hash table fills
56  */
57 static const struct {
58    uint32_t max_entries, size, rehash;
59 } hash_sizes[] = {
60    { 2,			5,		3	  },
61    { 4,			7,		5	  },
62    { 8,			13,		11	  },
63    { 16,		19,		17	  },
64    { 32,		43,		41        },
65    { 64,		73,		71        },
66    { 128,		151,		149       },
67    { 256,		283,		281       },
68    { 512,		571,		569       },
69    { 1024,		1153,		1151      },
70    { 2048,		2269,		2267      },
71    { 4096,		4519,		4517      },
72    { 8192,		9013,		9011      },
73    { 16384,		18043,		18041     },
74    { 32768,		36109,		36107     },
75    { 65536,		72091,		72089     },
76    { 131072,		144409,		144407    },
77    { 262144,		288361,		288359    },
78    { 524288,		576883,		576881    },
79    { 1048576,		1153459,	1153457   },
80    { 2097152,		2307163,	2307161   },
81    { 4194304,		4613893,	4613891   },
82    { 8388608,		9227641,	9227639   },
83    { 16777216,		18455029,	18455027  },
84    { 33554432,		36911011,	36911009  },
85    { 67108864,		73819861,	73819859  },
86    { 134217728,		147639589,	147639587 },
87    { 268435456,		295279081,	295279079 },
88    { 536870912,		590559793,	590559791 },
89    { 1073741824,	1181116273,	1181116271},
90    { 2147483648ul,	2362232233ul,	2362232231ul}
91 };
92 
93 static int
entry_is_free(const struct hash_entry * entry)94 entry_is_free(const struct hash_entry *entry)
95 {
96    return entry->key == NULL;
97 }
98 
99 static int
entry_is_deleted(const struct hash_table * ht,struct hash_entry * entry)100 entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
101 {
102    return entry->key == ht->deleted_key;
103 }
104 
105 static int
entry_is_present(const struct hash_table * ht,struct hash_entry * entry)106 entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
107 {
108    return entry->key != NULL && entry->key != ht->deleted_key;
109 }
110 
111 struct hash_table *
_mesa_hash_table_create(void * mem_ctx,bool (* key_equals_function)(const void * a,const void * b))112 _mesa_hash_table_create(void *mem_ctx,
113                         bool (*key_equals_function)(const void *a,
114                                                     const void *b))
115 {
116    struct hash_table *ht;
117 
118    ht = ralloc(mem_ctx, struct hash_table);
119    if (ht == NULL)
120       return NULL;
121 
122    ht->size_index = 0;
123    ht->size = hash_sizes[ht->size_index].size;
124    ht->rehash = hash_sizes[ht->size_index].rehash;
125    ht->max_entries = hash_sizes[ht->size_index].max_entries;
126    ht->key_equals_function = key_equals_function;
127    ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
128    ht->entries = 0;
129    ht->deleted_entries = 0;
130    ht->deleted_key = &deleted_key_value;
131 
132    if (ht->table == NULL) {
133       ralloc_free(ht);
134       return NULL;
135    }
136 
137    return ht;
138 }
139 
140 /**
141  * Frees the given hash table.
142  *
143  * If delete_function is passed, it gets called on each entry present before
144  * freeing.
145  */
146 void
_mesa_hash_table_destroy(struct hash_table * ht,void (* delete_function)(struct hash_entry * entry))147 _mesa_hash_table_destroy(struct hash_table *ht,
148                          void (*delete_function)(struct hash_entry *entry))
149 {
150    if (!ht)
151       return;
152 
153    if (delete_function) {
154       struct hash_entry *entry;
155 
156       hash_table_foreach(ht, entry) {
157          delete_function(entry);
158       }
159    }
160    ralloc_free(ht);
161 }
162 
163 /** Sets the value of the key pointer used for deleted entries in the table.
164  *
165  * The assumption is that usually keys are actual pointers, so we use a
166  * default value of a pointer to an arbitrary piece of storage in the library.
167  * But in some cases a consumer wants to store some other sort of value in the
168  * table, like a uint32_t, in which case that pointer may conflict with one of
169  * their valid keys.  This lets that user select a safe value.
170  *
171  * This must be called before any keys are actually deleted from the table.
172  */
173 void
_mesa_hash_table_set_deleted_key(struct hash_table * ht,const void * deleted_key)174 _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
175 {
176    ht->deleted_key = deleted_key;
177 }
178 
179 /**
180  * Finds a hash table entry with the given key and hash of that key.
181  *
182  * Returns NULL if no entry is found.  Note that the data pointer may be
183  * modified by the user.
184  */
185 struct hash_entry *
_mesa_hash_table_search(struct hash_table * ht,uint32_t hash,const void * key)186 _mesa_hash_table_search(struct hash_table *ht, uint32_t hash,
187                         const void *key)
188 {
189    uint32_t start_hash_address = hash % ht->size;
190    uint32_t hash_address = start_hash_address;
191 
192    do {
193       uint32_t double_hash;
194 
195       struct hash_entry *entry = ht->table + hash_address;
196 
197       if (entry_is_free(entry)) {
198          return NULL;
199       } else if (entry_is_present(ht, entry) && entry->hash == hash) {
200          if (ht->key_equals_function(key, entry->key)) {
201             return entry;
202          }
203       }
204 
205       double_hash = 1 + hash % ht->rehash;
206 
207       hash_address = (hash_address + double_hash) % ht->size;
208    } while (hash_address != start_hash_address);
209 
210    return NULL;
211 }
212 
213 static void
_mesa_hash_table_rehash(struct hash_table * ht,int new_size_index)214 _mesa_hash_table_rehash(struct hash_table *ht, int new_size_index)
215 {
216    struct hash_table old_ht;
217    struct hash_entry *table, *entry;
218 
219    if (new_size_index >= ARRAY_SIZE(hash_sizes))
220       return;
221 
222    table = rzalloc_array(ht, struct hash_entry,
223                          hash_sizes[new_size_index].size);
224    if (table == NULL)
225       return;
226 
227    old_ht = *ht;
228 
229    ht->table = table;
230    ht->size_index = new_size_index;
231    ht->size = hash_sizes[ht->size_index].size;
232    ht->rehash = hash_sizes[ht->size_index].rehash;
233    ht->max_entries = hash_sizes[ht->size_index].max_entries;
234    ht->entries = 0;
235    ht->deleted_entries = 0;
236 
237    hash_table_foreach(&old_ht, entry) {
238       _mesa_hash_table_insert(ht, entry->hash,
239                               entry->key, entry->data);
240    }
241 
242    ralloc_free(old_ht.table);
243 }
244 
245 /**
246  * Inserts the key with the given hash into the table.
247  *
248  * Note that insertion may rearrange the table on a resize or rehash,
249  * so previously found hash_entries are no longer valid after this function.
250  */
251 struct hash_entry *
_mesa_hash_table_insert(struct hash_table * ht,uint32_t hash,const void * key,void * data)252 _mesa_hash_table_insert(struct hash_table *ht, uint32_t hash,
253                         const void *key, void *data)
254 {
255    uint32_t start_hash_address, hash_address;
256 
257    if (ht->entries >= ht->max_entries) {
258       _mesa_hash_table_rehash(ht, ht->size_index + 1);
259    } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
260       _mesa_hash_table_rehash(ht, ht->size_index);
261    }
262 
263    start_hash_address = hash % ht->size;
264    hash_address = start_hash_address;
265    do {
266       struct hash_entry *entry = ht->table + hash_address;
267       uint32_t double_hash;
268 
269       if (!entry_is_present(ht, entry)) {
270          if (entry_is_deleted(ht, entry))
271             ht->deleted_entries--;
272          entry->hash = hash;
273          entry->key = key;
274          entry->data = data;
275          ht->entries++;
276          return entry;
277       }
278 
279       /* Implement replacement when another insert happens
280        * with a matching key.  This is a relatively common
281        * feature of hash tables, with the alternative
282        * generally being "insert the new value as well, and
283        * return it first when the key is searched for".
284        *
285        * Note that the hash table doesn't have a delete
286        * callback.  If freeing of old data pointers is
287        * required to avoid memory leaks, perform a search
288        * before inserting.
289        */
290       if (entry->hash == hash &&
291           ht->key_equals_function(key, entry->key)) {
292          entry->key = key;
293          entry->data = data;
294          return entry;
295       }
296 
297 
298       double_hash = 1 + hash % ht->rehash;
299 
300       hash_address = (hash_address + double_hash) % ht->size;
301    } while (hash_address != start_hash_address);
302 
303    /* We could hit here if a required resize failed. An unchecked-malloc
304     * application could ignore this result.
305     */
306    return NULL;
307 }
308 
309 /**
310  * This function deletes the given hash table entry.
311  *
312  * Note that deletion doesn't otherwise modify the table, so an iteration over
313  * the table deleting entries is safe.
314  */
315 void
_mesa_hash_table_remove(struct hash_table * ht,struct hash_entry * entry)316 _mesa_hash_table_remove(struct hash_table *ht,
317                         struct hash_entry *entry)
318 {
319    if (!entry)
320       return;
321 
322    entry->key = ht->deleted_key;
323    ht->entries--;
324    ht->deleted_entries++;
325 }
326 
327 /**
328  * This function is an iterator over the hash table.
329  *
330  * Pass in NULL for the first entry, as in the start of a for loop.  Note that
331  * an iteration over the table is O(table_size) not O(entries).
332  */
333 struct hash_entry *
_mesa_hash_table_next_entry(struct hash_table * ht,struct hash_entry * entry)334 _mesa_hash_table_next_entry(struct hash_table *ht,
335                             struct hash_entry *entry)
336 {
337    if (entry == NULL)
338       entry = ht->table;
339    else
340       entry = entry + 1;
341 
342    for (; entry != ht->table + ht->size; entry++) {
343       if (entry_is_present(ht, entry)) {
344          return entry;
345       }
346    }
347 
348    return NULL;
349 }
350 
351 /**
352  * Returns a random entry from the hash table.
353  *
354  * This may be useful in implementing random replacement (as opposed
355  * to just removing everything) in caches based on this hash table
356  * implementation.  @predicate may be used to filter entries, or may
357  * be set to NULL for no filtering.
358  */
359 struct hash_entry *
_mesa_hash_table_random_entry(struct hash_table * ht,bool (* predicate)(struct hash_entry * entry))360 _mesa_hash_table_random_entry(struct hash_table *ht,
361                               bool (*predicate)(struct hash_entry *entry))
362 {
363    struct hash_entry *entry;
364    uint32_t i = rand() % ht->size;
365 
366    if (ht->entries == 0)
367       return NULL;
368 
369    for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
370       if (entry_is_present(ht, entry) &&
371           (!predicate || predicate(entry))) {
372          return entry;
373       }
374    }
375 
376    for (entry = ht->table; entry != ht->table + i; entry++) {
377       if (entry_is_present(ht, entry) &&
378           (!predicate || predicate(entry))) {
379          return entry;
380       }
381    }
382 
383    return NULL;
384 }
385 
386 
387 /**
388  * Quick FNV-1 hash implementation based on:
389  * http://www.isthe.com/chongo/tech/comp/fnv/
390  *
391  * FNV-1 is not be the best hash out there -- Jenkins's lookup3 is supposed to
392  * be quite good, and it probably beats FNV.  But FNV has the advantage that
393  * it involves almost no code.  For an improvement on both, see Paul
394  * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
395  */
396 uint32_t
_mesa_hash_data(const void * data,size_t size)397 _mesa_hash_data(const void *data, size_t size)
398 {
399    uint32_t hash = 2166136261ul;
400    const uint8_t *bytes = data;
401 
402    while (size-- != 0) {
403       hash ^= *bytes;
404       hash = hash * 0x01000193;
405       bytes++;
406    }
407 
408    return hash;
409 }
410 
411 /** FNV-1 string hash implementation */
412 uint32_t
_mesa_hash_string(const char * key)413 _mesa_hash_string(const char *key)
414 {
415    uint32_t hash = 2166136261ul;
416 
417    while (*key != 0) {
418       hash ^= *key;
419       hash = hash * 0x01000193;
420       key++;
421    }
422 
423    return hash;
424 }
425 
426 /**
427  * String compare function for use as the comparison callback in
428  * _mesa_hash_table_create().
429  */
430 bool
_mesa_key_string_equal(const void * a,const void * b)431 _mesa_key_string_equal(const void *a, const void *b)
432 {
433    return strcmp(a, b) == 0;
434 }
435 
436 bool
_mesa_key_pointer_equal(const void * a,const void * b)437 _mesa_key_pointer_equal(const void *a, const void *b)
438 {
439    return a == b;
440 }
441