1 /*
2  *  Arm "Angel" semihosting syscalls
3  *
4  *  Copyright (c) 2005, 2007 CodeSourcery.
5  *  Copyright (c) 2019 Linaro
6  *  Written by Paul Brook.
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  *  ARM Semihosting is documented in:
22  *     Semihosting for AArch32 and AArch64 Release 2.0
23  *     https://static.docs.arm.com/100863/0200/semihosting.pdf
24  */
25 
26 #include "qemu/osdep.h"
27 
28 #include "cpu.h"
29 #include "hw/semihosting/semihost.h"
30 #include "hw/semihosting/console.h"
31 #include "qemu/log.h"
32 #ifdef CONFIG_USER_ONLY
33 #include "qemu.h"
34 
35 #define ARM_ANGEL_HEAP_SIZE (128 * 1024 * 1024)
36 #else
37 #include "exec/gdbstub.h"
38 #include "qemu/cutils.h"
39 #endif
40 
41 #define TARGET_SYS_OPEN        0x01
42 #define TARGET_SYS_CLOSE       0x02
43 #define TARGET_SYS_WRITEC      0x03
44 #define TARGET_SYS_WRITE0      0x04
45 #define TARGET_SYS_WRITE       0x05
46 #define TARGET_SYS_READ        0x06
47 #define TARGET_SYS_READC       0x07
48 #define TARGET_SYS_ISTTY       0x09
49 #define TARGET_SYS_SEEK        0x0a
50 #define TARGET_SYS_FLEN        0x0c
51 #define TARGET_SYS_TMPNAM      0x0d
52 #define TARGET_SYS_REMOVE      0x0e
53 #define TARGET_SYS_RENAME      0x0f
54 #define TARGET_SYS_CLOCK       0x10
55 #define TARGET_SYS_TIME        0x11
56 #define TARGET_SYS_SYSTEM      0x12
57 #define TARGET_SYS_ERRNO       0x13
58 #define TARGET_SYS_GET_CMDLINE 0x15
59 #define TARGET_SYS_HEAPINFO    0x16
60 #define TARGET_SYS_EXIT        0x18
61 #define TARGET_SYS_SYNCCACHE   0x19
62 #define TARGET_SYS_EXIT_EXTENDED 0x20
63 
64 /* ADP_Stopped_ApplicationExit is used for exit(0),
65  * anything else is implemented as exit(1) */
66 #define ADP_Stopped_ApplicationExit     (0x20026)
67 
68 #ifndef O_BINARY
69 #define O_BINARY 0
70 #endif
71 
72 #define GDB_O_RDONLY  0x000
73 #define GDB_O_WRONLY  0x001
74 #define GDB_O_RDWR    0x002
75 #define GDB_O_APPEND  0x008
76 #define GDB_O_CREAT   0x200
77 #define GDB_O_TRUNC   0x400
78 #define GDB_O_BINARY  0
79 
80 static int gdb_open_modeflags[12] = {
81     GDB_O_RDONLY,
82     GDB_O_RDONLY | GDB_O_BINARY,
83     GDB_O_RDWR,
84     GDB_O_RDWR | GDB_O_BINARY,
85     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
86     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
87     GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
88     GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
89     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
90     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY,
91     GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
92     GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY
93 };
94 
95 static int open_modeflags[12] = {
96     O_RDONLY,
97     O_RDONLY | O_BINARY,
98     O_RDWR,
99     O_RDWR | O_BINARY,
100     O_WRONLY | O_CREAT | O_TRUNC,
101     O_WRONLY | O_CREAT | O_TRUNC | O_BINARY,
102     O_RDWR | O_CREAT | O_TRUNC,
103     O_RDWR | O_CREAT | O_TRUNC | O_BINARY,
104     O_WRONLY | O_CREAT | O_APPEND,
105     O_WRONLY | O_CREAT | O_APPEND | O_BINARY,
106     O_RDWR | O_CREAT | O_APPEND,
107     O_RDWR | O_CREAT | O_APPEND | O_BINARY
108 };
109 
110 typedef enum GuestFDType {
111     GuestFDUnused = 0,
112     GuestFDHost = 1,
113     GuestFDGDB = 2,
114     GuestFDFeatureFile = 3,
115 } GuestFDType;
116 
117 /*
118  * Guest file descriptors are integer indexes into an array of
119  * these structures (we will dynamically resize as necessary).
120  */
121 typedef struct GuestFD {
122     GuestFDType type;
123     union {
124         int hostfd;
125         target_ulong featurefile_offset;
126     };
127 } GuestFD;
128 
129 static GArray *guestfd_array;
130 
131 /*
132  * Allocate a new guest file descriptor and return it; if we
133  * couldn't allocate a new fd then return -1.
134  * This is a fairly simplistic implementation because we don't
135  * expect that most semihosting guest programs will make very
136  * heavy use of opening and closing fds.
137  */
alloc_guestfd(void)138 static int alloc_guestfd(void)
139 {
140     guint i;
141 
142     if (!guestfd_array) {
143         /* New entries zero-initialized, i.e. type GuestFDUnused */
144         guestfd_array = g_array_new(FALSE, TRUE, sizeof(GuestFD));
145     }
146 
147     /* SYS_OPEN should return nonzero handle on success. Start guestfd from 1 */
148     for (i = 1; i < guestfd_array->len; i++) {
149         GuestFD *gf = &g_array_index(guestfd_array, GuestFD, i);
150 
151         if (gf->type == GuestFDUnused) {
152             return i;
153         }
154     }
155 
156     /* All elements already in use: expand the array */
157     g_array_set_size(guestfd_array, i + 1);
158     return i;
159 }
160 
161 /*
162  * Look up the guestfd in the data structure; return NULL
163  * for out of bounds, but don't check whether the slot is unused.
164  * This is used internally by the other guestfd functions.
165  */
do_get_guestfd(int guestfd)166 static GuestFD *do_get_guestfd(int guestfd)
167 {
168     if (!guestfd_array) {
169         return NULL;
170     }
171 
172     if (guestfd <= 0 || guestfd >= guestfd_array->len) {
173         return NULL;
174     }
175 
176     return &g_array_index(guestfd_array, GuestFD, guestfd);
177 }
178 
179 /*
180  * Associate the specified guest fd (which must have been
181  * allocated via alloc_fd() and not previously used) with
182  * the specified host/gdb fd.
183  */
associate_guestfd(int guestfd,int hostfd)184 static void associate_guestfd(int guestfd, int hostfd)
185 {
186     GuestFD *gf = do_get_guestfd(guestfd);
187 
188     assert(gf);
189     gf->type = use_gdb_syscalls() ? GuestFDGDB : GuestFDHost;
190     gf->hostfd = hostfd;
191 }
192 
193 /*
194  * Deallocate the specified guest file descriptor. This doesn't
195  * close the host fd, it merely undoes the work of alloc_fd().
196  */
dealloc_guestfd(int guestfd)197 static void dealloc_guestfd(int guestfd)
198 {
199     GuestFD *gf = do_get_guestfd(guestfd);
200 
201     assert(gf);
202     gf->type = GuestFDUnused;
203 }
204 
205 /*
206  * Given a guest file descriptor, get the associated struct.
207  * If the fd is not valid, return NULL. This is the function
208  * used by the various semihosting calls to validate a handle
209  * from the guest.
210  * Note: calling alloc_guestfd() or dealloc_guestfd() will
211  * invalidate any GuestFD* obtained by calling this function.
212  */
get_guestfd(int guestfd)213 static GuestFD *get_guestfd(int guestfd)
214 {
215     GuestFD *gf = do_get_guestfd(guestfd);
216 
217     if (!gf || gf->type == GuestFDUnused) {
218         return NULL;
219     }
220     return gf;
221 }
222 
223 /*
224  * The semihosting API has no concept of its errno being thread-safe,
225  * as the API design predates SMP CPUs and was intended as a simple
226  * real-hardware set of debug functionality. For QEMU, we make the
227  * errno be per-thread in linux-user mode; in softmmu it is a simple
228  * global, and we assume that the guest takes care of avoiding any races.
229  */
230 #ifndef CONFIG_USER_ONLY
231 static target_ulong syscall_err;
232 
233 #include "exec/softmmu-semi.h"
234 #endif
235 
set_swi_errno(CPUARMState * env,uint32_t code)236 static inline uint32_t set_swi_errno(CPUARMState *env, uint32_t code)
237 {
238     if (code == (uint32_t)-1) {
239 #ifdef CONFIG_USER_ONLY
240         CPUState *cs = env_cpu(env);
241         TaskState *ts = cs->opaque;
242 
243         ts->swi_errno = errno;
244 #else
245         syscall_err = errno;
246 #endif
247     }
248     return code;
249 }
250 
get_swi_errno(CPUARMState * env)251 static inline uint32_t get_swi_errno(CPUARMState *env)
252 {
253 #ifdef CONFIG_USER_ONLY
254     CPUState *cs = env_cpu(env);
255     TaskState *ts = cs->opaque;
256 
257     return ts->swi_errno;
258 #else
259     return syscall_err;
260 #endif
261 }
262 
263 static target_ulong arm_semi_syscall_len;
264 
arm_semi_cb(CPUState * cs,target_ulong ret,target_ulong err)265 static void arm_semi_cb(CPUState *cs, target_ulong ret, target_ulong err)
266 {
267     ARMCPU *cpu = ARM_CPU(cs);
268     CPUARMState *env = &cpu->env;
269     target_ulong reg0 = is_a64(env) ? env->xregs[0] : env->regs[0];
270 
271     if (ret == (target_ulong)-1) {
272         errno = err;
273         set_swi_errno(env, -1);
274         reg0 = ret;
275     } else {
276         /* Fixup syscalls that use nonstardard return conventions.  */
277         switch (reg0) {
278         case TARGET_SYS_WRITE:
279         case TARGET_SYS_READ:
280             reg0 = arm_semi_syscall_len - ret;
281             break;
282         case TARGET_SYS_SEEK:
283             reg0 = 0;
284             break;
285         default:
286             reg0 = ret;
287             break;
288         }
289     }
290     if (is_a64(env)) {
291         env->xregs[0] = reg0;
292     } else {
293         env->regs[0] = reg0;
294     }
295 }
296 
arm_flen_buf(ARMCPU * cpu)297 static target_ulong arm_flen_buf(ARMCPU *cpu)
298 {
299     /* Return an address in target memory of 64 bytes where the remote
300      * gdb should write its stat struct. (The format of this structure
301      * is defined by GDB's remote protocol and is not target-specific.)
302      * We put this on the guest's stack just below SP.
303      */
304     CPUARMState *env = &cpu->env;
305     target_ulong sp;
306 
307     if (is_a64(env)) {
308         sp = env->xregs[31];
309     } else {
310         sp = env->regs[13];
311     }
312 
313     return sp - 64;
314 }
315 
arm_semi_flen_cb(CPUState * cs,target_ulong ret,target_ulong err)316 static void arm_semi_flen_cb(CPUState *cs, target_ulong ret, target_ulong err)
317 {
318     ARMCPU *cpu = ARM_CPU(cs);
319     CPUARMState *env = &cpu->env;
320     /* The size is always stored in big-endian order, extract
321        the value. We assume the size always fit in 32 bits.  */
322     uint32_t size;
323     cpu_memory_rw_debug(cs, arm_flen_buf(cpu) + 32, (uint8_t *)&size, 4, 0);
324     size = be32_to_cpu(size);
325     if (is_a64(env)) {
326         env->xregs[0] = size;
327     } else {
328         env->regs[0] = size;
329     }
330     errno = err;
331     set_swi_errno(env, -1);
332 }
333 
334 static int arm_semi_open_guestfd;
335 
arm_semi_open_cb(CPUState * cs,target_ulong ret,target_ulong err)336 static void arm_semi_open_cb(CPUState *cs, target_ulong ret, target_ulong err)
337 {
338     ARMCPU *cpu = ARM_CPU(cs);
339     CPUARMState *env = &cpu->env;
340     if (ret == (target_ulong)-1) {
341         errno = err;
342         set_swi_errno(env, -1);
343         dealloc_guestfd(arm_semi_open_guestfd);
344     } else {
345         associate_guestfd(arm_semi_open_guestfd, ret);
346         ret = arm_semi_open_guestfd;
347     }
348 
349     if (is_a64(env)) {
350         env->xregs[0] = ret;
351     } else {
352         env->regs[0] = ret;
353     }
354 }
355 
arm_gdb_syscall(ARMCPU * cpu,gdb_syscall_complete_cb cb,const char * fmt,...)356 static target_ulong arm_gdb_syscall(ARMCPU *cpu, gdb_syscall_complete_cb cb,
357                                     const char *fmt, ...)
358 {
359     va_list va;
360     CPUARMState *env = &cpu->env;
361 
362     va_start(va, fmt);
363     gdb_do_syscallv(cb, fmt, va);
364     va_end(va);
365 
366     /*
367      * FIXME: in softmmu mode, the gdbstub will schedule our callback
368      * to occur, but will not actually call it to complete the syscall
369      * until after this function has returned and we are back in the
370      * CPU main loop. Therefore callers to this function must not
371      * do anything with its return value, because it is not necessarily
372      * the result of the syscall, but could just be the old value of X0.
373      * The only thing safe to do with this is that the callers of
374      * do_arm_semihosting() will write it straight back into X0.
375      * (In linux-user mode, the callback will have happened before
376      * gdb_do_syscallv() returns.)
377      *
378      * We should tidy this up so neither this function nor
379      * do_arm_semihosting() return a value, so the mistake of
380      * doing something with the return value is not possible to make.
381      */
382 
383     return is_a64(env) ? env->xregs[0] : env->regs[0];
384 }
385 
386 /*
387  * Types for functions implementing various semihosting calls
388  * for specific types of guest file descriptor. These must all
389  * do the work and return the required return value for the guest,
390  * setting the guest errno if appropriate.
391  */
392 typedef uint32_t sys_closefn(ARMCPU *cpu, GuestFD *gf);
393 typedef uint32_t sys_writefn(ARMCPU *cpu, GuestFD *gf,
394                              target_ulong buf, uint32_t len);
395 typedef uint32_t sys_readfn(ARMCPU *cpu, GuestFD *gf,
396                             target_ulong buf, uint32_t len);
397 typedef uint32_t sys_isattyfn(ARMCPU *cpu, GuestFD *gf);
398 typedef uint32_t sys_seekfn(ARMCPU *cpu, GuestFD *gf,
399                             target_ulong offset);
400 typedef uint32_t sys_flenfn(ARMCPU *cpu, GuestFD *gf);
401 
host_closefn(ARMCPU * cpu,GuestFD * gf)402 static uint32_t host_closefn(ARMCPU *cpu, GuestFD *gf)
403 {
404     CPUARMState *env = &cpu->env;
405 
406     /*
407      * Only close the underlying host fd if it's one we opened on behalf
408      * of the guest in SYS_OPEN.
409      */
410     if (gf->hostfd == STDIN_FILENO ||
411         gf->hostfd == STDOUT_FILENO ||
412         gf->hostfd == STDERR_FILENO) {
413         return 0;
414     }
415     return set_swi_errno(env, close(gf->hostfd));
416 }
417 
host_writefn(ARMCPU * cpu,GuestFD * gf,target_ulong buf,uint32_t len)418 static uint32_t host_writefn(ARMCPU *cpu, GuestFD *gf,
419                              target_ulong buf, uint32_t len)
420 {
421     uint32_t ret;
422     CPUARMState *env = &cpu->env;
423     char *s = lock_user(VERIFY_READ, buf, len, 1);
424     if (!s) {
425         /* Return bytes not written on error */
426         return len;
427     }
428     ret = set_swi_errno(env, write(gf->hostfd, s, len));
429     unlock_user(s, buf, 0);
430     if (ret == (uint32_t)-1) {
431         ret = 0;
432     }
433     /* Return bytes not written */
434     return len - ret;
435 }
436 
host_readfn(ARMCPU * cpu,GuestFD * gf,target_ulong buf,uint32_t len)437 static uint32_t host_readfn(ARMCPU *cpu, GuestFD *gf,
438                             target_ulong buf, uint32_t len)
439 {
440     uint32_t ret;
441     CPUARMState *env = &cpu->env;
442     char *s = lock_user(VERIFY_WRITE, buf, len, 0);
443     if (!s) {
444         /* return bytes not read */
445         return len;
446     }
447     do {
448         ret = set_swi_errno(env, read(gf->hostfd, s, len));
449     } while (ret == -1 && errno == EINTR);
450     unlock_user(s, buf, len);
451     if (ret == (uint32_t)-1) {
452         ret = 0;
453     }
454     /* Return bytes not read */
455     return len - ret;
456 }
457 
host_isattyfn(ARMCPU * cpu,GuestFD * gf)458 static uint32_t host_isattyfn(ARMCPU *cpu, GuestFD *gf)
459 {
460     return isatty(gf->hostfd);
461 }
462 
host_seekfn(ARMCPU * cpu,GuestFD * gf,target_ulong offset)463 static uint32_t host_seekfn(ARMCPU *cpu, GuestFD *gf, target_ulong offset)
464 {
465     CPUARMState *env = &cpu->env;
466     uint32_t ret = set_swi_errno(env, lseek(gf->hostfd, offset, SEEK_SET));
467     if (ret == (uint32_t)-1) {
468         return -1;
469     }
470     return 0;
471 }
472 
host_flenfn(ARMCPU * cpu,GuestFD * gf)473 static uint32_t host_flenfn(ARMCPU *cpu, GuestFD *gf)
474 {
475     CPUARMState *env = &cpu->env;
476     struct stat buf;
477     uint32_t ret = set_swi_errno(env, fstat(gf->hostfd, &buf));
478     if (ret == (uint32_t)-1) {
479         return -1;
480     }
481     return buf.st_size;
482 }
483 
gdb_closefn(ARMCPU * cpu,GuestFD * gf)484 static uint32_t gdb_closefn(ARMCPU *cpu, GuestFD *gf)
485 {
486     return arm_gdb_syscall(cpu, arm_semi_cb, "close,%x", gf->hostfd);
487 }
488 
gdb_writefn(ARMCPU * cpu,GuestFD * gf,target_ulong buf,uint32_t len)489 static uint32_t gdb_writefn(ARMCPU *cpu, GuestFD *gf,
490                             target_ulong buf, uint32_t len)
491 {
492     arm_semi_syscall_len = len;
493     return arm_gdb_syscall(cpu, arm_semi_cb, "write,%x,%x,%x",
494                            gf->hostfd, buf, len);
495 }
496 
gdb_readfn(ARMCPU * cpu,GuestFD * gf,target_ulong buf,uint32_t len)497 static uint32_t gdb_readfn(ARMCPU *cpu, GuestFD *gf,
498                            target_ulong buf, uint32_t len)
499 {
500     arm_semi_syscall_len = len;
501     return arm_gdb_syscall(cpu, arm_semi_cb, "read,%x,%x,%x",
502                            gf->hostfd, buf, len);
503 }
504 
gdb_isattyfn(ARMCPU * cpu,GuestFD * gf)505 static uint32_t gdb_isattyfn(ARMCPU *cpu, GuestFD *gf)
506 {
507     return arm_gdb_syscall(cpu, arm_semi_cb, "isatty,%x", gf->hostfd);
508 }
509 
gdb_seekfn(ARMCPU * cpu,GuestFD * gf,target_ulong offset)510 static uint32_t gdb_seekfn(ARMCPU *cpu, GuestFD *gf, target_ulong offset)
511 {
512     return arm_gdb_syscall(cpu, arm_semi_cb, "lseek,%x,%x,0",
513                            gf->hostfd, offset);
514 }
515 
gdb_flenfn(ARMCPU * cpu,GuestFD * gf)516 static uint32_t gdb_flenfn(ARMCPU *cpu, GuestFD *gf)
517 {
518     return arm_gdb_syscall(cpu, arm_semi_flen_cb, "fstat,%x,%x",
519                            gf->hostfd, arm_flen_buf(cpu));
520 }
521 
522 #define SHFB_MAGIC_0 0x53
523 #define SHFB_MAGIC_1 0x48
524 #define SHFB_MAGIC_2 0x46
525 #define SHFB_MAGIC_3 0x42
526 
527 /* Feature bits reportable in feature byte 0 */
528 #define SH_EXT_EXIT_EXTENDED (1 << 0)
529 #define SH_EXT_STDOUT_STDERR (1 << 1)
530 
531 static const uint8_t featurefile_data[] = {
532     SHFB_MAGIC_0,
533     SHFB_MAGIC_1,
534     SHFB_MAGIC_2,
535     SHFB_MAGIC_3,
536     SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
537 };
538 
init_featurefile_guestfd(int guestfd)539 static void init_featurefile_guestfd(int guestfd)
540 {
541     GuestFD *gf = do_get_guestfd(guestfd);
542 
543     assert(gf);
544     gf->type = GuestFDFeatureFile;
545     gf->featurefile_offset = 0;
546 }
547 
featurefile_closefn(ARMCPU * cpu,GuestFD * gf)548 static uint32_t featurefile_closefn(ARMCPU *cpu, GuestFD *gf)
549 {
550     /* Nothing to do */
551     return 0;
552 }
553 
featurefile_writefn(ARMCPU * cpu,GuestFD * gf,target_ulong buf,uint32_t len)554 static uint32_t featurefile_writefn(ARMCPU *cpu, GuestFD *gf,
555                                     target_ulong buf, uint32_t len)
556 {
557     /* This fd can never be open for writing */
558     CPUARMState *env = &cpu->env;
559 
560     errno = EBADF;
561     return set_swi_errno(env, -1);
562 }
563 
featurefile_readfn(ARMCPU * cpu,GuestFD * gf,target_ulong buf,uint32_t len)564 static uint32_t featurefile_readfn(ARMCPU *cpu, GuestFD *gf,
565                                    target_ulong buf, uint32_t len)
566 {
567     uint32_t i;
568 #ifndef CONFIG_USER_ONLY
569     CPUARMState *env = &cpu->env;
570 #endif
571     char *s;
572 
573     s = lock_user(VERIFY_WRITE, buf, len, 0);
574     if (!s) {
575         return len;
576     }
577 
578     for (i = 0; i < len; i++) {
579         if (gf->featurefile_offset >= sizeof(featurefile_data)) {
580             break;
581         }
582         s[i] = featurefile_data[gf->featurefile_offset];
583         gf->featurefile_offset++;
584     }
585 
586     unlock_user(s, buf, len);
587 
588     /* Return number of bytes not read */
589     return len - i;
590 }
591 
featurefile_isattyfn(ARMCPU * cpu,GuestFD * gf)592 static uint32_t featurefile_isattyfn(ARMCPU *cpu, GuestFD *gf)
593 {
594     return 0;
595 }
596 
featurefile_seekfn(ARMCPU * cpu,GuestFD * gf,target_ulong offset)597 static uint32_t featurefile_seekfn(ARMCPU *cpu, GuestFD *gf,
598                                    target_ulong offset)
599 {
600     gf->featurefile_offset = offset;
601     return 0;
602 }
603 
featurefile_flenfn(ARMCPU * cpu,GuestFD * gf)604 static uint32_t featurefile_flenfn(ARMCPU *cpu, GuestFD *gf)
605 {
606     return sizeof(featurefile_data);
607 }
608 
609 typedef struct GuestFDFunctions {
610     sys_closefn *closefn;
611     sys_writefn *writefn;
612     sys_readfn *readfn;
613     sys_isattyfn *isattyfn;
614     sys_seekfn *seekfn;
615     sys_flenfn *flenfn;
616 } GuestFDFunctions;
617 
618 static const GuestFDFunctions guestfd_fns[] = {
619     [GuestFDHost] = {
620         .closefn = host_closefn,
621         .writefn = host_writefn,
622         .readfn = host_readfn,
623         .isattyfn = host_isattyfn,
624         .seekfn = host_seekfn,
625         .flenfn = host_flenfn,
626     },
627     [GuestFDGDB] = {
628         .closefn = gdb_closefn,
629         .writefn = gdb_writefn,
630         .readfn = gdb_readfn,
631         .isattyfn = gdb_isattyfn,
632         .seekfn = gdb_seekfn,
633         .flenfn = gdb_flenfn,
634     },
635     [GuestFDFeatureFile] = {
636         .closefn = featurefile_closefn,
637         .writefn = featurefile_writefn,
638         .readfn = featurefile_readfn,
639         .isattyfn = featurefile_isattyfn,
640         .seekfn = featurefile_seekfn,
641         .flenfn = featurefile_flenfn,
642     },
643 };
644 
645 /* Read the input value from the argument block; fail the semihosting
646  * call if the memory read fails.
647  */
648 #define GET_ARG(n) do {                                 \
649     if (is_a64(env)) {                                  \
650         if (get_user_u64(arg ## n, args + (n) * 8)) {   \
651             errno = EFAULT;                             \
652             return set_swi_errno(env, -1);              \
653         }                                               \
654     } else {                                            \
655         if (get_user_u32(arg ## n, args + (n) * 4)) {   \
656             errno = EFAULT;                             \
657             return set_swi_errno(env, -1);              \
658         }                                               \
659     }                                                   \
660 } while (0)
661 
662 #define SET_ARG(n, val)                                 \
663     (is_a64(env) ?                                      \
664      put_user_u64(val, args + (n) * 8) :                \
665      put_user_u32(val, args + (n) * 4))
666 
667 /*
668  * Do a semihosting call.
669  *
670  * The specification always says that the "return register" either
671  * returns a specific value or is corrupted, so we don't need to
672  * report to our caller whether we are returning a value or trying to
673  * leave the register unchanged. We use 0xdeadbeef as the return value
674  * when there isn't a defined return value for the call.
675  */
do_arm_semihosting(CPUARMState * env)676 target_ulong do_arm_semihosting(CPUARMState *env)
677 {
678     ARMCPU *cpu = env_archcpu(env);
679     CPUState *cs = env_cpu(env);
680     target_ulong args;
681     target_ulong arg0, arg1, arg2, arg3;
682     char * s;
683     int nr;
684     uint32_t ret;
685     uint32_t len;
686     GuestFD *gf;
687 
688     if (is_a64(env)) {
689         /* Note that the syscall number is in W0, not X0 */
690         nr = env->xregs[0] & 0xffffffffU;
691         args = env->xregs[1];
692     } else {
693         nr = env->regs[0];
694         args = env->regs[1];
695     }
696 
697     switch (nr) {
698     case TARGET_SYS_OPEN:
699     {
700         int guestfd;
701 
702         GET_ARG(0);
703         GET_ARG(1);
704         GET_ARG(2);
705         s = lock_user_string(arg0);
706         if (!s) {
707             errno = EFAULT;
708             return set_swi_errno(env, -1);
709         }
710         if (arg1 >= 12) {
711             unlock_user(s, arg0, 0);
712             errno = EINVAL;
713             return set_swi_errno(env, -1);
714         }
715 
716         guestfd = alloc_guestfd();
717         if (guestfd < 0) {
718             unlock_user(s, arg0, 0);
719             errno = EMFILE;
720             return set_swi_errno(env, -1);
721         }
722 
723         if (strcmp(s, ":tt") == 0) {
724             int result_fileno;
725 
726             /*
727              * We implement SH_EXT_STDOUT_STDERR, so:
728              *  open for read == stdin
729              *  open for write == stdout
730              *  open for append == stderr
731              */
732             if (arg1 < 4) {
733                 result_fileno = STDIN_FILENO;
734             } else if (arg1 < 8) {
735                 result_fileno = STDOUT_FILENO;
736             } else {
737                 result_fileno = STDERR_FILENO;
738             }
739             associate_guestfd(guestfd, result_fileno);
740             unlock_user(s, arg0, 0);
741             return guestfd;
742         }
743         if (strcmp(s, ":semihosting-features") == 0) {
744             unlock_user(s, arg0, 0);
745             /* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
746             if (arg1 != 0 && arg1 != 1) {
747                 dealloc_guestfd(guestfd);
748                 errno = EACCES;
749                 return set_swi_errno(env, -1);
750             }
751             init_featurefile_guestfd(guestfd);
752             return guestfd;
753         }
754 
755         if (use_gdb_syscalls()) {
756             arm_semi_open_guestfd = guestfd;
757             ret = arm_gdb_syscall(cpu, arm_semi_open_cb, "open,%s,%x,1a4", arg0,
758                                   (int)arg2+1, gdb_open_modeflags[arg1]);
759         } else {
760             ret = set_swi_errno(env, open(s, open_modeflags[arg1], 0644));
761             if (ret == (uint32_t)-1) {
762                 dealloc_guestfd(guestfd);
763             } else {
764                 associate_guestfd(guestfd, ret);
765                 ret = guestfd;
766             }
767         }
768         unlock_user(s, arg0, 0);
769         return ret;
770     }
771     case TARGET_SYS_CLOSE:
772         GET_ARG(0);
773 
774         gf = get_guestfd(arg0);
775         if (!gf) {
776             errno = EBADF;
777             return set_swi_errno(env, -1);
778         }
779 
780         ret = guestfd_fns[gf->type].closefn(cpu, gf);
781         dealloc_guestfd(arg0);
782         return ret;
783     case TARGET_SYS_WRITEC:
784         qemu_semihosting_console_outc(env, args);
785         return 0xdeadbeef;
786     case TARGET_SYS_WRITE0:
787         return qemu_semihosting_console_outs(env, args);
788     case TARGET_SYS_WRITE:
789         GET_ARG(0);
790         GET_ARG(1);
791         GET_ARG(2);
792         len = arg2;
793 
794         gf = get_guestfd(arg0);
795         if (!gf) {
796             errno = EBADF;
797             return set_swi_errno(env, -1);
798         }
799 
800         return guestfd_fns[gf->type].writefn(cpu, gf, arg1, len);
801     case TARGET_SYS_READ:
802         GET_ARG(0);
803         GET_ARG(1);
804         GET_ARG(2);
805         len = arg2;
806 
807         gf = get_guestfd(arg0);
808         if (!gf) {
809             errno = EBADF;
810             return set_swi_errno(env, -1);
811         }
812 
813         return guestfd_fns[gf->type].readfn(cpu, gf, arg1, len);
814     case TARGET_SYS_READC:
815         return qemu_semihosting_console_inc(env);
816     case TARGET_SYS_ISTTY:
817         GET_ARG(0);
818 
819         gf = get_guestfd(arg0);
820         if (!gf) {
821             errno = EBADF;
822             return set_swi_errno(env, -1);
823         }
824 
825         return guestfd_fns[gf->type].isattyfn(cpu, gf);
826     case TARGET_SYS_SEEK:
827         GET_ARG(0);
828         GET_ARG(1);
829 
830         gf = get_guestfd(arg0);
831         if (!gf) {
832             errno = EBADF;
833             return set_swi_errno(env, -1);
834         }
835 
836         return guestfd_fns[gf->type].seekfn(cpu, gf, arg1);
837     case TARGET_SYS_FLEN:
838         GET_ARG(0);
839 
840         gf = get_guestfd(arg0);
841         if (!gf) {
842             errno = EBADF;
843             return set_swi_errno(env, -1);
844         }
845 
846         return guestfd_fns[gf->type].flenfn(cpu, gf);
847     case TARGET_SYS_TMPNAM:
848         qemu_log_mask(LOG_UNIMP, "%s: SYS_TMPNAM not implemented", __func__);
849         return -1;
850     case TARGET_SYS_REMOVE:
851         GET_ARG(0);
852         GET_ARG(1);
853         if (use_gdb_syscalls()) {
854             ret = arm_gdb_syscall(cpu, arm_semi_cb, "unlink,%s",
855                                   arg0, (int)arg1+1);
856         } else {
857             s = lock_user_string(arg0);
858             if (!s) {
859                 errno = EFAULT;
860                 return set_swi_errno(env, -1);
861             }
862             ret =  set_swi_errno(env, remove(s));
863             unlock_user(s, arg0, 0);
864         }
865         return ret;
866     case TARGET_SYS_RENAME:
867         GET_ARG(0);
868         GET_ARG(1);
869         GET_ARG(2);
870         GET_ARG(3);
871         if (use_gdb_syscalls()) {
872             return arm_gdb_syscall(cpu, arm_semi_cb, "rename,%s,%s",
873                                    arg0, (int)arg1+1, arg2, (int)arg3+1);
874         } else {
875             char *s2;
876             s = lock_user_string(arg0);
877             s2 = lock_user_string(arg2);
878             if (!s || !s2) {
879                 errno = EFAULT;
880                 ret = set_swi_errno(env, -1);
881             } else {
882                 ret = set_swi_errno(env, rename(s, s2));
883             }
884             if (s2)
885                 unlock_user(s2, arg2, 0);
886             if (s)
887                 unlock_user(s, arg0, 0);
888             return ret;
889         }
890     case TARGET_SYS_CLOCK:
891         return clock() / (CLOCKS_PER_SEC / 100);
892     case TARGET_SYS_TIME:
893         return set_swi_errno(env, time(NULL));
894     case TARGET_SYS_SYSTEM:
895         GET_ARG(0);
896         GET_ARG(1);
897         if (use_gdb_syscalls()) {
898             return arm_gdb_syscall(cpu, arm_semi_cb, "system,%s",
899                                    arg0, (int)arg1+1);
900         } else {
901             s = lock_user_string(arg0);
902             if (!s) {
903                 errno = EFAULT;
904                 return set_swi_errno(env, -1);
905             }
906             ret = set_swi_errno(env, system(s));
907             unlock_user(s, arg0, 0);
908             return ret;
909         }
910     case TARGET_SYS_ERRNO:
911         return get_swi_errno(env);
912     case TARGET_SYS_GET_CMDLINE:
913         {
914             /* Build a command-line from the original argv.
915              *
916              * The inputs are:
917              *     * arg0, pointer to a buffer of at least the size
918              *               specified in arg1.
919              *     * arg1, size of the buffer pointed to by arg0 in
920              *               bytes.
921              *
922              * The outputs are:
923              *     * arg0, pointer to null-terminated string of the
924              *               command line.
925              *     * arg1, length of the string pointed to by arg0.
926              */
927 
928             char *output_buffer;
929             size_t input_size;
930             size_t output_size;
931             int status = 0;
932 #if !defined(CONFIG_USER_ONLY)
933             const char *cmdline;
934 #else
935             TaskState *ts = cs->opaque;
936 #endif
937             GET_ARG(0);
938             GET_ARG(1);
939             input_size = arg1;
940             /* Compute the size of the output string.  */
941 #if !defined(CONFIG_USER_ONLY)
942             cmdline = semihosting_get_cmdline();
943             if (cmdline == NULL) {
944                 cmdline = ""; /* Default to an empty line. */
945             }
946             output_size = strlen(cmdline) + 1; /* Count terminating 0. */
947 #else
948             unsigned int i;
949 
950             output_size = ts->info->arg_end - ts->info->arg_start;
951             if (!output_size) {
952                 /*
953                  * We special-case the "empty command line" case (argc==0).
954                  * Just provide the terminating 0.
955                  */
956                 output_size = 1;
957             }
958 #endif
959 
960             if (output_size > input_size) {
961                 /* Not enough space to store command-line arguments.  */
962                 errno = E2BIG;
963                 return set_swi_errno(env, -1);
964             }
965 
966             /* Adjust the command-line length.  */
967             if (SET_ARG(1, output_size - 1)) {
968                 /* Couldn't write back to argument block */
969                 errno = EFAULT;
970                 return set_swi_errno(env, -1);
971             }
972 
973             /* Lock the buffer on the ARM side.  */
974             output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
975             if (!output_buffer) {
976                 errno = EFAULT;
977                 return set_swi_errno(env, -1);
978             }
979 
980             /* Copy the command-line arguments.  */
981 #if !defined(CONFIG_USER_ONLY)
982             pstrcpy(output_buffer, output_size, cmdline);
983 #else
984             if (output_size == 1) {
985                 /* Empty command-line.  */
986                 output_buffer[0] = '\0';
987                 goto out;
988             }
989 
990             if (copy_from_user(output_buffer, ts->info->arg_start,
991                                output_size)) {
992                 errno = EFAULT;
993                 status = set_swi_errno(env, -1);
994                 goto out;
995             }
996 
997             /* Separate arguments by white spaces.  */
998             for (i = 0; i < output_size - 1; i++) {
999                 if (output_buffer[i] == 0) {
1000                     output_buffer[i] = ' ';
1001                 }
1002             }
1003         out:
1004 #endif
1005             /* Unlock the buffer on the ARM side.  */
1006             unlock_user(output_buffer, arg0, output_size);
1007 
1008             return status;
1009         }
1010     case TARGET_SYS_HEAPINFO:
1011         {
1012             target_ulong retvals[4];
1013             target_ulong limit;
1014             int i;
1015 #ifdef CONFIG_USER_ONLY
1016             TaskState *ts = cs->opaque;
1017 #endif
1018 
1019             GET_ARG(0);
1020 
1021 #ifdef CONFIG_USER_ONLY
1022             /*
1023              * Some C libraries assume the heap immediately follows .bss, so
1024              * allocate it using sbrk.
1025              */
1026             if (!ts->heap_limit) {
1027                 abi_ulong ret;
1028 
1029                 ts->heap_base = do_brk(0);
1030                 limit = ts->heap_base + ARM_ANGEL_HEAP_SIZE;
1031                 /* Try a big heap, and reduce the size if that fails.  */
1032                 for (;;) {
1033                     ret = do_brk(limit);
1034                     if (ret >= limit) {
1035                         break;
1036                     }
1037                     limit = (ts->heap_base >> 1) + (limit >> 1);
1038                 }
1039                 ts->heap_limit = limit;
1040             }
1041 
1042             retvals[0] = ts->heap_base;
1043             retvals[1] = ts->heap_limit;
1044             retvals[2] = ts->stack_base;
1045             retvals[3] = 0; /* Stack limit.  */
1046 #else
1047             limit = ram_size;
1048             /* TODO: Make this use the limit of the loaded application.  */
1049             retvals[0] = limit / 2;
1050             retvals[1] = limit;
1051             retvals[2] = limit; /* Stack base */
1052             retvals[3] = 0; /* Stack limit.  */
1053 #endif
1054 
1055             for (i = 0; i < ARRAY_SIZE(retvals); i++) {
1056                 bool fail;
1057 
1058                 if (is_a64(env)) {
1059                     fail = put_user_u64(retvals[i], arg0 + i * 8);
1060                 } else {
1061                     fail = put_user_u32(retvals[i], arg0 + i * 4);
1062                 }
1063 
1064                 if (fail) {
1065                     /* Couldn't write back to argument block */
1066                     errno = EFAULT;
1067                     return set_swi_errno(env, -1);
1068                 }
1069             }
1070             return 0;
1071         }
1072     case TARGET_SYS_EXIT:
1073     case TARGET_SYS_EXIT_EXTENDED:
1074         if (nr == TARGET_SYS_EXIT_EXTENDED || is_a64(env)) {
1075             /*
1076              * The A64 version of SYS_EXIT takes a parameter block,
1077              * so the application-exit type can return a subcode which
1078              * is the exit status code from the application.
1079              * SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
1080              * which allows A32/T32 guests to also provide a status code.
1081              */
1082             GET_ARG(0);
1083             GET_ARG(1);
1084 
1085             if (arg0 == ADP_Stopped_ApplicationExit) {
1086                 ret = arg1;
1087             } else {
1088                 ret = 1;
1089             }
1090         } else {
1091             /*
1092              * The A32/T32 version of SYS_EXIT specifies only
1093              * Stopped_ApplicationExit as normal exit, but does not
1094              * allow the guest to specify the exit status code.
1095              * Everything else is considered an error.
1096              */
1097             ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
1098         }
1099         gdb_exit(env, ret);
1100         exit(ret);
1101     case TARGET_SYS_SYNCCACHE:
1102         /*
1103          * Clean the D-cache and invalidate the I-cache for the specified
1104          * virtual address range. This is a nop for us since we don't
1105          * implement caches. This is only present on A64.
1106          */
1107         if (is_a64(env)) {
1108             return 0;
1109         }
1110         /* fall through -- invalid for A32/T32 */
1111     default:
1112         fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
1113         cpu_dump_state(cs, stderr, 0);
1114         abort();
1115     }
1116 }
1117