1 /*
2  * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3  *
4  * Copyright (C) 2007-2008 Qumranet Technologies
5  * Copyright (C) 2012      Jan Kiszka, Siemens AG
6  *
7  * This work is licensed under the terms of the GNU GPL version 2, or
8  * (at your option) any later version. See the COPYING file in the
9  * top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/module.h"
14 #include "cpu.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/hw_accel.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/runstate.h"
20 #include "hw/i386/apic_internal.h"
21 #include "hw/sysbus.h"
22 #include "hw/boards.h"
23 #include "migration/vmstate.h"
24 #include "tcg/tcg.h"
25 
26 #define VAPIC_IO_PORT           0x7e
27 
28 #define VAPIC_CPU_SHIFT         7
29 
30 #define ROM_BLOCK_SIZE          512
31 #define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
32 
33 typedef enum VAPICMode {
34     VAPIC_INACTIVE = 0,
35     VAPIC_ACTIVE   = 1,
36     VAPIC_STANDBY  = 2,
37 } VAPICMode;
38 
39 typedef struct VAPICHandlers {
40     uint32_t set_tpr;
41     uint32_t set_tpr_eax;
42     uint32_t get_tpr[8];
43     uint32_t get_tpr_stack;
44 } QEMU_PACKED VAPICHandlers;
45 
46 typedef struct GuestROMState {
47     char signature[8];
48     uint32_t vaddr;
49     uint32_t fixup_start;
50     uint32_t fixup_end;
51     uint32_t vapic_vaddr;
52     uint32_t vapic_size;
53     uint32_t vcpu_shift;
54     uint32_t real_tpr_addr;
55     VAPICHandlers up;
56     VAPICHandlers mp;
57 } QEMU_PACKED GuestROMState;
58 
59 typedef struct VAPICROMState {
60     SysBusDevice busdev;
61     MemoryRegion io;
62     MemoryRegion rom;
63     uint32_t state;
64     uint32_t rom_state_paddr;
65     uint32_t rom_state_vaddr;
66     uint32_t vapic_paddr;
67     uint32_t real_tpr_addr;
68     GuestROMState rom_state;
69     size_t rom_size;
70     bool rom_mapped_writable;
71     VMChangeStateEntry *vmsentry;
72 } VAPICROMState;
73 
74 #define TYPE_VAPIC "kvmvapic"
75 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
76 
77 #define TPR_INSTR_ABS_MODRM             0x1
78 #define TPR_INSTR_MATCH_MODRM_REG       0x2
79 
80 typedef struct TPRInstruction {
81     uint8_t opcode;
82     uint8_t modrm_reg;
83     unsigned int flags;
84     TPRAccess access;
85     size_t length;
86     off_t addr_offset;
87 } TPRInstruction;
88 
89 /* must be sorted by length, shortest first */
90 static const TPRInstruction tpr_instr[] = {
91     { /* mov abs to eax */
92         .opcode = 0xa1,
93         .access = TPR_ACCESS_READ,
94         .length = 5,
95         .addr_offset = 1,
96     },
97     { /* mov eax to abs */
98         .opcode = 0xa3,
99         .access = TPR_ACCESS_WRITE,
100         .length = 5,
101         .addr_offset = 1,
102     },
103     { /* mov r32 to r/m32 */
104         .opcode = 0x89,
105         .flags = TPR_INSTR_ABS_MODRM,
106         .access = TPR_ACCESS_WRITE,
107         .length = 6,
108         .addr_offset = 2,
109     },
110     { /* mov r/m32 to r32 */
111         .opcode = 0x8b,
112         .flags = TPR_INSTR_ABS_MODRM,
113         .access = TPR_ACCESS_READ,
114         .length = 6,
115         .addr_offset = 2,
116     },
117     { /* push r/m32 */
118         .opcode = 0xff,
119         .modrm_reg = 6,
120         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
121         .access = TPR_ACCESS_READ,
122         .length = 6,
123         .addr_offset = 2,
124     },
125     { /* mov imm32, r/m32 (c7/0) */
126         .opcode = 0xc7,
127         .modrm_reg = 0,
128         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
129         .access = TPR_ACCESS_WRITE,
130         .length = 10,
131         .addr_offset = 2,
132     },
133 };
134 
read_guest_rom_state(VAPICROMState * s)135 static void read_guest_rom_state(VAPICROMState *s)
136 {
137     cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
138                              sizeof(GuestROMState));
139 }
140 
write_guest_rom_state(VAPICROMState * s)141 static void write_guest_rom_state(VAPICROMState *s)
142 {
143     cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
144                               sizeof(GuestROMState));
145 }
146 
update_guest_rom_state(VAPICROMState * s)147 static void update_guest_rom_state(VAPICROMState *s)
148 {
149     read_guest_rom_state(s);
150 
151     s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
152     s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
153 
154     write_guest_rom_state(s);
155 }
156 
find_real_tpr_addr(VAPICROMState * s,CPUX86State * env)157 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
158 {
159     CPUState *cs = env_cpu(env);
160     hwaddr paddr;
161     target_ulong addr;
162 
163     if (s->state == VAPIC_ACTIVE) {
164         return 0;
165     }
166     /*
167      * If there is no prior TPR access instruction we could analyze (which is
168      * the case after resume from hibernation), we need to scan the possible
169      * virtual address space for the APIC mapping.
170      */
171     for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
172         paddr = cpu_get_phys_page_debug(cs, addr);
173         if (paddr != APIC_DEFAULT_ADDRESS) {
174             continue;
175         }
176         s->real_tpr_addr = addr + 0x80;
177         update_guest_rom_state(s);
178         return 0;
179     }
180     return -1;
181 }
182 
modrm_reg(uint8_t modrm)183 static uint8_t modrm_reg(uint8_t modrm)
184 {
185     return (modrm >> 3) & 7;
186 }
187 
is_abs_modrm(uint8_t modrm)188 static bool is_abs_modrm(uint8_t modrm)
189 {
190     return (modrm & 0xc7) == 0x05;
191 }
192 
opcode_matches(uint8_t * opcode,const TPRInstruction * instr)193 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
194 {
195     return opcode[0] == instr->opcode &&
196         (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
197         (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
198          modrm_reg(opcode[1]) == instr->modrm_reg);
199 }
200 
evaluate_tpr_instruction(VAPICROMState * s,X86CPU * cpu,target_ulong * pip,TPRAccess access)201 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
202                                     target_ulong *pip, TPRAccess access)
203 {
204     CPUState *cs = CPU(cpu);
205     const TPRInstruction *instr;
206     target_ulong ip = *pip;
207     uint8_t opcode[2];
208     uint32_t real_tpr_addr;
209     int i;
210 
211     if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
212         (ip & 0xf0000000ULL) != 0xe0000000ULL) {
213         return -1;
214     }
215 
216     /*
217      * Early Windows 2003 SMP initialization contains a
218      *
219      *   mov imm32, r/m32
220      *
221      * instruction that is patched by TPR optimization. The problem is that
222      * RSP, used by the patched instruction, is zero, so the guest gets a
223      * double fault and dies.
224      */
225     if (cpu->env.regs[R_ESP] == 0) {
226         return -1;
227     }
228 
229     if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
230         /*
231          * KVM without kernel-based TPR access reporting will pass an IP that
232          * points after the accessing instruction. So we need to look backward
233          * to find the reason.
234          */
235         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
236             instr = &tpr_instr[i];
237             if (instr->access != access) {
238                 continue;
239             }
240             if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
241                                     sizeof(opcode), 0) < 0) {
242                 return -1;
243             }
244             if (opcode_matches(opcode, instr)) {
245                 ip -= instr->length;
246                 goto instruction_ok;
247             }
248         }
249         return -1;
250     } else {
251         if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
252             return -1;
253         }
254         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
255             instr = &tpr_instr[i];
256             if (opcode_matches(opcode, instr)) {
257                 goto instruction_ok;
258             }
259         }
260         return -1;
261     }
262 
263 instruction_ok:
264     /*
265      * Grab the virtual TPR address from the instruction
266      * and update the cached values.
267      */
268     if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
269                             (void *)&real_tpr_addr,
270                             sizeof(real_tpr_addr), 0) < 0) {
271         return -1;
272     }
273     real_tpr_addr = le32_to_cpu(real_tpr_addr);
274     if ((real_tpr_addr & 0xfff) != 0x80) {
275         return -1;
276     }
277     s->real_tpr_addr = real_tpr_addr;
278     update_guest_rom_state(s);
279 
280     *pip = ip;
281     return 0;
282 }
283 
update_rom_mapping(VAPICROMState * s,CPUX86State * env,target_ulong ip)284 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
285 {
286     CPUState *cs = env_cpu(env);
287     hwaddr paddr;
288     uint32_t rom_state_vaddr;
289     uint32_t pos, patch, offset;
290 
291     /* nothing to do if already activated */
292     if (s->state == VAPIC_ACTIVE) {
293         return 0;
294     }
295 
296     /* bail out if ROM init code was not executed (missing ROM?) */
297     if (s->state == VAPIC_INACTIVE) {
298         return -1;
299     }
300 
301     /* find out virtual address of the ROM */
302     rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
303     paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
304     if (paddr == -1) {
305         return -1;
306     }
307     paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
308     if (paddr != s->rom_state_paddr) {
309         return -1;
310     }
311     read_guest_rom_state(s);
312     if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
313         return -1;
314     }
315     s->rom_state_vaddr = rom_state_vaddr;
316 
317     /* fixup addresses in ROM if needed */
318     if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
319         return 0;
320     }
321     for (pos = le32_to_cpu(s->rom_state.fixup_start);
322          pos < le32_to_cpu(s->rom_state.fixup_end);
323          pos += 4) {
324         cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
325                                  &offset, sizeof(offset));
326         offset = le32_to_cpu(offset);
327         cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
328         patch = le32_to_cpu(patch);
329         patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
330         patch = cpu_to_le32(patch);
331         cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
332     }
333     read_guest_rom_state(s);
334     s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
335         le32_to_cpu(s->rom_state.vaddr);
336 
337     return 0;
338 }
339 
340 /*
341  * Tries to read the unique processor number from the Kernel Processor Control
342  * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
343  * cannot be accessed or is considered invalid. This also ensures that we are
344  * not patching the wrong guest.
345  */
get_kpcr_number(X86CPU * cpu)346 static int get_kpcr_number(X86CPU *cpu)
347 {
348     CPUX86State *env = &cpu->env;
349     struct kpcr {
350         uint8_t  fill1[0x1c];
351         uint32_t self;
352         uint8_t  fill2[0x31];
353         uint8_t  number;
354     } QEMU_PACKED kpcr;
355 
356     if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
357                             (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
358         kpcr.self != env->segs[R_FS].base) {
359         return -1;
360     }
361     return kpcr.number;
362 }
363 
vapic_enable(VAPICROMState * s,X86CPU * cpu)364 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
365 {
366     int cpu_number = get_kpcr_number(cpu);
367     hwaddr vapic_paddr;
368     static const uint8_t enabled = 1;
369 
370     if (cpu_number < 0) {
371         return -1;
372     }
373     vapic_paddr = s->vapic_paddr +
374         (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
375     cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
376                               &enabled, sizeof(enabled));
377     apic_enable_vapic(cpu->apic_state, vapic_paddr);
378 
379     s->state = VAPIC_ACTIVE;
380 
381     return 0;
382 }
383 
patch_byte(X86CPU * cpu,target_ulong addr,uint8_t byte)384 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
385 {
386     cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
387 }
388 
patch_call(X86CPU * cpu,target_ulong ip,uint32_t target)389 static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
390 {
391     uint32_t offset;
392 
393     offset = cpu_to_le32(target - ip - 5);
394     patch_byte(cpu, ip, 0xe8); /* call near */
395     cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
396 }
397 
398 typedef struct PatchInfo {
399     VAPICHandlers *handler;
400     target_ulong ip;
401 } PatchInfo;
402 
do_patch_instruction(CPUState * cs,run_on_cpu_data data)403 static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
404 {
405     X86CPU *x86_cpu = X86_CPU(cs);
406     PatchInfo *info = (PatchInfo *) data.host_ptr;
407     VAPICHandlers *handlers = info->handler;
408     target_ulong ip = info->ip;
409     uint8_t opcode[2];
410     uint32_t imm32 = 0;
411 
412     cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
413 
414     switch (opcode[0]) {
415     case 0x89: /* mov r32 to r/m32 */
416         patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
417         patch_call(x86_cpu, ip + 1, handlers->set_tpr);
418         break;
419     case 0x8b: /* mov r/m32 to r32 */
420         patch_byte(x86_cpu, ip, 0x90);
421         patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
422         break;
423     case 0xa1: /* mov abs to eax */
424         patch_call(x86_cpu, ip, handlers->get_tpr[0]);
425         break;
426     case 0xa3: /* mov eax to abs */
427         patch_call(x86_cpu, ip, handlers->set_tpr_eax);
428         break;
429     case 0xc7: /* mov imm32, r/m32 (c7/0) */
430         patch_byte(x86_cpu, ip, 0x68);  /* push imm32 */
431         cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
432         cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
433         patch_call(x86_cpu, ip + 5, handlers->set_tpr);
434         break;
435     case 0xff: /* push r/m32 */
436         patch_byte(x86_cpu, ip, 0x50); /* push eax */
437         patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
438         break;
439     default:
440         abort();
441     }
442 
443     g_free(info);
444 }
445 
patch_instruction(VAPICROMState * s,X86CPU * cpu,target_ulong ip)446 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
447 {
448     MachineState *ms = MACHINE(qdev_get_machine());
449     CPUState *cs = CPU(cpu);
450     VAPICHandlers *handlers;
451     PatchInfo *info;
452 
453     if (ms->smp.cpus == 1) {
454         handlers = &s->rom_state.up;
455     } else {
456         handlers = &s->rom_state.mp;
457     }
458 
459     info  = g_new(PatchInfo, 1);
460     info->handler = handlers;
461     info->ip = ip;
462 
463     async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
464 }
465 
vapic_report_tpr_access(DeviceState * dev,CPUState * cs,target_ulong ip,TPRAccess access)466 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
467                              TPRAccess access)
468 {
469     VAPICROMState *s = VAPIC(dev);
470     X86CPU *cpu = X86_CPU(cs);
471     CPUX86State *env = &cpu->env;
472 
473     cpu_synchronize_state(cs);
474 
475     if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
476         if (s->state == VAPIC_ACTIVE) {
477             vapic_enable(s, cpu);
478         }
479         return;
480     }
481     if (update_rom_mapping(s, env, ip) < 0) {
482         return;
483     }
484     if (vapic_enable(s, cpu) < 0) {
485         return;
486     }
487     patch_instruction(s, cpu, ip);
488 }
489 
490 typedef struct VAPICEnableTPRReporting {
491     DeviceState *apic;
492     bool enable;
493 } VAPICEnableTPRReporting;
494 
vapic_do_enable_tpr_reporting(CPUState * cpu,run_on_cpu_data data)495 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
496 {
497     VAPICEnableTPRReporting *info = data.host_ptr;
498     apic_enable_tpr_access_reporting(info->apic, info->enable);
499 }
500 
vapic_enable_tpr_reporting(bool enable)501 static void vapic_enable_tpr_reporting(bool enable)
502 {
503     VAPICEnableTPRReporting info = {
504         .enable = enable,
505     };
506     CPUState *cs;
507     X86CPU *cpu;
508 
509     CPU_FOREACH(cs) {
510         cpu = X86_CPU(cs);
511         info.apic = cpu->apic_state;
512         run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
513     }
514 }
515 
vapic_reset(DeviceState * dev)516 static void vapic_reset(DeviceState *dev)
517 {
518     VAPICROMState *s = VAPIC(dev);
519 
520     s->state = VAPIC_INACTIVE;
521     s->rom_state_paddr = 0;
522     vapic_enable_tpr_reporting(false);
523 }
524 
525 /*
526  * Set the IRQ polling hypercalls to the supported variant:
527  *  - vmcall if using KVM in-kernel irqchip
528  *  - 32-bit VAPIC port write otherwise
529  */
patch_hypercalls(VAPICROMState * s)530 static int patch_hypercalls(VAPICROMState *s)
531 {
532     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
533     static const uint8_t vmcall_pattern[] = { /* vmcall */
534         0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
535     };
536     static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
537         0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
538     };
539     uint8_t alternates[2];
540     const uint8_t *pattern;
541     const uint8_t *patch;
542     off_t pos;
543     uint8_t *rom;
544 
545     rom = g_malloc(s->rom_size);
546     cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
547 
548     for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
549         if (kvm_irqchip_in_kernel()) {
550             pattern = outl_pattern;
551             alternates[0] = outl_pattern[7];
552             alternates[1] = outl_pattern[7];
553             patch = &vmcall_pattern[5];
554         } else {
555             pattern = vmcall_pattern;
556             alternates[0] = vmcall_pattern[7];
557             alternates[1] = 0xd9; /* AMD's VMMCALL */
558             patch = &outl_pattern[5];
559         }
560         if (memcmp(rom + pos, pattern, 7) == 0 &&
561             (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
562             cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
563             /*
564              * Don't flush the tb here. Under ordinary conditions, the patched
565              * calls are miles away from the current IP. Under malicious
566              * conditions, the guest could trick us to crash.
567              */
568         }
569     }
570 
571     g_free(rom);
572     return 0;
573 }
574 
575 /*
576  * For TCG mode or the time KVM honors read-only memory regions, we need to
577  * enable write access to the option ROM so that variables can be updated by
578  * the guest.
579  */
vapic_map_rom_writable(VAPICROMState * s)580 static int vapic_map_rom_writable(VAPICROMState *s)
581 {
582     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
583     MemoryRegionSection section;
584     MemoryRegion *as;
585     size_t rom_size;
586     uint8_t *ram;
587 
588     as = sysbus_address_space(&s->busdev);
589 
590     if (s->rom_mapped_writable) {
591         memory_region_del_subregion(as, &s->rom);
592         object_unparent(OBJECT(&s->rom));
593     }
594 
595     /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
596     section = memory_region_find(as, 0, 1);
597 
598     /* read ROM size from RAM region */
599     if (rom_paddr + 2 >= memory_region_size(section.mr)) {
600         return -1;
601     }
602     ram = memory_region_get_ram_ptr(section.mr);
603     rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
604     if (rom_size == 0) {
605         return -1;
606     }
607     s->rom_size = rom_size;
608 
609     /* We need to round to avoid creating subpages
610      * from which we cannot run code. */
611     rom_size += rom_paddr & ~TARGET_PAGE_MASK;
612     rom_paddr &= TARGET_PAGE_MASK;
613     rom_size = TARGET_PAGE_ALIGN(rom_size);
614 
615     memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
616                              rom_paddr, rom_size);
617     memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
618     s->rom_mapped_writable = true;
619     memory_region_unref(section.mr);
620 
621     return 0;
622 }
623 
vapic_prepare(VAPICROMState * s)624 static int vapic_prepare(VAPICROMState *s)
625 {
626     if (vapic_map_rom_writable(s) < 0) {
627         return -1;
628     }
629 
630     if (patch_hypercalls(s) < 0) {
631         return -1;
632     }
633 
634     vapic_enable_tpr_reporting(true);
635 
636     return 0;
637 }
638 
vapic_write(void * opaque,hwaddr addr,uint64_t data,unsigned int size)639 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
640                         unsigned int size)
641 {
642     VAPICROMState *s = opaque;
643     X86CPU *cpu;
644     CPUX86State *env;
645     hwaddr rom_paddr;
646 
647     if (!current_cpu) {
648         return;
649     }
650 
651     cpu_synchronize_state(current_cpu);
652     cpu = X86_CPU(current_cpu);
653     env = &cpu->env;
654 
655     /*
656      * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
657      *  o 16-bit write access:
658      *    Reports the option ROM initialization to the hypervisor. Written
659      *    value is the offset of the state structure in the ROM.
660      *  o 8-bit write access:
661      *    Reactivates the VAPIC after a guest hibernation, i.e. after the
662      *    option ROM content has been re-initialized by a guest power cycle.
663      *  o 32-bit write access:
664      *    Poll for pending IRQs, considering the current VAPIC state.
665      */
666     switch (size) {
667     case 2:
668         if (s->state == VAPIC_INACTIVE) {
669             rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
670             s->rom_state_paddr = rom_paddr + data;
671 
672             s->state = VAPIC_STANDBY;
673         }
674         if (vapic_prepare(s) < 0) {
675             s->state = VAPIC_INACTIVE;
676             s->rom_state_paddr = 0;
677             break;
678         }
679         break;
680     case 1:
681         if (kvm_enabled()) {
682             /*
683              * Disable triggering instruction in ROM by writing a NOP.
684              *
685              * We cannot do this in TCG mode as the reported IP is not
686              * accurate.
687              */
688             pause_all_vcpus();
689             patch_byte(cpu, env->eip - 2, 0x66);
690             patch_byte(cpu, env->eip - 1, 0x90);
691             resume_all_vcpus();
692         }
693 
694         if (s->state == VAPIC_ACTIVE) {
695             break;
696         }
697         if (update_rom_mapping(s, env, env->eip) < 0) {
698             break;
699         }
700         if (find_real_tpr_addr(s, env) < 0) {
701             break;
702         }
703         vapic_enable(s, cpu);
704         break;
705     default:
706     case 4:
707         if (!kvm_irqchip_in_kernel()) {
708             apic_poll_irq(cpu->apic_state);
709         }
710         break;
711     }
712 }
713 
vapic_read(void * opaque,hwaddr addr,unsigned size)714 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
715 {
716     return 0xffffffff;
717 }
718 
719 static const MemoryRegionOps vapic_ops = {
720     .write = vapic_write,
721     .read = vapic_read,
722     .endianness = DEVICE_NATIVE_ENDIAN,
723 };
724 
vapic_realize(DeviceState * dev,Error ** errp)725 static void vapic_realize(DeviceState *dev, Error **errp)
726 {
727     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
728     VAPICROMState *s = VAPIC(dev);
729 
730     memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
731     sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
732     sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
733 
734     option_rom[nb_option_roms].name = "kvmvapic.bin";
735     option_rom[nb_option_roms].bootindex = -1;
736     nb_option_roms++;
737 }
738 
do_vapic_enable(CPUState * cs,run_on_cpu_data data)739 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
740 {
741     VAPICROMState *s = data.host_ptr;
742     X86CPU *cpu = X86_CPU(cs);
743 
744     static const uint8_t enabled = 1;
745     cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
746                               &enabled, sizeof(enabled));
747     apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
748     s->state = VAPIC_ACTIVE;
749 }
750 
kvmvapic_vm_state_change(void * opaque,int running,RunState state)751 static void kvmvapic_vm_state_change(void *opaque, int running,
752                                      RunState state)
753 {
754     MachineState *ms = MACHINE(qdev_get_machine());
755     VAPICROMState *s = opaque;
756     uint8_t *zero;
757 
758     if (!running) {
759         return;
760     }
761 
762     if (s->state == VAPIC_ACTIVE) {
763         if (ms->smp.cpus == 1) {
764             run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
765         } else {
766             zero = g_malloc0(s->rom_state.vapic_size);
767             cpu_physical_memory_write(s->vapic_paddr, zero,
768                                       s->rom_state.vapic_size);
769             g_free(zero);
770         }
771     }
772 
773     qemu_del_vm_change_state_handler(s->vmsentry);
774     s->vmsentry = NULL;
775 }
776 
vapic_post_load(void * opaque,int version_id)777 static int vapic_post_load(void *opaque, int version_id)
778 {
779     VAPICROMState *s = opaque;
780 
781     /*
782      * The old implementation of qemu-kvm did not provide the state
783      * VAPIC_STANDBY. Reconstruct it.
784      */
785     if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
786         s->state = VAPIC_STANDBY;
787     }
788 
789     if (s->state != VAPIC_INACTIVE) {
790         if (vapic_prepare(s) < 0) {
791             return -1;
792         }
793     }
794 
795     if (!s->vmsentry) {
796         s->vmsentry =
797             qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
798     }
799     return 0;
800 }
801 
802 static const VMStateDescription vmstate_handlers = {
803     .name = "kvmvapic-handlers",
804     .version_id = 1,
805     .minimum_version_id = 1,
806     .fields = (VMStateField[]) {
807         VMSTATE_UINT32(set_tpr, VAPICHandlers),
808         VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
809         VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
810         VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
811         VMSTATE_END_OF_LIST()
812     }
813 };
814 
815 static const VMStateDescription vmstate_guest_rom = {
816     .name = "kvmvapic-guest-rom",
817     .version_id = 1,
818     .minimum_version_id = 1,
819     .fields = (VMStateField[]) {
820         VMSTATE_UNUSED(8),     /* signature */
821         VMSTATE_UINT32(vaddr, GuestROMState),
822         VMSTATE_UINT32(fixup_start, GuestROMState),
823         VMSTATE_UINT32(fixup_end, GuestROMState),
824         VMSTATE_UINT32(vapic_vaddr, GuestROMState),
825         VMSTATE_UINT32(vapic_size, GuestROMState),
826         VMSTATE_UINT32(vcpu_shift, GuestROMState),
827         VMSTATE_UINT32(real_tpr_addr, GuestROMState),
828         VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
829         VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
830         VMSTATE_END_OF_LIST()
831     }
832 };
833 
834 static const VMStateDescription vmstate_vapic = {
835     .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
836     .version_id = 1,
837     .minimum_version_id = 1,
838     .post_load = vapic_post_load,
839     .fields = (VMStateField[]) {
840         VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
841                        GuestROMState),
842         VMSTATE_UINT32(state, VAPICROMState),
843         VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
844         VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
845         VMSTATE_UINT32(vapic_paddr, VAPICROMState),
846         VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
847         VMSTATE_END_OF_LIST()
848     }
849 };
850 
vapic_class_init(ObjectClass * klass,void * data)851 static void vapic_class_init(ObjectClass *klass, void *data)
852 {
853     DeviceClass *dc = DEVICE_CLASS(klass);
854 
855     dc->reset   = vapic_reset;
856     dc->vmsd    = &vmstate_vapic;
857     dc->realize = vapic_realize;
858 }
859 
860 static const TypeInfo vapic_type = {
861     .name          = TYPE_VAPIC,
862     .parent        = TYPE_SYS_BUS_DEVICE,
863     .instance_size = sizeof(VAPICROMState),
864     .class_init    = vapic_class_init,
865 };
866 
vapic_register(void)867 static void vapic_register(void)
868 {
869     type_register_static(&vapic_type);
870 }
871 
872 type_init(vapic_register);
873