1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "internal.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/log.h"
26 #include "hw/mips/cpudevs.h"
27 #include "qapi/qapi-commands-machine-target.h"
28
29 enum {
30 TLBRET_XI = -6,
31 TLBRET_RI = -5,
32 TLBRET_DIRTY = -4,
33 TLBRET_INVALID = -3,
34 TLBRET_NOMATCH = -2,
35 TLBRET_BADADDR = -1,
36 TLBRET_MATCH = 0
37 };
38
39 #if !defined(CONFIG_USER_ONLY)
40
41 /* no MMU emulation */
no_mmu_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,int rw,int access_type)42 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
43 target_ulong address, int rw, int access_type)
44 {
45 *physical = address;
46 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
47 return TLBRET_MATCH;
48 }
49
50 /* fixed mapping MMU emulation */
fixed_mmu_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,int rw,int access_type)51 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
52 target_ulong address, int rw, int access_type)
53 {
54 if (address <= (int32_t)0x7FFFFFFFUL) {
55 if (!(env->CP0_Status & (1 << CP0St_ERL))) {
56 *physical = address + 0x40000000UL;
57 } else {
58 *physical = address;
59 }
60 } else if (address <= (int32_t)0xBFFFFFFFUL) {
61 *physical = address & 0x1FFFFFFF;
62 } else {
63 *physical = address;
64 }
65
66 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
67 return TLBRET_MATCH;
68 }
69
70 /* MIPS32/MIPS64 R4000-style MMU emulation */
r4k_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,int rw,int access_type)71 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
72 target_ulong address, int rw, int access_type)
73 {
74 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
75 uint32_t MMID = env->CP0_MemoryMapID;
76 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
77 uint32_t tlb_mmid;
78 int i;
79
80 MMID = mi ? MMID : (uint32_t) ASID;
81
82 for (i = 0; i < env->tlb->tlb_in_use; i++) {
83 r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
84 /* 1k pages are not supported. */
85 target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
86 target_ulong tag = address & ~mask;
87 target_ulong VPN = tlb->VPN & ~mask;
88 #if defined(TARGET_MIPS64)
89 tag &= env->SEGMask;
90 #endif
91
92 /* Check ASID/MMID, virtual page number & size */
93 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
94 if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
95 /* TLB match */
96 int n = !!(address & mask & ~(mask >> 1));
97 /* Check access rights */
98 if (!(n ? tlb->V1 : tlb->V0)) {
99 return TLBRET_INVALID;
100 }
101 if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
102 return TLBRET_XI;
103 }
104 if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
105 return TLBRET_RI;
106 }
107 if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
108 *physical = tlb->PFN[n] | (address & (mask >> 1));
109 *prot = PAGE_READ;
110 if (n ? tlb->D1 : tlb->D0) {
111 *prot |= PAGE_WRITE;
112 }
113 if (!(n ? tlb->XI1 : tlb->XI0)) {
114 *prot |= PAGE_EXEC;
115 }
116 return TLBRET_MATCH;
117 }
118 return TLBRET_DIRTY;
119 }
120 }
121 return TLBRET_NOMATCH;
122 }
123
is_seg_am_mapped(unsigned int am,bool eu,int mmu_idx)124 static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
125 {
126 /*
127 * Interpret access control mode and mmu_idx.
128 * AdE? TLB?
129 * AM K S U E K S U E
130 * UK 0 0 1 1 0 0 - - 0
131 * MK 1 0 1 1 0 1 - - !eu
132 * MSK 2 0 0 1 0 1 1 - !eu
133 * MUSK 3 0 0 0 0 1 1 1 !eu
134 * MUSUK 4 0 0 0 0 0 1 1 0
135 * USK 5 0 0 1 0 0 0 - 0
136 * - 6 - - - - - - - -
137 * UUSK 7 0 0 0 0 0 0 0 0
138 */
139 int32_t adetlb_mask;
140
141 switch (mmu_idx) {
142 case 3: /* ERL */
143 /* If EU is set, always unmapped */
144 if (eu) {
145 return 0;
146 }
147 /* fall through */
148 case MIPS_HFLAG_KM:
149 /* Never AdE, TLB mapped if AM={1,2,3} */
150 adetlb_mask = 0x70000000;
151 goto check_tlb;
152
153 case MIPS_HFLAG_SM:
154 /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
155 adetlb_mask = 0xc0380000;
156 goto check_ade;
157
158 case MIPS_HFLAG_UM:
159 /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
160 adetlb_mask = 0xe4180000;
161 /* fall through */
162 check_ade:
163 /* does this AM cause AdE in current execution mode */
164 if ((adetlb_mask << am) < 0) {
165 return TLBRET_BADADDR;
166 }
167 adetlb_mask <<= 8;
168 /* fall through */
169 check_tlb:
170 /* is this AM mapped in current execution mode */
171 return ((adetlb_mask << am) < 0);
172 default:
173 assert(0);
174 return TLBRET_BADADDR;
175 };
176 }
177
get_seg_physical_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong real_address,int rw,int access_type,int mmu_idx,unsigned int am,bool eu,target_ulong segmask,hwaddr physical_base)178 static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
179 int *prot, target_ulong real_address,
180 int rw, int access_type, int mmu_idx,
181 unsigned int am, bool eu,
182 target_ulong segmask,
183 hwaddr physical_base)
184 {
185 int mapped = is_seg_am_mapped(am, eu, mmu_idx);
186
187 if (mapped < 0) {
188 /* is_seg_am_mapped can report TLBRET_BADADDR */
189 return mapped;
190 } else if (mapped) {
191 /* The segment is TLB mapped */
192 return env->tlb->map_address(env, physical, prot, real_address, rw,
193 access_type);
194 } else {
195 /* The segment is unmapped */
196 *physical = physical_base | (real_address & segmask);
197 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
198 return TLBRET_MATCH;
199 }
200 }
201
get_segctl_physical_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong real_address,int rw,int access_type,int mmu_idx,uint16_t segctl,target_ulong segmask)202 static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
203 int *prot, target_ulong real_address,
204 int rw, int access_type, int mmu_idx,
205 uint16_t segctl, target_ulong segmask)
206 {
207 unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
208 bool eu = (segctl >> CP0SC_EU) & 1;
209 hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
210
211 return get_seg_physical_address(env, physical, prot, real_address, rw,
212 access_type, mmu_idx, am, eu, segmask,
213 pa & ~(hwaddr)segmask);
214 }
215
get_physical_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong real_address,int rw,int access_type,int mmu_idx)216 static int get_physical_address(CPUMIPSState *env, hwaddr *physical,
217 int *prot, target_ulong real_address,
218 int rw, int access_type, int mmu_idx)
219 {
220 /* User mode can only access useg/xuseg */
221 #if defined(TARGET_MIPS64)
222 int user_mode = mmu_idx == MIPS_HFLAG_UM;
223 int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
224 int kernel_mode = !user_mode && !supervisor_mode;
225 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
226 int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
227 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
228 #endif
229 int ret = TLBRET_MATCH;
230 /* effective address (modified for KVM T&E kernel segments) */
231 target_ulong address = real_address;
232
233 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
234 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
235 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
236 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
237 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
238
239 #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
240 #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
241
242 if (mips_um_ksegs_enabled()) {
243 /* KVM T&E adds guest kernel segments in useg */
244 if (real_address >= KVM_KSEG0_BASE) {
245 if (real_address < KVM_KSEG2_BASE) {
246 /* kseg0 */
247 address += KSEG0_BASE - KVM_KSEG0_BASE;
248 } else if (real_address <= USEG_LIMIT) {
249 /* kseg2/3 */
250 address += KSEG2_BASE - KVM_KSEG2_BASE;
251 }
252 }
253 }
254
255 if (address <= USEG_LIMIT) {
256 /* useg */
257 uint16_t segctl;
258
259 if (address >= 0x40000000UL) {
260 segctl = env->CP0_SegCtl2;
261 } else {
262 segctl = env->CP0_SegCtl2 >> 16;
263 }
264 ret = get_segctl_physical_address(env, physical, prot,
265 real_address, rw, access_type,
266 mmu_idx, segctl, 0x3FFFFFFF);
267 #if defined(TARGET_MIPS64)
268 } else if (address < 0x4000000000000000ULL) {
269 /* xuseg */
270 if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
271 ret = env->tlb->map_address(env, physical, prot,
272 real_address, rw, access_type);
273 } else {
274 ret = TLBRET_BADADDR;
275 }
276 } else if (address < 0x8000000000000000ULL) {
277 /* xsseg */
278 if ((supervisor_mode || kernel_mode) &&
279 SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
280 ret = env->tlb->map_address(env, physical, prot,
281 real_address, rw, access_type);
282 } else {
283 ret = TLBRET_BADADDR;
284 }
285 } else if (address < 0xC000000000000000ULL) {
286 /* xkphys */
287 if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
288 /* KX/SX/UX bit to check for each xkphys EVA access mode */
289 static const uint8_t am_ksux[8] = {
290 [CP0SC_AM_UK] = (1u << CP0St_KX),
291 [CP0SC_AM_MK] = (1u << CP0St_KX),
292 [CP0SC_AM_MSK] = (1u << CP0St_SX),
293 [CP0SC_AM_MUSK] = (1u << CP0St_UX),
294 [CP0SC_AM_MUSUK] = (1u << CP0St_UX),
295 [CP0SC_AM_USK] = (1u << CP0St_SX),
296 [6] = (1u << CP0St_KX),
297 [CP0SC_AM_UUSK] = (1u << CP0St_UX),
298 };
299 unsigned int am = CP0SC_AM_UK;
300 unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
301
302 if (xr & (1 << ((address >> 59) & 0x7))) {
303 am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
304 }
305 /* Does CP0_Status.KX/SX/UX permit the access mode (am) */
306 if (env->CP0_Status & am_ksux[am]) {
307 ret = get_seg_physical_address(env, physical, prot,
308 real_address, rw, access_type,
309 mmu_idx, am, false, env->PAMask,
310 0);
311 } else {
312 ret = TLBRET_BADADDR;
313 }
314 } else {
315 ret = TLBRET_BADADDR;
316 }
317 } else if (address < 0xFFFFFFFF80000000ULL) {
318 /* xkseg */
319 if (kernel_mode && KX &&
320 address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
321 ret = env->tlb->map_address(env, physical, prot,
322 real_address, rw, access_type);
323 } else {
324 ret = TLBRET_BADADDR;
325 }
326 #endif
327 } else if (address < KSEG1_BASE) {
328 /* kseg0 */
329 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
330 access_type, mmu_idx,
331 env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
332 } else if (address < KSEG2_BASE) {
333 /* kseg1 */
334 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
335 access_type, mmu_idx,
336 env->CP0_SegCtl1, 0x1FFFFFFF);
337 } else if (address < KSEG3_BASE) {
338 /* sseg (kseg2) */
339 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
340 access_type, mmu_idx,
341 env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
342 } else {
343 /*
344 * kseg3
345 * XXX: debug segment is not emulated
346 */
347 ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
348 access_type, mmu_idx,
349 env->CP0_SegCtl0, 0x1FFFFFFF);
350 }
351 return ret;
352 }
353
cpu_mips_tlb_flush(CPUMIPSState * env)354 void cpu_mips_tlb_flush(CPUMIPSState *env)
355 {
356 /* Flush qemu's TLB and discard all shadowed entries. */
357 tlb_flush(env_cpu(env));
358 env->tlb->tlb_in_use = env->tlb->nb_tlb;
359 }
360
361 /* Called for updates to CP0_Status. */
sync_c0_status(CPUMIPSState * env,CPUMIPSState * cpu,int tc)362 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
363 {
364 int32_t tcstatus, *tcst;
365 uint32_t v = cpu->CP0_Status;
366 uint32_t cu, mx, asid, ksu;
367 uint32_t mask = ((1 << CP0TCSt_TCU3)
368 | (1 << CP0TCSt_TCU2)
369 | (1 << CP0TCSt_TCU1)
370 | (1 << CP0TCSt_TCU0)
371 | (1 << CP0TCSt_TMX)
372 | (3 << CP0TCSt_TKSU)
373 | (0xff << CP0TCSt_TASID));
374
375 cu = (v >> CP0St_CU0) & 0xf;
376 mx = (v >> CP0St_MX) & 0x1;
377 ksu = (v >> CP0St_KSU) & 0x3;
378 asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
379
380 tcstatus = cu << CP0TCSt_TCU0;
381 tcstatus |= mx << CP0TCSt_TMX;
382 tcstatus |= ksu << CP0TCSt_TKSU;
383 tcstatus |= asid;
384
385 if (tc == cpu->current_tc) {
386 tcst = &cpu->active_tc.CP0_TCStatus;
387 } else {
388 tcst = &cpu->tcs[tc].CP0_TCStatus;
389 }
390
391 *tcst &= ~mask;
392 *tcst |= tcstatus;
393 compute_hflags(cpu);
394 }
395
cpu_mips_store_status(CPUMIPSState * env,target_ulong val)396 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
397 {
398 uint32_t mask = env->CP0_Status_rw_bitmask;
399 target_ulong old = env->CP0_Status;
400
401 if (env->insn_flags & ISA_MIPS32R6) {
402 bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
403 #if defined(TARGET_MIPS64)
404 uint32_t ksux = (1 << CP0St_KX) & val;
405 ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
406 ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
407 val = (val & ~(7 << CP0St_UX)) | ksux;
408 #endif
409 if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
410 mask &= ~(3 << CP0St_KSU);
411 }
412 mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
413 }
414
415 env->CP0_Status = (old & ~mask) | (val & mask);
416 #if defined(TARGET_MIPS64)
417 if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
418 /* Access to at least one of the 64-bit segments has been disabled */
419 tlb_flush(env_cpu(env));
420 }
421 #endif
422 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
423 sync_c0_status(env, env, env->current_tc);
424 } else {
425 compute_hflags(env);
426 }
427 }
428
cpu_mips_store_cause(CPUMIPSState * env,target_ulong val)429 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
430 {
431 uint32_t mask = 0x00C00300;
432 uint32_t old = env->CP0_Cause;
433 int i;
434
435 if (env->insn_flags & ISA_MIPS32R2) {
436 mask |= 1 << CP0Ca_DC;
437 }
438 if (env->insn_flags & ISA_MIPS32R6) {
439 mask &= ~((1 << CP0Ca_WP) & val);
440 }
441
442 env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);
443
444 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
445 if (env->CP0_Cause & (1 << CP0Ca_DC)) {
446 cpu_mips_stop_count(env);
447 } else {
448 cpu_mips_start_count(env);
449 }
450 }
451
452 /* Set/reset software interrupts */
453 for (i = 0 ; i < 2 ; i++) {
454 if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
455 cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
456 }
457 }
458 }
459 #endif
460
raise_mmu_exception(CPUMIPSState * env,target_ulong address,int rw,int tlb_error)461 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
462 int rw, int tlb_error)
463 {
464 CPUState *cs = env_cpu(env);
465 int exception = 0, error_code = 0;
466
467 if (rw == MMU_INST_FETCH) {
468 error_code |= EXCP_INST_NOTAVAIL;
469 }
470
471 switch (tlb_error) {
472 default:
473 case TLBRET_BADADDR:
474 /* Reference to kernel address from user mode or supervisor mode */
475 /* Reference to supervisor address from user mode */
476 if (rw == MMU_DATA_STORE) {
477 exception = EXCP_AdES;
478 } else {
479 exception = EXCP_AdEL;
480 }
481 break;
482 case TLBRET_NOMATCH:
483 /* No TLB match for a mapped address */
484 if (rw == MMU_DATA_STORE) {
485 exception = EXCP_TLBS;
486 } else {
487 exception = EXCP_TLBL;
488 }
489 error_code |= EXCP_TLB_NOMATCH;
490 break;
491 case TLBRET_INVALID:
492 /* TLB match with no valid bit */
493 if (rw == MMU_DATA_STORE) {
494 exception = EXCP_TLBS;
495 } else {
496 exception = EXCP_TLBL;
497 }
498 break;
499 case TLBRET_DIRTY:
500 /* TLB match but 'D' bit is cleared */
501 exception = EXCP_LTLBL;
502 break;
503 case TLBRET_XI:
504 /* Execute-Inhibit Exception */
505 if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
506 exception = EXCP_TLBXI;
507 } else {
508 exception = EXCP_TLBL;
509 }
510 break;
511 case TLBRET_RI:
512 /* Read-Inhibit Exception */
513 if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
514 exception = EXCP_TLBRI;
515 } else {
516 exception = EXCP_TLBL;
517 }
518 break;
519 }
520 /* Raise exception */
521 if (!(env->hflags & MIPS_HFLAG_DM)) {
522 env->CP0_BadVAddr = address;
523 }
524 env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
525 ((address >> 9) & 0x007ffff0);
526 env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
527 (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
528 (address & (TARGET_PAGE_MASK << 1));
529 #if defined(TARGET_MIPS64)
530 env->CP0_EntryHi &= env->SEGMask;
531 env->CP0_XContext =
532 (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
533 (extract64(address, 62, 2) << (env->SEGBITS - 9)) | /* R */
534 (extract64(address, 13, env->SEGBITS - 13) << 4); /* BadVPN2 */
535 #endif
536 cs->exception_index = exception;
537 env->error_code = error_code;
538 }
539
540 #if !defined(CONFIG_USER_ONLY)
mips_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)541 hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
542 {
543 MIPSCPU *cpu = MIPS_CPU(cs);
544 CPUMIPSState *env = &cpu->env;
545 hwaddr phys_addr;
546 int prot;
547
548 if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
549 cpu_mmu_index(env, false)) != 0) {
550 return -1;
551 }
552 return phys_addr;
553 }
554 #endif
555
556 #if !defined(CONFIG_USER_ONLY)
557 #if !defined(TARGET_MIPS64)
558
559 /*
560 * Perform hardware page table walk
561 *
562 * Memory accesses are performed using the KERNEL privilege level.
563 * Synchronous exceptions detected on memory accesses cause a silent exit
564 * from page table walking, resulting in a TLB or XTLB Refill exception.
565 *
566 * Implementations are not required to support page table walk memory
567 * accesses from mapped memory regions. When an unsupported access is
568 * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
569 * exception.
570 *
571 * Note that if an exception is caused by AddressTranslation or LoadMemory
572 * functions, the exception is not taken, a silent exit is taken,
573 * resulting in a TLB or XTLB Refill exception.
574 */
575
get_pte(CPUMIPSState * env,uint64_t vaddr,int entry_size,uint64_t * pte)576 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
577 uint64_t *pte)
578 {
579 if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
580 return false;
581 }
582 if (entry_size == 64) {
583 *pte = cpu_ldq_code(env, vaddr);
584 } else {
585 *pte = cpu_ldl_code(env, vaddr);
586 }
587 return true;
588 }
589
get_tlb_entry_layout(CPUMIPSState * env,uint64_t entry,int entry_size,int ptei)590 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
591 int entry_size, int ptei)
592 {
593 uint64_t result = entry;
594 uint64_t rixi;
595 if (ptei > entry_size) {
596 ptei -= 32;
597 }
598 result >>= (ptei - 2);
599 rixi = result & 3;
600 result >>= 2;
601 result |= rixi << CP0EnLo_XI;
602 return result;
603 }
604
walk_directory(CPUMIPSState * env,uint64_t * vaddr,int directory_index,bool * huge_page,bool * hgpg_directory_hit,uint64_t * pw_entrylo0,uint64_t * pw_entrylo1)605 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
606 int directory_index, bool *huge_page, bool *hgpg_directory_hit,
607 uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
608 {
609 int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
610 int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
611 int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
612 int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
613 int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
614 int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
615 int directory_shift = (ptew > 1) ? -1 :
616 (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
617 int leaf_shift = (ptew > 1) ? -1 :
618 (ptew == 1) ? native_shift + 1 : native_shift;
619 uint32_t direntry_size = 1 << (directory_shift + 3);
620 uint32_t leafentry_size = 1 << (leaf_shift + 3);
621 uint64_t entry;
622 uint64_t paddr;
623 int prot;
624 uint64_t lsb = 0;
625 uint64_t w = 0;
626
627 if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
628 ACCESS_INT, cpu_mmu_index(env, false)) !=
629 TLBRET_MATCH) {
630 /* wrong base address */
631 return 0;
632 }
633 if (!get_pte(env, *vaddr, direntry_size, &entry)) {
634 return 0;
635 }
636
637 if ((entry & (1 << psn)) && hugepg) {
638 *huge_page = true;
639 *hgpg_directory_hit = true;
640 entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
641 w = directory_index - 1;
642 if (directory_index & 0x1) {
643 /* Generate adjacent page from same PTE for odd TLB page */
644 lsb = (1 << w) >> 6;
645 *pw_entrylo0 = entry & ~lsb; /* even page */
646 *pw_entrylo1 = entry | lsb; /* odd page */
647 } else if (dph) {
648 int oddpagebit = 1 << leaf_shift;
649 uint64_t vaddr2 = *vaddr ^ oddpagebit;
650 if (*vaddr & oddpagebit) {
651 *pw_entrylo1 = entry;
652 } else {
653 *pw_entrylo0 = entry;
654 }
655 if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
656 ACCESS_INT, cpu_mmu_index(env, false)) !=
657 TLBRET_MATCH) {
658 return 0;
659 }
660 if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
661 return 0;
662 }
663 entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
664 if (*vaddr & oddpagebit) {
665 *pw_entrylo0 = entry;
666 } else {
667 *pw_entrylo1 = entry;
668 }
669 } else {
670 return 0;
671 }
672 return 1;
673 } else {
674 *vaddr = entry;
675 return 2;
676 }
677 }
678
page_table_walk_refill(CPUMIPSState * env,vaddr address,int rw,int mmu_idx)679 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
680 int mmu_idx)
681 {
682 int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
683 int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
684 int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
685 int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
686 int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
687
688 /* Initial values */
689 bool huge_page = false;
690 bool hgpg_bdhit = false;
691 bool hgpg_gdhit = false;
692 bool hgpg_udhit = false;
693 bool hgpg_mdhit = false;
694
695 int32_t pw_pagemask = 0;
696 target_ulong pw_entryhi = 0;
697 uint64_t pw_entrylo0 = 0;
698 uint64_t pw_entrylo1 = 0;
699
700 /* Native pointer size */
701 /*For the 32-bit architectures, this bit is fixed to 0.*/
702 int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
703
704 /* Indices from PWField */
705 int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
706 int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
707 int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
708 int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
709 int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
710
711 /* Indices computed from faulting address */
712 int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
713 int uindex = (address >> pf_udw) & ((1 << udw) - 1);
714 int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
715 int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
716
717 /* Other HTW configs */
718 int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
719
720 /* HTW Shift values (depend on entry size) */
721 int directory_shift = (ptew > 1) ? -1 :
722 (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
723 int leaf_shift = (ptew > 1) ? -1 :
724 (ptew == 1) ? native_shift + 1 : native_shift;
725
726 /* Offsets into tables */
727 int goffset = gindex << directory_shift;
728 int uoffset = uindex << directory_shift;
729 int moffset = mindex << directory_shift;
730 int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
731 int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
732
733 uint32_t leafentry_size = 1 << (leaf_shift + 3);
734
735 /* Starting address - Page Table Base */
736 uint64_t vaddr = env->CP0_PWBase;
737
738 uint64_t dir_entry;
739 uint64_t paddr;
740 int prot;
741 int m;
742
743 if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
744 /* walker is unimplemented */
745 return false;
746 }
747 if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
748 /* walker is disabled */
749 return false;
750 }
751 if (!(gdw > 0 || udw > 0 || mdw > 0)) {
752 /* no structure to walk */
753 return false;
754 }
755 if ((directory_shift == -1) || (leaf_shift == -1)) {
756 return false;
757 }
758
759 /* Global Directory */
760 if (gdw > 0) {
761 vaddr |= goffset;
762 switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
763 &pw_entrylo0, &pw_entrylo1))
764 {
765 case 0:
766 return false;
767 case 1:
768 goto refill;
769 case 2:
770 default:
771 break;
772 }
773 }
774
775 /* Upper directory */
776 if (udw > 0) {
777 vaddr |= uoffset;
778 switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
779 &pw_entrylo0, &pw_entrylo1))
780 {
781 case 0:
782 return false;
783 case 1:
784 goto refill;
785 case 2:
786 default:
787 break;
788 }
789 }
790
791 /* Middle directory */
792 if (mdw > 0) {
793 vaddr |= moffset;
794 switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
795 &pw_entrylo0, &pw_entrylo1))
796 {
797 case 0:
798 return false;
799 case 1:
800 goto refill;
801 case 2:
802 default:
803 break;
804 }
805 }
806
807 /* Leaf Level Page Table - First half of PTE pair */
808 vaddr |= ptoffset0;
809 if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
810 ACCESS_INT, cpu_mmu_index(env, false)) !=
811 TLBRET_MATCH) {
812 return false;
813 }
814 if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
815 return false;
816 }
817 dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
818 pw_entrylo0 = dir_entry;
819
820 /* Leaf Level Page Table - Second half of PTE pair */
821 vaddr |= ptoffset1;
822 if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
823 ACCESS_INT, cpu_mmu_index(env, false)) !=
824 TLBRET_MATCH) {
825 return false;
826 }
827 if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
828 return false;
829 }
830 dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
831 pw_entrylo1 = dir_entry;
832
833 refill:
834
835 m = (1 << pf_ptw) - 1;
836
837 if (huge_page) {
838 switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
839 hgpg_mdhit)
840 {
841 case 4:
842 m = (1 << pf_gdw) - 1;
843 if (pf_gdw & 1) {
844 m >>= 1;
845 }
846 break;
847 case 2:
848 m = (1 << pf_udw) - 1;
849 if (pf_udw & 1) {
850 m >>= 1;
851 }
852 break;
853 case 1:
854 m = (1 << pf_mdw) - 1;
855 if (pf_mdw & 1) {
856 m >>= 1;
857 }
858 break;
859 }
860 }
861 pw_pagemask = m >> 12;
862 update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
863 pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
864 {
865 target_ulong tmp_entryhi = env->CP0_EntryHi;
866 int32_t tmp_pagemask = env->CP0_PageMask;
867 uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
868 uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
869
870 env->CP0_EntryHi = pw_entryhi;
871 env->CP0_PageMask = pw_pagemask;
872 env->CP0_EntryLo0 = pw_entrylo0;
873 env->CP0_EntryLo1 = pw_entrylo1;
874
875 /*
876 * The hardware page walker inserts a page into the TLB in a manner
877 * identical to a TLBWR instruction as executed by the software refill
878 * handler.
879 */
880 r4k_helper_tlbwr(env);
881
882 env->CP0_EntryHi = tmp_entryhi;
883 env->CP0_PageMask = tmp_pagemask;
884 env->CP0_EntryLo0 = tmp_entrylo0;
885 env->CP0_EntryLo1 = tmp_entrylo1;
886 }
887 return true;
888 }
889 #endif
890 #endif
891
mips_cpu_tlb_fill(CPUState * cs,vaddr address,int size,MMUAccessType access_type,int mmu_idx,bool probe,uintptr_t retaddr)892 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
893 MMUAccessType access_type, int mmu_idx,
894 bool probe, uintptr_t retaddr)
895 {
896 MIPSCPU *cpu = MIPS_CPU(cs);
897 CPUMIPSState *env = &cpu->env;
898 #if !defined(CONFIG_USER_ONLY)
899 hwaddr physical;
900 int prot;
901 int mips_access_type;
902 #endif
903 int ret = TLBRET_BADADDR;
904
905 /* data access */
906 #if !defined(CONFIG_USER_ONLY)
907 /* XXX: put correct access by using cpu_restore_state() correctly */
908 mips_access_type = ACCESS_INT;
909 ret = get_physical_address(env, &physical, &prot, address,
910 access_type, mips_access_type, mmu_idx);
911 switch (ret) {
912 case TLBRET_MATCH:
913 qemu_log_mask(CPU_LOG_MMU,
914 "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
915 " prot %d\n", __func__, address, physical, prot);
916 break;
917 default:
918 qemu_log_mask(CPU_LOG_MMU,
919 "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
920 ret);
921 break;
922 }
923 if (ret == TLBRET_MATCH) {
924 tlb_set_page(cs, address & TARGET_PAGE_MASK,
925 physical & TARGET_PAGE_MASK, prot,
926 mmu_idx, TARGET_PAGE_SIZE);
927 return true;
928 }
929 #if !defined(TARGET_MIPS64)
930 if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
931 /*
932 * Memory reads during hardware page table walking are performed
933 * as if they were kernel-mode load instructions.
934 */
935 int mode = (env->hflags & MIPS_HFLAG_KSU);
936 bool ret_walker;
937 env->hflags &= ~MIPS_HFLAG_KSU;
938 ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx);
939 env->hflags |= mode;
940 if (ret_walker) {
941 ret = get_physical_address(env, &physical, &prot, address,
942 access_type, mips_access_type, mmu_idx);
943 if (ret == TLBRET_MATCH) {
944 tlb_set_page(cs, address & TARGET_PAGE_MASK,
945 physical & TARGET_PAGE_MASK, prot,
946 mmu_idx, TARGET_PAGE_SIZE);
947 return true;
948 }
949 }
950 }
951 #endif
952 if (probe) {
953 return false;
954 }
955 #endif
956
957 raise_mmu_exception(env, address, access_type, ret);
958 do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
959 }
960
961 #ifndef CONFIG_USER_ONLY
cpu_mips_translate_address(CPUMIPSState * env,target_ulong address,int rw)962 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
963 int rw)
964 {
965 hwaddr physical;
966 int prot;
967 int access_type;
968 int ret = 0;
969
970 /* data access */
971 access_type = ACCESS_INT;
972 ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
973 cpu_mmu_index(env, false));
974 if (ret != TLBRET_MATCH) {
975 raise_mmu_exception(env, address, rw, ret);
976 return -1LL;
977 } else {
978 return physical;
979 }
980 }
981
982 static const char * const excp_names[EXCP_LAST + 1] = {
983 [EXCP_RESET] = "reset",
984 [EXCP_SRESET] = "soft reset",
985 [EXCP_DSS] = "debug single step",
986 [EXCP_DINT] = "debug interrupt",
987 [EXCP_NMI] = "non-maskable interrupt",
988 [EXCP_MCHECK] = "machine check",
989 [EXCP_EXT_INTERRUPT] = "interrupt",
990 [EXCP_DFWATCH] = "deferred watchpoint",
991 [EXCP_DIB] = "debug instruction breakpoint",
992 [EXCP_IWATCH] = "instruction fetch watchpoint",
993 [EXCP_AdEL] = "address error load",
994 [EXCP_AdES] = "address error store",
995 [EXCP_TLBF] = "TLB refill",
996 [EXCP_IBE] = "instruction bus error",
997 [EXCP_DBp] = "debug breakpoint",
998 [EXCP_SYSCALL] = "syscall",
999 [EXCP_BREAK] = "break",
1000 [EXCP_CpU] = "coprocessor unusable",
1001 [EXCP_RI] = "reserved instruction",
1002 [EXCP_OVERFLOW] = "arithmetic overflow",
1003 [EXCP_TRAP] = "trap",
1004 [EXCP_FPE] = "floating point",
1005 [EXCP_DDBS] = "debug data break store",
1006 [EXCP_DWATCH] = "data watchpoint",
1007 [EXCP_LTLBL] = "TLB modify",
1008 [EXCP_TLBL] = "TLB load",
1009 [EXCP_TLBS] = "TLB store",
1010 [EXCP_DBE] = "data bus error",
1011 [EXCP_DDBL] = "debug data break load",
1012 [EXCP_THREAD] = "thread",
1013 [EXCP_MDMX] = "MDMX",
1014 [EXCP_C2E] = "precise coprocessor 2",
1015 [EXCP_CACHE] = "cache error",
1016 [EXCP_TLBXI] = "TLB execute-inhibit",
1017 [EXCP_TLBRI] = "TLB read-inhibit",
1018 [EXCP_MSADIS] = "MSA disabled",
1019 [EXCP_MSAFPE] = "MSA floating point",
1020 };
1021 #endif
1022
exception_resume_pc(CPUMIPSState * env)1023 target_ulong exception_resume_pc(CPUMIPSState *env)
1024 {
1025 target_ulong bad_pc;
1026 target_ulong isa_mode;
1027
1028 isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
1029 bad_pc = env->active_tc.PC | isa_mode;
1030 if (env->hflags & MIPS_HFLAG_BMASK) {
1031 /*
1032 * If the exception was raised from a delay slot, come back to
1033 * the jump.
1034 */
1035 bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1036 }
1037
1038 return bad_pc;
1039 }
1040
1041 #if !defined(CONFIG_USER_ONLY)
set_hflags_for_handler(CPUMIPSState * env)1042 static void set_hflags_for_handler(CPUMIPSState *env)
1043 {
1044 /* Exception handlers are entered in 32-bit mode. */
1045 env->hflags &= ~(MIPS_HFLAG_M16);
1046 /* ...except that microMIPS lets you choose. */
1047 if (env->insn_flags & ASE_MICROMIPS) {
1048 env->hflags |= (!!(env->CP0_Config3 &
1049 (1 << CP0C3_ISA_ON_EXC))
1050 << MIPS_HFLAG_M16_SHIFT);
1051 }
1052 }
1053
set_badinstr_registers(CPUMIPSState * env)1054 static inline void set_badinstr_registers(CPUMIPSState *env)
1055 {
1056 if (env->insn_flags & ISA_NANOMIPS32) {
1057 if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1058 uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1059 if ((instr & 0x10000000) == 0) {
1060 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1061 }
1062 env->CP0_BadInstr = instr;
1063
1064 if ((instr & 0xFC000000) == 0x60000000) {
1065 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1066 env->CP0_BadInstrX = instr;
1067 }
1068 }
1069 return;
1070 }
1071
1072 if (env->hflags & MIPS_HFLAG_M16) {
1073 /* TODO: add BadInstr support for microMIPS */
1074 return;
1075 }
1076 if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1077 env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1078 }
1079 if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1080 (env->hflags & MIPS_HFLAG_BMASK)) {
1081 env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1082 }
1083 }
1084 #endif
1085
mips_cpu_do_interrupt(CPUState * cs)1086 void mips_cpu_do_interrupt(CPUState *cs)
1087 {
1088 #if !defined(CONFIG_USER_ONLY)
1089 MIPSCPU *cpu = MIPS_CPU(cs);
1090 CPUMIPSState *env = &cpu->env;
1091 bool update_badinstr = 0;
1092 target_ulong offset;
1093 int cause = -1;
1094 const char *name;
1095
1096 if (qemu_loglevel_mask(CPU_LOG_INT)
1097 && cs->exception_index != EXCP_EXT_INTERRUPT) {
1098 if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
1099 name = "unknown";
1100 } else {
1101 name = excp_names[cs->exception_index];
1102 }
1103
1104 qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1105 " %s exception\n",
1106 __func__, env->active_tc.PC, env->CP0_EPC, name);
1107 }
1108 if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1109 (env->hflags & MIPS_HFLAG_DM)) {
1110 cs->exception_index = EXCP_DINT;
1111 }
1112 offset = 0x180;
1113 switch (cs->exception_index) {
1114 case EXCP_DSS:
1115 env->CP0_Debug |= 1 << CP0DB_DSS;
1116 /*
1117 * Debug single step cannot be raised inside a delay slot and
1118 * resume will always occur on the next instruction
1119 * (but we assume the pc has always been updated during
1120 * code translation).
1121 */
1122 env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1123 goto enter_debug_mode;
1124 case EXCP_DINT:
1125 env->CP0_Debug |= 1 << CP0DB_DINT;
1126 goto set_DEPC;
1127 case EXCP_DIB:
1128 env->CP0_Debug |= 1 << CP0DB_DIB;
1129 goto set_DEPC;
1130 case EXCP_DBp:
1131 env->CP0_Debug |= 1 << CP0DB_DBp;
1132 /* Setup DExcCode - SDBBP instruction */
1133 env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1134 (9 << CP0DB_DEC);
1135 goto set_DEPC;
1136 case EXCP_DDBS:
1137 env->CP0_Debug |= 1 << CP0DB_DDBS;
1138 goto set_DEPC;
1139 case EXCP_DDBL:
1140 env->CP0_Debug |= 1 << CP0DB_DDBL;
1141 set_DEPC:
1142 env->CP0_DEPC = exception_resume_pc(env);
1143 env->hflags &= ~MIPS_HFLAG_BMASK;
1144 enter_debug_mode:
1145 if (env->insn_flags & ISA_MIPS3) {
1146 env->hflags |= MIPS_HFLAG_64;
1147 if (!(env->insn_flags & ISA_MIPS64R6) ||
1148 env->CP0_Status & (1 << CP0St_KX)) {
1149 env->hflags &= ~MIPS_HFLAG_AWRAP;
1150 }
1151 }
1152 env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1153 env->hflags &= ~(MIPS_HFLAG_KSU);
1154 /* EJTAG probe trap enable is not implemented... */
1155 if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1156 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1157 }
1158 env->active_tc.PC = env->exception_base + 0x480;
1159 set_hflags_for_handler(env);
1160 break;
1161 case EXCP_RESET:
1162 cpu_reset(CPU(cpu));
1163 break;
1164 case EXCP_SRESET:
1165 env->CP0_Status |= (1 << CP0St_SR);
1166 memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1167 goto set_error_EPC;
1168 case EXCP_NMI:
1169 env->CP0_Status |= (1 << CP0St_NMI);
1170 set_error_EPC:
1171 env->CP0_ErrorEPC = exception_resume_pc(env);
1172 env->hflags &= ~MIPS_HFLAG_BMASK;
1173 env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1174 if (env->insn_flags & ISA_MIPS3) {
1175 env->hflags |= MIPS_HFLAG_64;
1176 if (!(env->insn_flags & ISA_MIPS64R6) ||
1177 env->CP0_Status & (1 << CP0St_KX)) {
1178 env->hflags &= ~MIPS_HFLAG_AWRAP;
1179 }
1180 }
1181 env->hflags |= MIPS_HFLAG_CP0;
1182 env->hflags &= ~(MIPS_HFLAG_KSU);
1183 if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1184 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1185 }
1186 env->active_tc.PC = env->exception_base;
1187 set_hflags_for_handler(env);
1188 break;
1189 case EXCP_EXT_INTERRUPT:
1190 cause = 0;
1191 if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1192 uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1193
1194 if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1195 offset = 0x200;
1196 } else {
1197 uint32_t vector = 0;
1198 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1199
1200 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1201 /*
1202 * For VEIC mode, the external interrupt controller feeds
1203 * the vector through the CP0Cause IP lines.
1204 */
1205 vector = pending;
1206 } else {
1207 /*
1208 * Vectored Interrupts
1209 * Mask with Status.IM7-IM0 to get enabled interrupts.
1210 */
1211 pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1212 /* Find the highest-priority interrupt. */
1213 while (pending >>= 1) {
1214 vector++;
1215 }
1216 }
1217 offset = 0x200 + (vector * (spacing << 5));
1218 }
1219 }
1220 goto set_EPC;
1221 case EXCP_LTLBL:
1222 cause = 1;
1223 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1224 goto set_EPC;
1225 case EXCP_TLBL:
1226 cause = 2;
1227 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1228 if ((env->error_code & EXCP_TLB_NOMATCH) &&
1229 !(env->CP0_Status & (1 << CP0St_EXL))) {
1230 #if defined(TARGET_MIPS64)
1231 int R = env->CP0_BadVAddr >> 62;
1232 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1233 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1234
1235 if ((R != 0 || UX) && (R != 3 || KX) &&
1236 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1237 offset = 0x080;
1238 } else {
1239 #endif
1240 offset = 0x000;
1241 #if defined(TARGET_MIPS64)
1242 }
1243 #endif
1244 }
1245 goto set_EPC;
1246 case EXCP_TLBS:
1247 cause = 3;
1248 update_badinstr = 1;
1249 if ((env->error_code & EXCP_TLB_NOMATCH) &&
1250 !(env->CP0_Status & (1 << CP0St_EXL))) {
1251 #if defined(TARGET_MIPS64)
1252 int R = env->CP0_BadVAddr >> 62;
1253 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1254 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1255
1256 if ((R != 0 || UX) && (R != 3 || KX) &&
1257 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1258 offset = 0x080;
1259 } else {
1260 #endif
1261 offset = 0x000;
1262 #if defined(TARGET_MIPS64)
1263 }
1264 #endif
1265 }
1266 goto set_EPC;
1267 case EXCP_AdEL:
1268 cause = 4;
1269 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1270 goto set_EPC;
1271 case EXCP_AdES:
1272 cause = 5;
1273 update_badinstr = 1;
1274 goto set_EPC;
1275 case EXCP_IBE:
1276 cause = 6;
1277 goto set_EPC;
1278 case EXCP_DBE:
1279 cause = 7;
1280 goto set_EPC;
1281 case EXCP_SYSCALL:
1282 cause = 8;
1283 update_badinstr = 1;
1284 goto set_EPC;
1285 case EXCP_BREAK:
1286 cause = 9;
1287 update_badinstr = 1;
1288 goto set_EPC;
1289 case EXCP_RI:
1290 cause = 10;
1291 update_badinstr = 1;
1292 goto set_EPC;
1293 case EXCP_CpU:
1294 cause = 11;
1295 update_badinstr = 1;
1296 env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1297 (env->error_code << CP0Ca_CE);
1298 goto set_EPC;
1299 case EXCP_OVERFLOW:
1300 cause = 12;
1301 update_badinstr = 1;
1302 goto set_EPC;
1303 case EXCP_TRAP:
1304 cause = 13;
1305 update_badinstr = 1;
1306 goto set_EPC;
1307 case EXCP_MSAFPE:
1308 cause = 14;
1309 update_badinstr = 1;
1310 goto set_EPC;
1311 case EXCP_FPE:
1312 cause = 15;
1313 update_badinstr = 1;
1314 goto set_EPC;
1315 case EXCP_C2E:
1316 cause = 18;
1317 goto set_EPC;
1318 case EXCP_TLBRI:
1319 cause = 19;
1320 update_badinstr = 1;
1321 goto set_EPC;
1322 case EXCP_TLBXI:
1323 cause = 20;
1324 goto set_EPC;
1325 case EXCP_MSADIS:
1326 cause = 21;
1327 update_badinstr = 1;
1328 goto set_EPC;
1329 case EXCP_MDMX:
1330 cause = 22;
1331 goto set_EPC;
1332 case EXCP_DWATCH:
1333 cause = 23;
1334 /* XXX: TODO: manage deferred watch exceptions */
1335 goto set_EPC;
1336 case EXCP_MCHECK:
1337 cause = 24;
1338 goto set_EPC;
1339 case EXCP_THREAD:
1340 cause = 25;
1341 goto set_EPC;
1342 case EXCP_DSPDIS:
1343 cause = 26;
1344 goto set_EPC;
1345 case EXCP_CACHE:
1346 cause = 30;
1347 offset = 0x100;
1348 set_EPC:
1349 if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1350 env->CP0_EPC = exception_resume_pc(env);
1351 if (update_badinstr) {
1352 set_badinstr_registers(env);
1353 }
1354 if (env->hflags & MIPS_HFLAG_BMASK) {
1355 env->CP0_Cause |= (1U << CP0Ca_BD);
1356 } else {
1357 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1358 }
1359 env->CP0_Status |= (1 << CP0St_EXL);
1360 if (env->insn_flags & ISA_MIPS3) {
1361 env->hflags |= MIPS_HFLAG_64;
1362 if (!(env->insn_flags & ISA_MIPS64R6) ||
1363 env->CP0_Status & (1 << CP0St_KX)) {
1364 env->hflags &= ~MIPS_HFLAG_AWRAP;
1365 }
1366 }
1367 env->hflags |= MIPS_HFLAG_CP0;
1368 env->hflags &= ~(MIPS_HFLAG_KSU);
1369 }
1370 env->hflags &= ~MIPS_HFLAG_BMASK;
1371 if (env->CP0_Status & (1 << CP0St_BEV)) {
1372 env->active_tc.PC = env->exception_base + 0x200;
1373 } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1374 env->CP0_Config5 & (1 << CP0C5_CV))) {
1375 /* Force KSeg1 for cache errors */
1376 env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1377 } else {
1378 env->active_tc.PC = env->CP0_EBase & ~0xfff;
1379 }
1380
1381 env->active_tc.PC += offset;
1382 set_hflags_for_handler(env);
1383 env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1384 (cause << CP0Ca_EC);
1385 break;
1386 default:
1387 abort();
1388 }
1389 if (qemu_loglevel_mask(CPU_LOG_INT)
1390 && cs->exception_index != EXCP_EXT_INTERRUPT) {
1391 qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1392 " S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1393 __func__, env->active_tc.PC, env->CP0_EPC, cause,
1394 env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1395 env->CP0_DEPC);
1396 }
1397 #endif
1398 cs->exception_index = EXCP_NONE;
1399 }
1400
mips_cpu_exec_interrupt(CPUState * cs,int interrupt_request)1401 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1402 {
1403 if (interrupt_request & CPU_INTERRUPT_HARD) {
1404 MIPSCPU *cpu = MIPS_CPU(cs);
1405 CPUMIPSState *env = &cpu->env;
1406
1407 if (cpu_mips_hw_interrupts_enabled(env) &&
1408 cpu_mips_hw_interrupts_pending(env)) {
1409 /* Raise it */
1410 cs->exception_index = EXCP_EXT_INTERRUPT;
1411 env->error_code = 0;
1412 mips_cpu_do_interrupt(cs);
1413 return true;
1414 }
1415 }
1416 return false;
1417 }
1418
1419 #if !defined(CONFIG_USER_ONLY)
r4k_invalidate_tlb(CPUMIPSState * env,int idx,int use_extra)1420 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1421 {
1422 CPUState *cs = env_cpu(env);
1423 r4k_tlb_t *tlb;
1424 target_ulong addr;
1425 target_ulong end;
1426 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1427 uint32_t MMID = env->CP0_MemoryMapID;
1428 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1429 uint32_t tlb_mmid;
1430 target_ulong mask;
1431
1432 MMID = mi ? MMID : (uint32_t) ASID;
1433
1434 tlb = &env->tlb->mmu.r4k.tlb[idx];
1435 /*
1436 * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1437 * flush these entries again.
1438 */
1439 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1440 if (tlb->G == 0 && tlb_mmid != MMID) {
1441 return;
1442 }
1443
1444 if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1445 /*
1446 * For tlbwr, we can shadow the discarded entry into
1447 * a new (fake) TLB entry, as long as the guest can not
1448 * tell that it's there.
1449 */
1450 env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1451 env->tlb->tlb_in_use++;
1452 return;
1453 }
1454
1455 /* 1k pages are not supported. */
1456 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1457 if (tlb->V0) {
1458 addr = tlb->VPN & ~mask;
1459 #if defined(TARGET_MIPS64)
1460 if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1461 addr |= 0x3FFFFF0000000000ULL;
1462 }
1463 #endif
1464 end = addr | (mask >> 1);
1465 while (addr < end) {
1466 tlb_flush_page(cs, addr);
1467 addr += TARGET_PAGE_SIZE;
1468 }
1469 }
1470 if (tlb->V1) {
1471 addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1472 #if defined(TARGET_MIPS64)
1473 if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1474 addr |= 0x3FFFFF0000000000ULL;
1475 }
1476 #endif
1477 end = addr | mask;
1478 while (addr - 1 < end) {
1479 tlb_flush_page(cs, addr);
1480 addr += TARGET_PAGE_SIZE;
1481 }
1482 }
1483 }
1484 #endif
1485
do_raise_exception_err(CPUMIPSState * env,uint32_t exception,int error_code,uintptr_t pc)1486 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
1487 uint32_t exception,
1488 int error_code,
1489 uintptr_t pc)
1490 {
1491 CPUState *cs = env_cpu(env);
1492
1493 qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
1494 __func__, exception, error_code);
1495 cs->exception_index = exception;
1496 env->error_code = error_code;
1497
1498 cpu_loop_exit_restore(cs, pc);
1499 }
1500
mips_cpu_add_definition(gpointer data,gpointer user_data)1501 static void mips_cpu_add_definition(gpointer data, gpointer user_data)
1502 {
1503 ObjectClass *oc = data;
1504 CpuDefinitionInfoList **cpu_list = user_data;
1505 CpuDefinitionInfoList *entry;
1506 CpuDefinitionInfo *info;
1507 const char *typename;
1508
1509 typename = object_class_get_name(oc);
1510 info = g_malloc0(sizeof(*info));
1511 info->name = g_strndup(typename,
1512 strlen(typename) - strlen("-" TYPE_MIPS_CPU));
1513 info->q_typename = g_strdup(typename);
1514
1515 entry = g_malloc0(sizeof(*entry));
1516 entry->value = info;
1517 entry->next = *cpu_list;
1518 *cpu_list = entry;
1519 }
1520
qmp_query_cpu_definitions(Error ** errp)1521 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
1522 {
1523 CpuDefinitionInfoList *cpu_list = NULL;
1524 GSList *list;
1525
1526 list = object_class_get_list(TYPE_MIPS_CPU, false);
1527 g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
1528 g_slist_free(list);
1529
1530 return cpu_list;
1531 }
1532