1 /*
2  *  MIPS emulation helpers for qemu.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "internal.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/log.h"
26 #include "hw/mips/cpudevs.h"
27 #include "qapi/qapi-commands-machine-target.h"
28 
29 enum {
30     TLBRET_XI = -6,
31     TLBRET_RI = -5,
32     TLBRET_DIRTY = -4,
33     TLBRET_INVALID = -3,
34     TLBRET_NOMATCH = -2,
35     TLBRET_BADADDR = -1,
36     TLBRET_MATCH = 0
37 };
38 
39 #if !defined(CONFIG_USER_ONLY)
40 
41 /* no MMU emulation */
no_mmu_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,int rw,int access_type)42 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
43                        target_ulong address, int rw, int access_type)
44 {
45     *physical = address;
46     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
47     return TLBRET_MATCH;
48 }
49 
50 /* fixed mapping MMU emulation */
fixed_mmu_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,int rw,int access_type)51 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
52                           target_ulong address, int rw, int access_type)
53 {
54     if (address <= (int32_t)0x7FFFFFFFUL) {
55         if (!(env->CP0_Status & (1 << CP0St_ERL))) {
56             *physical = address + 0x40000000UL;
57         } else {
58             *physical = address;
59         }
60     } else if (address <= (int32_t)0xBFFFFFFFUL) {
61         *physical = address & 0x1FFFFFFF;
62     } else {
63         *physical = address;
64     }
65 
66     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
67     return TLBRET_MATCH;
68 }
69 
70 /* MIPS32/MIPS64 R4000-style MMU emulation */
r4k_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,int rw,int access_type)71 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
72                     target_ulong address, int rw, int access_type)
73 {
74     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
75     uint32_t MMID = env->CP0_MemoryMapID;
76     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
77     uint32_t tlb_mmid;
78     int i;
79 
80     MMID = mi ? MMID : (uint32_t) ASID;
81 
82     for (i = 0; i < env->tlb->tlb_in_use; i++) {
83         r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
84         /* 1k pages are not supported. */
85         target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
86         target_ulong tag = address & ~mask;
87         target_ulong VPN = tlb->VPN & ~mask;
88 #if defined(TARGET_MIPS64)
89         tag &= env->SEGMask;
90 #endif
91 
92         /* Check ASID/MMID, virtual page number & size */
93         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
94         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
95             /* TLB match */
96             int n = !!(address & mask & ~(mask >> 1));
97             /* Check access rights */
98             if (!(n ? tlb->V1 : tlb->V0)) {
99                 return TLBRET_INVALID;
100             }
101             if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
102                 return TLBRET_XI;
103             }
104             if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
105                 return TLBRET_RI;
106             }
107             if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
108                 *physical = tlb->PFN[n] | (address & (mask >> 1));
109                 *prot = PAGE_READ;
110                 if (n ? tlb->D1 : tlb->D0) {
111                     *prot |= PAGE_WRITE;
112                 }
113                 if (!(n ? tlb->XI1 : tlb->XI0)) {
114                     *prot |= PAGE_EXEC;
115                 }
116                 return TLBRET_MATCH;
117             }
118             return TLBRET_DIRTY;
119         }
120     }
121     return TLBRET_NOMATCH;
122 }
123 
is_seg_am_mapped(unsigned int am,bool eu,int mmu_idx)124 static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
125 {
126     /*
127      * Interpret access control mode and mmu_idx.
128      *           AdE?     TLB?
129      *      AM  K S U E  K S U E
130      * UK    0  0 1 1 0  0 - - 0
131      * MK    1  0 1 1 0  1 - - !eu
132      * MSK   2  0 0 1 0  1 1 - !eu
133      * MUSK  3  0 0 0 0  1 1 1 !eu
134      * MUSUK 4  0 0 0 0  0 1 1 0
135      * USK   5  0 0 1 0  0 0 - 0
136      * -     6  - - - -  - - - -
137      * UUSK  7  0 0 0 0  0 0 0 0
138      */
139     int32_t adetlb_mask;
140 
141     switch (mmu_idx) {
142     case 3: /* ERL */
143         /* If EU is set, always unmapped */
144         if (eu) {
145             return 0;
146         }
147         /* fall through */
148     case MIPS_HFLAG_KM:
149         /* Never AdE, TLB mapped if AM={1,2,3} */
150         adetlb_mask = 0x70000000;
151         goto check_tlb;
152 
153     case MIPS_HFLAG_SM:
154         /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
155         adetlb_mask = 0xc0380000;
156         goto check_ade;
157 
158     case MIPS_HFLAG_UM:
159         /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
160         adetlb_mask = 0xe4180000;
161         /* fall through */
162     check_ade:
163         /* does this AM cause AdE in current execution mode */
164         if ((adetlb_mask << am) < 0) {
165             return TLBRET_BADADDR;
166         }
167         adetlb_mask <<= 8;
168         /* fall through */
169     check_tlb:
170         /* is this AM mapped in current execution mode */
171         return ((adetlb_mask << am) < 0);
172     default:
173         assert(0);
174         return TLBRET_BADADDR;
175     };
176 }
177 
get_seg_physical_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong real_address,int rw,int access_type,int mmu_idx,unsigned int am,bool eu,target_ulong segmask,hwaddr physical_base)178 static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
179                                     int *prot, target_ulong real_address,
180                                     int rw, int access_type, int mmu_idx,
181                                     unsigned int am, bool eu,
182                                     target_ulong segmask,
183                                     hwaddr physical_base)
184 {
185     int mapped = is_seg_am_mapped(am, eu, mmu_idx);
186 
187     if (mapped < 0) {
188         /* is_seg_am_mapped can report TLBRET_BADADDR */
189         return mapped;
190     } else if (mapped) {
191         /* The segment is TLB mapped */
192         return env->tlb->map_address(env, physical, prot, real_address, rw,
193                                      access_type);
194     } else {
195         /* The segment is unmapped */
196         *physical = physical_base | (real_address & segmask);
197         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
198         return TLBRET_MATCH;
199     }
200 }
201 
get_segctl_physical_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong real_address,int rw,int access_type,int mmu_idx,uint16_t segctl,target_ulong segmask)202 static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
203                                        int *prot, target_ulong real_address,
204                                        int rw, int access_type, int mmu_idx,
205                                        uint16_t segctl, target_ulong segmask)
206 {
207     unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
208     bool eu = (segctl >> CP0SC_EU) & 1;
209     hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
210 
211     return get_seg_physical_address(env, physical, prot, real_address, rw,
212                                     access_type, mmu_idx, am, eu, segmask,
213                                     pa & ~(hwaddr)segmask);
214 }
215 
get_physical_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong real_address,int rw,int access_type,int mmu_idx)216 static int get_physical_address(CPUMIPSState *env, hwaddr *physical,
217                                 int *prot, target_ulong real_address,
218                                 int rw, int access_type, int mmu_idx)
219 {
220     /* User mode can only access useg/xuseg */
221 #if defined(TARGET_MIPS64)
222     int user_mode = mmu_idx == MIPS_HFLAG_UM;
223     int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
224     int kernel_mode = !user_mode && !supervisor_mode;
225     int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
226     int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
227     int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
228 #endif
229     int ret = TLBRET_MATCH;
230     /* effective address (modified for KVM T&E kernel segments) */
231     target_ulong address = real_address;
232 
233 #define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
234 #define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
235 #define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
236 #define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
237 #define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
238 
239 #define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
240 #define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
241 
242     if (mips_um_ksegs_enabled()) {
243         /* KVM T&E adds guest kernel segments in useg */
244         if (real_address >= KVM_KSEG0_BASE) {
245             if (real_address < KVM_KSEG2_BASE) {
246                 /* kseg0 */
247                 address += KSEG0_BASE - KVM_KSEG0_BASE;
248             } else if (real_address <= USEG_LIMIT) {
249                 /* kseg2/3 */
250                 address += KSEG2_BASE - KVM_KSEG2_BASE;
251             }
252         }
253     }
254 
255     if (address <= USEG_LIMIT) {
256         /* useg */
257         uint16_t segctl;
258 
259         if (address >= 0x40000000UL) {
260             segctl = env->CP0_SegCtl2;
261         } else {
262             segctl = env->CP0_SegCtl2 >> 16;
263         }
264         ret = get_segctl_physical_address(env, physical, prot,
265                                           real_address, rw, access_type,
266                                           mmu_idx, segctl, 0x3FFFFFFF);
267 #if defined(TARGET_MIPS64)
268     } else if (address < 0x4000000000000000ULL) {
269         /* xuseg */
270         if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
271             ret = env->tlb->map_address(env, physical, prot,
272                                         real_address, rw, access_type);
273         } else {
274             ret = TLBRET_BADADDR;
275         }
276     } else if (address < 0x8000000000000000ULL) {
277         /* xsseg */
278         if ((supervisor_mode || kernel_mode) &&
279             SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
280             ret = env->tlb->map_address(env, physical, prot,
281                                         real_address, rw, access_type);
282         } else {
283             ret = TLBRET_BADADDR;
284         }
285     } else if (address < 0xC000000000000000ULL) {
286         /* xkphys */
287         if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
288             /* KX/SX/UX bit to check for each xkphys EVA access mode */
289             static const uint8_t am_ksux[8] = {
290                 [CP0SC_AM_UK]    = (1u << CP0St_KX),
291                 [CP0SC_AM_MK]    = (1u << CP0St_KX),
292                 [CP0SC_AM_MSK]   = (1u << CP0St_SX),
293                 [CP0SC_AM_MUSK]  = (1u << CP0St_UX),
294                 [CP0SC_AM_MUSUK] = (1u << CP0St_UX),
295                 [CP0SC_AM_USK]   = (1u << CP0St_SX),
296                 [6]              = (1u << CP0St_KX),
297                 [CP0SC_AM_UUSK]  = (1u << CP0St_UX),
298             };
299             unsigned int am = CP0SC_AM_UK;
300             unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
301 
302             if (xr & (1 << ((address >> 59) & 0x7))) {
303                 am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
304             }
305             /* Does CP0_Status.KX/SX/UX permit the access mode (am) */
306             if (env->CP0_Status & am_ksux[am]) {
307                 ret = get_seg_physical_address(env, physical, prot,
308                                                real_address, rw, access_type,
309                                                mmu_idx, am, false, env->PAMask,
310                                                0);
311             } else {
312                 ret = TLBRET_BADADDR;
313             }
314         } else {
315             ret = TLBRET_BADADDR;
316         }
317     } else if (address < 0xFFFFFFFF80000000ULL) {
318         /* xkseg */
319         if (kernel_mode && KX &&
320             address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
321             ret = env->tlb->map_address(env, physical, prot,
322                                         real_address, rw, access_type);
323         } else {
324             ret = TLBRET_BADADDR;
325         }
326 #endif
327     } else if (address < KSEG1_BASE) {
328         /* kseg0 */
329         ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
330                                           access_type, mmu_idx,
331                                           env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
332     } else if (address < KSEG2_BASE) {
333         /* kseg1 */
334         ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
335                                           access_type, mmu_idx,
336                                           env->CP0_SegCtl1, 0x1FFFFFFF);
337     } else if (address < KSEG3_BASE) {
338         /* sseg (kseg2) */
339         ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
340                                           access_type, mmu_idx,
341                                           env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
342     } else {
343         /*
344          * kseg3
345          * XXX: debug segment is not emulated
346          */
347         ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
348                                           access_type, mmu_idx,
349                                           env->CP0_SegCtl0, 0x1FFFFFFF);
350     }
351     return ret;
352 }
353 
cpu_mips_tlb_flush(CPUMIPSState * env)354 void cpu_mips_tlb_flush(CPUMIPSState *env)
355 {
356     /* Flush qemu's TLB and discard all shadowed entries.  */
357     tlb_flush(env_cpu(env));
358     env->tlb->tlb_in_use = env->tlb->nb_tlb;
359 }
360 
361 /* Called for updates to CP0_Status.  */
sync_c0_status(CPUMIPSState * env,CPUMIPSState * cpu,int tc)362 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
363 {
364     int32_t tcstatus, *tcst;
365     uint32_t v = cpu->CP0_Status;
366     uint32_t cu, mx, asid, ksu;
367     uint32_t mask = ((1 << CP0TCSt_TCU3)
368                        | (1 << CP0TCSt_TCU2)
369                        | (1 << CP0TCSt_TCU1)
370                        | (1 << CP0TCSt_TCU0)
371                        | (1 << CP0TCSt_TMX)
372                        | (3 << CP0TCSt_TKSU)
373                        | (0xff << CP0TCSt_TASID));
374 
375     cu = (v >> CP0St_CU0) & 0xf;
376     mx = (v >> CP0St_MX) & 0x1;
377     ksu = (v >> CP0St_KSU) & 0x3;
378     asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
379 
380     tcstatus = cu << CP0TCSt_TCU0;
381     tcstatus |= mx << CP0TCSt_TMX;
382     tcstatus |= ksu << CP0TCSt_TKSU;
383     tcstatus |= asid;
384 
385     if (tc == cpu->current_tc) {
386         tcst = &cpu->active_tc.CP0_TCStatus;
387     } else {
388         tcst = &cpu->tcs[tc].CP0_TCStatus;
389     }
390 
391     *tcst &= ~mask;
392     *tcst |= tcstatus;
393     compute_hflags(cpu);
394 }
395 
cpu_mips_store_status(CPUMIPSState * env,target_ulong val)396 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
397 {
398     uint32_t mask = env->CP0_Status_rw_bitmask;
399     target_ulong old = env->CP0_Status;
400 
401     if (env->insn_flags & ISA_MIPS32R6) {
402         bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
403 #if defined(TARGET_MIPS64)
404         uint32_t ksux = (1 << CP0St_KX) & val;
405         ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
406         ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
407         val = (val & ~(7 << CP0St_UX)) | ksux;
408 #endif
409         if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
410             mask &= ~(3 << CP0St_KSU);
411         }
412         mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
413     }
414 
415     env->CP0_Status = (old & ~mask) | (val & mask);
416 #if defined(TARGET_MIPS64)
417     if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
418         /* Access to at least one of the 64-bit segments has been disabled */
419         tlb_flush(env_cpu(env));
420     }
421 #endif
422     if (env->CP0_Config3 & (1 << CP0C3_MT)) {
423         sync_c0_status(env, env, env->current_tc);
424     } else {
425         compute_hflags(env);
426     }
427 }
428 
cpu_mips_store_cause(CPUMIPSState * env,target_ulong val)429 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
430 {
431     uint32_t mask = 0x00C00300;
432     uint32_t old = env->CP0_Cause;
433     int i;
434 
435     if (env->insn_flags & ISA_MIPS32R2) {
436         mask |= 1 << CP0Ca_DC;
437     }
438     if (env->insn_flags & ISA_MIPS32R6) {
439         mask &= ~((1 << CP0Ca_WP) & val);
440     }
441 
442     env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);
443 
444     if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
445         if (env->CP0_Cause & (1 << CP0Ca_DC)) {
446             cpu_mips_stop_count(env);
447         } else {
448             cpu_mips_start_count(env);
449         }
450     }
451 
452     /* Set/reset software interrupts */
453     for (i = 0 ; i < 2 ; i++) {
454         if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
455             cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
456         }
457     }
458 }
459 #endif
460 
raise_mmu_exception(CPUMIPSState * env,target_ulong address,int rw,int tlb_error)461 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
462                                 int rw, int tlb_error)
463 {
464     CPUState *cs = env_cpu(env);
465     int exception = 0, error_code = 0;
466 
467     if (rw == MMU_INST_FETCH) {
468         error_code |= EXCP_INST_NOTAVAIL;
469     }
470 
471     switch (tlb_error) {
472     default:
473     case TLBRET_BADADDR:
474         /* Reference to kernel address from user mode or supervisor mode */
475         /* Reference to supervisor address from user mode */
476         if (rw == MMU_DATA_STORE) {
477             exception = EXCP_AdES;
478         } else {
479             exception = EXCP_AdEL;
480         }
481         break;
482     case TLBRET_NOMATCH:
483         /* No TLB match for a mapped address */
484         if (rw == MMU_DATA_STORE) {
485             exception = EXCP_TLBS;
486         } else {
487             exception = EXCP_TLBL;
488         }
489         error_code |= EXCP_TLB_NOMATCH;
490         break;
491     case TLBRET_INVALID:
492         /* TLB match with no valid bit */
493         if (rw == MMU_DATA_STORE) {
494             exception = EXCP_TLBS;
495         } else {
496             exception = EXCP_TLBL;
497         }
498         break;
499     case TLBRET_DIRTY:
500         /* TLB match but 'D' bit is cleared */
501         exception = EXCP_LTLBL;
502         break;
503     case TLBRET_XI:
504         /* Execute-Inhibit Exception */
505         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
506             exception = EXCP_TLBXI;
507         } else {
508             exception = EXCP_TLBL;
509         }
510         break;
511     case TLBRET_RI:
512         /* Read-Inhibit Exception */
513         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
514             exception = EXCP_TLBRI;
515         } else {
516             exception = EXCP_TLBL;
517         }
518         break;
519     }
520     /* Raise exception */
521     if (!(env->hflags & MIPS_HFLAG_DM)) {
522         env->CP0_BadVAddr = address;
523     }
524     env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
525                        ((address >> 9) & 0x007ffff0);
526     env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
527                        (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
528                        (address & (TARGET_PAGE_MASK << 1));
529 #if defined(TARGET_MIPS64)
530     env->CP0_EntryHi &= env->SEGMask;
531     env->CP0_XContext =
532         (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
533         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
534         (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
535 #endif
536     cs->exception_index = exception;
537     env->error_code = error_code;
538 }
539 
540 #if !defined(CONFIG_USER_ONLY)
mips_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)541 hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
542 {
543     MIPSCPU *cpu = MIPS_CPU(cs);
544     CPUMIPSState *env = &cpu->env;
545     hwaddr phys_addr;
546     int prot;
547 
548     if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
549                              cpu_mmu_index(env, false)) != 0) {
550         return -1;
551     }
552     return phys_addr;
553 }
554 #endif
555 
556 #if !defined(CONFIG_USER_ONLY)
557 #if !defined(TARGET_MIPS64)
558 
559 /*
560  * Perform hardware page table walk
561  *
562  * Memory accesses are performed using the KERNEL privilege level.
563  * Synchronous exceptions detected on memory accesses cause a silent exit
564  * from page table walking, resulting in a TLB or XTLB Refill exception.
565  *
566  * Implementations are not required to support page table walk memory
567  * accesses from mapped memory regions. When an unsupported access is
568  * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
569  * exception.
570  *
571  * Note that if an exception is caused by AddressTranslation or LoadMemory
572  * functions, the exception is not taken, a silent exit is taken,
573  * resulting in a TLB or XTLB Refill exception.
574  */
575 
get_pte(CPUMIPSState * env,uint64_t vaddr,int entry_size,uint64_t * pte)576 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
577         uint64_t *pte)
578 {
579     if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
580         return false;
581     }
582     if (entry_size == 64) {
583         *pte = cpu_ldq_code(env, vaddr);
584     } else {
585         *pte = cpu_ldl_code(env, vaddr);
586     }
587     return true;
588 }
589 
get_tlb_entry_layout(CPUMIPSState * env,uint64_t entry,int entry_size,int ptei)590 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
591         int entry_size, int ptei)
592 {
593     uint64_t result = entry;
594     uint64_t rixi;
595     if (ptei > entry_size) {
596         ptei -= 32;
597     }
598     result >>= (ptei - 2);
599     rixi = result & 3;
600     result >>= 2;
601     result |= rixi << CP0EnLo_XI;
602     return result;
603 }
604 
walk_directory(CPUMIPSState * env,uint64_t * vaddr,int directory_index,bool * huge_page,bool * hgpg_directory_hit,uint64_t * pw_entrylo0,uint64_t * pw_entrylo1)605 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
606         int directory_index, bool *huge_page, bool *hgpg_directory_hit,
607         uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
608 {
609     int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
610     int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
611     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
612     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
613     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
614     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
615     int directory_shift = (ptew > 1) ? -1 :
616             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
617     int leaf_shift = (ptew > 1) ? -1 :
618             (ptew == 1) ? native_shift + 1 : native_shift;
619     uint32_t direntry_size = 1 << (directory_shift + 3);
620     uint32_t leafentry_size = 1 << (leaf_shift + 3);
621     uint64_t entry;
622     uint64_t paddr;
623     int prot;
624     uint64_t lsb = 0;
625     uint64_t w = 0;
626 
627     if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
628                              ACCESS_INT, cpu_mmu_index(env, false)) !=
629                              TLBRET_MATCH) {
630         /* wrong base address */
631         return 0;
632     }
633     if (!get_pte(env, *vaddr, direntry_size, &entry)) {
634         return 0;
635     }
636 
637     if ((entry & (1 << psn)) && hugepg) {
638         *huge_page = true;
639         *hgpg_directory_hit = true;
640         entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
641         w = directory_index - 1;
642         if (directory_index & 0x1) {
643             /* Generate adjacent page from same PTE for odd TLB page */
644             lsb = (1 << w) >> 6;
645             *pw_entrylo0 = entry & ~lsb; /* even page */
646             *pw_entrylo1 = entry | lsb; /* odd page */
647         } else if (dph) {
648             int oddpagebit = 1 << leaf_shift;
649             uint64_t vaddr2 = *vaddr ^ oddpagebit;
650             if (*vaddr & oddpagebit) {
651                 *pw_entrylo1 = entry;
652             } else {
653                 *pw_entrylo0 = entry;
654             }
655             if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
656                                      ACCESS_INT, cpu_mmu_index(env, false)) !=
657                                      TLBRET_MATCH) {
658                 return 0;
659             }
660             if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
661                 return 0;
662             }
663             entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
664             if (*vaddr & oddpagebit) {
665                 *pw_entrylo0 = entry;
666             } else {
667                 *pw_entrylo1 = entry;
668             }
669         } else {
670             return 0;
671         }
672         return 1;
673     } else {
674         *vaddr = entry;
675         return 2;
676     }
677 }
678 
page_table_walk_refill(CPUMIPSState * env,vaddr address,int rw,int mmu_idx)679 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
680         int mmu_idx)
681 {
682     int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
683     int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
684     int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
685     int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
686     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
687 
688     /* Initial values */
689     bool huge_page = false;
690     bool hgpg_bdhit = false;
691     bool hgpg_gdhit = false;
692     bool hgpg_udhit = false;
693     bool hgpg_mdhit = false;
694 
695     int32_t pw_pagemask = 0;
696     target_ulong pw_entryhi = 0;
697     uint64_t pw_entrylo0 = 0;
698     uint64_t pw_entrylo1 = 0;
699 
700     /* Native pointer size */
701     /*For the 32-bit architectures, this bit is fixed to 0.*/
702     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
703 
704     /* Indices from PWField */
705     int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
706     int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
707     int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
708     int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
709     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
710 
711     /* Indices computed from faulting address */
712     int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
713     int uindex = (address >> pf_udw) & ((1 << udw) - 1);
714     int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
715     int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
716 
717     /* Other HTW configs */
718     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
719 
720     /* HTW Shift values (depend on entry size) */
721     int directory_shift = (ptew > 1) ? -1 :
722             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
723     int leaf_shift = (ptew > 1) ? -1 :
724             (ptew == 1) ? native_shift + 1 : native_shift;
725 
726     /* Offsets into tables */
727     int goffset = gindex << directory_shift;
728     int uoffset = uindex << directory_shift;
729     int moffset = mindex << directory_shift;
730     int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
731     int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
732 
733     uint32_t leafentry_size = 1 << (leaf_shift + 3);
734 
735     /* Starting address - Page Table Base */
736     uint64_t vaddr = env->CP0_PWBase;
737 
738     uint64_t dir_entry;
739     uint64_t paddr;
740     int prot;
741     int m;
742 
743     if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
744         /* walker is unimplemented */
745         return false;
746     }
747     if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
748         /* walker is disabled */
749         return false;
750     }
751     if (!(gdw > 0 || udw > 0 || mdw > 0)) {
752         /* no structure to walk */
753         return false;
754     }
755     if ((directory_shift == -1) || (leaf_shift == -1)) {
756         return false;
757     }
758 
759     /* Global Directory */
760     if (gdw > 0) {
761         vaddr |= goffset;
762         switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
763                                &pw_entrylo0, &pw_entrylo1))
764         {
765         case 0:
766             return false;
767         case 1:
768             goto refill;
769         case 2:
770         default:
771             break;
772         }
773     }
774 
775     /* Upper directory */
776     if (udw > 0) {
777         vaddr |= uoffset;
778         switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
779                                &pw_entrylo0, &pw_entrylo1))
780         {
781         case 0:
782             return false;
783         case 1:
784             goto refill;
785         case 2:
786         default:
787             break;
788         }
789     }
790 
791     /* Middle directory */
792     if (mdw > 0) {
793         vaddr |= moffset;
794         switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
795                                &pw_entrylo0, &pw_entrylo1))
796         {
797         case 0:
798             return false;
799         case 1:
800             goto refill;
801         case 2:
802         default:
803             break;
804         }
805     }
806 
807     /* Leaf Level Page Table - First half of PTE pair */
808     vaddr |= ptoffset0;
809     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
810                              ACCESS_INT, cpu_mmu_index(env, false)) !=
811                              TLBRET_MATCH) {
812         return false;
813     }
814     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
815         return false;
816     }
817     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
818     pw_entrylo0 = dir_entry;
819 
820     /* Leaf Level Page Table - Second half of PTE pair */
821     vaddr |= ptoffset1;
822     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
823                              ACCESS_INT, cpu_mmu_index(env, false)) !=
824                              TLBRET_MATCH) {
825         return false;
826     }
827     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
828         return false;
829     }
830     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
831     pw_entrylo1 = dir_entry;
832 
833 refill:
834 
835     m = (1 << pf_ptw) - 1;
836 
837     if (huge_page) {
838         switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
839                 hgpg_mdhit)
840         {
841         case 4:
842             m = (1 << pf_gdw) - 1;
843             if (pf_gdw & 1) {
844                 m >>= 1;
845             }
846             break;
847         case 2:
848             m = (1 << pf_udw) - 1;
849             if (pf_udw & 1) {
850                 m >>= 1;
851             }
852             break;
853         case 1:
854             m = (1 << pf_mdw) - 1;
855             if (pf_mdw & 1) {
856                 m >>= 1;
857             }
858             break;
859         }
860     }
861     pw_pagemask = m >> 12;
862     update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
863     pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
864     {
865         target_ulong tmp_entryhi = env->CP0_EntryHi;
866         int32_t tmp_pagemask = env->CP0_PageMask;
867         uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
868         uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
869 
870         env->CP0_EntryHi = pw_entryhi;
871         env->CP0_PageMask = pw_pagemask;
872         env->CP0_EntryLo0 = pw_entrylo0;
873         env->CP0_EntryLo1 = pw_entrylo1;
874 
875         /*
876          * The hardware page walker inserts a page into the TLB in a manner
877          * identical to a TLBWR instruction as executed by the software refill
878          * handler.
879          */
880         r4k_helper_tlbwr(env);
881 
882         env->CP0_EntryHi = tmp_entryhi;
883         env->CP0_PageMask = tmp_pagemask;
884         env->CP0_EntryLo0 = tmp_entrylo0;
885         env->CP0_EntryLo1 = tmp_entrylo1;
886     }
887     return true;
888 }
889 #endif
890 #endif
891 
mips_cpu_tlb_fill(CPUState * cs,vaddr address,int size,MMUAccessType access_type,int mmu_idx,bool probe,uintptr_t retaddr)892 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
893                        MMUAccessType access_type, int mmu_idx,
894                        bool probe, uintptr_t retaddr)
895 {
896     MIPSCPU *cpu = MIPS_CPU(cs);
897     CPUMIPSState *env = &cpu->env;
898 #if !defined(CONFIG_USER_ONLY)
899     hwaddr physical;
900     int prot;
901     int mips_access_type;
902 #endif
903     int ret = TLBRET_BADADDR;
904 
905     /* data access */
906 #if !defined(CONFIG_USER_ONLY)
907     /* XXX: put correct access by using cpu_restore_state() correctly */
908     mips_access_type = ACCESS_INT;
909     ret = get_physical_address(env, &physical, &prot, address,
910                                access_type, mips_access_type, mmu_idx);
911     switch (ret) {
912     case TLBRET_MATCH:
913         qemu_log_mask(CPU_LOG_MMU,
914                       "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
915                       " prot %d\n", __func__, address, physical, prot);
916         break;
917     default:
918         qemu_log_mask(CPU_LOG_MMU,
919                       "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
920                       ret);
921         break;
922     }
923     if (ret == TLBRET_MATCH) {
924         tlb_set_page(cs, address & TARGET_PAGE_MASK,
925                      physical & TARGET_PAGE_MASK, prot,
926                      mmu_idx, TARGET_PAGE_SIZE);
927         return true;
928     }
929 #if !defined(TARGET_MIPS64)
930     if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
931         /*
932          * Memory reads during hardware page table walking are performed
933          * as if they were kernel-mode load instructions.
934          */
935         int mode = (env->hflags & MIPS_HFLAG_KSU);
936         bool ret_walker;
937         env->hflags &= ~MIPS_HFLAG_KSU;
938         ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx);
939         env->hflags |= mode;
940         if (ret_walker) {
941             ret = get_physical_address(env, &physical, &prot, address,
942                                        access_type, mips_access_type, mmu_idx);
943             if (ret == TLBRET_MATCH) {
944                 tlb_set_page(cs, address & TARGET_PAGE_MASK,
945                              physical & TARGET_PAGE_MASK, prot,
946                              mmu_idx, TARGET_PAGE_SIZE);
947                 return true;
948             }
949         }
950     }
951 #endif
952     if (probe) {
953         return false;
954     }
955 #endif
956 
957     raise_mmu_exception(env, address, access_type, ret);
958     do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
959 }
960 
961 #ifndef CONFIG_USER_ONLY
cpu_mips_translate_address(CPUMIPSState * env,target_ulong address,int rw)962 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
963                                   int rw)
964 {
965     hwaddr physical;
966     int prot;
967     int access_type;
968     int ret = 0;
969 
970     /* data access */
971     access_type = ACCESS_INT;
972     ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
973                                cpu_mmu_index(env, false));
974     if (ret != TLBRET_MATCH) {
975         raise_mmu_exception(env, address, rw, ret);
976         return -1LL;
977     } else {
978         return physical;
979     }
980 }
981 
982 static const char * const excp_names[EXCP_LAST + 1] = {
983     [EXCP_RESET] = "reset",
984     [EXCP_SRESET] = "soft reset",
985     [EXCP_DSS] = "debug single step",
986     [EXCP_DINT] = "debug interrupt",
987     [EXCP_NMI] = "non-maskable interrupt",
988     [EXCP_MCHECK] = "machine check",
989     [EXCP_EXT_INTERRUPT] = "interrupt",
990     [EXCP_DFWATCH] = "deferred watchpoint",
991     [EXCP_DIB] = "debug instruction breakpoint",
992     [EXCP_IWATCH] = "instruction fetch watchpoint",
993     [EXCP_AdEL] = "address error load",
994     [EXCP_AdES] = "address error store",
995     [EXCP_TLBF] = "TLB refill",
996     [EXCP_IBE] = "instruction bus error",
997     [EXCP_DBp] = "debug breakpoint",
998     [EXCP_SYSCALL] = "syscall",
999     [EXCP_BREAK] = "break",
1000     [EXCP_CpU] = "coprocessor unusable",
1001     [EXCP_RI] = "reserved instruction",
1002     [EXCP_OVERFLOW] = "arithmetic overflow",
1003     [EXCP_TRAP] = "trap",
1004     [EXCP_FPE] = "floating point",
1005     [EXCP_DDBS] = "debug data break store",
1006     [EXCP_DWATCH] = "data watchpoint",
1007     [EXCP_LTLBL] = "TLB modify",
1008     [EXCP_TLBL] = "TLB load",
1009     [EXCP_TLBS] = "TLB store",
1010     [EXCP_DBE] = "data bus error",
1011     [EXCP_DDBL] = "debug data break load",
1012     [EXCP_THREAD] = "thread",
1013     [EXCP_MDMX] = "MDMX",
1014     [EXCP_C2E] = "precise coprocessor 2",
1015     [EXCP_CACHE] = "cache error",
1016     [EXCP_TLBXI] = "TLB execute-inhibit",
1017     [EXCP_TLBRI] = "TLB read-inhibit",
1018     [EXCP_MSADIS] = "MSA disabled",
1019     [EXCP_MSAFPE] = "MSA floating point",
1020 };
1021 #endif
1022 
exception_resume_pc(CPUMIPSState * env)1023 target_ulong exception_resume_pc(CPUMIPSState *env)
1024 {
1025     target_ulong bad_pc;
1026     target_ulong isa_mode;
1027 
1028     isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
1029     bad_pc = env->active_tc.PC | isa_mode;
1030     if (env->hflags & MIPS_HFLAG_BMASK) {
1031         /*
1032          * If the exception was raised from a delay slot, come back to
1033          * the jump.
1034          */
1035         bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1036     }
1037 
1038     return bad_pc;
1039 }
1040 
1041 #if !defined(CONFIG_USER_ONLY)
set_hflags_for_handler(CPUMIPSState * env)1042 static void set_hflags_for_handler(CPUMIPSState *env)
1043 {
1044     /* Exception handlers are entered in 32-bit mode.  */
1045     env->hflags &= ~(MIPS_HFLAG_M16);
1046     /* ...except that microMIPS lets you choose.  */
1047     if (env->insn_flags & ASE_MICROMIPS) {
1048         env->hflags |= (!!(env->CP0_Config3 &
1049                            (1 << CP0C3_ISA_ON_EXC))
1050                         << MIPS_HFLAG_M16_SHIFT);
1051     }
1052 }
1053 
set_badinstr_registers(CPUMIPSState * env)1054 static inline void set_badinstr_registers(CPUMIPSState *env)
1055 {
1056     if (env->insn_flags & ISA_NANOMIPS32) {
1057         if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1058             uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1059             if ((instr & 0x10000000) == 0) {
1060                 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1061             }
1062             env->CP0_BadInstr = instr;
1063 
1064             if ((instr & 0xFC000000) == 0x60000000) {
1065                 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1066                 env->CP0_BadInstrX = instr;
1067             }
1068         }
1069         return;
1070     }
1071 
1072     if (env->hflags & MIPS_HFLAG_M16) {
1073         /* TODO: add BadInstr support for microMIPS */
1074         return;
1075     }
1076     if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1077         env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1078     }
1079     if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1080         (env->hflags & MIPS_HFLAG_BMASK)) {
1081         env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1082     }
1083 }
1084 #endif
1085 
mips_cpu_do_interrupt(CPUState * cs)1086 void mips_cpu_do_interrupt(CPUState *cs)
1087 {
1088 #if !defined(CONFIG_USER_ONLY)
1089     MIPSCPU *cpu = MIPS_CPU(cs);
1090     CPUMIPSState *env = &cpu->env;
1091     bool update_badinstr = 0;
1092     target_ulong offset;
1093     int cause = -1;
1094     const char *name;
1095 
1096     if (qemu_loglevel_mask(CPU_LOG_INT)
1097         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1098         if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
1099             name = "unknown";
1100         } else {
1101             name = excp_names[cs->exception_index];
1102         }
1103 
1104         qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1105                  " %s exception\n",
1106                  __func__, env->active_tc.PC, env->CP0_EPC, name);
1107     }
1108     if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1109         (env->hflags & MIPS_HFLAG_DM)) {
1110         cs->exception_index = EXCP_DINT;
1111     }
1112     offset = 0x180;
1113     switch (cs->exception_index) {
1114     case EXCP_DSS:
1115         env->CP0_Debug |= 1 << CP0DB_DSS;
1116         /*
1117          * Debug single step cannot be raised inside a delay slot and
1118          * resume will always occur on the next instruction
1119          * (but we assume the pc has always been updated during
1120          * code translation).
1121          */
1122         env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1123         goto enter_debug_mode;
1124     case EXCP_DINT:
1125         env->CP0_Debug |= 1 << CP0DB_DINT;
1126         goto set_DEPC;
1127     case EXCP_DIB:
1128         env->CP0_Debug |= 1 << CP0DB_DIB;
1129         goto set_DEPC;
1130     case EXCP_DBp:
1131         env->CP0_Debug |= 1 << CP0DB_DBp;
1132         /* Setup DExcCode - SDBBP instruction */
1133         env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1134                          (9 << CP0DB_DEC);
1135         goto set_DEPC;
1136     case EXCP_DDBS:
1137         env->CP0_Debug |= 1 << CP0DB_DDBS;
1138         goto set_DEPC;
1139     case EXCP_DDBL:
1140         env->CP0_Debug |= 1 << CP0DB_DDBL;
1141     set_DEPC:
1142         env->CP0_DEPC = exception_resume_pc(env);
1143         env->hflags &= ~MIPS_HFLAG_BMASK;
1144  enter_debug_mode:
1145         if (env->insn_flags & ISA_MIPS3) {
1146             env->hflags |= MIPS_HFLAG_64;
1147             if (!(env->insn_flags & ISA_MIPS64R6) ||
1148                 env->CP0_Status & (1 << CP0St_KX)) {
1149                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1150             }
1151         }
1152         env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1153         env->hflags &= ~(MIPS_HFLAG_KSU);
1154         /* EJTAG probe trap enable is not implemented... */
1155         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1156             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1157         }
1158         env->active_tc.PC = env->exception_base + 0x480;
1159         set_hflags_for_handler(env);
1160         break;
1161     case EXCP_RESET:
1162         cpu_reset(CPU(cpu));
1163         break;
1164     case EXCP_SRESET:
1165         env->CP0_Status |= (1 << CP0St_SR);
1166         memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1167         goto set_error_EPC;
1168     case EXCP_NMI:
1169         env->CP0_Status |= (1 << CP0St_NMI);
1170  set_error_EPC:
1171         env->CP0_ErrorEPC = exception_resume_pc(env);
1172         env->hflags &= ~MIPS_HFLAG_BMASK;
1173         env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1174         if (env->insn_flags & ISA_MIPS3) {
1175             env->hflags |= MIPS_HFLAG_64;
1176             if (!(env->insn_flags & ISA_MIPS64R6) ||
1177                 env->CP0_Status & (1 << CP0St_KX)) {
1178                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1179             }
1180         }
1181         env->hflags |= MIPS_HFLAG_CP0;
1182         env->hflags &= ~(MIPS_HFLAG_KSU);
1183         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1184             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1185         }
1186         env->active_tc.PC = env->exception_base;
1187         set_hflags_for_handler(env);
1188         break;
1189     case EXCP_EXT_INTERRUPT:
1190         cause = 0;
1191         if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1192             uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1193 
1194             if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1195                 offset = 0x200;
1196             } else {
1197                 uint32_t vector = 0;
1198                 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1199 
1200                 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1201                     /*
1202                      * For VEIC mode, the external interrupt controller feeds
1203                      * the vector through the CP0Cause IP lines.
1204                      */
1205                     vector = pending;
1206                 } else {
1207                     /*
1208                      * Vectored Interrupts
1209                      * Mask with Status.IM7-IM0 to get enabled interrupts.
1210                      */
1211                     pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1212                     /* Find the highest-priority interrupt. */
1213                     while (pending >>= 1) {
1214                         vector++;
1215                     }
1216                 }
1217                 offset = 0x200 + (vector * (spacing << 5));
1218             }
1219         }
1220         goto set_EPC;
1221     case EXCP_LTLBL:
1222         cause = 1;
1223         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1224         goto set_EPC;
1225     case EXCP_TLBL:
1226         cause = 2;
1227         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1228         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1229             !(env->CP0_Status & (1 << CP0St_EXL))) {
1230 #if defined(TARGET_MIPS64)
1231             int R = env->CP0_BadVAddr >> 62;
1232             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1233             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1234 
1235             if ((R != 0 || UX) && (R != 3 || KX) &&
1236                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1237                 offset = 0x080;
1238             } else {
1239 #endif
1240                 offset = 0x000;
1241 #if defined(TARGET_MIPS64)
1242             }
1243 #endif
1244         }
1245         goto set_EPC;
1246     case EXCP_TLBS:
1247         cause = 3;
1248         update_badinstr = 1;
1249         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1250             !(env->CP0_Status & (1 << CP0St_EXL))) {
1251 #if defined(TARGET_MIPS64)
1252             int R = env->CP0_BadVAddr >> 62;
1253             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1254             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1255 
1256             if ((R != 0 || UX) && (R != 3 || KX) &&
1257                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1258                 offset = 0x080;
1259             } else {
1260 #endif
1261                 offset = 0x000;
1262 #if defined(TARGET_MIPS64)
1263             }
1264 #endif
1265         }
1266         goto set_EPC;
1267     case EXCP_AdEL:
1268         cause = 4;
1269         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1270         goto set_EPC;
1271     case EXCP_AdES:
1272         cause = 5;
1273         update_badinstr = 1;
1274         goto set_EPC;
1275     case EXCP_IBE:
1276         cause = 6;
1277         goto set_EPC;
1278     case EXCP_DBE:
1279         cause = 7;
1280         goto set_EPC;
1281     case EXCP_SYSCALL:
1282         cause = 8;
1283         update_badinstr = 1;
1284         goto set_EPC;
1285     case EXCP_BREAK:
1286         cause = 9;
1287         update_badinstr = 1;
1288         goto set_EPC;
1289     case EXCP_RI:
1290         cause = 10;
1291         update_badinstr = 1;
1292         goto set_EPC;
1293     case EXCP_CpU:
1294         cause = 11;
1295         update_badinstr = 1;
1296         env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1297                          (env->error_code << CP0Ca_CE);
1298         goto set_EPC;
1299     case EXCP_OVERFLOW:
1300         cause = 12;
1301         update_badinstr = 1;
1302         goto set_EPC;
1303     case EXCP_TRAP:
1304         cause = 13;
1305         update_badinstr = 1;
1306         goto set_EPC;
1307     case EXCP_MSAFPE:
1308         cause = 14;
1309         update_badinstr = 1;
1310         goto set_EPC;
1311     case EXCP_FPE:
1312         cause = 15;
1313         update_badinstr = 1;
1314         goto set_EPC;
1315     case EXCP_C2E:
1316         cause = 18;
1317         goto set_EPC;
1318     case EXCP_TLBRI:
1319         cause = 19;
1320         update_badinstr = 1;
1321         goto set_EPC;
1322     case EXCP_TLBXI:
1323         cause = 20;
1324         goto set_EPC;
1325     case EXCP_MSADIS:
1326         cause = 21;
1327         update_badinstr = 1;
1328         goto set_EPC;
1329     case EXCP_MDMX:
1330         cause = 22;
1331         goto set_EPC;
1332     case EXCP_DWATCH:
1333         cause = 23;
1334         /* XXX: TODO: manage deferred watch exceptions */
1335         goto set_EPC;
1336     case EXCP_MCHECK:
1337         cause = 24;
1338         goto set_EPC;
1339     case EXCP_THREAD:
1340         cause = 25;
1341         goto set_EPC;
1342     case EXCP_DSPDIS:
1343         cause = 26;
1344         goto set_EPC;
1345     case EXCP_CACHE:
1346         cause = 30;
1347         offset = 0x100;
1348  set_EPC:
1349         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1350             env->CP0_EPC = exception_resume_pc(env);
1351             if (update_badinstr) {
1352                 set_badinstr_registers(env);
1353             }
1354             if (env->hflags & MIPS_HFLAG_BMASK) {
1355                 env->CP0_Cause |= (1U << CP0Ca_BD);
1356             } else {
1357                 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1358             }
1359             env->CP0_Status |= (1 << CP0St_EXL);
1360             if (env->insn_flags & ISA_MIPS3) {
1361                 env->hflags |= MIPS_HFLAG_64;
1362                 if (!(env->insn_flags & ISA_MIPS64R6) ||
1363                     env->CP0_Status & (1 << CP0St_KX)) {
1364                     env->hflags &= ~MIPS_HFLAG_AWRAP;
1365                 }
1366             }
1367             env->hflags |= MIPS_HFLAG_CP0;
1368             env->hflags &= ~(MIPS_HFLAG_KSU);
1369         }
1370         env->hflags &= ~MIPS_HFLAG_BMASK;
1371         if (env->CP0_Status & (1 << CP0St_BEV)) {
1372             env->active_tc.PC = env->exception_base + 0x200;
1373         } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1374                                     env->CP0_Config5 & (1 << CP0C5_CV))) {
1375             /* Force KSeg1 for cache errors */
1376             env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1377         } else {
1378             env->active_tc.PC = env->CP0_EBase & ~0xfff;
1379         }
1380 
1381         env->active_tc.PC += offset;
1382         set_hflags_for_handler(env);
1383         env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1384                          (cause << CP0Ca_EC);
1385         break;
1386     default:
1387         abort();
1388     }
1389     if (qemu_loglevel_mask(CPU_LOG_INT)
1390         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1391         qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1392                  "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1393                  __func__, env->active_tc.PC, env->CP0_EPC, cause,
1394                  env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1395                  env->CP0_DEPC);
1396     }
1397 #endif
1398     cs->exception_index = EXCP_NONE;
1399 }
1400 
mips_cpu_exec_interrupt(CPUState * cs,int interrupt_request)1401 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1402 {
1403     if (interrupt_request & CPU_INTERRUPT_HARD) {
1404         MIPSCPU *cpu = MIPS_CPU(cs);
1405         CPUMIPSState *env = &cpu->env;
1406 
1407         if (cpu_mips_hw_interrupts_enabled(env) &&
1408             cpu_mips_hw_interrupts_pending(env)) {
1409             /* Raise it */
1410             cs->exception_index = EXCP_EXT_INTERRUPT;
1411             env->error_code = 0;
1412             mips_cpu_do_interrupt(cs);
1413             return true;
1414         }
1415     }
1416     return false;
1417 }
1418 
1419 #if !defined(CONFIG_USER_ONLY)
r4k_invalidate_tlb(CPUMIPSState * env,int idx,int use_extra)1420 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1421 {
1422     CPUState *cs = env_cpu(env);
1423     r4k_tlb_t *tlb;
1424     target_ulong addr;
1425     target_ulong end;
1426     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1427     uint32_t MMID = env->CP0_MemoryMapID;
1428     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1429     uint32_t tlb_mmid;
1430     target_ulong mask;
1431 
1432     MMID = mi ? MMID : (uint32_t) ASID;
1433 
1434     tlb = &env->tlb->mmu.r4k.tlb[idx];
1435     /*
1436      * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1437      * flush these entries again.
1438      */
1439     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1440     if (tlb->G == 0 && tlb_mmid != MMID) {
1441         return;
1442     }
1443 
1444     if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1445         /*
1446          * For tlbwr, we can shadow the discarded entry into
1447          * a new (fake) TLB entry, as long as the guest can not
1448          * tell that it's there.
1449          */
1450         env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1451         env->tlb->tlb_in_use++;
1452         return;
1453     }
1454 
1455     /* 1k pages are not supported. */
1456     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1457     if (tlb->V0) {
1458         addr = tlb->VPN & ~mask;
1459 #if defined(TARGET_MIPS64)
1460         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1461             addr |= 0x3FFFFF0000000000ULL;
1462         }
1463 #endif
1464         end = addr | (mask >> 1);
1465         while (addr < end) {
1466             tlb_flush_page(cs, addr);
1467             addr += TARGET_PAGE_SIZE;
1468         }
1469     }
1470     if (tlb->V1) {
1471         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1472 #if defined(TARGET_MIPS64)
1473         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1474             addr |= 0x3FFFFF0000000000ULL;
1475         }
1476 #endif
1477         end = addr | mask;
1478         while (addr - 1 < end) {
1479             tlb_flush_page(cs, addr);
1480             addr += TARGET_PAGE_SIZE;
1481         }
1482     }
1483 }
1484 #endif
1485 
do_raise_exception_err(CPUMIPSState * env,uint32_t exception,int error_code,uintptr_t pc)1486 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
1487                                           uint32_t exception,
1488                                           int error_code,
1489                                           uintptr_t pc)
1490 {
1491     CPUState *cs = env_cpu(env);
1492 
1493     qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
1494                   __func__, exception, error_code);
1495     cs->exception_index = exception;
1496     env->error_code = error_code;
1497 
1498     cpu_loop_exit_restore(cs, pc);
1499 }
1500 
mips_cpu_add_definition(gpointer data,gpointer user_data)1501 static void mips_cpu_add_definition(gpointer data, gpointer user_data)
1502 {
1503     ObjectClass *oc = data;
1504     CpuDefinitionInfoList **cpu_list = user_data;
1505     CpuDefinitionInfoList *entry;
1506     CpuDefinitionInfo *info;
1507     const char *typename;
1508 
1509     typename = object_class_get_name(oc);
1510     info = g_malloc0(sizeof(*info));
1511     info->name = g_strndup(typename,
1512                            strlen(typename) - strlen("-" TYPE_MIPS_CPU));
1513     info->q_typename = g_strdup(typename);
1514 
1515     entry = g_malloc0(sizeof(*entry));
1516     entry->value = info;
1517     entry->next = *cpu_list;
1518     *cpu_list = entry;
1519 }
1520 
qmp_query_cpu_definitions(Error ** errp)1521 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
1522 {
1523     CpuDefinitionInfoList *cpu_list = NULL;
1524     GSList *list;
1525 
1526     list = object_class_get_list(TYPE_MIPS_CPU, false);
1527     g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
1528     g_slist_free(list);
1529 
1530     return cpu_list;
1531 }
1532