1 /*
2  * QEMU TILE-Gx helpers
3  *
4  *  Copyright (c) 2015 Chen Gang
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "qemu-common.h"
25 #include "exec/helper-proto.h"
26 #include <zlib.h> /* For crc32 */
27 #include "syscall_defs.h"
28 
helper_exception(CPUTLGState * env,uint32_t excp)29 void helper_exception(CPUTLGState *env, uint32_t excp)
30 {
31     CPUState *cs = CPU(tilegx_env_get_cpu(env));
32 
33     cs->exception_index = excp;
34     cpu_loop_exit(cs);
35 }
36 
helper_ext01_ics(CPUTLGState * env)37 void helper_ext01_ics(CPUTLGState *env)
38 {
39     uint64_t val = env->spregs[TILEGX_SPR_EX_CONTEXT_0_1];
40 
41     switch (val) {
42     case 0:
43     case 1:
44         env->spregs[TILEGX_SPR_CRITICAL_SEC] = val;
45         break;
46     default:
47 #if defined(CONFIG_USER_ONLY)
48         env->signo = TARGET_SIGILL;
49         env->sigcode = TARGET_ILL_ILLOPC;
50         helper_exception(env, TILEGX_EXCP_SIGNAL);
51 #else
52         helper_exception(env, TILEGX_EXCP_OPCODE_UNIMPLEMENTED);
53 #endif
54         break;
55     }
56 }
57 
helper_revbits(uint64_t arg)58 uint64_t helper_revbits(uint64_t arg)
59 {
60     return revbit64(arg);
61 }
62 
63 /*
64  * Functional Description
65  *     uint64_t a = rf[SrcA];
66  *     uint64_t b = rf[SrcB];
67  *     uint64_t d = rf[Dest];
68  *     uint64_t output = 0;
69  *     unsigned int counter;
70  *     for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
71  *     {
72  *         int sel = getByte (b, counter) & 0xf;
73  *         uint8_t byte = (sel < 8) ? getByte (d, sel) : getByte (a, (sel - 8));
74  *         output = setByte (output, counter, byte);
75  *     }
76  *     rf[Dest] = output;
77  */
helper_shufflebytes(uint64_t dest,uint64_t srca,uint64_t srcb)78 uint64_t helper_shufflebytes(uint64_t dest, uint64_t srca, uint64_t srcb)
79 {
80     uint64_t vdst = 0;
81     int count;
82 
83     for (count = 0; count < 64; count += 8) {
84         uint64_t sel = srcb >> count;
85         uint64_t src = (sel & 8) ? srca : dest;
86         vdst |= extract64(src, (sel & 7) * 8, 8) << count;
87     }
88 
89     return vdst;
90 }
91 
helper_crc32_8(uint64_t accum,uint64_t input)92 uint64_t helper_crc32_8(uint64_t accum, uint64_t input)
93 {
94     uint8_t buf = input;
95 
96     /* zlib crc32 converts the accumulator and output to one's complement.  */
97     return crc32(accum ^ 0xffffffff, &buf, 1) ^ 0xffffffff;
98 }
99 
helper_crc32_32(uint64_t accum,uint64_t input)100 uint64_t helper_crc32_32(uint64_t accum, uint64_t input)
101 {
102     uint8_t buf[4];
103 
104     stl_le_p(buf, input);
105 
106     /* zlib crc32 converts the accumulator and output to one's complement.  */
107     return crc32(accum ^ 0xffffffff, buf, 4) ^ 0xffffffff;
108 }
109 
helper_cmula(uint64_t srcd,uint64_t srca,uint64_t srcb)110 uint64_t helper_cmula(uint64_t srcd, uint64_t srca, uint64_t srcb)
111 {
112     uint32_t reala = (int16_t)srca;
113     uint32_t imaga = (int16_t)(srca >> 16);
114     uint32_t realb = (int16_t)srcb;
115     uint32_t imagb = (int16_t)(srcb >> 16);
116     uint32_t reald = srcd;
117     uint32_t imagd = srcd >> 32;
118     uint32_t realr = reala * realb - imaga * imagb + reald;
119     uint32_t imagr = reala * imagb + imaga * realb + imagd;
120 
121     return deposit64(realr, 32, 32, imagr);
122 }
123 
helper_cmulaf(uint64_t srcd,uint64_t srca,uint64_t srcb)124 uint64_t helper_cmulaf(uint64_t srcd, uint64_t srca, uint64_t srcb)
125 {
126     uint32_t reala = (int16_t)srca;
127     uint32_t imaga = (int16_t)(srca >> 16);
128     uint32_t realb = (int16_t)srcb;
129     uint32_t imagb = (int16_t)(srcb >> 16);
130     uint32_t reald = (int16_t)srcd;
131     uint32_t imagd = (int16_t)(srcd >> 16);
132     int32_t realr = reala * realb - imaga * imagb;
133     int32_t imagr = reala * imagb + imaga * realb;
134 
135     return deposit32((realr >> 15) + reald, 16, 16, (imagr >> 15) + imagd);
136 }
137 
helper_cmul2(uint64_t srca,uint64_t srcb,int shift,int round)138 uint64_t helper_cmul2(uint64_t srca, uint64_t srcb, int shift, int round)
139 {
140     uint32_t reala = (int16_t)srca;
141     uint32_t imaga = (int16_t)(srca >> 16);
142     uint32_t realb = (int16_t)srcb;
143     uint32_t imagb = (int16_t)(srcb >> 16);
144     int32_t realr = reala * realb - imaga * imagb + round;
145     int32_t imagr = reala * imagb + imaga * realb + round;
146 
147     return deposit32(realr >> shift, 16, 16, imagr >> shift);
148 }
149