1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2010-2015, NVIDIA CORPORATION. All rights reserved.
4 */
5
6 /* Tegra SoC common clock control functions */
7
8 #include <common.h>
9 #include <div64.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <asm/io.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/ap.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/pmc.h>
18 #include <asm/arch-tegra/timer.h>
19
20 /*
21 * This is our record of the current clock rate of each clock. We don't
22 * fill all of these in since we are only really interested in clocks which
23 * we use as parents.
24 */
25 static unsigned pll_rate[CLOCK_ID_COUNT];
26
27 /*
28 * The oscillator frequency is fixed to one of four set values. Based on this
29 * the other clocks are set up appropriately.
30 */
31 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
32 13000000,
33 19200000,
34 12000000,
35 26000000,
36 38400000,
37 48000000,
38 };
39
40 /* return 1 if a peripheral ID is in range */
41 #define clock_type_id_isvalid(id) ((id) >= 0 && \
42 (id) < CLOCK_TYPE_COUNT)
43
44 char pllp_valid = 1; /* PLLP is set up correctly */
45
46 /* return 1 if a periphc_internal_id is in range */
47 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
48 (id) < PERIPHC_COUNT)
49
50 /* number of clock outputs of a PLL */
51 static const u8 pll_num_clkouts[] = {
52 1, /* PLLC */
53 1, /* PLLM */
54 4, /* PLLP */
55 1, /* PLLA */
56 0, /* PLLU */
57 0, /* PLLD */
58 };
59
clock_get_osc_bypass(void)60 int clock_get_osc_bypass(void)
61 {
62 struct clk_rst_ctlr *clkrst =
63 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
64 u32 reg;
65
66 reg = readl(&clkrst->crc_osc_ctrl);
67 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
68 }
69
70 /* Returns a pointer to the registers of the given pll */
get_pll(enum clock_id clkid)71 static struct clk_pll *get_pll(enum clock_id clkid)
72 {
73 struct clk_rst_ctlr *clkrst =
74 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
75
76 assert(clock_id_is_pll(clkid));
77 if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
78 debug("%s: Invalid PLL %d\n", __func__, clkid);
79 return NULL;
80 }
81 return &clkrst->crc_pll[clkid];
82 }
83
clock_get_simple_pll(enum clock_id clkid)84 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
85 {
86 return NULL;
87 }
88
clock_ll_read_pll(enum clock_id clkid,u32 * divm,u32 * divn,u32 * divp,u32 * cpcon,u32 * lfcon)89 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
90 u32 *divp, u32 *cpcon, u32 *lfcon)
91 {
92 struct clk_pll *pll = get_pll(clkid);
93 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
94 u32 data;
95
96 assert(clkid != CLOCK_ID_USB);
97
98 /* Safety check, adds to code size but is small */
99 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
100 return -1;
101 data = readl(&pll->pll_base);
102 *divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
103 *divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
104 *divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
105 data = readl(&pll->pll_misc);
106 /* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
107 *cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
108 *lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
109
110 return 0;
111 }
112
clock_start_pll(enum clock_id clkid,u32 divm,u32 divn,u32 divp,u32 cpcon,u32 lfcon)113 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
114 u32 divp, u32 cpcon, u32 lfcon)
115 {
116 struct clk_pll *pll = NULL;
117 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
118 struct clk_pll_simple *simple_pll = NULL;
119 u32 misc_data, data;
120
121 if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
122 pll = get_pll(clkid);
123 } else {
124 simple_pll = clock_get_simple_pll(clkid);
125 if (!simple_pll) {
126 debug("%s: Uknown simple PLL %d\n", __func__, clkid);
127 return 0;
128 }
129 }
130
131 /*
132 * pllinfo has the m/n/p and kcp/kvco mask and shift
133 * values for all of the PLLs used in U-Boot, with any
134 * SoC differences accounted for.
135 *
136 * Preserve EN_LOCKDET, etc.
137 */
138 if (pll)
139 misc_data = readl(&pll->pll_misc);
140 else
141 misc_data = readl(&simple_pll->pll_misc);
142 misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
143 misc_data |= cpcon << pllinfo->kcp_shift;
144 misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
145 misc_data |= lfcon << pllinfo->kvco_shift;
146
147 data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
148 data |= divp << pllinfo->p_shift;
149 data |= (1 << PLL_ENABLE_SHIFT); /* BYPASS s/b 0 already */
150
151 if (pll) {
152 writel(misc_data, &pll->pll_misc);
153 writel(data, &pll->pll_base);
154 } else {
155 writel(misc_data, &simple_pll->pll_misc);
156 writel(data, &simple_pll->pll_base);
157 }
158
159 /* calculate the stable time */
160 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
161 }
162
clock_ll_set_source_divisor(enum periph_id periph_id,unsigned source,unsigned divisor)163 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
164 unsigned divisor)
165 {
166 u32 *reg = get_periph_source_reg(periph_id);
167 u32 value;
168
169 value = readl(reg);
170
171 value &= ~OUT_CLK_SOURCE_31_30_MASK;
172 value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
173
174 value &= ~OUT_CLK_DIVISOR_MASK;
175 value |= divisor << OUT_CLK_DIVISOR_SHIFT;
176
177 writel(value, reg);
178 }
179
clock_ll_set_source_bits(enum periph_id periph_id,int mux_bits,unsigned source)180 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
181 unsigned source)
182 {
183 u32 *reg = get_periph_source_reg(periph_id);
184
185 switch (mux_bits) {
186 case MASK_BITS_31_30:
187 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
188 source << OUT_CLK_SOURCE_31_30_SHIFT);
189 break;
190
191 case MASK_BITS_31_29:
192 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
193 source << OUT_CLK_SOURCE_31_29_SHIFT);
194 break;
195
196 case MASK_BITS_31_28:
197 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
198 source << OUT_CLK_SOURCE_31_28_SHIFT);
199 break;
200
201 default:
202 return -1;
203 }
204
205 return 0;
206 }
207
clock_ll_get_source_bits(enum periph_id periph_id,int mux_bits)208 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
209 {
210 u32 *reg = get_periph_source_reg(periph_id);
211 u32 val = readl(reg);
212
213 switch (mux_bits) {
214 case MASK_BITS_31_30:
215 val >>= OUT_CLK_SOURCE_31_30_SHIFT;
216 val &= OUT_CLK_SOURCE_31_30_MASK;
217 return val;
218 case MASK_BITS_31_29:
219 val >>= OUT_CLK_SOURCE_31_29_SHIFT;
220 val &= OUT_CLK_SOURCE_31_29_MASK;
221 return val;
222 case MASK_BITS_31_28:
223 val >>= OUT_CLK_SOURCE_31_28_SHIFT;
224 val &= OUT_CLK_SOURCE_31_28_MASK;
225 return val;
226 default:
227 return -1;
228 }
229 }
230
clock_ll_set_source(enum periph_id periph_id,unsigned source)231 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
232 {
233 clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
234 }
235
236 /**
237 * Given the parent's rate and the required rate for the children, this works
238 * out the peripheral clock divider to use, in 7.1 binary format.
239 *
240 * @param divider_bits number of divider bits (8 or 16)
241 * @param parent_rate clock rate of parent clock in Hz
242 * @param rate required clock rate for this clock
243 * @return divider which should be used
244 */
clk_get_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate)245 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
246 unsigned long rate)
247 {
248 u64 divider = parent_rate * 2;
249 unsigned max_divider = 1 << divider_bits;
250
251 divider += rate - 1;
252 do_div(divider, rate);
253
254 if ((s64)divider - 2 < 0)
255 return 0;
256
257 if ((s64)divider - 2 >= max_divider)
258 return -1;
259
260 return divider - 2;
261 }
262
clock_set_pllout(enum clock_id clkid,enum pll_out_id pllout,unsigned rate)263 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
264 {
265 struct clk_pll *pll = get_pll(clkid);
266 int data = 0, div = 0, offset = 0;
267
268 if (!clock_id_is_pll(clkid))
269 return -1;
270
271 if (pllout + 1 > pll_num_clkouts[clkid])
272 return -1;
273
274 div = clk_get_divider(8, pll_rate[clkid], rate);
275
276 if (div < 0)
277 return -1;
278
279 /* out2 and out4 are in the high part of the register */
280 if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
281 offset = 16;
282
283 data = (div << PLL_OUT_RATIO_SHIFT) |
284 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
285 clrsetbits_le32(&pll->pll_out[pllout >> 1],
286 PLL_OUT_RATIO_MASK << offset, data << offset);
287
288 return 0;
289 }
290
291 /**
292 * Given the parent's rate and the divider in 7.1 format, this works out the
293 * resulting peripheral clock rate.
294 *
295 * @param parent_rate clock rate of parent clock in Hz
296 * @param divider which should be used in 7.1 format
297 * @return effective clock rate of peripheral
298 */
get_rate_from_divider(unsigned long parent_rate,int divider)299 static unsigned long get_rate_from_divider(unsigned long parent_rate,
300 int divider)
301 {
302 u64 rate;
303
304 rate = (u64)parent_rate * 2;
305 do_div(rate, divider + 2);
306 return rate;
307 }
308
clock_get_periph_rate(enum periph_id periph_id,enum clock_id parent)309 unsigned long clock_get_periph_rate(enum periph_id periph_id,
310 enum clock_id parent)
311 {
312 u32 *reg = get_periph_source_reg(periph_id);
313 unsigned parent_rate = pll_rate[parent];
314 int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
315
316 switch (periph_id) {
317 case PERIPH_ID_UART1:
318 case PERIPH_ID_UART2:
319 case PERIPH_ID_UART3:
320 case PERIPH_ID_UART4:
321 case PERIPH_ID_UART5:
322 #ifdef CONFIG_TEGRA20
323 /* There's no divider for these clocks in this SoC. */
324 return parent_rate;
325 #else
326 /*
327 * This undoes the +2 in get_rate_from_divider() which I
328 * believe is incorrect. Ideally we would fix
329 * get_rate_from_divider(), but... Removing the +2 from
330 * get_rate_from_divider() would probably require remove the -2
331 * from the tail of clk_get_divider() since I believe that's
332 * only there to invert get_rate_from_divider()'s +2. Observe
333 * how find_best_divider() uses those two functions together.
334 * However, doing so breaks other stuff, such as Seaboard's
335 * display, likely due to clock_set_pllout()'s call to
336 * clk_get_divider(). Attempting to fix that by making
337 * clock_set_pllout() subtract 2 from clk_get_divider()'s
338 * return value doesn't help. In summary this clock driver is
339 * quite broken but I'm afraid I have no idea how to fix it
340 * without completely replacing it.
341 *
342 * Be careful to avoid a divide by zero error.
343 */
344 if (div >= 1)
345 div -= 2;
346 break;
347 #endif
348 default:
349 break;
350 }
351
352 return get_rate_from_divider(parent_rate, div);
353 }
354
355 /**
356 * Find the best available 7.1 format divisor given a parent clock rate and
357 * required child clock rate. This function assumes that a second-stage
358 * divisor is available which can divide by powers of 2 from 1 to 256.
359 *
360 * @param divider_bits number of divider bits (8 or 16)
361 * @param parent_rate clock rate of parent clock in Hz
362 * @param rate required clock rate for this clock
363 * @param extra_div value for the second-stage divisor (not set if this
364 * function returns -1.
365 * @return divider which should be used, or -1 if nothing is valid
366 *
367 */
find_best_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate,int * extra_div)368 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
369 unsigned long rate, int *extra_div)
370 {
371 int shift;
372 int best_divider = -1;
373 int best_error = rate;
374
375 /* try dividers from 1 to 256 and find closest match */
376 for (shift = 0; shift <= 8 && best_error > 0; shift++) {
377 unsigned divided_parent = parent_rate >> shift;
378 int divider = clk_get_divider(divider_bits, divided_parent,
379 rate);
380 unsigned effective_rate = get_rate_from_divider(divided_parent,
381 divider);
382 int error = rate - effective_rate;
383
384 /* Given a valid divider, look for the lowest error */
385 if (divider != -1 && error < best_error) {
386 best_error = error;
387 *extra_div = 1 << shift;
388 best_divider = divider;
389 }
390 }
391
392 /* return what we found - *extra_div will already be set */
393 return best_divider;
394 }
395
396 /**
397 * Adjust peripheral PLL to use the given divider and source.
398 *
399 * @param periph_id peripheral to adjust
400 * @param source Source number (0-3 or 0-7)
401 * @param mux_bits Number of mux bits (2 or 4)
402 * @param divider Required divider in 7.1 or 15.1 format
403 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
404 * for this peripheral)
405 */
adjust_periph_pll(enum periph_id periph_id,int source,int mux_bits,unsigned divider)406 static int adjust_periph_pll(enum periph_id periph_id, int source,
407 int mux_bits, unsigned divider)
408 {
409 u32 *reg = get_periph_source_reg(periph_id);
410
411 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
412 divider << OUT_CLK_DIVISOR_SHIFT);
413 udelay(1);
414
415 /* work out the source clock and set it */
416 if (source < 0)
417 return -1;
418
419 clock_ll_set_source_bits(periph_id, mux_bits, source);
420
421 udelay(2);
422 return 0;
423 }
424
clock_get_periph_parent(enum periph_id periph_id)425 enum clock_id clock_get_periph_parent(enum periph_id periph_id)
426 {
427 int err, mux_bits, divider_bits, type;
428 int source;
429
430 err = get_periph_clock_info(periph_id, &mux_bits, ÷r_bits, &type);
431 if (err)
432 return CLOCK_ID_NONE;
433
434 source = clock_ll_get_source_bits(periph_id, mux_bits);
435
436 return get_periph_clock_id(periph_id, source);
437 }
438
clock_adjust_periph_pll_div(enum periph_id periph_id,enum clock_id parent,unsigned rate,int * extra_div)439 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
440 enum clock_id parent, unsigned rate, int *extra_div)
441 {
442 unsigned effective_rate;
443 int mux_bits, divider_bits, source;
444 int divider;
445 int xdiv = 0;
446
447 /* work out the source clock and set it */
448 source = get_periph_clock_source(periph_id, parent, &mux_bits,
449 ÷r_bits);
450
451 divider = find_best_divider(divider_bits, pll_rate[parent],
452 rate, &xdiv);
453 if (extra_div)
454 *extra_div = xdiv;
455
456 assert(divider >= 0);
457 if (adjust_periph_pll(periph_id, source, mux_bits, divider))
458 return -1U;
459 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
460 get_periph_source_reg(periph_id),
461 readl(get_periph_source_reg(periph_id)));
462
463 /* Check what we ended up with. This shouldn't matter though */
464 effective_rate = clock_get_periph_rate(periph_id, parent);
465 if (extra_div)
466 effective_rate /= *extra_div;
467 if (rate != effective_rate)
468 debug("Requested clock rate %u not honored (got %u)\n",
469 rate, effective_rate);
470 return effective_rate;
471 }
472
clock_start_periph_pll(enum periph_id periph_id,enum clock_id parent,unsigned rate)473 unsigned clock_start_periph_pll(enum periph_id periph_id,
474 enum clock_id parent, unsigned rate)
475 {
476 unsigned effective_rate;
477
478 reset_set_enable(periph_id, 1);
479 clock_enable(periph_id);
480
481 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
482 NULL);
483
484 reset_set_enable(periph_id, 0);
485 return effective_rate;
486 }
487
clock_enable(enum periph_id clkid)488 void clock_enable(enum periph_id clkid)
489 {
490 clock_set_enable(clkid, 1);
491 }
492
clock_disable(enum periph_id clkid)493 void clock_disable(enum periph_id clkid)
494 {
495 clock_set_enable(clkid, 0);
496 }
497
reset_periph(enum periph_id periph_id,int us_delay)498 void reset_periph(enum periph_id periph_id, int us_delay)
499 {
500 /* Put peripheral into reset */
501 reset_set_enable(periph_id, 1);
502 udelay(us_delay);
503
504 /* Remove reset */
505 reset_set_enable(periph_id, 0);
506
507 udelay(us_delay);
508 }
509
reset_cmplx_set_enable(int cpu,int which,int reset)510 void reset_cmplx_set_enable(int cpu, int which, int reset)
511 {
512 struct clk_rst_ctlr *clkrst =
513 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
514 u32 mask;
515
516 /* Form the mask, which depends on the cpu chosen (2 or 4) */
517 assert(cpu >= 0 && cpu < MAX_NUM_CPU);
518 mask = which << cpu;
519
520 /* either enable or disable those reset for that CPU */
521 if (reset)
522 writel(mask, &clkrst->crc_cpu_cmplx_set);
523 else
524 writel(mask, &clkrst->crc_cpu_cmplx_clr);
525 }
526
clk_m_get_rate(unsigned int parent_rate)527 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
528 {
529 return parent_rate;
530 }
531
clock_get_rate(enum clock_id clkid)532 unsigned clock_get_rate(enum clock_id clkid)
533 {
534 struct clk_pll *pll;
535 u32 base, divm;
536 u64 parent_rate, rate;
537 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
538
539 parent_rate = osc_freq[clock_get_osc_freq()];
540 if (clkid == CLOCK_ID_OSC)
541 return parent_rate;
542
543 if (clkid == CLOCK_ID_CLK_M)
544 return clk_m_get_rate(parent_rate);
545
546 pll = get_pll(clkid);
547 if (!pll)
548 return 0;
549 base = readl(&pll->pll_base);
550
551 rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
552 divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
553 /*
554 * PLLU uses p_mask/p_shift for VCO on all but T210,
555 * T210 uses normal DIVP. Handled in pllinfo table.
556 */
557 #ifdef CONFIG_TEGRA210
558 /*
559 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
560 * not applied. pllP_out2 does have divp applied. All other pllP_outN
561 * are divided down from pllP_out0. We only support pllP_out0 in
562 * U-Boot at the time of writing this comment.
563 */
564 if (clkid != CLOCK_ID_PERIPH)
565 #endif
566 divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
567 do_div(rate, divm);
568 return rate;
569 }
570
571 /**
572 * Set the output frequency you want for each PLL clock.
573 * PLL output frequencies are programmed by setting their N, M and P values.
574 * The governing equations are:
575 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
576 * where Fo is the output frequency from the PLL.
577 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
578 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
579 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
580 *
581 * @param n PLL feedback divider(DIVN)
582 * @param m PLL input divider(DIVN)
583 * @param p post divider(DIVP)
584 * @param cpcon base PLL charge pump(CPCON)
585 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
586 * be overridden), 1 if PLL is already correct
587 */
clock_set_rate(enum clock_id clkid,u32 n,u32 m,u32 p,u32 cpcon)588 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
589 {
590 u32 base_reg, misc_reg;
591 struct clk_pll *pll;
592 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
593
594 pll = get_pll(clkid);
595
596 base_reg = readl(&pll->pll_base);
597
598 /* Set BYPASS, m, n and p to PLL_BASE */
599 base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
600 base_reg |= m << pllinfo->m_shift;
601
602 base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
603 base_reg |= n << pllinfo->n_shift;
604
605 base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
606 base_reg |= p << pllinfo->p_shift;
607
608 if (clkid == CLOCK_ID_PERIPH) {
609 /*
610 * If the PLL is already set up, check that it is correct
611 * and record this info for clock_verify() to check.
612 */
613 if (base_reg & PLL_BASE_OVRRIDE_MASK) {
614 base_reg |= PLL_ENABLE_MASK;
615 if (base_reg != readl(&pll->pll_base))
616 pllp_valid = 0;
617 return pllp_valid ? 1 : -1;
618 }
619 base_reg |= PLL_BASE_OVRRIDE_MASK;
620 }
621
622 base_reg |= PLL_BYPASS_MASK;
623 writel(base_reg, &pll->pll_base);
624
625 /* Set cpcon (KCP) to PLL_MISC */
626 misc_reg = readl(&pll->pll_misc);
627 misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
628 misc_reg |= cpcon << pllinfo->kcp_shift;
629 writel(misc_reg, &pll->pll_misc);
630
631 /* Enable PLL */
632 base_reg |= PLL_ENABLE_MASK;
633 writel(base_reg, &pll->pll_base);
634
635 /* Disable BYPASS */
636 base_reg &= ~PLL_BYPASS_MASK;
637 writel(base_reg, &pll->pll_base);
638
639 return 0;
640 }
641
clock_ll_start_uart(enum periph_id periph_id)642 void clock_ll_start_uart(enum periph_id periph_id)
643 {
644 /* Assert UART reset and enable clock */
645 reset_set_enable(periph_id, 1);
646 clock_enable(periph_id);
647 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
648
649 /* wait for 2us */
650 udelay(2);
651
652 /* De-assert reset to UART */
653 reset_set_enable(periph_id, 0);
654 }
655
656 #if CONFIG_IS_ENABLED(OF_CONTROL)
clock_decode_periph_id(struct udevice * dev)657 int clock_decode_periph_id(struct udevice *dev)
658 {
659 enum periph_id id;
660 u32 cell[2];
661 int err;
662
663 err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
664 if (err)
665 return -1;
666 id = clk_id_to_periph_id(cell[1]);
667 assert(clock_periph_id_isvalid(id));
668 return id;
669 }
670 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
671
clock_verify(void)672 int clock_verify(void)
673 {
674 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
675 u32 reg = readl(&pll->pll_base);
676
677 if (!pllp_valid) {
678 printf("Warning: PLLP %x is not correct\n", reg);
679 return -1;
680 }
681 debug("PLLP %x is correct\n", reg);
682 return 0;
683 }
684
clock_init(void)685 void clock_init(void)
686 {
687 int i;
688
689 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
690 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
691 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
692 pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
693 pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
694 pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
695 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
696 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
697 pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
698
699 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
700 debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
701 debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
702 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
703 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
704 debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
705 debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
706 debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
707
708 for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
709 enum periph_id periph_id;
710 enum clock_id parent;
711 int source, mux_bits, divider_bits;
712
713 periph_id = periph_clk_init_table[i].periph_id;
714 parent = periph_clk_init_table[i].parent_clock_id;
715
716 source = get_periph_clock_source(periph_id, parent, &mux_bits,
717 ÷r_bits);
718 clock_ll_set_source_bits(periph_id, mux_bits, source);
719 }
720 }
721
set_avp_clock_source(u32 src)722 static void set_avp_clock_source(u32 src)
723 {
724 struct clk_rst_ctlr *clkrst =
725 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
726 u32 val;
727
728 val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
729 (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
730 (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
731 (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
732 (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
733 writel(val, &clkrst->crc_sclk_brst_pol);
734 udelay(3);
735 }
736
737 /*
738 * This function is useful on Tegra30, and any later SoCs that have compatible
739 * PLLP configuration registers.
740 * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
741 */
tegra30_set_up_pllp(void)742 void tegra30_set_up_pllp(void)
743 {
744 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
745 u32 reg;
746
747 /*
748 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
749 * run up to 275MHz. On power on, the default sytem clock source is set
750 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
751 * 408MHz which is beyond system clock's upper limit.
752 *
753 * The fix is to set the system clock to CLK_M before initializing PLLP,
754 * and then switch back to PLLP_OUT4, which has an appropriate divider
755 * configured, after PLLP has been configured
756 */
757 set_avp_clock_source(SCLK_SOURCE_CLKM);
758
759 /*
760 * PLLP output frequency set to 408Mhz
761 * PLLC output frequency set to 228Mhz
762 */
763 switch (clock_get_osc_freq()) {
764 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
765 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
766 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
767 break;
768
769 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
770 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
771 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
772 break;
773
774 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
775 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
776 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
777 break;
778 case CLOCK_OSC_FREQ_19_2:
779 default:
780 /*
781 * These are not supported. It is too early to print a
782 * message and the UART likely won't work anyway due to the
783 * oscillator being wrong.
784 */
785 break;
786 }
787
788 /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
789
790 /* OUT1, 2 */
791 /* Assert RSTN before enable */
792 reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
793 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
794 /* Set divisor and reenable */
795 reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
796 | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
797 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
798 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
799 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
800
801 /* OUT3, 4 */
802 /* Assert RSTN before enable */
803 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
804 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
805 /* Set divisor and reenable */
806 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
807 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
808 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
809 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
810 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
811
812 set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
813 }
814
clock_external_output(int clk_id)815 int clock_external_output(int clk_id)
816 {
817 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
818
819 if (clk_id >= 1 && clk_id <= 3) {
820 setbits_le32(&pmc->pmc_clk_out_cntrl,
821 1 << (2 + (clk_id - 1) * 8));
822 } else {
823 printf("%s: Unknown output clock id %d\n", __func__, clk_id);
824 return -EINVAL;
825 }
826
827 return 0;
828 }
829
clock_early_init_done(void)830 __weak bool clock_early_init_done(void)
831 {
832 return true;
833 }
834