1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * USB HOST XHCI Controller stack
4  *
5  * Based on xHCI host controller driver in linux-kernel
6  * by Sarah Sharp.
7  *
8  * Copyright (C) 2008 Intel Corp.
9  * Author: Sarah Sharp
10  *
11  * Copyright (C) 2013 Samsung Electronics Co.Ltd
12  * Authors: Vivek Gautam <gautam.vivek@samsung.com>
13  *	    Vikas Sajjan <vikas.sajjan@samsung.com>
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <asm/byteorder.h>
19 #include <usb.h>
20 #include <malloc.h>
21 #include <asm/cache.h>
22 #include <linux/errno.h>
23 
24 #include "xhci.h"
25 
26 #define CACHELINE_SIZE		CONFIG_SYS_CACHELINE_SIZE
27 /**
28  * flushes the address passed till the length
29  *
30  * @param addr	pointer to memory region to be flushed
31  * @param len	the length of the cache line to be flushed
32  * @return none
33  */
xhci_flush_cache(uintptr_t addr,u32 len)34 void xhci_flush_cache(uintptr_t addr, u32 len)
35 {
36 	BUG_ON((void *)addr == NULL || len == 0);
37 
38 	flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
39 				ALIGN(addr + len, CACHELINE_SIZE));
40 }
41 
42 /**
43  * invalidates the address passed till the length
44  *
45  * @param addr	pointer to memory region to be invalidates
46  * @param len	the length of the cache line to be invalidated
47  * @return none
48  */
xhci_inval_cache(uintptr_t addr,u32 len)49 void xhci_inval_cache(uintptr_t addr, u32 len)
50 {
51 	BUG_ON((void *)addr == NULL || len == 0);
52 
53 	invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
54 				ALIGN(addr + len, CACHELINE_SIZE));
55 }
56 
57 
58 /**
59  * frees the "segment" pointer passed
60  *
61  * @param ptr	pointer to "segement" to be freed
62  * @return none
63  */
xhci_segment_free(struct xhci_segment * seg)64 static void xhci_segment_free(struct xhci_segment *seg)
65 {
66 	free(seg->trbs);
67 	seg->trbs = NULL;
68 
69 	free(seg);
70 }
71 
72 /**
73  * frees the "ring" pointer passed
74  *
75  * @param ptr	pointer to "ring" to be freed
76  * @return none
77  */
xhci_ring_free(struct xhci_ring * ring)78 static void xhci_ring_free(struct xhci_ring *ring)
79 {
80 	struct xhci_segment *seg;
81 	struct xhci_segment *first_seg;
82 
83 	BUG_ON(!ring);
84 
85 	first_seg = ring->first_seg;
86 	seg = first_seg->next;
87 	while (seg != first_seg) {
88 		struct xhci_segment *next = seg->next;
89 		xhci_segment_free(seg);
90 		seg = next;
91 	}
92 	xhci_segment_free(first_seg);
93 
94 	free(ring);
95 }
96 
97 /**
98  * Free the scratchpad buffer array and scratchpad buffers
99  *
100  * @ctrl	host controller data structure
101  * @return	none
102  */
xhci_scratchpad_free(struct xhci_ctrl * ctrl)103 static void xhci_scratchpad_free(struct xhci_ctrl *ctrl)
104 {
105 	if (!ctrl->scratchpad)
106 		return;
107 
108 	ctrl->dcbaa->dev_context_ptrs[0] = 0;
109 
110 	free((void *)(uintptr_t)ctrl->scratchpad->sp_array[0]);
111 	free(ctrl->scratchpad->sp_array);
112 	free(ctrl->scratchpad);
113 	ctrl->scratchpad = NULL;
114 }
115 
116 /**
117  * frees the "xhci_container_ctx" pointer passed
118  *
119  * @param ptr	pointer to "xhci_container_ctx" to be freed
120  * @return none
121  */
xhci_free_container_ctx(struct xhci_container_ctx * ctx)122 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
123 {
124 	free(ctx->bytes);
125 	free(ctx);
126 }
127 
128 /**
129  * frees the virtual devices for "xhci_ctrl" pointer passed
130  *
131  * @param ptr	pointer to "xhci_ctrl" whose virtual devices are to be freed
132  * @return none
133  */
xhci_free_virt_devices(struct xhci_ctrl * ctrl)134 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
135 {
136 	int i;
137 	int slot_id;
138 	struct xhci_virt_device *virt_dev;
139 
140 	/*
141 	 * refactored here to loop through all virt_dev
142 	 * Slot ID 0 is reserved
143 	 */
144 	for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
145 		virt_dev = ctrl->devs[slot_id];
146 		if (!virt_dev)
147 			continue;
148 
149 		ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
150 
151 		for (i = 0; i < 31; ++i)
152 			if (virt_dev->eps[i].ring)
153 				xhci_ring_free(virt_dev->eps[i].ring);
154 
155 		if (virt_dev->in_ctx)
156 			xhci_free_container_ctx(virt_dev->in_ctx);
157 		if (virt_dev->out_ctx)
158 			xhci_free_container_ctx(virt_dev->out_ctx);
159 
160 		free(virt_dev);
161 		/* make sure we are pointing to NULL */
162 		ctrl->devs[slot_id] = NULL;
163 	}
164 }
165 
166 /**
167  * frees all the memory allocated
168  *
169  * @param ptr	pointer to "xhci_ctrl" to be cleaned up
170  * @return none
171  */
xhci_cleanup(struct xhci_ctrl * ctrl)172 void xhci_cleanup(struct xhci_ctrl *ctrl)
173 {
174 	xhci_ring_free(ctrl->event_ring);
175 	xhci_ring_free(ctrl->cmd_ring);
176 	xhci_scratchpad_free(ctrl);
177 	xhci_free_virt_devices(ctrl);
178 	free(ctrl->erst.entries);
179 	free(ctrl->dcbaa);
180 	memset(ctrl, '\0', sizeof(struct xhci_ctrl));
181 }
182 
183 /**
184  * Malloc the aligned memory
185  *
186  * @param size	size of memory to be allocated
187  * @return allocates the memory and returns the aligned pointer
188  */
xhci_malloc(unsigned int size)189 static void *xhci_malloc(unsigned int size)
190 {
191 	void *ptr;
192 	size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
193 
194 	ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
195 	BUG_ON(!ptr);
196 	memset(ptr, '\0', size);
197 
198 	xhci_flush_cache((uintptr_t)ptr, size);
199 
200 	return ptr;
201 }
202 
203 /**
204  * Make the prev segment point to the next segment.
205  * Change the last TRB in the prev segment to be a Link TRB which points to the
206  * address of the next segment.  The caller needs to set any Link TRB
207  * related flags, such as End TRB, Toggle Cycle, and no snoop.
208  *
209  * @param prev	pointer to the previous segment
210  * @param next	pointer to the next segment
211  * @param link_trbs	flag to indicate whether to link the trbs or NOT
212  * @return none
213  */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,bool link_trbs)214 static void xhci_link_segments(struct xhci_segment *prev,
215 				struct xhci_segment *next, bool link_trbs)
216 {
217 	u32 val;
218 	u64 val_64 = 0;
219 
220 	if (!prev || !next)
221 		return;
222 	prev->next = next;
223 	if (link_trbs) {
224 		val_64 = (uintptr_t)next->trbs;
225 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;
226 
227 		/*
228 		 * Set the last TRB in the segment to
229 		 * have a TRB type ID of Link TRB
230 		 */
231 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
232 		val &= ~TRB_TYPE_BITMASK;
233 		val |= (TRB_LINK << TRB_TYPE_SHIFT);
234 
235 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
236 	}
237 }
238 
239 /**
240  * Initialises the Ring's enqueue,dequeue,enq_seg pointers
241  *
242  * @param ring	pointer to the RING to be intialised
243  * @return none
244  */
xhci_initialize_ring_info(struct xhci_ring * ring)245 static void xhci_initialize_ring_info(struct xhci_ring *ring)
246 {
247 	/*
248 	 * The ring is empty, so the enqueue pointer == dequeue pointer
249 	 */
250 	ring->enqueue = ring->first_seg->trbs;
251 	ring->enq_seg = ring->first_seg;
252 	ring->dequeue = ring->enqueue;
253 	ring->deq_seg = ring->first_seg;
254 
255 	/*
256 	 * The ring is initialized to 0. The producer must write 1 to the
257 	 * cycle bit to handover ownership of the TRB, so PCS = 1.
258 	 * The consumer must compare CCS to the cycle bit to
259 	 * check ownership, so CCS = 1.
260 	 */
261 	ring->cycle_state = 1;
262 }
263 
264 /**
265  * Allocates a generic ring segment from the ring pool, sets the dma address,
266  * initializes the segment to zero, and sets the private next pointer to NULL.
267  * Section 4.11.1.1:
268  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
269  *
270  * @param	none
271  * @return pointer to the newly allocated SEGMENT
272  */
xhci_segment_alloc(void)273 static struct xhci_segment *xhci_segment_alloc(void)
274 {
275 	struct xhci_segment *seg;
276 
277 	seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
278 	BUG_ON(!seg);
279 
280 	seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);
281 
282 	seg->next = NULL;
283 
284 	return seg;
285 }
286 
287 /**
288  * Create a new ring with zero or more segments.
289  * TODO: current code only uses one-time-allocated single-segment rings
290  * of 1KB anyway, so we might as well get rid of all the segment and
291  * linking code (and maybe increase the size a bit, e.g. 4KB).
292  *
293  *
294  * Link each segment together into a ring.
295  * Set the end flag and the cycle toggle bit on the last segment.
296  * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
297  *
298  * @param num_segs	number of segments in the ring
299  * @param link_trbs	flag to indicate whether to link the trbs or NOT
300  * @return pointer to the newly created RING
301  */
xhci_ring_alloc(unsigned int num_segs,bool link_trbs)302 struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
303 {
304 	struct xhci_ring *ring;
305 	struct xhci_segment *prev;
306 
307 	ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
308 	BUG_ON(!ring);
309 
310 	if (num_segs == 0)
311 		return ring;
312 
313 	ring->first_seg = xhci_segment_alloc();
314 	BUG_ON(!ring->first_seg);
315 
316 	num_segs--;
317 
318 	prev = ring->first_seg;
319 	while (num_segs > 0) {
320 		struct xhci_segment *next;
321 
322 		next = xhci_segment_alloc();
323 		BUG_ON(!next);
324 
325 		xhci_link_segments(prev, next, link_trbs);
326 
327 		prev = next;
328 		num_segs--;
329 	}
330 	xhci_link_segments(prev, ring->first_seg, link_trbs);
331 	if (link_trbs) {
332 		/* See section 4.9.2.1 and 6.4.4.1 */
333 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
334 					cpu_to_le32(LINK_TOGGLE);
335 	}
336 	xhci_initialize_ring_info(ring);
337 
338 	return ring;
339 }
340 
341 /**
342  * Set up the scratchpad buffer array and scratchpad buffers
343  *
344  * @ctrl	host controller data structure
345  * @return	-ENOMEM if buffer allocation fails, 0 on success
346  */
xhci_scratchpad_alloc(struct xhci_ctrl * ctrl)347 static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl)
348 {
349 	struct xhci_hccr *hccr = ctrl->hccr;
350 	struct xhci_hcor *hcor = ctrl->hcor;
351 	struct xhci_scratchpad *scratchpad;
352 	int num_sp;
353 	uint32_t page_size;
354 	void *buf;
355 	int i;
356 
357 	num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
358 	if (!num_sp)
359 		return 0;
360 
361 	scratchpad = malloc(sizeof(*scratchpad));
362 	if (!scratchpad)
363 		goto fail_sp;
364 	ctrl->scratchpad = scratchpad;
365 
366 	scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64));
367 	if (!scratchpad->sp_array)
368 		goto fail_sp2;
369 	ctrl->dcbaa->dev_context_ptrs[0] =
370 		cpu_to_le64((uintptr_t)scratchpad->sp_array);
371 
372 	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[0],
373 		sizeof(ctrl->dcbaa->dev_context_ptrs[0]));
374 
375 	page_size = xhci_readl(&hcor->or_pagesize) & 0xffff;
376 	for (i = 0; i < 16; i++) {
377 		if ((0x1 & page_size) != 0)
378 			break;
379 		page_size = page_size >> 1;
380 	}
381 	BUG_ON(i == 16);
382 
383 	page_size = 1 << (i + 12);
384 	buf = memalign(page_size, num_sp * page_size);
385 	if (!buf)
386 		goto fail_sp3;
387 	memset(buf, '\0', num_sp * page_size);
388 	xhci_flush_cache((uintptr_t)buf, num_sp * page_size);
389 
390 	for (i = 0; i < num_sp; i++) {
391 		uintptr_t ptr = (uintptr_t)buf + i * page_size;
392 		scratchpad->sp_array[i] = cpu_to_le64(ptr);
393 	}
394 
395 	return 0;
396 
397 fail_sp3:
398 	free(scratchpad->sp_array);
399 
400 fail_sp2:
401 	free(scratchpad);
402 	ctrl->scratchpad = NULL;
403 
404 fail_sp:
405 	return -ENOMEM;
406 }
407 
408 /**
409  * Allocates the Container context
410  *
411  * @param ctrl	Host controller data structure
412  * @param type type of XHCI Container Context
413  * @return NULL if failed else pointer to the context on success
414  */
415 static struct xhci_container_ctx
xhci_alloc_container_ctx(struct xhci_ctrl * ctrl,int type)416 		*xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
417 {
418 	struct xhci_container_ctx *ctx;
419 
420 	ctx = (struct xhci_container_ctx *)
421 		malloc(sizeof(struct xhci_container_ctx));
422 	BUG_ON(!ctx);
423 
424 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
425 	ctx->type = type;
426 	ctx->size = (MAX_EP_CTX_NUM + 1) *
427 			CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
428 	if (type == XHCI_CTX_TYPE_INPUT)
429 		ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
430 
431 	ctx->bytes = (u8 *)xhci_malloc(ctx->size);
432 
433 	return ctx;
434 }
435 
436 /**
437  * Allocating virtual device
438  *
439  * @param udev	pointer to USB deivce structure
440  * @return 0 on success else -1 on failure
441  */
xhci_alloc_virt_device(struct xhci_ctrl * ctrl,unsigned int slot_id)442 int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
443 {
444 	u64 byte_64 = 0;
445 	struct xhci_virt_device *virt_dev;
446 
447 	/* Slot ID 0 is reserved */
448 	if (ctrl->devs[slot_id]) {
449 		printf("Virt dev for slot[%d] already allocated\n", slot_id);
450 		return -EEXIST;
451 	}
452 
453 	ctrl->devs[slot_id] = (struct xhci_virt_device *)
454 					malloc(sizeof(struct xhci_virt_device));
455 
456 	if (!ctrl->devs[slot_id]) {
457 		puts("Failed to allocate virtual device\n");
458 		return -ENOMEM;
459 	}
460 
461 	memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
462 	virt_dev = ctrl->devs[slot_id];
463 
464 	/* Allocate the (output) device context that will be used in the HC. */
465 	virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
466 					XHCI_CTX_TYPE_DEVICE);
467 	if (!virt_dev->out_ctx) {
468 		puts("Failed to allocate out context for virt dev\n");
469 		return -ENOMEM;
470 	}
471 
472 	/* Allocate the (input) device context for address device command */
473 	virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
474 					XHCI_CTX_TYPE_INPUT);
475 	if (!virt_dev->in_ctx) {
476 		puts("Failed to allocate in context for virt dev\n");
477 		return -ENOMEM;
478 	}
479 
480 	/* Allocate endpoint 0 ring */
481 	virt_dev->eps[0].ring = xhci_ring_alloc(1, true);
482 
483 	byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);
484 
485 	/* Point to output device context in dcbaa. */
486 	ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;
487 
488 	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
489 			 sizeof(__le64));
490 	return 0;
491 }
492 
493 /**
494  * Allocates the necessary data structures
495  * for XHCI host controller
496  *
497  * @param ctrl	Host controller data structure
498  * @param hccr	pointer to HOST Controller Control Registers
499  * @param hcor	pointer to HOST Controller Operational Registers
500  * @return 0 if successful else -1 on failure
501  */
xhci_mem_init(struct xhci_ctrl * ctrl,struct xhci_hccr * hccr,struct xhci_hcor * hcor)502 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
503 					struct xhci_hcor *hcor)
504 {
505 	uint64_t val_64;
506 	uint64_t trb_64;
507 	uint32_t val;
508 	unsigned long deq;
509 	int i;
510 	struct xhci_segment *seg;
511 
512 	/* DCBAA initialization */
513 	ctrl->dcbaa = (struct xhci_device_context_array *)
514 			xhci_malloc(sizeof(struct xhci_device_context_array));
515 	if (ctrl->dcbaa == NULL) {
516 		puts("unable to allocate DCBA\n");
517 		return -ENOMEM;
518 	}
519 
520 	val_64 = (uintptr_t)ctrl->dcbaa;
521 	/* Set the pointer in DCBAA register */
522 	xhci_writeq(&hcor->or_dcbaap, val_64);
523 
524 	/* Command ring control pointer register initialization */
525 	ctrl->cmd_ring = xhci_ring_alloc(1, true);
526 
527 	/* Set the address in the Command Ring Control register */
528 	trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
529 	val_64 = xhci_readq(&hcor->or_crcr);
530 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
531 		(trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
532 		ctrl->cmd_ring->cycle_state;
533 	xhci_writeq(&hcor->or_crcr, val_64);
534 
535 	/* write the address of db register */
536 	val = xhci_readl(&hccr->cr_dboff);
537 	val &= DBOFF_MASK;
538 	ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
539 
540 	/* write the address of runtime register */
541 	val = xhci_readl(&hccr->cr_rtsoff);
542 	val &= RTSOFF_MASK;
543 	ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
544 
545 	/* writting the address of ir_set structure */
546 	ctrl->ir_set = &ctrl->run_regs->ir_set[0];
547 
548 	/* Event ring does not maintain link TRB */
549 	ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
550 	ctrl->erst.entries = (struct xhci_erst_entry *)
551 		xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
552 
553 	ctrl->erst.num_entries = ERST_NUM_SEGS;
554 
555 	for (val = 0, seg = ctrl->event_ring->first_seg;
556 			val < ERST_NUM_SEGS;
557 			val++) {
558 		trb_64 = 0;
559 		trb_64 = (uintptr_t)seg->trbs;
560 		struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
561 		xhci_writeq(&entry->seg_addr, trb_64);
562 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
563 		entry->rsvd = 0;
564 		seg = seg->next;
565 	}
566 	xhci_flush_cache((uintptr_t)ctrl->erst.entries,
567 			 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
568 
569 	deq = (unsigned long)ctrl->event_ring->dequeue;
570 
571 	/* Update HC event ring dequeue pointer */
572 	xhci_writeq(&ctrl->ir_set->erst_dequeue,
573 				(u64)deq & (u64)~ERST_PTR_MASK);
574 
575 	/* set ERST count with the number of entries in the segment table */
576 	val = xhci_readl(&ctrl->ir_set->erst_size);
577 	val &= ERST_SIZE_MASK;
578 	val |= ERST_NUM_SEGS;
579 	xhci_writel(&ctrl->ir_set->erst_size, val);
580 
581 	/* this is the event ring segment table pointer */
582 	val_64 = xhci_readq(&ctrl->ir_set->erst_base);
583 	val_64 &= ERST_PTR_MASK;
584 	val_64 |= ((uintptr_t)(ctrl->erst.entries) & ~ERST_PTR_MASK);
585 
586 	xhci_writeq(&ctrl->ir_set->erst_base, val_64);
587 
588 	/* set up the scratchpad buffer array and scratchpad buffers */
589 	xhci_scratchpad_alloc(ctrl);
590 
591 	/* initializing the virtual devices to NULL */
592 	for (i = 0; i < MAX_HC_SLOTS; ++i)
593 		ctrl->devs[i] = NULL;
594 
595 	/*
596 	 * Just Zero'ing this register completely,
597 	 * or some spurious Device Notification Events
598 	 * might screw things here.
599 	 */
600 	xhci_writel(&hcor->or_dnctrl, 0x0);
601 
602 	return 0;
603 }
604 
605 /**
606  * Give the input control context for the passed container context
607  *
608  * @param ctx	pointer to the context
609  * @return pointer to the Input control context data
610  */
611 struct xhci_input_control_ctx
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)612 		*xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
613 {
614 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
615 	return (struct xhci_input_control_ctx *)ctx->bytes;
616 }
617 
618 /**
619  * Give the slot context for the passed container context
620  *
621  * @param ctrl	Host controller data structure
622  * @param ctx	pointer to the context
623  * @return pointer to the slot control context data
624  */
xhci_get_slot_ctx(struct xhci_ctrl * ctrl,struct xhci_container_ctx * ctx)625 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
626 				struct xhci_container_ctx *ctx)
627 {
628 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
629 		return (struct xhci_slot_ctx *)ctx->bytes;
630 
631 	return (struct xhci_slot_ctx *)
632 		(ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
633 }
634 
635 /**
636  * Gets the EP context from based on the ep_index
637  *
638  * @param ctrl	Host controller data structure
639  * @param ctx	context container
640  * @param ep_index	index of the endpoint
641  * @return pointer to the End point context
642  */
xhci_get_ep_ctx(struct xhci_ctrl * ctrl,struct xhci_container_ctx * ctx,unsigned int ep_index)643 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
644 				    struct xhci_container_ctx *ctx,
645 				    unsigned int ep_index)
646 {
647 	/* increment ep index by offset of start of ep ctx array */
648 	ep_index++;
649 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
650 		ep_index++;
651 
652 	return (struct xhci_ep_ctx *)
653 		(ctx->bytes +
654 		(ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
655 }
656 
657 /**
658  * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
659  * Useful when you want to change one particular aspect of the endpoint
660  * and then issue a configure endpoint command.
661  *
662  * @param ctrl	Host controller data structure
663  * @param in_ctx contains the input context
664  * @param out_ctx contains the input context
665  * @param ep_index index of the end point
666  * @return none
667  */
xhci_endpoint_copy(struct xhci_ctrl * ctrl,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)668 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
669 			struct xhci_container_ctx *in_ctx,
670 			struct xhci_container_ctx *out_ctx,
671 			unsigned int ep_index)
672 {
673 	struct xhci_ep_ctx *out_ep_ctx;
674 	struct xhci_ep_ctx *in_ep_ctx;
675 
676 	out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
677 	in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
678 
679 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
680 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
681 	in_ep_ctx->deq = out_ep_ctx->deq;
682 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
683 }
684 
685 /**
686  * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
687  * Useful when you want to change one particular aspect of the endpoint
688  * and then issue a configure endpoint command.
689  * Only the context entries field matters, but
690  * we'll copy the whole thing anyway.
691  *
692  * @param ctrl	Host controller data structure
693  * @param in_ctx contains the inpout context
694  * @param out_ctx contains the inpout context
695  * @return none
696  */
xhci_slot_copy(struct xhci_ctrl * ctrl,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)697 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
698 					struct xhci_container_ctx *out_ctx)
699 {
700 	struct xhci_slot_ctx *in_slot_ctx;
701 	struct xhci_slot_ctx *out_slot_ctx;
702 
703 	in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
704 	out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
705 
706 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
707 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
708 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
709 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
710 }
711 
712 /**
713  * Setup an xHCI virtual device for a Set Address command
714  *
715  * @param udev pointer to the Device Data Structure
716  * @return returns negative value on failure else 0 on success
717  */
xhci_setup_addressable_virt_dev(struct xhci_ctrl * ctrl,struct usb_device * udev,int hop_portnr)718 void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl,
719 				     struct usb_device *udev, int hop_portnr)
720 {
721 	struct xhci_virt_device *virt_dev;
722 	struct xhci_ep_ctx *ep0_ctx;
723 	struct xhci_slot_ctx *slot_ctx;
724 	u32 port_num = 0;
725 	u64 trb_64 = 0;
726 	int slot_id = udev->slot_id;
727 	int speed = udev->speed;
728 	int route = 0;
729 #if CONFIG_IS_ENABLED(DM_USB)
730 	struct usb_device *dev = udev;
731 	struct usb_hub_device *hub;
732 #endif
733 
734 	virt_dev = ctrl->devs[slot_id];
735 
736 	BUG_ON(!virt_dev);
737 
738 	/* Extract the EP0 and Slot Ctrl */
739 	ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
740 	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
741 
742 	/* Only the control endpoint is valid - one endpoint context */
743 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
744 
745 #if CONFIG_IS_ENABLED(DM_USB)
746 	/* Calculate the route string for this device */
747 	port_num = dev->portnr;
748 	while (!usb_hub_is_root_hub(dev->dev)) {
749 		hub = dev_get_uclass_priv(dev->dev);
750 		/*
751 		 * Each hub in the topology is expected to have no more than
752 		 * 15 ports in order for the route string of a device to be
753 		 * unique. SuperSpeed hubs are restricted to only having 15
754 		 * ports, but FS/LS/HS hubs are not. The xHCI specification
755 		 * says that if the port number the device is greater than 15,
756 		 * that portion of the route string shall be set to 15.
757 		 */
758 		if (port_num > 15)
759 			port_num = 15;
760 		route |= port_num << (hub->hub_depth * 4);
761 		dev = dev_get_parent_priv(dev->dev);
762 		port_num = dev->portnr;
763 		dev = dev_get_parent_priv(dev->dev->parent);
764 	}
765 
766 	debug("route string %x\n", route);
767 #endif
768 	slot_ctx->dev_info |= route;
769 
770 	switch (speed) {
771 	case USB_SPEED_SUPER:
772 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
773 		break;
774 	case USB_SPEED_HIGH:
775 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
776 		break;
777 	case USB_SPEED_FULL:
778 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
779 		break;
780 	case USB_SPEED_LOW:
781 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
782 		break;
783 	default:
784 		/* Speed was set earlier, this shouldn't happen. */
785 		BUG();
786 	}
787 
788 #if CONFIG_IS_ENABLED(DM_USB)
789 	/* Set up TT fields to support FS/LS devices */
790 	if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
791 		struct udevice *parent = udev->dev;
792 
793 		dev = udev;
794 		do {
795 			port_num = dev->portnr;
796 			dev = dev_get_parent_priv(parent);
797 			if (usb_hub_is_root_hub(dev->dev))
798 				break;
799 			parent = dev->dev->parent;
800 		} while (dev->speed != USB_SPEED_HIGH);
801 
802 		if (!usb_hub_is_root_hub(dev->dev)) {
803 			hub = dev_get_uclass_priv(dev->dev);
804 			if (hub->tt.multi)
805 				slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
806 			slot_ctx->tt_info |= cpu_to_le32(TT_PORT(port_num));
807 			slot_ctx->tt_info |= cpu_to_le32(TT_SLOT(dev->slot_id));
808 		}
809 	}
810 #endif
811 
812 	port_num = hop_portnr;
813 	debug("port_num = %d\n", port_num);
814 
815 	slot_ctx->dev_info2 |=
816 			cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
817 				ROOT_HUB_PORT_SHIFT));
818 
819 	/* Step 4 - ring already allocated */
820 	/* Step 5 */
821 	ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
822 	debug("SPEED = %d\n", speed);
823 
824 	switch (speed) {
825 	case USB_SPEED_SUPER:
826 		ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
827 					MAX_PACKET_SHIFT));
828 		debug("Setting Packet size = 512bytes\n");
829 		break;
830 	case USB_SPEED_HIGH:
831 	/* USB core guesses at a 64-byte max packet first for FS devices */
832 	case USB_SPEED_FULL:
833 		ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
834 					MAX_PACKET_SHIFT));
835 		debug("Setting Packet size = 64bytes\n");
836 		break;
837 	case USB_SPEED_LOW:
838 		ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
839 					MAX_PACKET_SHIFT));
840 		debug("Setting Packet size = 8bytes\n");
841 		break;
842 	default:
843 		/* New speed? */
844 		BUG();
845 	}
846 
847 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
848 	ep0_ctx->ep_info2 |=
849 			cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
850 			((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));
851 
852 	trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
853 	ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
854 
855 	/*
856 	 * xHCI spec 6.2.3:
857 	 * software shall set 'Average TRB Length' to 8 for control endpoints.
858 	 */
859 	ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));
860 
861 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
862 
863 	xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
864 	xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
865 }
866