1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/kvm.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_arm.h"
29 #include "hw/boards.h"
30 #include "internals.h"
31 
32 static bool have_guest_debug;
33 
34 /*
35  * Although the ARM implementation of hardware assisted debugging
36  * allows for different breakpoints per-core, the current GDB
37  * interface treats them as a global pool of registers (which seems to
38  * be the case for x86, ppc and s390). As a result we store one copy
39  * of registers which is used for all active cores.
40  *
41  * Write access is serialised by virtue of the GDB protocol which
42  * updates things. Read access (i.e. when the values are copied to the
43  * vCPU) is also gated by GDB's run control.
44  *
45  * This is not unreasonable as most of the time debugging kernels you
46  * never know which core will eventually execute your function.
47  */
48 
49 typedef struct {
50     uint64_t bcr;
51     uint64_t bvr;
52 } HWBreakpoint;
53 
54 /* The watchpoint registers can cover more area than the requested
55  * watchpoint so we need to store the additional information
56  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
57  * when the watchpoint is hit.
58  */
59 typedef struct {
60     uint64_t wcr;
61     uint64_t wvr;
62     CPUWatchpoint details;
63 } HWWatchpoint;
64 
65 /* Maximum and current break/watch point counts */
66 int max_hw_bps, max_hw_wps;
67 GArray *hw_breakpoints, *hw_watchpoints;
68 
69 #define cur_hw_wps      (hw_watchpoints->len)
70 #define cur_hw_bps      (hw_breakpoints->len)
71 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
72 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
73 
74 /**
75  * kvm_arm_init_debug() - check for guest debug capabilities
76  * @cs: CPUState
77  *
78  * kvm_check_extension returns the number of debug registers we have
79  * or 0 if we have none.
80  *
81  */
kvm_arm_init_debug(CPUState * cs)82 static void kvm_arm_init_debug(CPUState *cs)
83 {
84     have_guest_debug = kvm_check_extension(cs->kvm_state,
85                                            KVM_CAP_SET_GUEST_DEBUG);
86 
87     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
88     hw_watchpoints = g_array_sized_new(true, true,
89                                        sizeof(HWWatchpoint), max_hw_wps);
90 
91     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
92     hw_breakpoints = g_array_sized_new(true, true,
93                                        sizeof(HWBreakpoint), max_hw_bps);
94     return;
95 }
96 
97 /**
98  * insert_hw_breakpoint()
99  * @addr: address of breakpoint
100  *
101  * See ARM ARM D2.9.1 for details but here we are only going to create
102  * simple un-linked breakpoints (i.e. we don't chain breakpoints
103  * together to match address and context or vmid). The hardware is
104  * capable of fancier matching but that will require exposing that
105  * fanciness to GDB's interface
106  *
107  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
108  *
109  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
110  * +------+------+-------+-----+----+------+-----+------+-----+---+
111  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
112  * +------+------+-------+-----+----+------+-----+------+-----+---+
113  *
114  * BT: Breakpoint type (0 = unlinked address match)
115  * LBN: Linked BP number (0 = unused)
116  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
117  * BAS: Byte Address Select (RES1 for AArch64)
118  * E: Enable bit
119  *
120  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
121  *
122  *  63  53 52       49 48       2  1 0
123  * +------+-----------+----------+-----+
124  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
125  * +------+-----------+----------+-----+
126  *
127  * Depending on the addressing mode bits the top bits of the register
128  * are a sign extension of the highest applicable VA bit. Some
129  * versions of GDB don't do it correctly so we ensure they are correct
130  * here so future PC comparisons will work properly.
131  */
132 
insert_hw_breakpoint(target_ulong addr)133 static int insert_hw_breakpoint(target_ulong addr)
134 {
135     HWBreakpoint brk = {
136         .bcr = 0x1,                             /* BCR E=1, enable */
137         .bvr = sextract64(addr, 0, 53)
138     };
139 
140     if (cur_hw_bps >= max_hw_bps) {
141         return -ENOBUFS;
142     }
143 
144     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
145     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
146 
147     g_array_append_val(hw_breakpoints, brk);
148 
149     return 0;
150 }
151 
152 /**
153  * delete_hw_breakpoint()
154  * @pc: address of breakpoint
155  *
156  * Delete a breakpoint and shuffle any above down
157  */
158 
delete_hw_breakpoint(target_ulong pc)159 static int delete_hw_breakpoint(target_ulong pc)
160 {
161     int i;
162     for (i = 0; i < hw_breakpoints->len; i++) {
163         HWBreakpoint *brk = get_hw_bp(i);
164         if (brk->bvr == pc) {
165             g_array_remove_index(hw_breakpoints, i);
166             return 0;
167         }
168     }
169     return -ENOENT;
170 }
171 
172 /**
173  * insert_hw_watchpoint()
174  * @addr: address of watch point
175  * @len: size of area
176  * @type: type of watch point
177  *
178  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
179  * stuff if we want to. The watch points can be linked with the break
180  * points above to make them context aware. However for simplicity
181  * currently we only deal with simple read/write watch points.
182  *
183  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
184  *
185  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
186  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
187  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
188  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
189  *
190  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
191  * WT: 0 - unlinked, 1 - linked (not currently used)
192  * LBN: Linked BP number (not currently used)
193  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
194  * BAS: Byte Address Select
195  * LSC: Load/Store control (01: load, 10: store, 11: both)
196  * E: Enable
197  *
198  * The bottom 2 bits of the value register are masked. Therefore to
199  * break on any sizes smaller than an unaligned word you need to set
200  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
201  * need to ensure you mask the address as required and set BAS=0xff
202  */
203 
insert_hw_watchpoint(target_ulong addr,target_ulong len,int type)204 static int insert_hw_watchpoint(target_ulong addr,
205                                 target_ulong len, int type)
206 {
207     HWWatchpoint wp = {
208         .wcr = 1, /* E=1, enable */
209         .wvr = addr & (~0x7ULL),
210         .details = { .vaddr = addr, .len = len }
211     };
212 
213     if (cur_hw_wps >= max_hw_wps) {
214         return -ENOBUFS;
215     }
216 
217     /*
218      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
219      * valid whether EL3 is implemented or not
220      */
221     wp.wcr = deposit32(wp.wcr, 1, 2, 3);
222 
223     switch (type) {
224     case GDB_WATCHPOINT_READ:
225         wp.wcr = deposit32(wp.wcr, 3, 2, 1);
226         wp.details.flags = BP_MEM_READ;
227         break;
228     case GDB_WATCHPOINT_WRITE:
229         wp.wcr = deposit32(wp.wcr, 3, 2, 2);
230         wp.details.flags = BP_MEM_WRITE;
231         break;
232     case GDB_WATCHPOINT_ACCESS:
233         wp.wcr = deposit32(wp.wcr, 3, 2, 3);
234         wp.details.flags = BP_MEM_ACCESS;
235         break;
236     default:
237         g_assert_not_reached();
238         break;
239     }
240     if (len <= 8) {
241         /* we align the address and set the bits in BAS */
242         int off = addr & 0x7;
243         int bas = (1 << len) - 1;
244 
245         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
246     } else {
247         /* For ranges above 8 bytes we need to be a power of 2 */
248         if (is_power_of_2(len)) {
249             int bits = ctz64(len);
250 
251             wp.wvr &= ~((1 << bits) - 1);
252             wp.wcr = deposit32(wp.wcr, 24, 4, bits);
253             wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
254         } else {
255             return -ENOBUFS;
256         }
257     }
258 
259     g_array_append_val(hw_watchpoints, wp);
260     return 0;
261 }
262 
263 
check_watchpoint_in_range(int i,target_ulong addr)264 static bool check_watchpoint_in_range(int i, target_ulong addr)
265 {
266     HWWatchpoint *wp = get_hw_wp(i);
267     uint64_t addr_top, addr_bottom = wp->wvr;
268     int bas = extract32(wp->wcr, 5, 8);
269     int mask = extract32(wp->wcr, 24, 4);
270 
271     if (mask) {
272         addr_top = addr_bottom + (1 << mask);
273     } else {
274         /* BAS must be contiguous but can offset against the base
275          * address in DBGWVR */
276         addr_bottom = addr_bottom + ctz32(bas);
277         addr_top = addr_bottom + clo32(bas);
278     }
279 
280     if (addr >= addr_bottom && addr <= addr_top) {
281         return true;
282     }
283 
284     return false;
285 }
286 
287 /**
288  * delete_hw_watchpoint()
289  * @addr: address of breakpoint
290  *
291  * Delete a breakpoint and shuffle any above down
292  */
293 
delete_hw_watchpoint(target_ulong addr,target_ulong len,int type)294 static int delete_hw_watchpoint(target_ulong addr,
295                                 target_ulong len, int type)
296 {
297     int i;
298     for (i = 0; i < cur_hw_wps; i++) {
299         if (check_watchpoint_in_range(i, addr)) {
300             g_array_remove_index(hw_watchpoints, i);
301             return 0;
302         }
303     }
304     return -ENOENT;
305 }
306 
307 
kvm_arch_insert_hw_breakpoint(target_ulong addr,target_ulong len,int type)308 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
309                                   target_ulong len, int type)
310 {
311     switch (type) {
312     case GDB_BREAKPOINT_HW:
313         return insert_hw_breakpoint(addr);
314         break;
315     case GDB_WATCHPOINT_READ:
316     case GDB_WATCHPOINT_WRITE:
317     case GDB_WATCHPOINT_ACCESS:
318         return insert_hw_watchpoint(addr, len, type);
319     default:
320         return -ENOSYS;
321     }
322 }
323 
kvm_arch_remove_hw_breakpoint(target_ulong addr,target_ulong len,int type)324 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
325                                   target_ulong len, int type)
326 {
327     switch (type) {
328     case GDB_BREAKPOINT_HW:
329         return delete_hw_breakpoint(addr);
330         break;
331     case GDB_WATCHPOINT_READ:
332     case GDB_WATCHPOINT_WRITE:
333     case GDB_WATCHPOINT_ACCESS:
334         return delete_hw_watchpoint(addr, len, type);
335     default:
336         return -ENOSYS;
337     }
338 }
339 
340 
kvm_arch_remove_all_hw_breakpoints(void)341 void kvm_arch_remove_all_hw_breakpoints(void)
342 {
343     if (cur_hw_wps > 0) {
344         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
345     }
346     if (cur_hw_bps > 0) {
347         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
348     }
349 }
350 
kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch * ptr)351 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
352 {
353     int i;
354     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
355 
356     for (i = 0; i < max_hw_wps; i++) {
357         HWWatchpoint *wp = get_hw_wp(i);
358         ptr->dbg_wcr[i] = wp->wcr;
359         ptr->dbg_wvr[i] = wp->wvr;
360     }
361     for (i = 0; i < max_hw_bps; i++) {
362         HWBreakpoint *bp = get_hw_bp(i);
363         ptr->dbg_bcr[i] = bp->bcr;
364         ptr->dbg_bvr[i] = bp->bvr;
365     }
366 }
367 
kvm_arm_hw_debug_active(CPUState * cs)368 bool kvm_arm_hw_debug_active(CPUState *cs)
369 {
370     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
371 }
372 
find_hw_breakpoint(CPUState * cpu,target_ulong pc)373 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
374 {
375     int i;
376 
377     for (i = 0; i < cur_hw_bps; i++) {
378         HWBreakpoint *bp = get_hw_bp(i);
379         if (bp->bvr == pc) {
380             return true;
381         }
382     }
383     return false;
384 }
385 
find_hw_watchpoint(CPUState * cpu,target_ulong addr)386 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
387 {
388     int i;
389 
390     for (i = 0; i < cur_hw_wps; i++) {
391         if (check_watchpoint_in_range(i, addr)) {
392             return &get_hw_wp(i)->details;
393         }
394     }
395     return NULL;
396 }
397 
kvm_arm_pmu_set_attr(CPUState * cs,struct kvm_device_attr * attr)398 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
399 {
400     int err;
401 
402     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
403     if (err != 0) {
404         error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
405         return false;
406     }
407 
408     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
409     if (err != 0) {
410         error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
411         return false;
412     }
413 
414     return true;
415 }
416 
kvm_arm_pmu_init(CPUState * cs)417 void kvm_arm_pmu_init(CPUState *cs)
418 {
419     struct kvm_device_attr attr = {
420         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
421         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
422     };
423 
424     if (!ARM_CPU(cs)->has_pmu) {
425         return;
426     }
427     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
428         error_report("failed to init PMU");
429         abort();
430     }
431 }
432 
kvm_arm_pmu_set_irq(CPUState * cs,int irq)433 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
434 {
435     struct kvm_device_attr attr = {
436         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
437         .addr = (intptr_t)&irq,
438         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
439     };
440 
441     if (!ARM_CPU(cs)->has_pmu) {
442         return;
443     }
444     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
445         error_report("failed to set irq for PMU");
446         abort();
447     }
448 }
449 
set_feature(uint64_t * features,int feature)450 static inline void set_feature(uint64_t *features, int feature)
451 {
452     *features |= 1ULL << feature;
453 }
454 
unset_feature(uint64_t * features,int feature)455 static inline void unset_feature(uint64_t *features, int feature)
456 {
457     *features &= ~(1ULL << feature);
458 }
459 
read_sys_reg32(int fd,uint32_t * pret,uint64_t id)460 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
461 {
462     uint64_t ret;
463     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
464     int err;
465 
466     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
467     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
468     if (err < 0) {
469         return -1;
470     }
471     *pret = ret;
472     return 0;
473 }
474 
read_sys_reg64(int fd,uint64_t * pret,uint64_t id)475 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
476 {
477     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
478 
479     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
480     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
481 }
482 
kvm_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)483 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
484 {
485     /* Identify the feature bits corresponding to the host CPU, and
486      * fill out the ARMHostCPUClass fields accordingly. To do this
487      * we have to create a scratch VM, create a single CPU inside it,
488      * and then query that CPU for the relevant ID registers.
489      */
490     int fdarray[3];
491     bool sve_supported;
492     uint64_t features = 0;
493     uint64_t t;
494     int err;
495 
496     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
497      * we know these will only support creating one kind of guest CPU,
498      * which is its preferred CPU type. Fortunately these old kernels
499      * support only a very limited number of CPUs.
500      */
501     static const uint32_t cpus_to_try[] = {
502         KVM_ARM_TARGET_AEM_V8,
503         KVM_ARM_TARGET_FOUNDATION_V8,
504         KVM_ARM_TARGET_CORTEX_A57,
505         QEMU_KVM_ARM_TARGET_NONE
506     };
507     /*
508      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
509      * to use the preferred target
510      */
511     struct kvm_vcpu_init init = { .target = -1, };
512 
513     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
514         return false;
515     }
516 
517     ahcf->target = init.target;
518     ahcf->dtb_compatible = "arm,arm-v8";
519 
520     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
521                          ARM64_SYS_REG(3, 0, 0, 4, 0));
522     if (unlikely(err < 0)) {
523         /*
524          * Before v4.15, the kernel only exposed a limited number of system
525          * registers, not including any of the interesting AArch64 ID regs.
526          * For the most part we could leave these fields as zero with minimal
527          * effect, since this does not affect the values seen by the guest.
528          *
529          * However, it could cause problems down the line for QEMU,
530          * so provide a minimal v8.0 default.
531          *
532          * ??? Could read MIDR and use knowledge from cpu64.c.
533          * ??? Could map a page of memory into our temp guest and
534          *     run the tiniest of hand-crafted kernels to extract
535          *     the values seen by the guest.
536          * ??? Either of these sounds like too much effort just
537          *     to work around running a modern host kernel.
538          */
539         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
540         err = 0;
541     } else {
542         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
543                               ARM64_SYS_REG(3, 0, 0, 4, 1));
544         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
545                               ARM64_SYS_REG(3, 0, 0, 6, 0));
546         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
547                               ARM64_SYS_REG(3, 0, 0, 6, 1));
548         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
549                               ARM64_SYS_REG(3, 0, 0, 7, 0));
550         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
551                               ARM64_SYS_REG(3, 0, 0, 7, 1));
552 
553         /*
554          * Note that if AArch32 support is not present in the host,
555          * the AArch32 sysregs are present to be read, but will
556          * return UNKNOWN values.  This is neither better nor worse
557          * than skipping the reads and leaving 0, as we must avoid
558          * considering the values in every case.
559          */
560         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
561                               ARM64_SYS_REG(3, 0, 0, 2, 0));
562         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
563                               ARM64_SYS_REG(3, 0, 0, 2, 1));
564         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
565                               ARM64_SYS_REG(3, 0, 0, 2, 2));
566         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
567                               ARM64_SYS_REG(3, 0, 0, 2, 3));
568         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
569                               ARM64_SYS_REG(3, 0, 0, 2, 4));
570         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
571                               ARM64_SYS_REG(3, 0, 0, 2, 5));
572         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
573                               ARM64_SYS_REG(3, 0, 0, 2, 7));
574 
575         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
576                               ARM64_SYS_REG(3, 0, 0, 3, 0));
577         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
578                               ARM64_SYS_REG(3, 0, 0, 3, 1));
579         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
580                               ARM64_SYS_REG(3, 0, 0, 3, 2));
581     }
582 
583     sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
584 
585     kvm_arm_destroy_scratch_host_vcpu(fdarray);
586 
587     if (err < 0) {
588         return false;
589     }
590 
591     /* Add feature bits that can't appear until after VCPU init. */
592     if (sve_supported) {
593         t = ahcf->isar.id_aa64pfr0;
594         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
595         ahcf->isar.id_aa64pfr0 = t;
596     }
597 
598     /*
599      * We can assume any KVM supporting CPU is at least a v8
600      * with VFPv4+Neon; this in turn implies most of the other
601      * feature bits.
602      */
603     set_feature(&features, ARM_FEATURE_V8);
604     set_feature(&features, ARM_FEATURE_VFP4);
605     set_feature(&features, ARM_FEATURE_NEON);
606     set_feature(&features, ARM_FEATURE_AARCH64);
607     set_feature(&features, ARM_FEATURE_PMU);
608 
609     ahcf->features = features;
610 
611     return true;
612 }
613 
kvm_arm_aarch32_supported(CPUState * cpu)614 bool kvm_arm_aarch32_supported(CPUState *cpu)
615 {
616     KVMState *s = KVM_STATE(current_machine->accelerator);
617 
618     return kvm_check_extension(s, KVM_CAP_ARM_EL1_32BIT);
619 }
620 
kvm_arm_sve_supported(CPUState * cpu)621 bool kvm_arm_sve_supported(CPUState *cpu)
622 {
623     KVMState *s = KVM_STATE(current_machine->accelerator);
624 
625     return kvm_check_extension(s, KVM_CAP_ARM_SVE);
626 }
627 
628 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
629 
kvm_arm_sve_get_vls(CPUState * cs,unsigned long * map)630 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
631 {
632     /* Only call this function if kvm_arm_sve_supported() returns true. */
633     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
634     static bool probed;
635     uint32_t vq = 0;
636     int i, j;
637 
638     bitmap_clear(map, 0, ARM_MAX_VQ);
639 
640     /*
641      * KVM ensures all host CPUs support the same set of vector lengths.
642      * So we only need to create the scratch VCPUs once and then cache
643      * the results.
644      */
645     if (!probed) {
646         struct kvm_vcpu_init init = {
647             .target = -1,
648             .features[0] = (1 << KVM_ARM_VCPU_SVE),
649         };
650         struct kvm_one_reg reg = {
651             .id = KVM_REG_ARM64_SVE_VLS,
652             .addr = (uint64_t)&vls[0],
653         };
654         int fdarray[3], ret;
655 
656         probed = true;
657 
658         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
659             error_report("failed to create scratch VCPU with SVE enabled");
660             abort();
661         }
662         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
663         kvm_arm_destroy_scratch_host_vcpu(fdarray);
664         if (ret) {
665             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
666                          strerror(errno));
667             abort();
668         }
669 
670         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
671             if (vls[i]) {
672                 vq = 64 - clz64(vls[i]) + i * 64;
673                 break;
674             }
675         }
676         if (vq > ARM_MAX_VQ) {
677             warn_report("KVM supports vector lengths larger than "
678                         "QEMU can enable");
679         }
680     }
681 
682     for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
683         if (!vls[i]) {
684             continue;
685         }
686         for (j = 1; j <= 64; ++j) {
687             vq = j + i * 64;
688             if (vq > ARM_MAX_VQ) {
689                 return;
690             }
691             if (vls[i] & (1UL << (j - 1))) {
692                 set_bit(vq - 1, map);
693             }
694         }
695     }
696 }
697 
kvm_arm_sve_set_vls(CPUState * cs)698 static int kvm_arm_sve_set_vls(CPUState *cs)
699 {
700     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
701     struct kvm_one_reg reg = {
702         .id = KVM_REG_ARM64_SVE_VLS,
703         .addr = (uint64_t)&vls[0],
704     };
705     ARMCPU *cpu = ARM_CPU(cs);
706     uint32_t vq;
707     int i, j;
708 
709     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
710 
711     for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
712         if (test_bit(vq - 1, cpu->sve_vq_map)) {
713             i = (vq - 1) / 64;
714             j = (vq - 1) % 64;
715             vls[i] |= 1UL << j;
716         }
717     }
718 
719     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
720 }
721 
722 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
723 
kvm_arch_init_vcpu(CPUState * cs)724 int kvm_arch_init_vcpu(CPUState *cs)
725 {
726     int ret;
727     uint64_t mpidr;
728     ARMCPU *cpu = ARM_CPU(cs);
729     CPUARMState *env = &cpu->env;
730 
731     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
732         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
733         error_report("KVM is not supported for this guest CPU type");
734         return -EINVAL;
735     }
736 
737     /* Determine init features for this CPU */
738     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
739     if (cpu->start_powered_off) {
740         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
741     }
742     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
743         cpu->psci_version = 2;
744         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
745     }
746     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
747         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
748     }
749     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
750         cpu->has_pmu = false;
751     }
752     if (cpu->has_pmu) {
753         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
754     } else {
755         unset_feature(&env->features, ARM_FEATURE_PMU);
756     }
757     if (cpu_isar_feature(aa64_sve, cpu)) {
758         assert(kvm_arm_sve_supported(cs));
759         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
760     }
761 
762     /* Do KVM_ARM_VCPU_INIT ioctl */
763     ret = kvm_arm_vcpu_init(cs);
764     if (ret) {
765         return ret;
766     }
767 
768     if (cpu_isar_feature(aa64_sve, cpu)) {
769         ret = kvm_arm_sve_set_vls(cs);
770         if (ret) {
771             return ret;
772         }
773         ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
774         if (ret) {
775             return ret;
776         }
777     }
778 
779     /*
780      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
781      * Currently KVM has its own idea about MPIDR assignment, so we
782      * override our defaults with what we get from KVM.
783      */
784     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
785     if (ret) {
786         return ret;
787     }
788     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
789 
790     kvm_arm_init_debug(cs);
791 
792     /* Check whether user space can specify guest syndrome value */
793     kvm_arm_init_serror_injection(cs);
794 
795     return kvm_arm_init_cpreg_list(cpu);
796 }
797 
kvm_arch_destroy_vcpu(CPUState * cs)798 int kvm_arch_destroy_vcpu(CPUState *cs)
799 {
800     return 0;
801 }
802 
kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)803 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
804 {
805     /* Return true if the regidx is a register we should synchronize
806      * via the cpreg_tuples array (ie is not a core or sve reg that
807      * we sync by hand in kvm_arch_get/put_registers())
808      */
809     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
810     case KVM_REG_ARM_CORE:
811     case KVM_REG_ARM64_SVE:
812         return false;
813     default:
814         return true;
815     }
816 }
817 
818 typedef struct CPRegStateLevel {
819     uint64_t regidx;
820     int level;
821 } CPRegStateLevel;
822 
823 /* All system registers not listed in the following table are assumed to be
824  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
825  * often, you must add it to this table with a state of either
826  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
827  */
828 static const CPRegStateLevel non_runtime_cpregs[] = {
829     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
830 };
831 
kvm_arm_cpreg_level(uint64_t regidx)832 int kvm_arm_cpreg_level(uint64_t regidx)
833 {
834     int i;
835 
836     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
837         const CPRegStateLevel *l = &non_runtime_cpregs[i];
838         if (l->regidx == regidx) {
839             return l->level;
840         }
841     }
842 
843     return KVM_PUT_RUNTIME_STATE;
844 }
845 
846 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
847                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
848 
849 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
850                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
851 
852 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
853                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
854 
kvm_arch_put_fpsimd(CPUState * cs)855 static int kvm_arch_put_fpsimd(CPUState *cs)
856 {
857     CPUARMState *env = &ARM_CPU(cs)->env;
858     struct kvm_one_reg reg;
859     int i, ret;
860 
861     for (i = 0; i < 32; i++) {
862         uint64_t *q = aa64_vfp_qreg(env, i);
863 #ifdef HOST_WORDS_BIGENDIAN
864         uint64_t fp_val[2] = { q[1], q[0] };
865         reg.addr = (uintptr_t)fp_val;
866 #else
867         reg.addr = (uintptr_t)q;
868 #endif
869         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
870         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
871         if (ret) {
872             return ret;
873         }
874     }
875 
876     return 0;
877 }
878 
879 /*
880  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
881  * The byte at offset i from the start of the in-memory representation contains
882  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
883  * lowest offsets are stored in the lowest memory addresses, then that nearly
884  * matches QEMU's representation, which is to use an array of host-endian
885  * uint64_t's, where the lower offsets are at the lower indices. To complete
886  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
887  */
sve_bswap64(uint64_t * dst,uint64_t * src,int nr)888 static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
889 {
890 #ifdef HOST_WORDS_BIGENDIAN
891     int i;
892 
893     for (i = 0; i < nr; ++i) {
894         dst[i] = bswap64(src[i]);
895     }
896 
897     return dst;
898 #else
899     return src;
900 #endif
901 }
902 
903 /*
904  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
905  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
906  * code the slice index to zero for now as it's unlikely we'll need more than
907  * one slice for quite some time.
908  */
kvm_arch_put_sve(CPUState * cs)909 static int kvm_arch_put_sve(CPUState *cs)
910 {
911     ARMCPU *cpu = ARM_CPU(cs);
912     CPUARMState *env = &cpu->env;
913     uint64_t tmp[ARM_MAX_VQ * 2];
914     uint64_t *r;
915     struct kvm_one_reg reg;
916     int n, ret;
917 
918     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
919         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
920         reg.addr = (uintptr_t)r;
921         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
922         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
923         if (ret) {
924             return ret;
925         }
926     }
927 
928     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
929         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
930                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
931         reg.addr = (uintptr_t)r;
932         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
933         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
934         if (ret) {
935             return ret;
936         }
937     }
938 
939     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
940                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
941     reg.addr = (uintptr_t)r;
942     reg.id = KVM_REG_ARM64_SVE_FFR(0);
943     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
944     if (ret) {
945         return ret;
946     }
947 
948     return 0;
949 }
950 
kvm_arch_put_registers(CPUState * cs,int level)951 int kvm_arch_put_registers(CPUState *cs, int level)
952 {
953     struct kvm_one_reg reg;
954     uint64_t val;
955     uint32_t fpr;
956     int i, ret;
957     unsigned int el;
958 
959     ARMCPU *cpu = ARM_CPU(cs);
960     CPUARMState *env = &cpu->env;
961 
962     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
963      * AArch64 registers before pushing them out to 64-bit KVM.
964      */
965     if (!is_a64(env)) {
966         aarch64_sync_32_to_64(env);
967     }
968 
969     for (i = 0; i < 31; i++) {
970         reg.id = AARCH64_CORE_REG(regs.regs[i]);
971         reg.addr = (uintptr_t) &env->xregs[i];
972         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
973         if (ret) {
974             return ret;
975         }
976     }
977 
978     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
979      * QEMU side we keep the current SP in xregs[31] as well.
980      */
981     aarch64_save_sp(env, 1);
982 
983     reg.id = AARCH64_CORE_REG(regs.sp);
984     reg.addr = (uintptr_t) &env->sp_el[0];
985     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
986     if (ret) {
987         return ret;
988     }
989 
990     reg.id = AARCH64_CORE_REG(sp_el1);
991     reg.addr = (uintptr_t) &env->sp_el[1];
992     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
993     if (ret) {
994         return ret;
995     }
996 
997     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
998     if (is_a64(env)) {
999         val = pstate_read(env);
1000     } else {
1001         val = cpsr_read(env);
1002     }
1003     reg.id = AARCH64_CORE_REG(regs.pstate);
1004     reg.addr = (uintptr_t) &val;
1005     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1006     if (ret) {
1007         return ret;
1008     }
1009 
1010     reg.id = AARCH64_CORE_REG(regs.pc);
1011     reg.addr = (uintptr_t) &env->pc;
1012     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1013     if (ret) {
1014         return ret;
1015     }
1016 
1017     reg.id = AARCH64_CORE_REG(elr_el1);
1018     reg.addr = (uintptr_t) &env->elr_el[1];
1019     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1020     if (ret) {
1021         return ret;
1022     }
1023 
1024     /* Saved Program State Registers
1025      *
1026      * Before we restore from the banked_spsr[] array we need to
1027      * ensure that any modifications to env->spsr are correctly
1028      * reflected in the banks.
1029      */
1030     el = arm_current_el(env);
1031     if (el > 0 && !is_a64(env)) {
1032         i = bank_number(env->uncached_cpsr & CPSR_M);
1033         env->banked_spsr[i] = env->spsr;
1034     }
1035 
1036     /* KVM 0-4 map to QEMU banks 1-5 */
1037     for (i = 0; i < KVM_NR_SPSR; i++) {
1038         reg.id = AARCH64_CORE_REG(spsr[i]);
1039         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1040         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1041         if (ret) {
1042             return ret;
1043         }
1044     }
1045 
1046     if (cpu_isar_feature(aa64_sve, cpu)) {
1047         ret = kvm_arch_put_sve(cs);
1048     } else {
1049         ret = kvm_arch_put_fpsimd(cs);
1050     }
1051     if (ret) {
1052         return ret;
1053     }
1054 
1055     reg.addr = (uintptr_t)(&fpr);
1056     fpr = vfp_get_fpsr(env);
1057     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1058     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1059     if (ret) {
1060         return ret;
1061     }
1062 
1063     reg.addr = (uintptr_t)(&fpr);
1064     fpr = vfp_get_fpcr(env);
1065     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1066     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1067     if (ret) {
1068         return ret;
1069     }
1070 
1071     ret = kvm_put_vcpu_events(cpu);
1072     if (ret) {
1073         return ret;
1074     }
1075 
1076     write_cpustate_to_list(cpu, true);
1077 
1078     if (!write_list_to_kvmstate(cpu, level)) {
1079         return -EINVAL;
1080     }
1081 
1082     kvm_arm_sync_mpstate_to_kvm(cpu);
1083 
1084     return ret;
1085 }
1086 
kvm_arch_get_fpsimd(CPUState * cs)1087 static int kvm_arch_get_fpsimd(CPUState *cs)
1088 {
1089     CPUARMState *env = &ARM_CPU(cs)->env;
1090     struct kvm_one_reg reg;
1091     int i, ret;
1092 
1093     for (i = 0; i < 32; i++) {
1094         uint64_t *q = aa64_vfp_qreg(env, i);
1095         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1096         reg.addr = (uintptr_t)q;
1097         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1098         if (ret) {
1099             return ret;
1100         } else {
1101 #ifdef HOST_WORDS_BIGENDIAN
1102             uint64_t t;
1103             t = q[0], q[0] = q[1], q[1] = t;
1104 #endif
1105         }
1106     }
1107 
1108     return 0;
1109 }
1110 
1111 /*
1112  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1113  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1114  * code the slice index to zero for now as it's unlikely we'll need more than
1115  * one slice for quite some time.
1116  */
kvm_arch_get_sve(CPUState * cs)1117 static int kvm_arch_get_sve(CPUState *cs)
1118 {
1119     ARMCPU *cpu = ARM_CPU(cs);
1120     CPUARMState *env = &cpu->env;
1121     struct kvm_one_reg reg;
1122     uint64_t *r;
1123     int n, ret;
1124 
1125     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1126         r = &env->vfp.zregs[n].d[0];
1127         reg.addr = (uintptr_t)r;
1128         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1129         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1130         if (ret) {
1131             return ret;
1132         }
1133         sve_bswap64(r, r, cpu->sve_max_vq * 2);
1134     }
1135 
1136     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1137         r = &env->vfp.pregs[n].p[0];
1138         reg.addr = (uintptr_t)r;
1139         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1140         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1141         if (ret) {
1142             return ret;
1143         }
1144         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1145     }
1146 
1147     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1148     reg.addr = (uintptr_t)r;
1149     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1150     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1151     if (ret) {
1152         return ret;
1153     }
1154     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1155 
1156     return 0;
1157 }
1158 
kvm_arch_get_registers(CPUState * cs)1159 int kvm_arch_get_registers(CPUState *cs)
1160 {
1161     struct kvm_one_reg reg;
1162     uint64_t val;
1163     unsigned int el;
1164     uint32_t fpr;
1165     int i, ret;
1166 
1167     ARMCPU *cpu = ARM_CPU(cs);
1168     CPUARMState *env = &cpu->env;
1169 
1170     for (i = 0; i < 31; i++) {
1171         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1172         reg.addr = (uintptr_t) &env->xregs[i];
1173         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1174         if (ret) {
1175             return ret;
1176         }
1177     }
1178 
1179     reg.id = AARCH64_CORE_REG(regs.sp);
1180     reg.addr = (uintptr_t) &env->sp_el[0];
1181     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1182     if (ret) {
1183         return ret;
1184     }
1185 
1186     reg.id = AARCH64_CORE_REG(sp_el1);
1187     reg.addr = (uintptr_t) &env->sp_el[1];
1188     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1189     if (ret) {
1190         return ret;
1191     }
1192 
1193     reg.id = AARCH64_CORE_REG(regs.pstate);
1194     reg.addr = (uintptr_t) &val;
1195     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1196     if (ret) {
1197         return ret;
1198     }
1199 
1200     env->aarch64 = ((val & PSTATE_nRW) == 0);
1201     if (is_a64(env)) {
1202         pstate_write(env, val);
1203     } else {
1204         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1205     }
1206 
1207     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1208      * QEMU side we keep the current SP in xregs[31] as well.
1209      */
1210     aarch64_restore_sp(env, 1);
1211 
1212     reg.id = AARCH64_CORE_REG(regs.pc);
1213     reg.addr = (uintptr_t) &env->pc;
1214     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1215     if (ret) {
1216         return ret;
1217     }
1218 
1219     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1220      * incoming AArch64 regs received from 64-bit KVM.
1221      * We must perform this after all of the registers have been acquired from
1222      * the kernel.
1223      */
1224     if (!is_a64(env)) {
1225         aarch64_sync_64_to_32(env);
1226     }
1227 
1228     reg.id = AARCH64_CORE_REG(elr_el1);
1229     reg.addr = (uintptr_t) &env->elr_el[1];
1230     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1231     if (ret) {
1232         return ret;
1233     }
1234 
1235     /* Fetch the SPSR registers
1236      *
1237      * KVM SPSRs 0-4 map to QEMU banks 1-5
1238      */
1239     for (i = 0; i < KVM_NR_SPSR; i++) {
1240         reg.id = AARCH64_CORE_REG(spsr[i]);
1241         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1242         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1243         if (ret) {
1244             return ret;
1245         }
1246     }
1247 
1248     el = arm_current_el(env);
1249     if (el > 0 && !is_a64(env)) {
1250         i = bank_number(env->uncached_cpsr & CPSR_M);
1251         env->spsr = env->banked_spsr[i];
1252     }
1253 
1254     if (cpu_isar_feature(aa64_sve, cpu)) {
1255         ret = kvm_arch_get_sve(cs);
1256     } else {
1257         ret = kvm_arch_get_fpsimd(cs);
1258     }
1259     if (ret) {
1260         return ret;
1261     }
1262 
1263     reg.addr = (uintptr_t)(&fpr);
1264     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1265     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1266     if (ret) {
1267         return ret;
1268     }
1269     vfp_set_fpsr(env, fpr);
1270 
1271     reg.addr = (uintptr_t)(&fpr);
1272     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1273     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1274     if (ret) {
1275         return ret;
1276     }
1277     vfp_set_fpcr(env, fpr);
1278 
1279     ret = kvm_get_vcpu_events(cpu);
1280     if (ret) {
1281         return ret;
1282     }
1283 
1284     if (!write_kvmstate_to_list(cpu)) {
1285         return -EINVAL;
1286     }
1287     /* Note that it's OK to have registers which aren't in CPUState,
1288      * so we can ignore a failure return here.
1289      */
1290     write_list_to_cpustate(cpu);
1291 
1292     kvm_arm_sync_mpstate_to_qemu(cpu);
1293 
1294     /* TODO: other registers */
1295     return ret;
1296 }
1297 
1298 /* C6.6.29 BRK instruction */
1299 static const uint32_t brk_insn = 0xd4200000;
1300 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)1301 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1302 {
1303     if (have_guest_debug) {
1304         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1305             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1306             return -EINVAL;
1307         }
1308         return 0;
1309     } else {
1310         error_report("guest debug not supported on this kernel");
1311         return -EINVAL;
1312     }
1313 }
1314 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)1315 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1316 {
1317     static uint32_t brk;
1318 
1319     if (have_guest_debug) {
1320         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1321             brk != brk_insn ||
1322             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1323             return -EINVAL;
1324         }
1325         return 0;
1326     } else {
1327         error_report("guest debug not supported on this kernel");
1328         return -EINVAL;
1329     }
1330 }
1331 
1332 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1333  *
1334  * To minimise translating between kernel and user-space the kernel
1335  * ABI just provides user-space with the full exception syndrome
1336  * register value to be decoded in QEMU.
1337  */
1338 
kvm_arm_handle_debug(CPUState * cs,struct kvm_debug_exit_arch * debug_exit)1339 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1340 {
1341     int hsr_ec = syn_get_ec(debug_exit->hsr);
1342     ARMCPU *cpu = ARM_CPU(cs);
1343     CPUClass *cc = CPU_GET_CLASS(cs);
1344     CPUARMState *env = &cpu->env;
1345 
1346     /* Ensure PC is synchronised */
1347     kvm_cpu_synchronize_state(cs);
1348 
1349     switch (hsr_ec) {
1350     case EC_SOFTWARESTEP:
1351         if (cs->singlestep_enabled) {
1352             return true;
1353         } else {
1354             /*
1355              * The kernel should have suppressed the guest's ability to
1356              * single step at this point so something has gone wrong.
1357              */
1358             error_report("%s: guest single-step while debugging unsupported"
1359                          " (%"PRIx64", %"PRIx32")",
1360                          __func__, env->pc, debug_exit->hsr);
1361             return false;
1362         }
1363         break;
1364     case EC_AA64_BKPT:
1365         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1366             return true;
1367         }
1368         break;
1369     case EC_BREAKPOINT:
1370         if (find_hw_breakpoint(cs, env->pc)) {
1371             return true;
1372         }
1373         break;
1374     case EC_WATCHPOINT:
1375     {
1376         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1377         if (wp) {
1378             cs->watchpoint_hit = wp;
1379             return true;
1380         }
1381         break;
1382     }
1383     default:
1384         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1385                      __func__, debug_exit->hsr, env->pc);
1386     }
1387 
1388     /* If we are not handling the debug exception it must belong to
1389      * the guest. Let's re-use the existing TCG interrupt code to set
1390      * everything up properly.
1391      */
1392     cs->exception_index = EXCP_BKPT;
1393     env->exception.syndrome = debug_exit->hsr;
1394     env->exception.vaddress = debug_exit->far;
1395     env->exception.target_el = 1;
1396     qemu_mutex_lock_iothread();
1397     cc->do_interrupt(cs);
1398     qemu_mutex_unlock_iothread();
1399 
1400     return false;
1401 }
1402