1 /*
2  * (C) Copyright 2000
3  * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4  *
5  * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6  * Marius Groeger <mgroeger@sysgo.de>
7  *
8  * See file CREDITS for list of people who contributed to this
9  * project.
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of
14  * the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24  * MA 02111-1307 USA
25  */
26 
27 #include <common.h>
28 
29 #if defined(CONFIG_HARD_I2C)
30 
31 #include <asm/cpm_8260.h>
32 #include <i2c.h>
33 
34 /* define to enable debug messages */
35 #undef  DEBUG_I2C
36 
37 DECLARE_GLOBAL_DATA_PTR;
38 
39 #if defined(CONFIG_I2C_MULTI_BUS)
40 static unsigned int i2c_bus_num __attribute__ ((section (".data"))) = 0;
41 #endif /* CONFIG_I2C_MULTI_BUS */
42 
43 /* uSec to wait between polls of the i2c */
44 #define DELAY_US	100
45 /* uSec to wait for the CPM to start processing the buffer */
46 #define START_DELAY_US	1000
47 
48 /*
49  * tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the
50  * timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP
51  */
52 #define TOUT_LOOP 5
53 
54 /*-----------------------------------------------------------------------
55  * Set default values
56  */
57 #ifndef	CONFIG_SYS_I2C_SPEED
58 #define	CONFIG_SYS_I2C_SPEED	50000
59 #endif
60 
61 /*-----------------------------------------------------------------------
62  */
63 
64 typedef void (*i2c_ecb_t)(int, int, void *);    /* error callback function */
65 
66 /* This structure keeps track of the bd and buffer space usage. */
67 typedef struct i2c_state {
68 	int		rx_idx;		/* index   to next free Rx BD */
69 	int		tx_idx;		/* index   to next free Tx BD */
70 	void		*rxbd;		/* pointer to next free Rx BD */
71 	void		*txbd;		/* pointer to next free Tx BD */
72 	int		tx_space;	/* number  of Tx bytes left   */
73 	unsigned char	*tx_buf;	/* pointer to free Tx area    */
74 	i2c_ecb_t	err_cb;		/* error callback function    */
75 	void		*cb_data;	/* private data to be passed  */
76 } i2c_state_t;
77 
78 /* flags for i2c_send() and i2c_receive() */
79 #define	I2CF_ENABLE_SECONDARY	0x01	/* secondary_address is valid	*/
80 #define	I2CF_START_COND		0x02	/* tx: generate start condition	*/
81 #define I2CF_STOP_COND		0x04	/* tx: generate stop  condition	*/
82 
83 /* return codes */
84 #define I2CERR_NO_BUFFERS	1	/* no more BDs or buffer space	*/
85 #define I2CERR_MSG_TOO_LONG	2	/* tried to send/receive to much data   */
86 #define I2CERR_TIMEOUT		3	/* timeout in i2c_doio()	*/
87 #define I2CERR_QUEUE_EMPTY	4	/* i2c_doio called without send/receive */
88 #define I2CERR_IO_ERROR		5	/* had an error during comms	*/
89 
90 /* error callback flags */
91 #define I2CECB_RX_ERR		0x10	/* this is a receive error	*/
92 #define     I2CECB_RX_OV	0x02	/* receive overrun error	*/
93 #define     I2CECB_RX_MASK	0x0f	/* mask for error bits		*/
94 #define I2CECB_TX_ERR		0x20	/* this is a transmit error	*/
95 #define     I2CECB_TX_CL	0x01	/* transmit collision error	*/
96 #define     I2CECB_TX_UN	0x02	/* transmit underflow error	*/
97 #define     I2CECB_TX_NAK	0x04	/* transmit no ack error	*/
98 #define     I2CECB_TX_MASK	0x0f	/* mask for error bits		*/
99 #define I2CECB_TIMEOUT		0x40	/* this is a timeout error	*/
100 
101 #define ERROR_I2C_NONE		0
102 #define ERROR_I2C_LENGTH	1
103 
104 #define I2C_WRITE_BIT		0x00
105 #define I2C_READ_BIT		0x01
106 
107 #define I2C_RXTX_LEN	128	/* maximum tx/rx buffer length */
108 
109 
110 #define NUM_RX_BDS 4
111 #define NUM_TX_BDS 4
112 #define MAX_TX_SPACE 256
113 
114 typedef struct I2C_BD
115 {
116   unsigned short status;
117   unsigned short length;
118   unsigned char *addr;
119 } I2C_BD;
120 #define BD_I2C_TX_START 0x0400  /* special status for i2c: Start condition */
121 
122 #define BD_I2C_TX_CL	0x0001	/* collision error */
123 #define BD_I2C_TX_UN	0x0002	/* underflow error */
124 #define BD_I2C_TX_NAK	0x0004	/* no acknowledge error */
125 #define BD_I2C_TX_ERR	(BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
126 
127 #define BD_I2C_RX_ERR	BD_SC_OV
128 
129 #ifdef DEBUG_I2C
130 #define PRINTD(x) printf x
131 #else
132 #define PRINTD(x)
133 #endif
134 
135 /*
136  * Returns the best value of I2BRG to meet desired clock speed of I2C with
137  * input parameters (clock speed, filter, and predivider value).
138  * It returns computer speed value and the difference between it and desired
139  * speed.
140  */
141 static inline int
i2c_roundrate(int hz,int speed,int filter,int modval,int * brgval,int * totspeed)142 i2c_roundrate(int hz, int speed, int filter, int modval,
143 		int *brgval, int *totspeed)
144 {
145     int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
146 
147     PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
148 	hz, speed, filter, modval));
149 
150     div = moddiv * speed;
151     brgdiv = (hz + div - 1) / div;
152 
153     PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
154 
155     *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
156 
157     if ((*brgval < 0) || (*brgval > 255)) {
158 	  PRINTD(("\t\trejected brgval=%d\n", *brgval));
159 	  return -1;
160     }
161 
162     brgdiv = 2 * (*brgval + 3 + (2 * filter));
163     div = moddiv * brgdiv ;
164     *totspeed = hz / div;
165 
166     PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
167 
168     return  0;
169 }
170 
171 /*
172  * Sets the I2C clock predivider and divider to meet required clock speed.
173  */
i2c_setrate(int hz,int speed)174 static int i2c_setrate(int hz, int speed)
175 {
176     immap_t	*immap = (immap_t *)CONFIG_SYS_IMMR ;
177     volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
178     int brgval,
179 	  modval,	/* 0-3 */
180 	  bestspeed_diff = speed,
181 	  bestspeed_brgval=0,
182 	  bestspeed_modval=0,
183 	  bestspeed_filter=0,
184 	  totspeed,
185 	  filter = 0; /* Use this fixed value */
186 
187 	for (modval = 0; modval < 4; modval++)
188 	{
189 		if (i2c_roundrate (hz, speed, filter, modval, &brgval, &totspeed) == 0)
190 		{
191 			int diff = speed - totspeed ;
192 
193 			if ((diff >= 0) && (diff < bestspeed_diff))
194 			{
195 				bestspeed_diff	= diff ;
196 				bestspeed_modval	= modval;
197 				bestspeed_brgval	= brgval;
198 				bestspeed_filter	= filter;
199 			}
200 		}
201 	}
202 
203     PRINTD(("[I2C] Best is:\n"));
204     PRINTD(("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
205 		   hz, speed,
206 		   bestspeed_filter, bestspeed_modval, bestspeed_brgval,
207 		   bestspeed_diff));
208 
209     i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
210     i2c->i2c_i2brg = bestspeed_brgval & 0xff;
211 
212     PRINTD(("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg));
213 
214     return 1 ;
215 }
216 
i2c_init(int speed,int slaveadd)217 void i2c_init(int speed, int slaveadd)
218 {
219 	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
220 	volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm;
221 	volatile i2c8260_t *i2c	= (i2c8260_t *)&immap->im_i2c;
222 	volatile iic_t *iip;
223 	ulong rbase, tbase;
224 	volatile I2C_BD *rxbd, *txbd;
225 	uint dpaddr;
226 
227 #ifdef CONFIG_SYS_I2C_INIT_BOARD
228 	/* call board specific i2c bus reset routine before accessing the   */
229 	/* environment, which might be in a chip on that bus. For details   */
230 	/* about this problem see doc/I2C_Edge_Conditions.                  */
231 	i2c_init_board();
232 #endif
233 
234 	dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
235 	if (dpaddr == 0) {
236 	    /* need to allocate dual port ram */
237 	    dpaddr = m8260_cpm_dpalloc(64 +
238 		(NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
239 		MAX_TX_SPACE, 64);
240 	    *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])) = dpaddr;
241 	}
242 
243 	/*
244 	 * initialise data in dual port ram:
245 	 *
246 	 *	  dpaddr -> parameter ram (64 bytes)
247 	 *         rbase -> rx BD         (NUM_RX_BDS * sizeof(I2C_BD) bytes)
248 	 *         tbase -> tx BD         (NUM_TX_BDS * sizeof(I2C_BD) bytes)
249 	 *                  tx buffer     (MAX_TX_SPACE bytes)
250 	 */
251 
252 	iip = (iic_t *)&immap->im_dprambase[dpaddr];
253 	memset((void*)iip, 0, sizeof(iic_t));
254 
255 	rbase = dpaddr + 64;
256 	tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
257 
258 	/* Disable interrupts */
259 	i2c->i2c_i2mod = 0x00;
260 	i2c->i2c_i2cmr = 0x00;
261 	i2c->i2c_i2cer = 0xff;
262 	i2c->i2c_i2add = slaveadd;
263 
264 	/*
265 	 * Set the I2C BRG Clock division factor from desired i2c rate
266 	 * and current CPU rate (we assume sccr dfbgr field is 0;
267 	 * divide BRGCLK by 1)
268 	 */
269 	PRINTD(("[I2C] Setting rate...\n"));
270 	i2c_setrate (gd->brg_clk, CONFIG_SYS_I2C_SPEED) ;
271 
272 	/* Set I2C controller in master mode */
273 	i2c->i2c_i2com = 0x01;
274 
275 	/* Initialize Tx/Rx parameters */
276 	iip->iic_rbase = rbase;
277 	iip->iic_tbase = tbase;
278 	rxbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_rbase]);
279 	txbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_tbase]);
280 
281 	PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
282 	PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
283 	PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
284 	PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
285 
286 	/* Set big endian byte order */
287 	iip->iic_tfcr = 0x10;
288 	iip->iic_rfcr = 0x10;
289 
290 	/* Set maximum receive size. */
291 	iip->iic_mrblr = I2C_RXTX_LEN;
292 
293     cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE,
294 							CPM_CR_I2C_SBLOCK,
295 							0x00,
296 							CPM_CR_INIT_TRX) | CPM_CR_FLG;
297     do {
298 		__asm__ __volatile__ ("eieio");
299     } while (cp->cp_cpcr & CPM_CR_FLG);
300 
301 	/* Clear events and interrupts */
302 	i2c->i2c_i2cer = 0xff;
303 	i2c->i2c_i2cmr = 0x00;
304 }
305 
306 static
i2c_newio(i2c_state_t * state)307 void i2c_newio(i2c_state_t *state)
308 {
309 	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
310 	volatile iic_t *iip;
311 	uint dpaddr;
312 
313 	PRINTD(("[I2C] i2c_newio\n"));
314 
315 	dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
316 	iip = (iic_t *)&immap->im_dprambase[dpaddr];
317 	state->rx_idx = 0;
318 	state->tx_idx = 0;
319 	state->rxbd = (void*)&immap->im_dprambase[iip->iic_rbase];
320 	state->txbd = (void*)&immap->im_dprambase[iip->iic_tbase];
321 	state->tx_space = MAX_TX_SPACE;
322 	state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
323 	state->err_cb = NULL;
324 	state->cb_data = NULL;
325 
326 	PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
327 	PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
328 	PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
329 
330 	/* clear the buffer memory */
331 	memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
332 }
333 
334 static
i2c_send(i2c_state_t * state,unsigned char address,unsigned char secondary_address,unsigned int flags,unsigned short size,unsigned char * dataout)335 int i2c_send(i2c_state_t *state,
336 			 unsigned char address,
337 			 unsigned char secondary_address,
338 			 unsigned int flags,
339 			 unsigned short size,
340 			 unsigned char *dataout)
341 {
342 	volatile I2C_BD *txbd;
343 	int i,j;
344 
345 	PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
346 			address, secondary_address, flags, size));
347 
348 	/* trying to send message larger than BD */
349 	if (size > I2C_RXTX_LEN)
350 	  return I2CERR_MSG_TOO_LONG;
351 
352 	/* no more free bds */
353 	if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
354 	  return I2CERR_NO_BUFFERS;
355 
356 	txbd = (I2C_BD *)state->txbd;
357 	txbd->addr = state->tx_buf;
358 
359 	PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
360 
361     if (flags & I2CF_START_COND)
362     {
363 	PRINTD(("[I2C] Formatting addresses...\n"));
364 	if (flags & I2CF_ENABLE_SECONDARY)
365 	{
366 		txbd->length = size + 2;  /* Length of message plus dest addresses */
367 		txbd->addr[0] = address << 1;
368 		txbd->addr[1] = secondary_address;
369 		i = 2;
370 	}
371 	else
372 	{
373 		txbd->length = size + 1;  /* Length of message plus dest address */
374 		txbd->addr[0] = address << 1;  /* Write destination address to BD */
375 		i = 1;
376 	}
377     }
378     else
379     {
380 	txbd->length = size;  /* Length of message */
381 	i = 0;
382     }
383 
384 	/* set up txbd */
385 	txbd->status = BD_SC_READY;
386 	if (flags & I2CF_START_COND)
387 	  txbd->status |= BD_I2C_TX_START;
388 	if (flags & I2CF_STOP_COND)
389 	  txbd->status |= BD_SC_LAST | BD_SC_WRAP;
390 
391 	/* Copy data to send into buffer */
392 	PRINTD(("[I2C] copy data...\n"));
393 	for(j = 0; j < size; i++, j++)
394 	  txbd->addr[i] = dataout[j];
395 
396 	PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
397 		   txbd->length,
398 		   txbd->status,
399 		   txbd->addr[0],
400 		   txbd->addr[1]));
401 
402 	/* advance state */
403 	state->tx_buf += txbd->length;
404 	state->tx_space -= txbd->length;
405 	state->tx_idx++;
406 	state->txbd = (void*)(txbd + 1);
407 
408 	return 0;
409 }
410 
411 static
i2c_receive(i2c_state_t * state,unsigned char address,unsigned char secondary_address,unsigned int flags,unsigned short size_to_expect,unsigned char * datain)412 int i2c_receive(i2c_state_t *state,
413 				unsigned char address,
414 				unsigned char secondary_address,
415 				unsigned int flags,
416 				unsigned short size_to_expect,
417 				unsigned char *datain)
418 {
419 	volatile I2C_BD *rxbd, *txbd;
420 
421 	PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
422 
423 	/* Expected to receive too much */
424 	if (size_to_expect > I2C_RXTX_LEN)
425 	  return I2CERR_MSG_TOO_LONG;
426 
427 	/* no more free bds */
428 	if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
429 		 || state->tx_space < 2)
430 	  return I2CERR_NO_BUFFERS;
431 
432 	rxbd = (I2C_BD *)state->rxbd;
433 	txbd = (I2C_BD *)state->txbd;
434 
435 	PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
436 	PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
437 
438 	txbd->addr = state->tx_buf;
439 
440 	/* set up TXBD for destination address */
441 	if (flags & I2CF_ENABLE_SECONDARY)
442 	{
443 		txbd->length = 2;
444 		txbd->addr[0] = address << 1;   /* Write data */
445 		txbd->addr[1] = secondary_address;  /* Internal address */
446 		txbd->status = BD_SC_READY;
447 	}
448 	else
449 	{
450 		txbd->length = 1 + size_to_expect;
451 		txbd->addr[0] = (address << 1) | 0x01;
452 		txbd->status = BD_SC_READY;
453 		memset(&txbd->addr[1], 0, txbd->length);
454 	}
455 
456 	/* set up rxbd for reception */
457 	rxbd->status = BD_SC_EMPTY;
458 	rxbd->length = size_to_expect;
459 	rxbd->addr = datain;
460 
461 	txbd->status |= BD_I2C_TX_START;
462 	if (flags & I2CF_STOP_COND)
463 	{
464 		txbd->status |= BD_SC_LAST | BD_SC_WRAP;
465 		rxbd->status |= BD_SC_WRAP;
466 	}
467 
468 	PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
469 		   txbd->length,
470 		   txbd->status,
471 		   txbd->addr[0],
472 		   txbd->addr[1]));
473 	PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
474 		   rxbd->length,
475 		   rxbd->status,
476 		   rxbd->addr[0],
477 		   rxbd->addr[1]));
478 
479 	/* advance state */
480 	state->tx_buf += txbd->length;
481 	state->tx_space -= txbd->length;
482 	state->tx_idx++;
483 	state->txbd = (void*)(txbd + 1);
484 	state->rx_idx++;
485 	state->rxbd = (void*)(rxbd + 1);
486 
487 	return 0;
488 }
489 
490 
491 static
i2c_doio(i2c_state_t * state)492 int i2c_doio(i2c_state_t *state)
493 {
494 	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
495 	volatile iic_t *iip;
496 	volatile i2c8260_t *i2c	= (i2c8260_t *)&immap->im_i2c;
497 	volatile I2C_BD *txbd, *rxbd;
498 	int  n, i, b, rxcnt = 0, rxtimeo = 0, txcnt = 0, txtimeo = 0, rc = 0;
499 	uint dpaddr;
500 
501 	PRINTD(("[I2C] i2c_doio\n"));
502 
503 	if (state->tx_idx <= 0 && state->rx_idx <= 0) {
504 		PRINTD(("[I2C] No I/O is queued\n"));
505 		return I2CERR_QUEUE_EMPTY;
506 	}
507 
508 	dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
509 	iip = (iic_t *)&immap->im_dprambase[dpaddr];
510 	iip->iic_rbptr = iip->iic_rbase;
511 	iip->iic_tbptr = iip->iic_tbase;
512 
513 	/* Enable I2C */
514 	PRINTD(("[I2C] Enabling I2C...\n"));
515 	i2c->i2c_i2mod |= 0x01;
516 
517 	/* Begin transmission */
518 	i2c->i2c_i2com |= 0x80;
519 
520 	/* Loop until transmit & receive completed */
521 
522 	if ((n = state->tx_idx) > 0) {
523 
524 		txbd = ((I2C_BD*)state->txbd) - n;
525 		for (i = 0; i < n; i++) {
526 			txtimeo += TOUT_LOOP * txbd->length;
527 			txbd++;
528 		}
529 
530 		txbd--; /* wait until last in list is done */
531 
532 		PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
533 
534 		udelay(START_DELAY_US);	/* give it time to start */
535 		while((txbd->status & BD_SC_READY) && (++txcnt < txtimeo)) {
536 			udelay(DELAY_US);
537 			if (ctrlc())
538 				return (-1);
539 			__asm__ __volatile__ ("eieio");
540 		}
541 	}
542 
543 	if (txcnt < txtimeo && (n = state->rx_idx) > 0) {
544 
545 		rxbd = ((I2C_BD*)state->rxbd) - n;
546 		for (i = 0; i < n; i++) {
547 			rxtimeo += TOUT_LOOP * rxbd->length;
548 			rxbd++;
549 		}
550 
551 		rxbd--; /* wait until last in list is done */
552 
553 		PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
554 
555 		udelay(START_DELAY_US);	/* give it time to start */
556 		while((rxbd->status & BD_SC_EMPTY) && (++rxcnt < rxtimeo)) {
557 			udelay(DELAY_US);
558 			if (ctrlc())
559 				return (-1);
560 			__asm__ __volatile__ ("eieio");
561 		}
562 	}
563 
564 	/* Turn off I2C */
565 	i2c->i2c_i2mod &= ~0x01;
566 
567 	if ((n = state->tx_idx) > 0) {
568 		for (i = 0; i < n; i++) {
569 			txbd = ((I2C_BD*)state->txbd) - (n - i);
570 			if ((b = txbd->status & BD_I2C_TX_ERR) != 0) {
571 				if (state->err_cb != NULL)
572 					(*state->err_cb)(I2CECB_TX_ERR|b, i,
573 						state->cb_data);
574 				if (rc == 0)
575 					rc = I2CERR_IO_ERROR;
576 			}
577 		}
578 	}
579 
580 	if ((n = state->rx_idx) > 0) {
581 		for (i = 0; i < n; i++) {
582 			rxbd = ((I2C_BD*)state->rxbd) - (n - i);
583 			if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) {
584 				if (state->err_cb != NULL)
585 					(*state->err_cb)(I2CECB_RX_ERR|b, i,
586 						state->cb_data);
587 				if (rc == 0)
588 					rc = I2CERR_IO_ERROR;
589 			}
590 		}
591 	}
592 
593 	if ((txtimeo > 0 && txcnt >= txtimeo) || \
594 	    (rxtimeo > 0 && rxcnt >= rxtimeo)) {
595 		if (state->err_cb != NULL)
596 			(*state->err_cb)(I2CECB_TIMEOUT, -1, state->cb_data);
597 		if (rc == 0)
598 			rc = I2CERR_TIMEOUT;
599 	}
600 
601 	return (rc);
602 }
603 
604 static void
i2c_probe_callback(int flags,int xnum,void * data)605 i2c_probe_callback(int flags, int xnum, void *data)
606 {
607 	/*
608 	 * the only acceptable errors are a transmit NAK or a receive
609 	 * overrun - tx NAK means the device does not exist, rx OV
610 	 * means the device must have responded to the slave address
611 	 * even though the transfer failed
612 	 */
613 	if (flags == (I2CECB_TX_ERR|I2CECB_TX_NAK))
614 		*(int *)data |= 1;
615 	if (flags == (I2CECB_RX_ERR|I2CECB_RX_OV))
616 		*(int *)data |= 2;
617 }
618 
619 int
i2c_probe(uchar chip)620 i2c_probe(uchar chip)
621 {
622 	i2c_state_t state;
623 	int rc, err_flag;
624 	uchar buf[1];
625 
626 	i2c_newio(&state);
627 
628 	state.err_cb = i2c_probe_callback;
629 	state.cb_data = (void *) &err_flag;
630 	err_flag = 0;
631 
632 	rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
633 
634 	if (rc != 0)
635 		return (rc);	/* probe failed */
636 
637 	rc = i2c_doio(&state);
638 
639 	if (rc == 0)
640 		return (0);	/* device exists - read succeeded */
641 
642 	if (rc == I2CERR_TIMEOUT)
643 		return (-1);	/* device does not exist - timeout */
644 
645 	if (rc != I2CERR_IO_ERROR || err_flag == 0)
646 		return (rc);	/* probe failed */
647 
648 	if (err_flag & 1)
649 		return (-1);	/* device does not exist - had transmit NAK */
650 
651 	return (0);	/* device exists - had receive overrun */
652 }
653 
654 
655 int
i2c_read(uchar chip,uint addr,int alen,uchar * buffer,int len)656 i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
657 {
658 	i2c_state_t state;
659 	uchar xaddr[4];
660 	int rc;
661 
662 	xaddr[0] = (addr >> 24) & 0xFF;
663 	xaddr[1] = (addr >> 16) & 0xFF;
664 	xaddr[2] = (addr >>  8) & 0xFF;
665 	xaddr[3] =  addr        & 0xFF;
666 
667 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
668 	 /*
669 	  * EEPROM chips that implement "address overflow" are ones
670 	  * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
671 	  * and the extra bits end up in the "chip address" bit slots.
672 	  * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
673 	  * chips.
674 	  *
675 	  * Note that we consider the length of the address field to still
676 	  * be one byte because the extra address bits are hidden in the
677 	  * chip address.
678 	  */
679 	chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
680 #endif
681 
682 	i2c_newio(&state);
683 
684 	rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
685 	if (rc != 0) {
686 		printf("i2c_read: i2c_send failed (%d)\n", rc);
687 		return 1;
688 	}
689 
690 	rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
691 	if (rc != 0) {
692 		printf("i2c_read: i2c_receive failed (%d)\n", rc);
693 		return 1;
694 	}
695 
696 	rc = i2c_doio(&state);
697 	if (rc != 0) {
698 		printf("i2c_read: i2c_doio failed (%d)\n", rc);
699 		return 1;
700 	}
701 	return 0;
702 }
703 
704 int
i2c_write(uchar chip,uint addr,int alen,uchar * buffer,int len)705 i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
706 {
707 	i2c_state_t state;
708 	uchar xaddr[4];
709 	int rc;
710 
711 	xaddr[0] = (addr >> 24) & 0xFF;
712 	xaddr[1] = (addr >> 16) & 0xFF;
713 	xaddr[2] = (addr >>  8) & 0xFF;
714 	xaddr[3] =  addr        & 0xFF;
715 
716 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
717 	 /*
718 	  * EEPROM chips that implement "address overflow" are ones
719 	  * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
720 	  * and the extra bits end up in the "chip address" bit slots.
721 	  * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
722 	  * chips.
723 	  *
724 	  * Note that we consider the length of the address field to still
725 	  * be one byte because the extra address bits are hidden in the
726 	  * chip address.
727 	  */
728 	chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
729 #endif
730 
731 	i2c_newio(&state);
732 
733 	rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
734 	if (rc != 0) {
735 		printf("i2c_write: first i2c_send failed (%d)\n", rc);
736 		return 1;
737 	}
738 
739 	rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
740 	if (rc != 0) {
741 		printf("i2c_write: second i2c_send failed (%d)\n", rc);
742 		return 1;
743 	}
744 
745 	rc = i2c_doio(&state);
746 	if (rc != 0) {
747 		printf("i2c_write: i2c_doio failed (%d)\n", rc);
748 		return 1;
749 	}
750 	return 0;
751 }
752 
753 #if defined(CONFIG_I2C_MULTI_BUS)
754 /*
755  * Functions for multiple I2C bus handling
756  */
i2c_get_bus_num(void)757 unsigned int i2c_get_bus_num(void)
758 {
759 	return i2c_bus_num;
760 }
761 
i2c_set_bus_num(unsigned int bus)762 int i2c_set_bus_num(unsigned int bus)
763 {
764 #if defined(CONFIG_I2C_MUX)
765 	if (bus < CONFIG_SYS_MAX_I2C_BUS) {
766 		i2c_bus_num = bus;
767 	} else {
768 		int	ret;
769 
770 		ret = i2x_mux_select_mux(bus);
771 		if (ret == 0)
772 			i2c_bus_num = bus;
773 		else
774 			return ret;
775 	}
776 #else
777 	if (bus >= CONFIG_SYS_MAX_I2C_BUS)
778 		return -1;
779 	i2c_bus_num = bus;
780 #endif
781 	return 0;
782 }
783 
784 #endif	/* CONFIG_I2C_MULTI_BUS */
785 #endif	/* CONFIG_HARD_I2C */
786