1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
4  */
5 
6 #include <command.h>
7 #include <console.h>
8 #include <dfu.h>
9 #include <malloc.h>
10 #include <misc.h>
11 #include <mmc.h>
12 #include <part.h>
13 #include <asm/arch/stm32mp1_smc.h>
14 #include <asm/global_data.h>
15 #include <dm/uclass.h>
16 #include <jffs2/load_kernel.h>
17 #include <linux/list.h>
18 #include <linux/list_sort.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/sizes.h>
21 
22 #include "stm32prog.h"
23 
24 /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
25 #define GPT_HEADER_SZ	34
26 
27 #define OPT_SELECT	BIT(0)
28 #define OPT_EMPTY	BIT(1)
29 #define OPT_DELETE	BIT(2)
30 
31 #define IS_SELECT(part)	((part)->option & OPT_SELECT)
32 #define IS_EMPTY(part)	((part)->option & OPT_EMPTY)
33 #define IS_DELETE(part)	((part)->option & OPT_DELETE)
34 
35 #define ALT_BUF_LEN			SZ_1K
36 
37 #define ROOTFS_MMC0_UUID \
38 	EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
39 		 0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
40 
41 #define ROOTFS_MMC1_UUID \
42 	EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
43 		 0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
44 
45 #define ROOTFS_MMC2_UUID \
46 	EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
47 		 0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
48 
49 /* RAW parttion (binary / bootloader) used Linux - reserved UUID */
50 #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
51 
52 /*
53  * unique partition guid (uuid) for partition named "rootfs"
54  * on each MMC instance = SD Card or eMMC
55  * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
56  */
57 static const efi_guid_t uuid_mmc[3] = {
58 	ROOTFS_MMC0_UUID,
59 	ROOTFS_MMC1_UUID,
60 	ROOTFS_MMC2_UUID
61 };
62 
63 /* order of column in flash layout file */
64 enum stm32prog_col_t {
65 	COL_OPTION,
66 	COL_ID,
67 	COL_NAME,
68 	COL_TYPE,
69 	COL_IP,
70 	COL_OFFSET,
71 	COL_NB_STM32
72 };
73 
74 #define FIP_TOC_HEADER_NAME	0xAA640001
75 
76 struct fip_toc_header {
77 	u32	name;
78 	u32	serial_number;
79 	u64	flags;
80 };
81 
82 DECLARE_GLOBAL_DATA_PTR;
83 
84 /* partition handling routines : CONFIG_CMD_MTDPARTS */
85 int mtdparts_init(void);
86 int find_dev_and_part(const char *id, struct mtd_device **dev,
87 		      u8 *part_num, struct part_info **part);
88 
stm32prog_get_error(struct stm32prog_data * data)89 char *stm32prog_get_error(struct stm32prog_data *data)
90 {
91 	static const char error_msg[] = "Unspecified";
92 
93 	if (strlen(data->error) == 0)
94 		strcpy(data->error, error_msg);
95 
96 	return data->error;
97 }
98 
stm32prog_is_fip_header(struct fip_toc_header * header)99 static bool stm32prog_is_fip_header(struct fip_toc_header *header)
100 {
101 	return (header->name == FIP_TOC_HEADER_NAME) && header->serial_number;
102 }
103 
stm32prog_header_check(struct raw_header_s * raw_header,struct image_header_s * header)104 void stm32prog_header_check(struct raw_header_s *raw_header,
105 			    struct image_header_s *header)
106 {
107 	unsigned int i;
108 
109 	if (!raw_header || !header) {
110 		log_debug("%s:no header data\n", __func__);
111 		return;
112 	}
113 
114 	header->type = HEADER_NONE;
115 	header->image_checksum = 0x0;
116 	header->image_length = 0x0;
117 
118 	if (stm32prog_is_fip_header((struct fip_toc_header *)raw_header)) {
119 		header->type = HEADER_FIP;
120 		return;
121 	}
122 
123 	if (raw_header->magic_number !=
124 		(('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
125 		log_debug("%s:invalid magic number : 0x%x\n",
126 			  __func__, raw_header->magic_number);
127 		return;
128 	}
129 	/* only header v1.0 supported */
130 	if (raw_header->header_version != 0x00010000) {
131 		log_debug("%s:invalid header version : 0x%x\n",
132 			  __func__, raw_header->header_version);
133 		return;
134 	}
135 	if (raw_header->reserved1 != 0x0 || raw_header->reserved2) {
136 		log_debug("%s:invalid reserved field\n", __func__);
137 		return;
138 	}
139 	for (i = 0; i < (sizeof(raw_header->padding) / 4); i++) {
140 		if (raw_header->padding[i] != 0) {
141 			log_debug("%s:invalid padding field\n", __func__);
142 			return;
143 		}
144 	}
145 	header->type = HEADER_STM32IMAGE;
146 	header->image_checksum = le32_to_cpu(raw_header->image_checksum);
147 	header->image_length = le32_to_cpu(raw_header->image_length);
148 
149 	return;
150 }
151 
stm32prog_header_checksum(u32 addr,struct image_header_s * header)152 static u32 stm32prog_header_checksum(u32 addr, struct image_header_s *header)
153 {
154 	u32 i, checksum;
155 	u8 *payload;
156 
157 	/* compute checksum on payload */
158 	payload = (u8 *)addr;
159 	checksum = 0;
160 	for (i = header->image_length; i > 0; i--)
161 		checksum += *(payload++);
162 
163 	return checksum;
164 }
165 
166 /* FLASHLAYOUT PARSING *****************************************/
parse_option(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)167 static int parse_option(struct stm32prog_data *data,
168 			int i, char *p, struct stm32prog_part_t *part)
169 {
170 	int result = 0;
171 	char *c = p;
172 
173 	part->option = 0;
174 	if (!strcmp(p, "-"))
175 		return 0;
176 
177 	while (*c) {
178 		switch (*c) {
179 		case 'P':
180 			part->option |= OPT_SELECT;
181 			break;
182 		case 'E':
183 			part->option |= OPT_EMPTY;
184 			break;
185 		case 'D':
186 			part->option |= OPT_DELETE;
187 			break;
188 		default:
189 			result = -EINVAL;
190 			stm32prog_err("Layout line %d: invalid option '%c' in %s)",
191 				      i, *c, p);
192 			return -EINVAL;
193 		}
194 		c++;
195 	}
196 	if (!(part->option & OPT_SELECT)) {
197 		stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
198 		return -EINVAL;
199 	}
200 
201 	return result;
202 }
203 
parse_id(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)204 static int parse_id(struct stm32prog_data *data,
205 		    int i, char *p, struct stm32prog_part_t *part)
206 {
207 	int result = 0;
208 	unsigned long value;
209 
210 	result = strict_strtoul(p, 0, &value);
211 	part->id = value;
212 	if (result || value > PHASE_LAST_USER) {
213 		stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
214 		result = -EINVAL;
215 	}
216 
217 	return result;
218 }
219 
parse_name(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)220 static int parse_name(struct stm32prog_data *data,
221 		      int i, char *p, struct stm32prog_part_t *part)
222 {
223 	int result = 0;
224 
225 	if (strlen(p) < sizeof(part->name)) {
226 		strcpy(part->name, p);
227 	} else {
228 		stm32prog_err("Layout line %d: partition name too long [%d]: %s",
229 			      i, strlen(p), p);
230 		result = -EINVAL;
231 	}
232 
233 	return result;
234 }
235 
parse_type(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)236 static int parse_type(struct stm32prog_data *data,
237 		      int i, char *p, struct stm32prog_part_t *part)
238 {
239 	int result = 0;
240 	int len = 0;
241 
242 	part->bin_nb = 0;
243 	if (!strncmp(p, "Binary", 6)) {
244 		part->part_type = PART_BINARY;
245 
246 		/* search for Binary(X) case */
247 		len = strlen(p);
248 		part->bin_nb = 1;
249 		if (len > 6) {
250 			if (len < 8 ||
251 			    (p[6] != '(') ||
252 			    (p[len - 1] != ')'))
253 				result = -EINVAL;
254 			else
255 				part->bin_nb =
256 					simple_strtoul(&p[7], NULL, 10);
257 		}
258 	} else if (!strcmp(p, "System")) {
259 		part->part_type = PART_SYSTEM;
260 	} else if (!strcmp(p, "FileSystem")) {
261 		part->part_type = PART_FILESYSTEM;
262 	} else if (!strcmp(p, "RawImage")) {
263 		part->part_type = RAW_IMAGE;
264 	} else {
265 		result = -EINVAL;
266 	}
267 	if (result)
268 		stm32prog_err("Layout line %d: type parsing error : '%s'",
269 			      i, p);
270 
271 	return result;
272 }
273 
parse_ip(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)274 static int parse_ip(struct stm32prog_data *data,
275 		    int i, char *p, struct stm32prog_part_t *part)
276 {
277 	int result = 0;
278 	unsigned int len = 0;
279 
280 	part->dev_id = 0;
281 	if (!strcmp(p, "none")) {
282 		part->target = STM32PROG_NONE;
283 	} else if (!strncmp(p, "mmc", 3)) {
284 		part->target = STM32PROG_MMC;
285 		len = 3;
286 	} else if (!strncmp(p, "nor", 3)) {
287 		part->target = STM32PROG_NOR;
288 		len = 3;
289 	} else if (!strncmp(p, "nand", 4)) {
290 		part->target = STM32PROG_NAND;
291 		len = 4;
292 	} else if (!strncmp(p, "spi-nand", 8)) {
293 		part->target = STM32PROG_SPI_NAND;
294 		len = 8;
295 	} else if (!strncmp(p, "ram", 3)) {
296 		part->target = STM32PROG_RAM;
297 		len = 0;
298 	} else {
299 		result = -EINVAL;
300 	}
301 	if (len) {
302 		/* only one digit allowed for device id */
303 		if (strlen(p) != len + 1) {
304 			result = -EINVAL;
305 		} else {
306 			part->dev_id = p[len] - '0';
307 			if (part->dev_id > 9)
308 				result = -EINVAL;
309 		}
310 	}
311 	if (result)
312 		stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
313 
314 	return result;
315 }
316 
parse_offset(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)317 static int parse_offset(struct stm32prog_data *data,
318 			int i, char *p, struct stm32prog_part_t *part)
319 {
320 	int result = 0;
321 	char *tail;
322 
323 	part->part_id = 0;
324 	part->addr = 0;
325 	part->size = 0;
326 	/* eMMC boot parttion */
327 	if (!strncmp(p, "boot", 4)) {
328 		if (strlen(p) != 5) {
329 			result = -EINVAL;
330 		} else {
331 			if (p[4] == '1')
332 				part->part_id = -1;
333 			else if (p[4] == '2')
334 				part->part_id = -2;
335 			else
336 				result = -EINVAL;
337 		}
338 		if (result)
339 			stm32prog_err("Layout line %d: invalid part '%s'",
340 				      i, p);
341 	} else {
342 		part->addr = simple_strtoull(p, &tail, 0);
343 		if (tail == p || *tail != '\0') {
344 			stm32prog_err("Layout line %d: invalid offset '%s'",
345 				      i, p);
346 			result = -EINVAL;
347 		}
348 	}
349 
350 	return result;
351 }
352 
353 static
354 int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
355 				  struct stm32prog_part_t *part) = {
356 	[COL_OPTION] = parse_option,
357 	[COL_ID] = parse_id,
358 	[COL_NAME] =  parse_name,
359 	[COL_TYPE] = parse_type,
360 	[COL_IP] = parse_ip,
361 	[COL_OFFSET] = parse_offset,
362 };
363 
parse_flash_layout(struct stm32prog_data * data,ulong addr,ulong size)364 static int parse_flash_layout(struct stm32prog_data *data,
365 			      ulong addr,
366 			      ulong size)
367 {
368 	int column = 0, part_nb = 0, ret;
369 	bool end_of_line, eof;
370 	char *p, *start, *last, *col;
371 	struct stm32prog_part_t *part;
372 	int part_list_size;
373 	int i;
374 
375 	data->part_nb = 0;
376 
377 	/* check if STM32image is detected */
378 	stm32prog_header_check((struct raw_header_s *)addr, &data->header);
379 	if (data->header.type == HEADER_STM32IMAGE) {
380 		u32 checksum;
381 
382 		addr = addr + BL_HEADER_SIZE;
383 		size = data->header.image_length;
384 
385 		checksum = stm32prog_header_checksum(addr, &data->header);
386 		if (checksum != data->header.image_checksum) {
387 			stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
388 				      checksum, data->header.image_checksum);
389 			return -EIO;
390 		}
391 	}
392 	if (!size)
393 		return -EINVAL;
394 
395 	start = (char *)addr;
396 	last = start + size;
397 
398 	*last = 0x0; /* force null terminated string */
399 	log_debug("flash layout =\n%s\n", start);
400 
401 	/* calculate expected number of partitions */
402 	part_list_size = 1;
403 	p = start;
404 	while (*p && (p < last)) {
405 		if (*p++ == '\n') {
406 			part_list_size++;
407 			if (p < last && *p == '#')
408 				part_list_size--;
409 		}
410 	}
411 	if (part_list_size > PHASE_LAST_USER) {
412 		stm32prog_err("Layout: too many partition (%d)",
413 			      part_list_size);
414 		return -1;
415 	}
416 	part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
417 	if (!part) {
418 		stm32prog_err("Layout: alloc failed");
419 		return -ENOMEM;
420 	}
421 	data->part_array = part;
422 
423 	/* main parsing loop */
424 	i = 1;
425 	eof = false;
426 	p = start;
427 	col = start; /* 1st column */
428 	end_of_line = false;
429 	while (!eof) {
430 		switch (*p) {
431 		/* CR is ignored and replaced by NULL character */
432 		case '\r':
433 			*p = '\0';
434 			p++;
435 			continue;
436 		case '\0':
437 			end_of_line = true;
438 			eof = true;
439 			break;
440 		case '\n':
441 			end_of_line = true;
442 			break;
443 		case '\t':
444 			break;
445 		case '#':
446 			/* comment line is skipped */
447 			if (column == 0 && p == col) {
448 				while ((p < last) && *p)
449 					if (*p++ == '\n')
450 						break;
451 				col = p;
452 				i++;
453 				if (p >= last || !*p) {
454 					eof = true;
455 					end_of_line = true;
456 				}
457 				continue;
458 			}
459 			/* fall through */
460 		/* by default continue with the next character */
461 		default:
462 			p++;
463 			continue;
464 		}
465 
466 		/* replace by \0: allow string parsing for each column */
467 		*p = '\0';
468 		p++;
469 		if (p >= last) {
470 			eof = true;
471 			end_of_line = true;
472 		}
473 
474 		/* skip empty line and multiple TAB in tsv file */
475 		if (strlen(col) == 0) {
476 			col = p;
477 			/* skip empty line */
478 			if (column == 0 && end_of_line) {
479 				end_of_line = false;
480 				i++;
481 			}
482 			continue;
483 		}
484 
485 		if (column < COL_NB_STM32) {
486 			ret = parse[column](data, i, col, part);
487 			if (ret)
488 				return ret;
489 		}
490 
491 		/* save the beginning of the next column */
492 		column++;
493 		col = p;
494 
495 		if (!end_of_line)
496 			continue;
497 
498 		/* end of the line detected */
499 		end_of_line = false;
500 
501 		if (column < COL_NB_STM32) {
502 			stm32prog_err("Layout line %d: no enought column", i);
503 			return -EINVAL;
504 		}
505 		column = 0;
506 		part_nb++;
507 		part++;
508 		i++;
509 		if (part_nb >= part_list_size) {
510 			part = NULL;
511 			if (!eof) {
512 				stm32prog_err("Layout: no enought memory for %d part",
513 					      part_nb);
514 				return -EINVAL;
515 			}
516 		}
517 	}
518 	data->part_nb = part_nb;
519 	if (data->part_nb == 0) {
520 		stm32prog_err("Layout: no partition found");
521 		return -ENODEV;
522 	}
523 
524 	return 0;
525 }
526 
part_cmp(void * priv,struct list_head * a,struct list_head * b)527 static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
528 {
529 	struct stm32prog_part_t *parta, *partb;
530 
531 	parta = container_of(a, struct stm32prog_part_t, list);
532 	partb = container_of(b, struct stm32prog_part_t, list);
533 
534 	if (parta->part_id != partb->part_id)
535 		return parta->part_id - partb->part_id;
536 	else
537 		return parta->addr > partb->addr ? 1 : -1;
538 }
539 
get_mtd_by_target(char * string,enum stm32prog_target target,int dev_id)540 static void get_mtd_by_target(char *string, enum stm32prog_target target,
541 			      int dev_id)
542 {
543 	const char *dev_str;
544 
545 	switch (target) {
546 	case STM32PROG_NOR:
547 		dev_str = "nor";
548 		break;
549 	case STM32PROG_NAND:
550 		dev_str = "nand";
551 		break;
552 	case STM32PROG_SPI_NAND:
553 		dev_str = "spi-nand";
554 		break;
555 	default:
556 		dev_str = "invalid";
557 		break;
558 	}
559 	sprintf(string, "%s%d", dev_str, dev_id);
560 }
561 
init_device(struct stm32prog_data * data,struct stm32prog_dev_t * dev)562 static int init_device(struct stm32prog_data *data,
563 		       struct stm32prog_dev_t *dev)
564 {
565 	struct mmc *mmc = NULL;
566 	struct blk_desc *block_dev = NULL;
567 	struct mtd_info *mtd = NULL;
568 	char mtd_id[16];
569 	int part_id;
570 	int ret;
571 	u64 first_addr = 0, last_addr = 0;
572 	struct stm32prog_part_t *part, *next_part;
573 	u64 part_addr, part_size;
574 	bool part_found;
575 	const char *part_name;
576 
577 	switch (dev->target) {
578 	case STM32PROG_MMC:
579 		if (!IS_ENABLED(CONFIG_MMC)) {
580 			stm32prog_err("unknown device type = %d", dev->target);
581 			return -ENODEV;
582 		}
583 		mmc = find_mmc_device(dev->dev_id);
584 		if (!mmc || mmc_init(mmc)) {
585 			stm32prog_err("mmc device %d not found", dev->dev_id);
586 			return -ENODEV;
587 		}
588 		block_dev = mmc_get_blk_desc(mmc);
589 		if (!block_dev) {
590 			stm32prog_err("mmc device %d not probed", dev->dev_id);
591 			return -ENODEV;
592 		}
593 		dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
594 		dev->mmc = mmc;
595 
596 		/* reserve a full erase group for each GTP headers */
597 		if (mmc->erase_grp_size > GPT_HEADER_SZ) {
598 			first_addr = dev->erase_size;
599 			last_addr = (u64)(block_dev->lba -
600 					  mmc->erase_grp_size) *
601 				    block_dev->blksz;
602 		} else {
603 			first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
604 			last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
605 				    block_dev->blksz;
606 		}
607 		log_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id,
608 			  block_dev->lba, block_dev->blksz);
609 		log_debug(" available address = 0x%llx..0x%llx\n",
610 			  first_addr, last_addr);
611 		log_debug(" full_update = %d\n", dev->full_update);
612 		break;
613 	case STM32PROG_NOR:
614 	case STM32PROG_NAND:
615 	case STM32PROG_SPI_NAND:
616 		if (!IS_ENABLED(CONFIG_MTD)) {
617 			stm32prog_err("unknown device type = %d", dev->target);
618 			return -ENODEV;
619 		}
620 		get_mtd_by_target(mtd_id, dev->target, dev->dev_id);
621 		log_debug("%s\n", mtd_id);
622 
623 		mtdparts_init();
624 		mtd = get_mtd_device_nm(mtd_id);
625 		if (IS_ERR(mtd)) {
626 			stm32prog_err("MTD device %s not found", mtd_id);
627 			return -ENODEV;
628 		}
629 		first_addr = 0;
630 		last_addr = mtd->size;
631 		dev->erase_size = mtd->erasesize;
632 		log_debug("MTD device %s: size=%lld erasesize=%d\n",
633 			  mtd_id, mtd->size, mtd->erasesize);
634 		log_debug(" available address = 0x%llx..0x%llx\n",
635 			  first_addr, last_addr);
636 		dev->mtd = mtd;
637 		break;
638 	case STM32PROG_RAM:
639 		first_addr = gd->bd->bi_dram[0].start;
640 		last_addr = first_addr + gd->bd->bi_dram[0].size;
641 		dev->erase_size = 1;
642 		break;
643 	default:
644 		stm32prog_err("unknown device type = %d", dev->target);
645 		return -ENODEV;
646 	}
647 	log_debug(" erase size = 0x%x\n", dev->erase_size);
648 	log_debug(" full_update = %d\n", dev->full_update);
649 
650 	/* order partition list in offset order */
651 	list_sort(NULL, &dev->part_list, &part_cmp);
652 	part_id = 1;
653 	log_debug("id : Opt Phase     Name target.n dev.n addr     size     part_off part_size\n");
654 	list_for_each_entry(part, &dev->part_list, list) {
655 		if (part->bin_nb > 1) {
656 			if ((dev->target != STM32PROG_NAND &&
657 			     dev->target != STM32PROG_SPI_NAND) ||
658 			    part->id >= PHASE_FIRST_USER ||
659 			    strncmp(part->name, "fsbl", 4)) {
660 				stm32prog_err("%s (0x%x): multiple binary %d not supported",
661 					      part->name, part->id,
662 					      part->bin_nb);
663 				return -EINVAL;
664 			}
665 		}
666 		if (part->part_type == RAW_IMAGE) {
667 			part->part_id = 0x0;
668 			part->addr = 0x0;
669 			if (block_dev)
670 				part->size = block_dev->lba * block_dev->blksz;
671 			else
672 				part->size = last_addr;
673 			log_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n",
674 				  part->option, part->id, part->name,
675 				  part->part_type, part->bin_nb, part->target,
676 				  part->dev_id, part->addr, part->size);
677 			continue;
678 		}
679 		if (part->part_id < 0) { /* boot hw partition for eMMC */
680 			if (mmc) {
681 				part->size = mmc->capacity_boot;
682 			} else {
683 				stm32prog_err("%s (0x%x): hw partition not expected : %d",
684 					      part->name, part->id,
685 					      part->part_id);
686 				return -ENODEV;
687 			}
688 		} else {
689 			part->part_id = part_id++;
690 
691 			/* last partition : size to the end of the device */
692 			if (part->list.next != &dev->part_list) {
693 				next_part =
694 					container_of(part->list.next,
695 						     struct stm32prog_part_t,
696 						     list);
697 				if (part->addr < next_part->addr) {
698 					part->size = next_part->addr -
699 						     part->addr;
700 				} else {
701 					stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
702 						      part->name, part->id,
703 						      part->addr,
704 						      next_part->name,
705 						      next_part->id,
706 						      next_part->addr);
707 					return -EINVAL;
708 				}
709 			} else {
710 				if (part->addr <= last_addr) {
711 					part->size = last_addr - part->addr;
712 				} else {
713 					stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
714 						      part->name, part->id,
715 						      part->addr, last_addr);
716 					return -EINVAL;
717 				}
718 			}
719 			if (part->addr < first_addr) {
720 				stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
721 					      part->name, part->id,
722 					      part->addr, first_addr);
723 				return -EINVAL;
724 			}
725 		}
726 		if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
727 			stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
728 				      part->name, part->id, part->addr,
729 				      part->dev->erase_size);
730 			return -EINVAL;
731 		}
732 		log_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx",
733 			  part->part_id, part->option, part->id, part->name,
734 			  part->part_type, part->bin_nb, part->target,
735 			  part->dev_id, part->addr, part->size);
736 
737 		part_addr = 0;
738 		part_size = 0;
739 		part_found = false;
740 
741 		/* check coherency with existing partition */
742 		if (block_dev) {
743 			/*
744 			 * block devices with GPT: check user partition size
745 			 * only for partial update, the GPT partions are be
746 			 * created for full update
747 			 */
748 			if (dev->full_update || part->part_id < 0) {
749 				log_debug("\n");
750 				continue;
751 			}
752 			struct disk_partition partinfo;
753 
754 			ret = part_get_info(block_dev, part->part_id,
755 					    &partinfo);
756 
757 			if (ret) {
758 				stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d",
759 					      part->name, part->id,
760 					      part_id, part->dev_id);
761 				return -ENODEV;
762 			}
763 			part_addr = (u64)partinfo.start * partinfo.blksz;
764 			part_size = (u64)partinfo.size * partinfo.blksz;
765 			part_name = (char *)partinfo.name;
766 			part_found = true;
767 		}
768 
769 		if (IS_ENABLED(CONFIG_MTD) && mtd) {
770 			char mtd_part_id[32];
771 			struct part_info *mtd_part;
772 			struct mtd_device *mtd_dev;
773 			u8 part_num;
774 
775 			sprintf(mtd_part_id, "%s,%d", mtd_id,
776 				part->part_id - 1);
777 			ret = find_dev_and_part(mtd_part_id, &mtd_dev,
778 						&part_num, &mtd_part);
779 			if (ret != 0) {
780 				stm32prog_err("%s (0x%x): Invalid MTD partition %s",
781 					      part->name, part->id,
782 					      mtd_part_id);
783 				return -ENODEV;
784 			}
785 			part_addr = mtd_part->offset;
786 			part_size = mtd_part->size;
787 			part_name = mtd_part->name;
788 			part_found = true;
789 		}
790 
791 		/* no partition for this device */
792 		if (!part_found) {
793 			log_debug("\n");
794 			continue;
795 		}
796 
797 		log_debug(" %08llx %08llx\n", part_addr, part_size);
798 
799 		if (part->addr != part_addr) {
800 			stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected",
801 				      part->name, part->id, part->part_id,
802 				      part_name, part->addr, part_addr);
803 			return -ENODEV;
804 		}
805 		if (part->size != part_size) {
806 			stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected",
807 				      part->name, part->id, part->part_id,
808 				      part_name, part->addr, part->size,
809 				      part_size);
810 			return -ENODEV;
811 		}
812 	}
813 	return 0;
814 }
815 
treat_partition_list(struct stm32prog_data * data)816 static int treat_partition_list(struct stm32prog_data *data)
817 {
818 	int i, j;
819 	struct stm32prog_part_t *part;
820 
821 	for (j = 0; j < STM32PROG_MAX_DEV; j++) {
822 		data->dev[j].target = STM32PROG_NONE;
823 		INIT_LIST_HEAD(&data->dev[j].part_list);
824 	}
825 
826 	data->tee_detected = false;
827 	data->fsbl_nor_detected = false;
828 	for (i = 0; i < data->part_nb; i++) {
829 		part = &data->part_array[i];
830 		part->alt_id = -1;
831 
832 		/* skip partition with IP="none" */
833 		if (part->target == STM32PROG_NONE) {
834 			if (IS_SELECT(part)) {
835 				stm32prog_err("Layout: selected none phase = 0x%x",
836 					      part->id);
837 				return -EINVAL;
838 			}
839 			continue;
840 		}
841 
842 		if (part->id == PHASE_FLASHLAYOUT ||
843 		    part->id > PHASE_LAST_USER) {
844 			stm32prog_err("Layout: invalid phase = 0x%x",
845 				      part->id);
846 			return -EINVAL;
847 		}
848 		for (j = i + 1; j < data->part_nb; j++) {
849 			if (part->id == data->part_array[j].id) {
850 				stm32prog_err("Layout: duplicated phase 0x%x at line %d and %d",
851 					      part->id, i, j);
852 				return -EINVAL;
853 			}
854 		}
855 		for (j = 0; j < STM32PROG_MAX_DEV; j++) {
856 			if (data->dev[j].target == STM32PROG_NONE) {
857 				/* new device found */
858 				data->dev[j].target = part->target;
859 				data->dev[j].dev_id = part->dev_id;
860 				data->dev[j].full_update = true;
861 				data->dev_nb++;
862 				break;
863 			} else if ((part->target == data->dev[j].target) &&
864 				   (part->dev_id == data->dev[j].dev_id)) {
865 				break;
866 			}
867 		}
868 		if (j == STM32PROG_MAX_DEV) {
869 			stm32prog_err("Layout: too many device");
870 			return -EINVAL;
871 		}
872 		switch (part->target)  {
873 		case STM32PROG_NOR:
874 			if (!data->fsbl_nor_detected &&
875 			    !strncmp(part->name, "fsbl", 4))
876 				data->fsbl_nor_detected = true;
877 			/* fallthrough */
878 		case STM32PROG_NAND:
879 		case STM32PROG_SPI_NAND:
880 			if (!data->tee_detected &&
881 			    !strncmp(part->name, "tee", 3))
882 				data->tee_detected = true;
883 			break;
884 		default:
885 			break;
886 		}
887 		part->dev = &data->dev[j];
888 		if (!IS_SELECT(part))
889 			part->dev->full_update = false;
890 		list_add_tail(&part->list, &data->dev[j].part_list);
891 	}
892 
893 	return 0;
894 }
895 
create_gpt_partitions(struct stm32prog_data * data)896 static int create_gpt_partitions(struct stm32prog_data *data)
897 {
898 	int offset = 0;
899 	const int buflen = SZ_8K;
900 	char *buf;
901 	char uuid[UUID_STR_LEN + 1];
902 	unsigned char *uuid_bin;
903 	unsigned int mmc_id;
904 	int i;
905 	bool rootfs_found;
906 	struct stm32prog_part_t *part;
907 
908 	buf = malloc(buflen);
909 	if (!buf)
910 		return -ENOMEM;
911 
912 	puts("partitions : ");
913 	/* initialize the selected device */
914 	for (i = 0; i < data->dev_nb; i++) {
915 		/* create gpt partition support only for full update on MMC */
916 		if (data->dev[i].target != STM32PROG_MMC ||
917 		    !data->dev[i].full_update)
918 			continue;
919 
920 		offset = 0;
921 		rootfs_found = false;
922 		memset(buf, 0, buflen);
923 
924 		list_for_each_entry(part, &data->dev[i].part_list, list) {
925 			/* skip eMMC boot partitions */
926 			if (part->part_id < 0)
927 				continue;
928 			/* skip Raw Image */
929 			if (part->part_type == RAW_IMAGE)
930 				continue;
931 
932 			if (offset + 100 > buflen) {
933 				log_debug("\n%s: buffer too small, %s skippped",
934 					  __func__, part->name);
935 				continue;
936 			}
937 
938 			if (!offset)
939 				offset += sprintf(buf, "gpt write mmc %d \"",
940 						  data->dev[i].dev_id);
941 
942 			offset += snprintf(buf + offset, buflen - offset,
943 					   "name=%s,start=0x%llx,size=0x%llx",
944 					   part->name,
945 					   part->addr,
946 					   part->size);
947 
948 			if (part->part_type == PART_BINARY)
949 				offset += snprintf(buf + offset,
950 						   buflen - offset,
951 						   ",type="
952 						   LINUX_RESERVED_UUID);
953 			else
954 				offset += snprintf(buf + offset,
955 						   buflen - offset,
956 						   ",type=linux");
957 
958 			if (part->part_type == PART_SYSTEM)
959 				offset += snprintf(buf + offset,
960 						   buflen - offset,
961 						   ",bootable");
962 
963 			if (!rootfs_found && !strcmp(part->name, "rootfs")) {
964 				mmc_id = part->dev_id;
965 				rootfs_found = true;
966 				if (mmc_id < ARRAY_SIZE(uuid_mmc)) {
967 					uuid_bin =
968 					  (unsigned char *)uuid_mmc[mmc_id].b;
969 					uuid_bin_to_str(uuid_bin, uuid,
970 							UUID_STR_FORMAT_GUID);
971 					offset += snprintf(buf + offset,
972 							   buflen - offset,
973 							   ",uuid=%s", uuid);
974 				}
975 			}
976 
977 			offset += snprintf(buf + offset, buflen - offset, ";");
978 		}
979 
980 		if (offset) {
981 			offset += snprintf(buf + offset, buflen - offset, "\"");
982 			log_debug("\ncmd: %s\n", buf);
983 			if (run_command(buf, 0)) {
984 				stm32prog_err("GPT partitionning fail: %s",
985 					      buf);
986 				free(buf);
987 
988 				return -1;
989 			}
990 		}
991 
992 		if (data->dev[i].mmc)
993 			part_init(mmc_get_blk_desc(data->dev[i].mmc));
994 
995 #ifdef DEBUG
996 		sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
997 		log_debug("\ncmd: %s", buf);
998 		if (run_command(buf, 0))
999 			printf("fail !\n");
1000 		else
1001 			printf("OK\n");
1002 
1003 		sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
1004 		run_command(buf, 0);
1005 #endif
1006 	}
1007 	puts("done\n");
1008 
1009 #ifdef DEBUG
1010 	run_command("mtd list", 0);
1011 #endif
1012 	free(buf);
1013 
1014 	return 0;
1015 }
1016 
stm32prog_alt_add(struct stm32prog_data * data,struct dfu_entity * dfu,struct stm32prog_part_t * part)1017 static int stm32prog_alt_add(struct stm32prog_data *data,
1018 			     struct dfu_entity *dfu,
1019 			     struct stm32prog_part_t *part)
1020 {
1021 	int ret = 0;
1022 	int offset = 0;
1023 	char devstr[10];
1024 	char dfustr[10];
1025 	char buf[ALT_BUF_LEN];
1026 	u32 size;
1027 	char multiplier,  type;
1028 
1029 	/* max 3 digit for sector size */
1030 	if (part->size > SZ_1M) {
1031 		size = (u32)(part->size / SZ_1M);
1032 		multiplier = 'M';
1033 	} else if (part->size > SZ_1K) {
1034 		size = (u32)(part->size / SZ_1K);
1035 		multiplier = 'K';
1036 	} else {
1037 		size = (u32)part->size;
1038 		multiplier = 'B';
1039 	}
1040 	if (IS_SELECT(part) && !IS_EMPTY(part))
1041 		type = 'e'; /*Readable and Writeable*/
1042 	else
1043 		type = 'a';/*Readable*/
1044 
1045 	memset(buf, 0, sizeof(buf));
1046 	offset = snprintf(buf, ALT_BUF_LEN - offset,
1047 			  "@%s/0x%02x/1*%d%c%c ",
1048 			  part->name, part->id,
1049 			  size, multiplier, type);
1050 
1051 	if (part->target == STM32PROG_RAM) {
1052 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1053 				   "ram 0x%llx 0x%llx",
1054 				   part->addr, part->size);
1055 	} else if (part->part_type == RAW_IMAGE) {
1056 		u64 dfu_size;
1057 
1058 		if (part->dev->target == STM32PROG_MMC)
1059 			dfu_size = part->size / part->dev->mmc->read_bl_len;
1060 		else
1061 			dfu_size = part->size;
1062 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1063 				   "raw 0x0 0x%llx", dfu_size);
1064 	} else if (part->part_id < 0) {
1065 		u64 nb_blk = part->size / part->dev->mmc->read_bl_len;
1066 
1067 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1068 				   "raw 0x%llx 0x%llx",
1069 				   part->addr, nb_blk);
1070 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1071 				   " mmcpart %d;", -(part->part_id));
1072 	} else {
1073 		if (part->part_type == PART_SYSTEM &&
1074 		    (part->target == STM32PROG_NAND ||
1075 		     part->target == STM32PROG_NOR ||
1076 		     part->target == STM32PROG_SPI_NAND))
1077 			offset += snprintf(buf + offset,
1078 					   ALT_BUF_LEN - offset,
1079 					   "partubi");
1080 		else
1081 			offset += snprintf(buf + offset,
1082 					   ALT_BUF_LEN - offset,
1083 					   "part");
1084 		/* dev_id requested by DFU MMC */
1085 		if (part->target == STM32PROG_MMC)
1086 			offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1087 					   " %d", part->dev_id);
1088 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1089 				   " %d;", part->part_id);
1090 	}
1091 	ret = -ENODEV;
1092 	switch (part->target) {
1093 	case STM32PROG_MMC:
1094 		if (IS_ENABLED(CONFIG_MMC)) {
1095 			ret = 0;
1096 			sprintf(dfustr, "mmc");
1097 			sprintf(devstr, "%d", part->dev_id);
1098 		}
1099 		break;
1100 	case STM32PROG_NAND:
1101 	case STM32PROG_NOR:
1102 	case STM32PROG_SPI_NAND:
1103 		if (IS_ENABLED(CONFIG_MTD)) {
1104 			ret = 0;
1105 			sprintf(dfustr, "mtd");
1106 			get_mtd_by_target(devstr, part->target, part->dev_id);
1107 		}
1108 		break;
1109 	case STM32PROG_RAM:
1110 		ret = 0;
1111 		sprintf(dfustr, "ram");
1112 		sprintf(devstr, "0");
1113 		break;
1114 	default:
1115 		break;
1116 	}
1117 	if (ret) {
1118 		stm32prog_err("invalid target: %d", part->target);
1119 		return ret;
1120 	}
1121 	log_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
1122 	ret = dfu_alt_add(dfu, dfustr, devstr, buf);
1123 	log_debug("dfu_alt_add(%s,%s,%s) result %d\n",
1124 		  dfustr, devstr, buf, ret);
1125 
1126 	return ret;
1127 }
1128 
stm32prog_alt_add_virt(struct dfu_entity * dfu,char * name,int phase,int size)1129 static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
1130 				  char *name, int phase, int size)
1131 {
1132 	int ret = 0;
1133 	char devstr[4];
1134 	char buf[ALT_BUF_LEN];
1135 
1136 	sprintf(devstr, "%d", phase);
1137 	sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
1138 	ret = dfu_alt_add(dfu, "virt", devstr, buf);
1139 	log_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
1140 
1141 	return ret;
1142 }
1143 
dfu_init_entities(struct stm32prog_data * data)1144 static int dfu_init_entities(struct stm32prog_data *data)
1145 {
1146 	int ret = 0;
1147 	int phase, i, alt_id;
1148 	struct stm32prog_part_t *part;
1149 	struct dfu_entity *dfu;
1150 	int alt_nb;
1151 
1152 	alt_nb = 3; /* number of virtual = CMD, OTP, PMIC*/
1153 	if (data->part_nb == 0)
1154 		alt_nb++;  /* +1 for FlashLayout */
1155 	else
1156 		for (i = 0; i < data->part_nb; i++) {
1157 			if (data->part_array[i].target != STM32PROG_NONE)
1158 				alt_nb++;
1159 		}
1160 
1161 	if (dfu_alt_init(alt_nb, &dfu))
1162 		return -ENODEV;
1163 
1164 	puts("DFU alt info setting: ");
1165 	if (data->part_nb) {
1166 		alt_id = 0;
1167 		for (phase = 1;
1168 		     (phase <= PHASE_LAST_USER) &&
1169 		     (alt_id < alt_nb) && !ret;
1170 		     phase++) {
1171 			/* ordering alt setting by phase id */
1172 			part = NULL;
1173 			for (i = 0; i < data->part_nb; i++) {
1174 				if (phase == data->part_array[i].id) {
1175 					part = &data->part_array[i];
1176 					break;
1177 				}
1178 			}
1179 			if (!part)
1180 				continue;
1181 			if (part->target == STM32PROG_NONE)
1182 				continue;
1183 			part->alt_id = alt_id;
1184 			alt_id++;
1185 
1186 			ret = stm32prog_alt_add(data, dfu, part);
1187 		}
1188 	} else {
1189 		char buf[ALT_BUF_LEN];
1190 
1191 		sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
1192 			PHASE_FLASHLAYOUT, STM32_DDR_BASE);
1193 		ret = dfu_alt_add(dfu, "ram", NULL, buf);
1194 		log_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
1195 	}
1196 
1197 	if (!ret)
1198 		ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, 512);
1199 
1200 	if (!ret)
1201 		ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, 512);
1202 
1203 	if (!ret && CONFIG_IS_ENABLED(DM_PMIC))
1204 		ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, 8);
1205 
1206 	if (ret)
1207 		stm32prog_err("dfu init failed: %d", ret);
1208 	puts("done\n");
1209 
1210 #ifdef DEBUG
1211 	dfu_show_entities();
1212 #endif
1213 	return ret;
1214 }
1215 
stm32prog_otp_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1216 int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1217 			long *size)
1218 {
1219 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1220 
1221 	if (!data->otp_part) {
1222 		data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1223 		if (!data->otp_part)
1224 			return -ENOMEM;
1225 	}
1226 
1227 	if (!offset)
1228 		memset(data->otp_part, 0, OTP_SIZE);
1229 
1230 	if (offset + *size > OTP_SIZE)
1231 		*size = OTP_SIZE - offset;
1232 
1233 	memcpy((void *)((u32)data->otp_part + offset), buffer, *size);
1234 
1235 	return 0;
1236 }
1237 
stm32prog_otp_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1238 int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1239 		       long *size)
1240 {
1241 	int result = 0;
1242 
1243 	if (!IS_ENABLED(CONFIG_ARM_SMCCC)) {
1244 		stm32prog_err("OTP update not supported");
1245 
1246 		return -1;
1247 	}
1248 
1249 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1250 	/* alway read for first packet */
1251 	if (!offset) {
1252 		if (!data->otp_part)
1253 			data->otp_part =
1254 				memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1255 
1256 		if (!data->otp_part) {
1257 			result = -ENOMEM;
1258 			goto end_otp_read;
1259 		}
1260 
1261 		/* init struct with 0 */
1262 		memset(data->otp_part, 0, OTP_SIZE);
1263 
1264 		/* call the service */
1265 		result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL,
1266 					(u32)data->otp_part, 0);
1267 		if (result)
1268 			goto end_otp_read;
1269 	}
1270 
1271 	if (!data->otp_part) {
1272 		result = -ENOMEM;
1273 		goto end_otp_read;
1274 	}
1275 
1276 	if (offset + *size > OTP_SIZE)
1277 		*size = OTP_SIZE - offset;
1278 	memcpy(buffer, (void *)((u32)data->otp_part + offset), *size);
1279 
1280 end_otp_read:
1281 	log_debug("%s: result %i\n", __func__, result);
1282 
1283 	return result;
1284 }
1285 
stm32prog_otp_start(struct stm32prog_data * data)1286 int stm32prog_otp_start(struct stm32prog_data *data)
1287 {
1288 	int result = 0;
1289 	struct arm_smccc_res res;
1290 
1291 	if (!IS_ENABLED(CONFIG_ARM_SMCCC)) {
1292 		stm32prog_err("OTP update not supported");
1293 
1294 		return -1;
1295 	}
1296 
1297 	if (!data->otp_part) {
1298 		stm32prog_err("start OTP without data");
1299 		return -1;
1300 	}
1301 
1302 	arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL,
1303 		      (u32)data->otp_part, 0, 0, 0, 0, 0, &res);
1304 
1305 	if (!res.a0) {
1306 		switch (res.a1) {
1307 		case 0:
1308 			result = 0;
1309 			break;
1310 		case 1:
1311 			stm32prog_err("Provisioning");
1312 			result = 0;
1313 			break;
1314 		default:
1315 			log_err("%s: OTP incorrect value (err = %ld)\n",
1316 				__func__, res.a1);
1317 			result = -EINVAL;
1318 			break;
1319 		}
1320 	} else {
1321 		log_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n",
1322 			__func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0);
1323 		result = -EINVAL;
1324 	}
1325 
1326 	free(data->otp_part);
1327 	data->otp_part = NULL;
1328 	log_debug("%s: result %i\n", __func__, result);
1329 
1330 	return result;
1331 }
1332 
stm32prog_pmic_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1333 int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1334 			 long *size)
1335 {
1336 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1337 
1338 	if (!offset)
1339 		memset(data->pmic_part, 0, PMIC_SIZE);
1340 
1341 	if (offset + *size > PMIC_SIZE)
1342 		*size = PMIC_SIZE - offset;
1343 
1344 	memcpy(&data->pmic_part[offset], buffer, *size);
1345 
1346 	return 0;
1347 }
1348 
stm32prog_pmic_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1349 int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1350 			long *size)
1351 {
1352 	int result = 0, ret;
1353 	struct udevice *dev;
1354 
1355 	if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1356 		stm32prog_err("PMIC update not supported");
1357 
1358 		return -EOPNOTSUPP;
1359 	}
1360 
1361 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1362 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1363 					  DM_DRIVER_GET(stpmic1_nvm),
1364 					  &dev);
1365 	if (ret)
1366 		return ret;
1367 
1368 	/* alway request PMIC for first packet */
1369 	if (!offset) {
1370 		/* init struct with 0 */
1371 		memset(data->pmic_part, 0, PMIC_SIZE);
1372 
1373 		ret = uclass_get_device_by_driver(UCLASS_MISC,
1374 						  DM_DRIVER_GET(stpmic1_nvm),
1375 						  &dev);
1376 		if (ret)
1377 			return ret;
1378 
1379 		ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1380 		if (ret < 0) {
1381 			result = ret;
1382 			goto end_pmic_read;
1383 		}
1384 		if (ret != PMIC_SIZE) {
1385 			result = -EACCES;
1386 			goto end_pmic_read;
1387 		}
1388 	}
1389 
1390 	if (offset + *size > PMIC_SIZE)
1391 		*size = PMIC_SIZE - offset;
1392 
1393 	memcpy(buffer, &data->pmic_part[offset], *size);
1394 
1395 end_pmic_read:
1396 	log_debug("%s: result %i\n", __func__, result);
1397 	return result;
1398 }
1399 
stm32prog_pmic_start(struct stm32prog_data * data)1400 int stm32prog_pmic_start(struct stm32prog_data *data)
1401 {
1402 	int ret;
1403 	struct udevice *dev;
1404 
1405 	if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1406 		stm32prog_err("PMIC update not supported");
1407 
1408 		return -EOPNOTSUPP;
1409 	}
1410 
1411 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1412 					  DM_DRIVER_GET(stpmic1_nvm),
1413 					  &dev);
1414 	if (ret)
1415 		return ret;
1416 
1417 	return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1418 }
1419 
1420 /* copy FSBL on NAND to improve reliability on NAND */
stm32prog_copy_fsbl(struct stm32prog_part_t * part)1421 static int stm32prog_copy_fsbl(struct stm32prog_part_t *part)
1422 {
1423 	int ret, i;
1424 	void *fsbl;
1425 	struct image_header_s header;
1426 	struct raw_header_s raw_header;
1427 	struct dfu_entity *dfu;
1428 	long size, offset;
1429 
1430 	if (part->target != STM32PROG_NAND &&
1431 	    part->target != STM32PROG_SPI_NAND)
1432 		return -EINVAL;
1433 
1434 	dfu = dfu_get_entity(part->alt_id);
1435 
1436 	/* read header */
1437 	dfu_transaction_cleanup(dfu);
1438 	size = BL_HEADER_SIZE;
1439 	ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size);
1440 	if (ret)
1441 		return ret;
1442 
1443 	stm32prog_header_check(&raw_header, &header);
1444 	if (header.type != HEADER_STM32IMAGE)
1445 		return -ENOENT;
1446 
1447 	/* read header + payload */
1448 	size = header.image_length + BL_HEADER_SIZE;
1449 	size = round_up(size, part->dev->mtd->erasesize);
1450 	fsbl = calloc(1, size);
1451 	if (!fsbl)
1452 		return -ENOMEM;
1453 	ret = dfu->read_medium(dfu, 0, fsbl, &size);
1454 	log_debug("%s read size=%lx ret=%d\n", __func__, size, ret);
1455 	if (ret)
1456 		goto error;
1457 
1458 	dfu_transaction_cleanup(dfu);
1459 	offset = 0;
1460 	for (i = part->bin_nb - 1; i > 0; i--) {
1461 		offset += size;
1462 		/* write to the next erase block */
1463 		ret = dfu->write_medium(dfu, offset, fsbl, &size);
1464 		log_debug("%s copy at ofset=%lx size=%lx ret=%d",
1465 			  __func__, offset, size, ret);
1466 		if (ret)
1467 			goto error;
1468 	}
1469 
1470 error:
1471 	free(fsbl);
1472 	return ret;
1473 }
1474 
stm32prog_end_phase(struct stm32prog_data * data)1475 static void stm32prog_end_phase(struct stm32prog_data *data)
1476 {
1477 	if (data->phase == PHASE_FLASHLAYOUT) {
1478 		if (parse_flash_layout(data, STM32_DDR_BASE, 0))
1479 			stm32prog_err("Layout: invalid FlashLayout");
1480 		return;
1481 	}
1482 
1483 	if (!data->cur_part)
1484 		return;
1485 
1486 	if (data->cur_part->target == STM32PROG_RAM) {
1487 		if (data->cur_part->part_type == PART_SYSTEM)
1488 			data->uimage = data->cur_part->addr;
1489 		if (data->cur_part->part_type == PART_FILESYSTEM)
1490 			data->dtb = data->cur_part->addr;
1491 	}
1492 
1493 	if (CONFIG_IS_ENABLED(MMC) &&
1494 	    data->cur_part->part_id < 0) {
1495 		char cmdbuf[60];
1496 
1497 		sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0",
1498 			data->cur_part->dev_id, data->cur_part->dev_id,
1499 			-(data->cur_part->part_id));
1500 		if (run_command(cmdbuf, 0)) {
1501 			stm32prog_err("commands '%s' failed", cmdbuf);
1502 			return;
1503 		}
1504 	}
1505 
1506 	if (CONFIG_IS_ENABLED(MTD) &&
1507 	    data->cur_part->bin_nb > 1) {
1508 		if (stm32prog_copy_fsbl(data->cur_part)) {
1509 			stm32prog_err("%s (0x%x): copy of fsbl failed",
1510 				      data->cur_part->name, data->cur_part->id);
1511 			return;
1512 		}
1513 	}
1514 }
1515 
stm32prog_do_reset(struct stm32prog_data * data)1516 void stm32prog_do_reset(struct stm32prog_data *data)
1517 {
1518 	if (data->phase == PHASE_RESET) {
1519 		data->phase = PHASE_DO_RESET;
1520 		puts("Reset requested\n");
1521 	}
1522 }
1523 
stm32prog_next_phase(struct stm32prog_data * data)1524 void stm32prog_next_phase(struct stm32prog_data *data)
1525 {
1526 	int phase, i;
1527 	struct stm32prog_part_t *part;
1528 	bool found;
1529 
1530 	phase = data->phase;
1531 	switch (phase) {
1532 	case PHASE_RESET:
1533 	case PHASE_END:
1534 	case PHASE_DO_RESET:
1535 		return;
1536 	}
1537 
1538 	/* found next selected partition */
1539 	data->dfu_seq = 0;
1540 	data->cur_part = NULL;
1541 	data->phase = PHASE_END;
1542 	found = false;
1543 	do {
1544 		phase++;
1545 		if (phase > PHASE_LAST_USER)
1546 			break;
1547 		for (i = 0; i < data->part_nb; i++) {
1548 			part = &data->part_array[i];
1549 			if (part->id == phase) {
1550 				if (IS_SELECT(part) && !IS_EMPTY(part)) {
1551 					data->cur_part = part;
1552 					data->phase = phase;
1553 					found = true;
1554 				}
1555 				break;
1556 			}
1557 		}
1558 	} while (!found);
1559 
1560 	if (data->phase == PHASE_END)
1561 		puts("Phase=END\n");
1562 }
1563 
part_delete(struct stm32prog_data * data,struct stm32prog_part_t * part)1564 static int part_delete(struct stm32prog_data *data,
1565 		       struct stm32prog_part_t *part)
1566 {
1567 	int ret = 0;
1568 	unsigned long blks, blks_offset, blks_size;
1569 	struct blk_desc *block_dev = NULL;
1570 	char cmdbuf[40];
1571 	char devstr[10];
1572 
1573 	printf("Erasing %s ", part->name);
1574 	switch (part->target) {
1575 	case STM32PROG_MMC:
1576 		if (!IS_ENABLED(CONFIG_MMC)) {
1577 			ret = -1;
1578 			stm32prog_err("%s (0x%x): erase invalid",
1579 				      part->name, part->id);
1580 			break;
1581 		}
1582 		printf("on mmc %d: ", part->dev->dev_id);
1583 		block_dev = mmc_get_blk_desc(part->dev->mmc);
1584 		blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len);
1585 		blks_size = lldiv(part->size, part->dev->mmc->read_bl_len);
1586 		/* -1 or -2 : delete boot partition of MMC
1587 		 * need to switch to associated hwpart 1 or 2
1588 		 */
1589 		if (part->part_id < 0)
1590 			if (blk_select_hwpart_devnum(IF_TYPE_MMC,
1591 						     part->dev->dev_id,
1592 						     -part->part_id))
1593 				return -1;
1594 
1595 		blks = blk_derase(block_dev, blks_offset, blks_size);
1596 
1597 		/* return to user partition */
1598 		if (part->part_id < 0)
1599 			blk_select_hwpart_devnum(IF_TYPE_MMC,
1600 						 part->dev->dev_id, 0);
1601 		if (blks != blks_size) {
1602 			ret = -1;
1603 			stm32prog_err("%s (0x%x): MMC erase failed",
1604 				      part->name, part->id);
1605 		}
1606 		break;
1607 	case STM32PROG_NOR:
1608 	case STM32PROG_NAND:
1609 	case STM32PROG_SPI_NAND:
1610 		if (!IS_ENABLED(CONFIG_MTD)) {
1611 			ret = -1;
1612 			stm32prog_err("%s (0x%x): erase invalid",
1613 				      part->name, part->id);
1614 			break;
1615 		}
1616 		get_mtd_by_target(devstr, part->target, part->dev->dev_id);
1617 		printf("on %s: ", devstr);
1618 		sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx",
1619 			devstr, part->addr, part->size);
1620 		if (run_command(cmdbuf, 0)) {
1621 			ret = -1;
1622 			stm32prog_err("%s (0x%x): MTD erase commands failed (%s)",
1623 				      part->name, part->id, cmdbuf);
1624 		}
1625 		break;
1626 	case STM32PROG_RAM:
1627 		printf("on ram: ");
1628 		memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size);
1629 		break;
1630 	default:
1631 		ret = -1;
1632 		stm32prog_err("%s (0x%x): erase invalid", part->name, part->id);
1633 		break;
1634 	}
1635 	if (!ret)
1636 		printf("done\n");
1637 
1638 	return ret;
1639 }
1640 
stm32prog_devices_init(struct stm32prog_data * data)1641 static void stm32prog_devices_init(struct stm32prog_data *data)
1642 {
1643 	int i;
1644 	int ret;
1645 	struct stm32prog_part_t *part;
1646 
1647 	ret = treat_partition_list(data);
1648 	if (ret)
1649 		goto error;
1650 
1651 	/* initialize the selected device */
1652 	for (i = 0; i < data->dev_nb; i++) {
1653 		ret = init_device(data, &data->dev[i]);
1654 		if (ret)
1655 			goto error;
1656 	}
1657 
1658 	/* delete RAW partition before create partition */
1659 	for (i = 0; i < data->part_nb; i++) {
1660 		part = &data->part_array[i];
1661 
1662 		if (part->part_type != RAW_IMAGE)
1663 			continue;
1664 
1665 		if (!IS_SELECT(part) || !IS_DELETE(part))
1666 			continue;
1667 
1668 		ret = part_delete(data, part);
1669 		if (ret)
1670 			goto error;
1671 	}
1672 
1673 	if (IS_ENABLED(CONFIG_MMC)) {
1674 		ret = create_gpt_partitions(data);
1675 		if (ret)
1676 			goto error;
1677 	}
1678 
1679 	/* delete partition GPT or MTD */
1680 	for (i = 0; i < data->part_nb; i++) {
1681 		part = &data->part_array[i];
1682 
1683 		if (part->part_type == RAW_IMAGE)
1684 			continue;
1685 
1686 		if (!IS_SELECT(part) || !IS_DELETE(part))
1687 			continue;
1688 
1689 		ret = part_delete(data, part);
1690 		if (ret)
1691 			goto error;
1692 	}
1693 
1694 	return;
1695 
1696 error:
1697 	data->part_nb = 0;
1698 }
1699 
stm32prog_dfu_init(struct stm32prog_data * data)1700 int stm32prog_dfu_init(struct stm32prog_data *data)
1701 {
1702 	/* init device if no error */
1703 	if (data->part_nb)
1704 		stm32prog_devices_init(data);
1705 
1706 	if (data->part_nb)
1707 		stm32prog_next_phase(data);
1708 
1709 	/* prepare DFU for device read/write */
1710 	dfu_free_entities();
1711 	return dfu_init_entities(data);
1712 }
1713 
stm32prog_init(struct stm32prog_data * data,ulong addr,ulong size)1714 int stm32prog_init(struct stm32prog_data *data, ulong addr, ulong size)
1715 {
1716 	memset(data, 0x0, sizeof(*data));
1717 	data->read_phase = PHASE_RESET;
1718 	data->phase = PHASE_FLASHLAYOUT;
1719 
1720 	return parse_flash_layout(data, addr, size);
1721 }
1722 
stm32prog_clean(struct stm32prog_data * data)1723 void stm32prog_clean(struct stm32prog_data *data)
1724 {
1725 	/* clean */
1726 	dfu_free_entities();
1727 	free(data->part_array);
1728 	free(data->otp_part);
1729 	free(data->buffer);
1730 	free(data->header_data);
1731 }
1732 
1733 /* DFU callback: used after serial and direct DFU USB access */
dfu_flush_callback(struct dfu_entity * dfu)1734 void dfu_flush_callback(struct dfu_entity *dfu)
1735 {
1736 	if (!stm32prog_data)
1737 		return;
1738 
1739 	if (dfu->dev_type == DFU_DEV_VIRT) {
1740 		if (dfu->data.virt.dev_num == PHASE_OTP)
1741 			stm32prog_otp_start(stm32prog_data);
1742 		else if (dfu->data.virt.dev_num == PHASE_PMIC)
1743 			stm32prog_pmic_start(stm32prog_data);
1744 		return;
1745 	}
1746 
1747 	if (dfu->dev_type == DFU_DEV_RAM) {
1748 		if (dfu->alt == 0 &&
1749 		    stm32prog_data->phase == PHASE_FLASHLAYOUT) {
1750 			stm32prog_end_phase(stm32prog_data);
1751 			/* waiting DFU DETACH for reenumeration */
1752 		}
1753 	}
1754 
1755 	if (!stm32prog_data->cur_part)
1756 		return;
1757 
1758 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1759 		stm32prog_end_phase(stm32prog_data);
1760 		stm32prog_next_phase(stm32prog_data);
1761 	}
1762 }
1763 
dfu_initiated_callback(struct dfu_entity * dfu)1764 void dfu_initiated_callback(struct dfu_entity *dfu)
1765 {
1766 	if (!stm32prog_data)
1767 		return;
1768 
1769 	if (!stm32prog_data->cur_part)
1770 		return;
1771 
1772 	/* force the saved offset for the current partition */
1773 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1774 		dfu->offset = stm32prog_data->offset;
1775 		stm32prog_data->dfu_seq = 0;
1776 		log_debug("dfu offset = 0x%llx\n", dfu->offset);
1777 	}
1778 }
1779