1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements functions needed to recover from unclean un-mounts.
13  * When UBIFS is mounted, it checks a flag on the master node to determine if
14  * an un-mount was completed successfully. If not, the process of mounting
15  * incorporates additional checking and fixing of on-flash data structures.
16  * UBIFS always cleans away all remnants of an unclean un-mount, so that
17  * errors do not accumulate. However UBIFS defers recovery if it is mounted
18  * read-only, and the flash is not modified in that case.
19  *
20  * The general UBIFS approach to the recovery is that it recovers from
21  * corruptions which could be caused by power cuts, but it refuses to recover
22  * from corruption caused by other reasons. And UBIFS tries to distinguish
23  * between these 2 reasons of corruptions and silently recover in the former
24  * case and loudly complain in the latter case.
25  *
26  * UBIFS writes only to erased LEBs, so it writes only to the flash space
27  * containing only 0xFFs. UBIFS also always writes strictly from the beginning
28  * of the LEB to the end. And UBIFS assumes that the underlying flash media
29  * writes in @c->max_write_size bytes at a time.
30  *
31  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
32  * I/O unit corresponding to offset X to contain corrupted data, all the
33  * following min. I/O units have to contain empty space (all 0xFFs). If this is
34  * not true, the corruption cannot be the result of a power cut, and UBIFS
35  * refuses to mount.
36  */
37 
38 #ifndef __UBOOT__
39 #include <log.h>
40 #include <dm/devres.h>
41 #include <linux/crc32.h>
42 #include <linux/slab.h>
43 #include <u-boot/crc.h>
44 #else
45 #include <linux/err.h>
46 #endif
47 #include "ubifs.h"
48 
49 /**
50  * is_empty - determine whether a buffer is empty (contains all 0xff).
51  * @buf: buffer to clean
52  * @len: length of buffer
53  *
54  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
55  * %0 is returned.
56  */
is_empty(void * buf,int len)57 static int is_empty(void *buf, int len)
58 {
59 	uint8_t *p = buf;
60 	int i;
61 
62 	for (i = 0; i < len; i++)
63 		if (*p++ != 0xff)
64 			return 0;
65 	return 1;
66 }
67 
68 /**
69  * first_non_ff - find offset of the first non-0xff byte.
70  * @buf: buffer to search in
71  * @len: length of buffer
72  *
73  * This function returns offset of the first non-0xff byte in @buf or %-1 if
74  * the buffer contains only 0xff bytes.
75  */
first_non_ff(void * buf,int len)76 static int first_non_ff(void *buf, int len)
77 {
78 	uint8_t *p = buf;
79 	int i;
80 
81 	for (i = 0; i < len; i++)
82 		if (*p++ != 0xff)
83 			return i;
84 	return -1;
85 }
86 
87 /**
88  * get_master_node - get the last valid master node allowing for corruption.
89  * @c: UBIFS file-system description object
90  * @lnum: LEB number
91  * @pbuf: buffer containing the LEB read, is returned here
92  * @mst: master node, if found, is returned here
93  * @cor: corruption, if found, is returned here
94  *
95  * This function allocates a buffer, reads the LEB into it, and finds and
96  * returns the last valid master node allowing for one area of corruption.
97  * The corrupt area, if there is one, must be consistent with the assumption
98  * that it is the result of an unclean unmount while the master node was being
99  * written. Under those circumstances, it is valid to use the previously written
100  * master node.
101  *
102  * This function returns %0 on success and a negative error code on failure.
103  */
get_master_node(const struct ubifs_info * c,int lnum,void ** pbuf,struct ubifs_mst_node ** mst,void ** cor)104 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
105 			   struct ubifs_mst_node **mst, void **cor)
106 {
107 	const int sz = c->mst_node_alsz;
108 	int err, offs, len;
109 	void *sbuf, *buf;
110 
111 	sbuf = vmalloc(c->leb_size);
112 	if (!sbuf)
113 		return -ENOMEM;
114 
115 	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
116 	if (err && err != -EBADMSG)
117 		goto out_free;
118 
119 	/* Find the first position that is definitely not a node */
120 	offs = 0;
121 	buf = sbuf;
122 	len = c->leb_size;
123 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
124 		struct ubifs_ch *ch = buf;
125 
126 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
127 			break;
128 		offs += sz;
129 		buf  += sz;
130 		len  -= sz;
131 	}
132 	/* See if there was a valid master node before that */
133 	if (offs) {
134 		int ret;
135 
136 		offs -= sz;
137 		buf  -= sz;
138 		len  += sz;
139 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
140 		if (ret != SCANNED_A_NODE && offs) {
141 			/* Could have been corruption so check one place back */
142 			offs -= sz;
143 			buf  -= sz;
144 			len  += sz;
145 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
146 			if (ret != SCANNED_A_NODE)
147 				/*
148 				 * We accept only one area of corruption because
149 				 * we are assuming that it was caused while
150 				 * trying to write a master node.
151 				 */
152 				goto out_err;
153 		}
154 		if (ret == SCANNED_A_NODE) {
155 			struct ubifs_ch *ch = buf;
156 
157 			if (ch->node_type != UBIFS_MST_NODE)
158 				goto out_err;
159 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
160 			*mst = buf;
161 			offs += sz;
162 			buf  += sz;
163 			len  -= sz;
164 		}
165 	}
166 	/* Check for corruption */
167 	if (offs < c->leb_size) {
168 		if (!is_empty(buf, min_t(int, len, sz))) {
169 			*cor = buf;
170 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
171 		}
172 		offs += sz;
173 		buf  += sz;
174 		len  -= sz;
175 	}
176 	/* Check remaining empty space */
177 	if (offs < c->leb_size)
178 		if (!is_empty(buf, len))
179 			goto out_err;
180 	*pbuf = sbuf;
181 	return 0;
182 
183 out_err:
184 	err = -EINVAL;
185 out_free:
186 	vfree(sbuf);
187 	*mst = NULL;
188 	*cor = NULL;
189 	return err;
190 }
191 
192 /**
193  * write_rcvrd_mst_node - write recovered master node.
194  * @c: UBIFS file-system description object
195  * @mst: master node
196  *
197  * This function returns %0 on success and a negative error code on failure.
198  */
write_rcvrd_mst_node(struct ubifs_info * c,struct ubifs_mst_node * mst)199 static int write_rcvrd_mst_node(struct ubifs_info *c,
200 				struct ubifs_mst_node *mst)
201 {
202 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
203 	__le32 save_flags;
204 
205 	dbg_rcvry("recovery");
206 
207 	save_flags = mst->flags;
208 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
209 
210 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
211 	err = ubifs_leb_change(c, lnum, mst, sz);
212 	if (err)
213 		goto out;
214 	err = ubifs_leb_change(c, lnum + 1, mst, sz);
215 	if (err)
216 		goto out;
217 out:
218 	mst->flags = save_flags;
219 	return err;
220 }
221 
222 /**
223  * ubifs_recover_master_node - recover the master node.
224  * @c: UBIFS file-system description object
225  *
226  * This function recovers the master node from corruption that may occur due to
227  * an unclean unmount.
228  *
229  * This function returns %0 on success and a negative error code on failure.
230  */
ubifs_recover_master_node(struct ubifs_info * c)231 int ubifs_recover_master_node(struct ubifs_info *c)
232 {
233 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
234 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
235 	const int sz = c->mst_node_alsz;
236 	int err, offs1, offs2;
237 
238 	dbg_rcvry("recovery");
239 
240 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
241 	if (err)
242 		goto out_free;
243 
244 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
245 	if (err)
246 		goto out_free;
247 
248 	if (mst1) {
249 		offs1 = (void *)mst1 - buf1;
250 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
251 		    (offs1 == 0 && !cor1)) {
252 			/*
253 			 * mst1 was written by recovery at offset 0 with no
254 			 * corruption.
255 			 */
256 			dbg_rcvry("recovery recovery");
257 			mst = mst1;
258 		} else if (mst2) {
259 			offs2 = (void *)mst2 - buf2;
260 			if (offs1 == offs2) {
261 				/* Same offset, so must be the same */
262 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
263 					   (void *)mst2 + UBIFS_CH_SZ,
264 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
265 					goto out_err;
266 				mst = mst1;
267 			} else if (offs2 + sz == offs1) {
268 				/* 1st LEB was written, 2nd was not */
269 				if (cor1)
270 					goto out_err;
271 				mst = mst1;
272 			} else if (offs1 == 0 &&
273 				   c->leb_size - offs2 - sz < sz) {
274 				/* 1st LEB was unmapped and written, 2nd not */
275 				if (cor1)
276 					goto out_err;
277 				mst = mst1;
278 			} else
279 				goto out_err;
280 		} else {
281 			/*
282 			 * 2nd LEB was unmapped and about to be written, so
283 			 * there must be only one master node in the first LEB
284 			 * and no corruption.
285 			 */
286 			if (offs1 != 0 || cor1)
287 				goto out_err;
288 			mst = mst1;
289 		}
290 	} else {
291 		if (!mst2)
292 			goto out_err;
293 		/*
294 		 * 1st LEB was unmapped and about to be written, so there must
295 		 * be no room left in 2nd LEB.
296 		 */
297 		offs2 = (void *)mst2 - buf2;
298 		if (offs2 + sz + sz <= c->leb_size)
299 			goto out_err;
300 		mst = mst2;
301 	}
302 
303 	ubifs_msg(c, "recovered master node from LEB %d",
304 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
305 
306 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
307 
308 	if (c->ro_mount) {
309 		/* Read-only mode. Keep a copy for switching to rw mode */
310 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
311 		if (!c->rcvrd_mst_node) {
312 			err = -ENOMEM;
313 			goto out_free;
314 		}
315 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
316 
317 		/*
318 		 * We had to recover the master node, which means there was an
319 		 * unclean reboot. However, it is possible that the master node
320 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
321 		 * E.g., consider the following chain of events:
322 		 *
323 		 * 1. UBIFS was cleanly unmounted, so the master node is clean
324 		 * 2. UBIFS is being mounted R/W and starts changing the master
325 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
326 		 *    so this LEB ends up with some amount of garbage at the
327 		 *    end.
328 		 * 3. UBIFS is being mounted R/O. We reach this place and
329 		 *    recover the master node from the second LEB
330 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
331 		 *    because we are being mounted R/O. We have to defer the
332 		 *    operation.
333 		 * 4. However, this master node (@c->mst_node) is marked as
334 		 *    clean (since the step 1). And if we just return, the
335 		 *    mount code will be confused and won't recover the master
336 		 *    node when it is re-mounter R/W later.
337 		 *
338 		 *    Thus, to force the recovery by marking the master node as
339 		 *    dirty.
340 		 */
341 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
342 #ifndef __UBOOT__
343 	} else {
344 		/* Write the recovered master node */
345 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
346 		err = write_rcvrd_mst_node(c, c->mst_node);
347 		if (err)
348 			goto out_free;
349 #endif
350 	}
351 
352 	vfree(buf2);
353 	vfree(buf1);
354 
355 	return 0;
356 
357 out_err:
358 	err = -EINVAL;
359 out_free:
360 	ubifs_err(c, "failed to recover master node");
361 	if (mst1) {
362 		ubifs_err(c, "dumping first master node");
363 		ubifs_dump_node(c, mst1);
364 	}
365 	if (mst2) {
366 		ubifs_err(c, "dumping second master node");
367 		ubifs_dump_node(c, mst2);
368 	}
369 	vfree(buf2);
370 	vfree(buf1);
371 	return err;
372 }
373 
374 /**
375  * ubifs_write_rcvrd_mst_node - write the recovered master node.
376  * @c: UBIFS file-system description object
377  *
378  * This function writes the master node that was recovered during mounting in
379  * read-only mode and must now be written because we are remounting rw.
380  *
381  * This function returns %0 on success and a negative error code on failure.
382  */
ubifs_write_rcvrd_mst_node(struct ubifs_info * c)383 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
384 {
385 	int err;
386 
387 	if (!c->rcvrd_mst_node)
388 		return 0;
389 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
390 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
391 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
392 	if (err)
393 		return err;
394 	kfree(c->rcvrd_mst_node);
395 	c->rcvrd_mst_node = NULL;
396 	return 0;
397 }
398 
399 /**
400  * is_last_write - determine if an offset was in the last write to a LEB.
401  * @c: UBIFS file-system description object
402  * @buf: buffer to check
403  * @offs: offset to check
404  *
405  * This function returns %1 if @offs was in the last write to the LEB whose data
406  * is in @buf, otherwise %0 is returned. The determination is made by checking
407  * for subsequent empty space starting from the next @c->max_write_size
408  * boundary.
409  */
is_last_write(const struct ubifs_info * c,void * buf,int offs)410 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
411 {
412 	int empty_offs, check_len;
413 	uint8_t *p;
414 
415 	/*
416 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
417 	 * the last wbuf written. After that should be empty space.
418 	 */
419 	empty_offs = ALIGN(offs + 1, c->max_write_size);
420 	check_len = c->leb_size - empty_offs;
421 	p = buf + empty_offs - offs;
422 	return is_empty(p, check_len);
423 }
424 
425 /**
426  * clean_buf - clean the data from an LEB sitting in a buffer.
427  * @c: UBIFS file-system description object
428  * @buf: buffer to clean
429  * @lnum: LEB number to clean
430  * @offs: offset from which to clean
431  * @len: length of buffer
432  *
433  * This function pads up to the next min_io_size boundary (if there is one) and
434  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
435  * @c->min_io_size boundary.
436  */
clean_buf(const struct ubifs_info * c,void ** buf,int lnum,int * offs,int * len)437 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
438 		      int *offs, int *len)
439 {
440 	int empty_offs, pad_len;
441 
442 	lnum = lnum;
443 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
444 
445 	ubifs_assert(!(*offs & 7));
446 	empty_offs = ALIGN(*offs, c->min_io_size);
447 	pad_len = empty_offs - *offs;
448 	ubifs_pad(c, *buf, pad_len);
449 	*offs += pad_len;
450 	*buf += pad_len;
451 	*len -= pad_len;
452 	memset(*buf, 0xff, c->leb_size - empty_offs);
453 }
454 
455 /**
456  * no_more_nodes - determine if there are no more nodes in a buffer.
457  * @c: UBIFS file-system description object
458  * @buf: buffer to check
459  * @len: length of buffer
460  * @lnum: LEB number of the LEB from which @buf was read
461  * @offs: offset from which @buf was read
462  *
463  * This function ensures that the corrupted node at @offs is the last thing
464  * written to a LEB. This function returns %1 if more data is not found and
465  * %0 if more data is found.
466  */
no_more_nodes(const struct ubifs_info * c,void * buf,int len,int lnum,int offs)467 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
468 			int lnum, int offs)
469 {
470 	struct ubifs_ch *ch = buf;
471 	int skip, dlen = le32_to_cpu(ch->len);
472 
473 	/* Check for empty space after the corrupt node's common header */
474 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
475 	if (is_empty(buf + skip, len - skip))
476 		return 1;
477 	/*
478 	 * The area after the common header size is not empty, so the common
479 	 * header must be intact. Check it.
480 	 */
481 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
482 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
483 		return 0;
484 	}
485 	/* Now we know the corrupt node's length we can skip over it */
486 	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
487 	/* After which there should be empty space */
488 	if (is_empty(buf + skip, len - skip))
489 		return 1;
490 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
491 	return 0;
492 }
493 
494 /**
495  * fix_unclean_leb - fix an unclean LEB.
496  * @c: UBIFS file-system description object
497  * @sleb: scanned LEB information
498  * @start: offset where scan started
499  */
fix_unclean_leb(struct ubifs_info * c,struct ubifs_scan_leb * sleb,int start)500 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
501 			   int start)
502 {
503 	int lnum = sleb->lnum, endpt = start;
504 
505 	/* Get the end offset of the last node we are keeping */
506 	if (!list_empty(&sleb->nodes)) {
507 		struct ubifs_scan_node *snod;
508 
509 		snod = list_entry(sleb->nodes.prev,
510 				  struct ubifs_scan_node, list);
511 		endpt = snod->offs + snod->len;
512 	}
513 
514 	if (c->ro_mount && !c->remounting_rw) {
515 		/* Add to recovery list */
516 		struct ubifs_unclean_leb *ucleb;
517 
518 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
519 			  lnum, start, sleb->endpt);
520 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
521 		if (!ucleb)
522 			return -ENOMEM;
523 		ucleb->lnum = lnum;
524 		ucleb->endpt = endpt;
525 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
526 #ifndef __UBOOT__
527 	} else {
528 		/* Write the fixed LEB back to flash */
529 		int err;
530 
531 		dbg_rcvry("fixing LEB %d start %d endpt %d",
532 			  lnum, start, sleb->endpt);
533 		if (endpt == 0) {
534 			err = ubifs_leb_unmap(c, lnum);
535 			if (err)
536 				return err;
537 		} else {
538 			int len = ALIGN(endpt, c->min_io_size);
539 
540 			if (start) {
541 				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
542 						     start, 1);
543 				if (err)
544 					return err;
545 			}
546 			/* Pad to min_io_size */
547 			if (len > endpt) {
548 				int pad_len = len - ALIGN(endpt, 8);
549 
550 				if (pad_len > 0) {
551 					void *buf = sleb->buf + len - pad_len;
552 
553 					ubifs_pad(c, buf, pad_len);
554 				}
555 			}
556 			err = ubifs_leb_change(c, lnum, sleb->buf, len);
557 			if (err)
558 				return err;
559 		}
560 #endif
561 	}
562 	return 0;
563 }
564 
565 /**
566  * drop_last_group - drop the last group of nodes.
567  * @sleb: scanned LEB information
568  * @offs: offset of dropped nodes is returned here
569  *
570  * This is a helper function for 'ubifs_recover_leb()' which drops the last
571  * group of nodes of the scanned LEB.
572  */
drop_last_group(struct ubifs_scan_leb * sleb,int * offs)573 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
574 {
575 	while (!list_empty(&sleb->nodes)) {
576 		struct ubifs_scan_node *snod;
577 		struct ubifs_ch *ch;
578 
579 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
580 				  list);
581 		ch = snod->node;
582 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
583 			break;
584 
585 		dbg_rcvry("dropping grouped node at %d:%d",
586 			  sleb->lnum, snod->offs);
587 		*offs = snod->offs;
588 		list_del(&snod->list);
589 		kfree(snod);
590 		sleb->nodes_cnt -= 1;
591 	}
592 }
593 
594 /**
595  * drop_last_node - drop the last node.
596  * @sleb: scanned LEB information
597  * @offs: offset of dropped nodes is returned here
598  *
599  * This is a helper function for 'ubifs_recover_leb()' which drops the last
600  * node of the scanned LEB.
601  */
drop_last_node(struct ubifs_scan_leb * sleb,int * offs)602 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
603 {
604 	struct ubifs_scan_node *snod;
605 
606 	if (!list_empty(&sleb->nodes)) {
607 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
608 				  list);
609 
610 		dbg_rcvry("dropping last node at %d:%d",
611 			  sleb->lnum, snod->offs);
612 		*offs = snod->offs;
613 		list_del(&snod->list);
614 		kfree(snod);
615 		sleb->nodes_cnt -= 1;
616 	}
617 }
618 
619 /**
620  * ubifs_recover_leb - scan and recover a LEB.
621  * @c: UBIFS file-system description object
622  * @lnum: LEB number
623  * @offs: offset
624  * @sbuf: LEB-sized buffer to use
625  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
626  *         belong to any journal head)
627  *
628  * This function does a scan of a LEB, but caters for errors that might have
629  * been caused by the unclean unmount from which we are attempting to recover.
630  * Returns the scanned information on success and a negative error code on
631  * failure.
632  */
ubifs_recover_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf,int jhead)633 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
634 					 int offs, void *sbuf, int jhead)
635 {
636 	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
637 	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
638 	struct ubifs_scan_leb *sleb;
639 	void *buf = sbuf + offs;
640 
641 	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
642 
643 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
644 	if (IS_ERR(sleb))
645 		return sleb;
646 
647 	ubifs_assert(len >= 8);
648 	while (len >= 8) {
649 		dbg_scan("look at LEB %d:%d (%d bytes left)",
650 			 lnum, offs, len);
651 
652 		cond_resched();
653 
654 		/*
655 		 * Scan quietly until there is an error from which we cannot
656 		 * recover
657 		 */
658 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
659 		if (ret == SCANNED_A_NODE) {
660 			/* A valid node, and not a padding node */
661 			struct ubifs_ch *ch = buf;
662 			int node_len;
663 
664 			err = ubifs_add_snod(c, sleb, buf, offs);
665 			if (err)
666 				goto error;
667 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
668 			offs += node_len;
669 			buf += node_len;
670 			len -= node_len;
671 		} else if (ret > 0) {
672 			/* Padding bytes or a valid padding node */
673 			offs += ret;
674 			buf += ret;
675 			len -= ret;
676 		} else if (ret == SCANNED_EMPTY_SPACE ||
677 			   ret == SCANNED_GARBAGE     ||
678 			   ret == SCANNED_A_BAD_PAD_NODE ||
679 			   ret == SCANNED_A_CORRUPT_NODE) {
680 			dbg_rcvry("found corruption (%d) at %d:%d",
681 				  ret, lnum, offs);
682 			break;
683 		} else {
684 			ubifs_err(c, "unexpected return value %d", ret);
685 			err = -EINVAL;
686 			goto error;
687 		}
688 	}
689 
690 	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
691 		if (!is_last_write(c, buf, offs))
692 			goto corrupted_rescan;
693 	} else if (ret == SCANNED_A_CORRUPT_NODE) {
694 		if (!no_more_nodes(c, buf, len, lnum, offs))
695 			goto corrupted_rescan;
696 	} else if (!is_empty(buf, len)) {
697 		if (!is_last_write(c, buf, offs)) {
698 			int corruption = first_non_ff(buf, len);
699 
700 			/*
701 			 * See header comment for this file for more
702 			 * explanations about the reasons we have this check.
703 			 */
704 			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
705 				  lnum, offs, corruption);
706 			/* Make sure we dump interesting non-0xFF data */
707 			offs += corruption;
708 			buf += corruption;
709 			goto corrupted;
710 		}
711 	}
712 
713 	min_io_unit = round_down(offs, c->min_io_size);
714 	if (grouped)
715 		/*
716 		 * If nodes are grouped, always drop the incomplete group at
717 		 * the end.
718 		 */
719 		drop_last_group(sleb, &offs);
720 
721 	if (jhead == GCHD) {
722 		/*
723 		 * If this LEB belongs to the GC head then while we are in the
724 		 * middle of the same min. I/O unit keep dropping nodes. So
725 		 * basically, what we want is to make sure that the last min.
726 		 * I/O unit where we saw the corruption is dropped completely
727 		 * with all the uncorrupted nodes which may possibly sit there.
728 		 *
729 		 * In other words, let's name the min. I/O unit where the
730 		 * corruption starts B, and the previous min. I/O unit A. The
731 		 * below code tries to deal with a situation when half of B
732 		 * contains valid nodes or the end of a valid node, and the
733 		 * second half of B contains corrupted data or garbage. This
734 		 * means that UBIFS had been writing to B just before the power
735 		 * cut happened. I do not know how realistic is this scenario
736 		 * that half of the min. I/O unit had been written successfully
737 		 * and the other half not, but this is possible in our 'failure
738 		 * mode emulation' infrastructure at least.
739 		 *
740 		 * So what is the problem, why we need to drop those nodes? Why
741 		 * can't we just clean-up the second half of B by putting a
742 		 * padding node there? We can, and this works fine with one
743 		 * exception which was reproduced with power cut emulation
744 		 * testing and happens extremely rarely.
745 		 *
746 		 * Imagine the file-system is full, we run GC which starts
747 		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
748 		 * the current GC head LEB). The @c->gc_lnum is -1, which means
749 		 * that GC will retain LEB X and will try to continue. Imagine
750 		 * that LEB X is currently the dirtiest LEB, and the amount of
751 		 * used space in LEB Y is exactly the same as amount of free
752 		 * space in LEB X.
753 		 *
754 		 * And a power cut happens when nodes are moved from LEB X to
755 		 * LEB Y. We are here trying to recover LEB Y which is the GC
756 		 * head LEB. We find the min. I/O unit B as described above.
757 		 * Then we clean-up LEB Y by padding min. I/O unit. And later
758 		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
759 		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
760 		 * does not match because the amount of valid nodes there does
761 		 * not fit the free space in LEB Y any more! And this is
762 		 * because of the padding node which we added to LEB Y. The
763 		 * user-visible effect of this which I once observed and
764 		 * analysed is that we cannot mount the file-system with
765 		 * -ENOSPC error.
766 		 *
767 		 * So obviously, to make sure that situation does not happen we
768 		 * should free min. I/O unit B in LEB Y completely and the last
769 		 * used min. I/O unit in LEB Y should be A. This is basically
770 		 * what the below code tries to do.
771 		 */
772 		while (offs > min_io_unit)
773 			drop_last_node(sleb, &offs);
774 	}
775 
776 	buf = sbuf + offs;
777 	len = c->leb_size - offs;
778 
779 	clean_buf(c, &buf, lnum, &offs, &len);
780 	ubifs_end_scan(c, sleb, lnum, offs);
781 
782 	err = fix_unclean_leb(c, sleb, start);
783 	if (err)
784 		goto error;
785 
786 	return sleb;
787 
788 corrupted_rescan:
789 	/* Re-scan the corrupted data with verbose messages */
790 	ubifs_err(c, "corruption %d", ret);
791 	ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
792 corrupted:
793 	ubifs_scanned_corruption(c, lnum, offs, buf);
794 	err = -EUCLEAN;
795 error:
796 	ubifs_err(c, "LEB %d scanning failed", lnum);
797 	ubifs_scan_destroy(sleb);
798 	return ERR_PTR(err);
799 }
800 
801 /**
802  * get_cs_sqnum - get commit start sequence number.
803  * @c: UBIFS file-system description object
804  * @lnum: LEB number of commit start node
805  * @offs: offset of commit start node
806  * @cs_sqnum: commit start sequence number is returned here
807  *
808  * This function returns %0 on success and a negative error code on failure.
809  */
get_cs_sqnum(struct ubifs_info * c,int lnum,int offs,unsigned long long * cs_sqnum)810 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
811 			unsigned long long *cs_sqnum)
812 {
813 	struct ubifs_cs_node *cs_node = NULL;
814 	int err, ret;
815 
816 	dbg_rcvry("at %d:%d", lnum, offs);
817 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
818 	if (!cs_node)
819 		return -ENOMEM;
820 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
821 		goto out_err;
822 	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
823 			     UBIFS_CS_NODE_SZ, 0);
824 	if (err && err != -EBADMSG)
825 		goto out_free;
826 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
827 	if (ret != SCANNED_A_NODE) {
828 		ubifs_err(c, "Not a valid node");
829 		goto out_err;
830 	}
831 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
832 		ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
833 		goto out_err;
834 	}
835 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
836 		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
837 			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
838 			  c->cmt_no);
839 		goto out_err;
840 	}
841 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
842 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
843 	kfree(cs_node);
844 	return 0;
845 
846 out_err:
847 	err = -EINVAL;
848 out_free:
849 	ubifs_err(c, "failed to get CS sqnum");
850 	kfree(cs_node);
851 	return err;
852 }
853 
854 /**
855  * ubifs_recover_log_leb - scan and recover a log LEB.
856  * @c: UBIFS file-system description object
857  * @lnum: LEB number
858  * @offs: offset
859  * @sbuf: LEB-sized buffer to use
860  *
861  * This function does a scan of a LEB, but caters for errors that might have
862  * been caused by unclean reboots from which we are attempting to recover
863  * (assume that only the last log LEB can be corrupted by an unclean reboot).
864  *
865  * This function returns %0 on success and a negative error code on failure.
866  */
ubifs_recover_log_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf)867 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
868 					     int offs, void *sbuf)
869 {
870 	struct ubifs_scan_leb *sleb;
871 	int next_lnum;
872 
873 	dbg_rcvry("LEB %d", lnum);
874 	next_lnum = lnum + 1;
875 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
876 		next_lnum = UBIFS_LOG_LNUM;
877 	if (next_lnum != c->ltail_lnum) {
878 		/*
879 		 * We can only recover at the end of the log, so check that the
880 		 * next log LEB is empty or out of date.
881 		 */
882 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
883 		if (IS_ERR(sleb))
884 			return sleb;
885 		if (sleb->nodes_cnt) {
886 			struct ubifs_scan_node *snod;
887 			unsigned long long cs_sqnum = c->cs_sqnum;
888 
889 			snod = list_entry(sleb->nodes.next,
890 					  struct ubifs_scan_node, list);
891 			if (cs_sqnum == 0) {
892 				int err;
893 
894 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
895 				if (err) {
896 					ubifs_scan_destroy(sleb);
897 					return ERR_PTR(err);
898 				}
899 			}
900 			if (snod->sqnum > cs_sqnum) {
901 				ubifs_err(c, "unrecoverable log corruption in LEB %d",
902 					  lnum);
903 				ubifs_scan_destroy(sleb);
904 				return ERR_PTR(-EUCLEAN);
905 			}
906 		}
907 		ubifs_scan_destroy(sleb);
908 	}
909 	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
910 }
911 
912 /**
913  * recover_head - recover a head.
914  * @c: UBIFS file-system description object
915  * @lnum: LEB number of head to recover
916  * @offs: offset of head to recover
917  * @sbuf: LEB-sized buffer to use
918  *
919  * This function ensures that there is no data on the flash at a head location.
920  *
921  * This function returns %0 on success and a negative error code on failure.
922  */
recover_head(struct ubifs_info * c,int lnum,int offs,void * sbuf)923 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
924 {
925 	int len = c->max_write_size, err;
926 
927 	if (offs + len > c->leb_size)
928 		len = c->leb_size - offs;
929 
930 	if (!len)
931 		return 0;
932 
933 	/* Read at the head location and check it is empty flash */
934 	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
935 	if (err || !is_empty(sbuf, len)) {
936 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
937 		if (offs == 0)
938 			return ubifs_leb_unmap(c, lnum);
939 		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
940 		if (err)
941 			return err;
942 		return ubifs_leb_change(c, lnum, sbuf, offs);
943 	}
944 
945 	return 0;
946 }
947 
948 /**
949  * ubifs_recover_inl_heads - recover index and LPT heads.
950  * @c: UBIFS file-system description object
951  * @sbuf: LEB-sized buffer to use
952  *
953  * This function ensures that there is no data on the flash at the index and
954  * LPT head locations.
955  *
956  * This deals with the recovery of a half-completed journal commit. UBIFS is
957  * careful never to overwrite the last version of the index or the LPT. Because
958  * the index and LPT are wandering trees, data from a half-completed commit will
959  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
960  * assumed to be empty and will be unmapped anyway before use, or in the index
961  * and LPT heads.
962  *
963  * This function returns %0 on success and a negative error code on failure.
964  */
ubifs_recover_inl_heads(struct ubifs_info * c,void * sbuf)965 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
966 {
967 	int err;
968 
969 	ubifs_assert(!c->ro_mount || c->remounting_rw);
970 
971 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
972 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
973 	if (err)
974 		return err;
975 
976 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
977 
978 	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
979 }
980 
981 /**
982  * clean_an_unclean_leb - read and write a LEB to remove corruption.
983  * @c: UBIFS file-system description object
984  * @ucleb: unclean LEB information
985  * @sbuf: LEB-sized buffer to use
986  *
987  * This function reads a LEB up to a point pre-determined by the mount recovery,
988  * checks the nodes, and writes the result back to the flash, thereby cleaning
989  * off any following corruption, or non-fatal ECC errors.
990  *
991  * This function returns %0 on success and a negative error code on failure.
992  */
clean_an_unclean_leb(struct ubifs_info * c,struct ubifs_unclean_leb * ucleb,void * sbuf)993 static int clean_an_unclean_leb(struct ubifs_info *c,
994 				struct ubifs_unclean_leb *ucleb, void *sbuf)
995 {
996 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
997 	void *buf = sbuf;
998 
999 	dbg_rcvry("LEB %d len %d", lnum, len);
1000 
1001 	if (len == 0) {
1002 		/* Nothing to read, just unmap it */
1003 		return ubifs_leb_unmap(c, lnum);
1004 	}
1005 
1006 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1007 	if (err && err != -EBADMSG)
1008 		return err;
1009 
1010 	while (len >= 8) {
1011 		int ret;
1012 
1013 		cond_resched();
1014 
1015 		/* Scan quietly until there is an error */
1016 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1017 
1018 		if (ret == SCANNED_A_NODE) {
1019 			/* A valid node, and not a padding node */
1020 			struct ubifs_ch *ch = buf;
1021 			int node_len;
1022 
1023 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
1024 			offs += node_len;
1025 			buf += node_len;
1026 			len -= node_len;
1027 			continue;
1028 		}
1029 
1030 		if (ret > 0) {
1031 			/* Padding bytes or a valid padding node */
1032 			offs += ret;
1033 			buf += ret;
1034 			len -= ret;
1035 			continue;
1036 		}
1037 
1038 		if (ret == SCANNED_EMPTY_SPACE) {
1039 			ubifs_err(c, "unexpected empty space at %d:%d",
1040 				  lnum, offs);
1041 			return -EUCLEAN;
1042 		}
1043 
1044 		if (quiet) {
1045 			/* Redo the last scan but noisily */
1046 			quiet = 0;
1047 			continue;
1048 		}
1049 
1050 		ubifs_scanned_corruption(c, lnum, offs, buf);
1051 		return -EUCLEAN;
1052 	}
1053 
1054 	/* Pad to min_io_size */
1055 	len = ALIGN(ucleb->endpt, c->min_io_size);
1056 	if (len > ucleb->endpt) {
1057 		int pad_len = len - ALIGN(ucleb->endpt, 8);
1058 
1059 		if (pad_len > 0) {
1060 			buf = c->sbuf + len - pad_len;
1061 			ubifs_pad(c, buf, pad_len);
1062 		}
1063 	}
1064 
1065 	/* Write back the LEB atomically */
1066 	err = ubifs_leb_change(c, lnum, sbuf, len);
1067 	if (err)
1068 		return err;
1069 
1070 	dbg_rcvry("cleaned LEB %d", lnum);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1077  * @c: UBIFS file-system description object
1078  * @sbuf: LEB-sized buffer to use
1079  *
1080  * This function cleans a LEB identified during recovery that needs to be
1081  * written but was not because UBIFS was mounted read-only. This happens when
1082  * remounting to read-write mode.
1083  *
1084  * This function returns %0 on success and a negative error code on failure.
1085  */
ubifs_clean_lebs(struct ubifs_info * c,void * sbuf)1086 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1087 {
1088 	dbg_rcvry("recovery");
1089 	while (!list_empty(&c->unclean_leb_list)) {
1090 		struct ubifs_unclean_leb *ucleb;
1091 		int err;
1092 
1093 		ucleb = list_entry(c->unclean_leb_list.next,
1094 				   struct ubifs_unclean_leb, list);
1095 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1096 		if (err)
1097 			return err;
1098 		list_del(&ucleb->list);
1099 		kfree(ucleb);
1100 	}
1101 	return 0;
1102 }
1103 
1104 #ifndef __UBOOT__
1105 /**
1106  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1107  * @c: UBIFS file-system description object
1108  *
1109  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1110  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1111  * zero in case of success and a negative error code in case of failure.
1112  */
grab_empty_leb(struct ubifs_info * c)1113 static int grab_empty_leb(struct ubifs_info *c)
1114 {
1115 	int lnum, err;
1116 
1117 	/*
1118 	 * Note, it is very important to first search for an empty LEB and then
1119 	 * run the commit, not vice-versa. The reason is that there might be
1120 	 * only one empty LEB at the moment, the one which has been the
1121 	 * @c->gc_lnum just before the power cut happened. During the regular
1122 	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1123 	 * one but GC can grab it. But at this moment this single empty LEB is
1124 	 * not marked as taken, so if we run commit - what happens? Right, the
1125 	 * commit will grab it and write the index there. Remember that the
1126 	 * index always expands as long as there is free space, and it only
1127 	 * starts consolidating when we run out of space.
1128 	 *
1129 	 * IOW, if we run commit now, we might not be able to find a free LEB
1130 	 * after this.
1131 	 */
1132 	lnum = ubifs_find_free_leb_for_idx(c);
1133 	if (lnum < 0) {
1134 		ubifs_err(c, "could not find an empty LEB");
1135 		ubifs_dump_lprops(c);
1136 		ubifs_dump_budg(c, &c->bi);
1137 		return lnum;
1138 	}
1139 
1140 	/* Reset the index flag */
1141 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1142 				  LPROPS_INDEX, 0);
1143 	if (err)
1144 		return err;
1145 
1146 	c->gc_lnum = lnum;
1147 	dbg_rcvry("found empty LEB %d, run commit", lnum);
1148 
1149 	return ubifs_run_commit(c);
1150 }
1151 
1152 /**
1153  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1154  * @c: UBIFS file-system description object
1155  *
1156  * Out-of-place garbage collection requires always one empty LEB with which to
1157  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1158  * written to the master node on unmounting. In the case of an unclean unmount
1159  * the value of gc_lnum recorded in the master node is out of date and cannot
1160  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1161  * However, there may not be enough empty space, in which case it must be
1162  * possible to GC the dirtiest LEB into the GC head LEB.
1163  *
1164  * This function also runs the commit which causes the TNC updates from
1165  * size-recovery and orphans to be written to the flash. That is important to
1166  * ensure correct replay order for subsequent mounts.
1167  *
1168  * This function returns %0 on success and a negative error code on failure.
1169  */
ubifs_rcvry_gc_commit(struct ubifs_info * c)1170 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1171 {
1172 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1173 	struct ubifs_lprops lp;
1174 	int err;
1175 
1176 	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1177 
1178 	c->gc_lnum = -1;
1179 	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1180 		return grab_empty_leb(c);
1181 
1182 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1183 	if (err) {
1184 		if (err != -ENOSPC)
1185 			return err;
1186 
1187 		dbg_rcvry("could not find a dirty LEB");
1188 		return grab_empty_leb(c);
1189 	}
1190 
1191 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1192 	ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1193 
1194 	/*
1195 	 * We run the commit before garbage collection otherwise subsequent
1196 	 * mounts will see the GC and orphan deletion in a different order.
1197 	 */
1198 	dbg_rcvry("committing");
1199 	err = ubifs_run_commit(c);
1200 	if (err)
1201 		return err;
1202 
1203 	dbg_rcvry("GC'ing LEB %d", lp.lnum);
1204 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1205 	err = ubifs_garbage_collect_leb(c, &lp);
1206 	if (err >= 0) {
1207 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1208 
1209 		if (err2)
1210 			err = err2;
1211 	}
1212 	mutex_unlock(&wbuf->io_mutex);
1213 	if (err < 0) {
1214 		ubifs_err(c, "GC failed, error %d", err);
1215 		if (err == -EAGAIN)
1216 			err = -EINVAL;
1217 		return err;
1218 	}
1219 
1220 	ubifs_assert(err == LEB_RETAINED);
1221 	if (err != LEB_RETAINED)
1222 		return -EINVAL;
1223 
1224 	err = ubifs_leb_unmap(c, c->gc_lnum);
1225 	if (err)
1226 		return err;
1227 
1228 	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1229 	return 0;
1230 }
1231 #else
ubifs_rcvry_gc_commit(struct ubifs_info * c)1232 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1233 {
1234 	return 0;
1235 }
1236 #endif
1237 
1238 /**
1239  * struct size_entry - inode size information for recovery.
1240  * @rb: link in the RB-tree of sizes
1241  * @inum: inode number
1242  * @i_size: size on inode
1243  * @d_size: maximum size based on data nodes
1244  * @exists: indicates whether the inode exists
1245  * @inode: inode if pinned in memory awaiting rw mode to fix it
1246  */
1247 struct size_entry {
1248 	struct rb_node rb;
1249 	ino_t inum;
1250 	loff_t i_size;
1251 	loff_t d_size;
1252 	int exists;
1253 	struct inode *inode;
1254 };
1255 
1256 /**
1257  * add_ino - add an entry to the size tree.
1258  * @c: UBIFS file-system description object
1259  * @inum: inode number
1260  * @i_size: size on inode
1261  * @d_size: maximum size based on data nodes
1262  * @exists: indicates whether the inode exists
1263  */
add_ino(struct ubifs_info * c,ino_t inum,loff_t i_size,loff_t d_size,int exists)1264 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1265 		   loff_t d_size, int exists)
1266 {
1267 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1268 	struct size_entry *e;
1269 
1270 	while (*p) {
1271 		parent = *p;
1272 		e = rb_entry(parent, struct size_entry, rb);
1273 		if (inum < e->inum)
1274 			p = &(*p)->rb_left;
1275 		else
1276 			p = &(*p)->rb_right;
1277 	}
1278 
1279 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1280 	if (!e)
1281 		return -ENOMEM;
1282 
1283 	e->inum = inum;
1284 	e->i_size = i_size;
1285 	e->d_size = d_size;
1286 	e->exists = exists;
1287 
1288 	rb_link_node(&e->rb, parent, p);
1289 	rb_insert_color(&e->rb, &c->size_tree);
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * find_ino - find an entry on the size tree.
1296  * @c: UBIFS file-system description object
1297  * @inum: inode number
1298  */
find_ino(struct ubifs_info * c,ino_t inum)1299 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1300 {
1301 	struct rb_node *p = c->size_tree.rb_node;
1302 	struct size_entry *e;
1303 
1304 	while (p) {
1305 		e = rb_entry(p, struct size_entry, rb);
1306 		if (inum < e->inum)
1307 			p = p->rb_left;
1308 		else if (inum > e->inum)
1309 			p = p->rb_right;
1310 		else
1311 			return e;
1312 	}
1313 	return NULL;
1314 }
1315 
1316 /**
1317  * remove_ino - remove an entry from the size tree.
1318  * @c: UBIFS file-system description object
1319  * @inum: inode number
1320  */
remove_ino(struct ubifs_info * c,ino_t inum)1321 static void remove_ino(struct ubifs_info *c, ino_t inum)
1322 {
1323 	struct size_entry *e = find_ino(c, inum);
1324 
1325 	if (!e)
1326 		return;
1327 	rb_erase(&e->rb, &c->size_tree);
1328 	kfree(e);
1329 }
1330 
1331 /**
1332  * ubifs_destroy_size_tree - free resources related to the size tree.
1333  * @c: UBIFS file-system description object
1334  */
ubifs_destroy_size_tree(struct ubifs_info * c)1335 void ubifs_destroy_size_tree(struct ubifs_info *c)
1336 {
1337 	struct size_entry *e, *n;
1338 
1339 	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1340 		if (e->inode)
1341 			iput(e->inode);
1342 		kfree(e);
1343 	}
1344 
1345 	c->size_tree = RB_ROOT;
1346 }
1347 
1348 /**
1349  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1350  * @c: UBIFS file-system description object
1351  * @key: node key
1352  * @deletion: node is for a deletion
1353  * @new_size: inode size
1354  *
1355  * This function has two purposes:
1356  *     1) to ensure there are no data nodes that fall outside the inode size
1357  *     2) to ensure there are no data nodes for inodes that do not exist
1358  * To accomplish those purposes, a rb-tree is constructed containing an entry
1359  * for each inode number in the journal that has not been deleted, and recording
1360  * the size from the inode node, the maximum size of any data node (also altered
1361  * by truncations) and a flag indicating a inode number for which no inode node
1362  * was present in the journal.
1363  *
1364  * Note that there is still the possibility that there are data nodes that have
1365  * been committed that are beyond the inode size, however the only way to find
1366  * them would be to scan the entire index. Alternatively, some provision could
1367  * be made to record the size of inodes at the start of commit, which would seem
1368  * very cumbersome for a scenario that is quite unlikely and the only negative
1369  * consequence of which is wasted space.
1370  *
1371  * This functions returns %0 on success and a negative error code on failure.
1372  */
ubifs_recover_size_accum(struct ubifs_info * c,union ubifs_key * key,int deletion,loff_t new_size)1373 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1374 			     int deletion, loff_t new_size)
1375 {
1376 	ino_t inum = key_inum(c, key);
1377 	struct size_entry *e;
1378 	int err;
1379 
1380 	switch (key_type(c, key)) {
1381 	case UBIFS_INO_KEY:
1382 		if (deletion)
1383 			remove_ino(c, inum);
1384 		else {
1385 			e = find_ino(c, inum);
1386 			if (e) {
1387 				e->i_size = new_size;
1388 				e->exists = 1;
1389 			} else {
1390 				err = add_ino(c, inum, new_size, 0, 1);
1391 				if (err)
1392 					return err;
1393 			}
1394 		}
1395 		break;
1396 	case UBIFS_DATA_KEY:
1397 		e = find_ino(c, inum);
1398 		if (e) {
1399 			if (new_size > e->d_size)
1400 				e->d_size = new_size;
1401 		} else {
1402 			err = add_ino(c, inum, 0, new_size, 0);
1403 			if (err)
1404 				return err;
1405 		}
1406 		break;
1407 	case UBIFS_TRUN_KEY:
1408 		e = find_ino(c, inum);
1409 		if (e)
1410 			e->d_size = new_size;
1411 		break;
1412 	}
1413 	return 0;
1414 }
1415 
1416 #ifndef __UBOOT__
1417 /**
1418  * fix_size_in_place - fix inode size in place on flash.
1419  * @c: UBIFS file-system description object
1420  * @e: inode size information for recovery
1421  */
fix_size_in_place(struct ubifs_info * c,struct size_entry * e)1422 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1423 {
1424 	struct ubifs_ino_node *ino = c->sbuf;
1425 	unsigned char *p;
1426 	union ubifs_key key;
1427 	int err, lnum, offs, len;
1428 	loff_t i_size;
1429 	uint32_t crc;
1430 
1431 	/* Locate the inode node LEB number and offset */
1432 	ino_key_init(c, &key, e->inum);
1433 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1434 	if (err)
1435 		goto out;
1436 	/*
1437 	 * If the size recorded on the inode node is greater than the size that
1438 	 * was calculated from nodes in the journal then don't change the inode.
1439 	 */
1440 	i_size = le64_to_cpu(ino->size);
1441 	if (i_size >= e->d_size)
1442 		return 0;
1443 	/* Read the LEB */
1444 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1445 	if (err)
1446 		goto out;
1447 	/* Change the size field and recalculate the CRC */
1448 	ino = c->sbuf + offs;
1449 	ino->size = cpu_to_le64(e->d_size);
1450 	len = le32_to_cpu(ino->ch.len);
1451 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1452 	ino->ch.crc = cpu_to_le32(crc);
1453 	/* Work out where data in the LEB ends and free space begins */
1454 	p = c->sbuf;
1455 	len = c->leb_size - 1;
1456 	while (p[len] == 0xff)
1457 		len -= 1;
1458 	len = ALIGN(len + 1, c->min_io_size);
1459 	/* Atomically write the fixed LEB back again */
1460 	err = ubifs_leb_change(c, lnum, c->sbuf, len);
1461 	if (err)
1462 		goto out;
1463 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1464 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1465 	return 0;
1466 
1467 out:
1468 	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1469 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1470 	return err;
1471 }
1472 #endif
1473 
1474 /**
1475  * ubifs_recover_size - recover inode size.
1476  * @c: UBIFS file-system description object
1477  *
1478  * This function attempts to fix inode size discrepancies identified by the
1479  * 'ubifs_recover_size_accum()' function.
1480  *
1481  * This functions returns %0 on success and a negative error code on failure.
1482  */
ubifs_recover_size(struct ubifs_info * c)1483 int ubifs_recover_size(struct ubifs_info *c)
1484 {
1485 	struct rb_node *this = rb_first(&c->size_tree);
1486 
1487 	while (this) {
1488 		struct size_entry *e;
1489 		int err;
1490 
1491 		e = rb_entry(this, struct size_entry, rb);
1492 		if (!e->exists) {
1493 			union ubifs_key key;
1494 
1495 			ino_key_init(c, &key, e->inum);
1496 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1497 			if (err && err != -ENOENT)
1498 				return err;
1499 			if (err == -ENOENT) {
1500 				/* Remove data nodes that have no inode */
1501 				dbg_rcvry("removing ino %lu",
1502 					  (unsigned long)e->inum);
1503 				err = ubifs_tnc_remove_ino(c, e->inum);
1504 				if (err)
1505 					return err;
1506 			} else {
1507 				struct ubifs_ino_node *ino = c->sbuf;
1508 
1509 				e->exists = 1;
1510 				e->i_size = le64_to_cpu(ino->size);
1511 			}
1512 		}
1513 
1514 		if (e->exists && e->i_size < e->d_size) {
1515 			if (c->ro_mount) {
1516 				/* Fix the inode size and pin it in memory */
1517 				struct inode *inode;
1518 				struct ubifs_inode *ui;
1519 
1520 				ubifs_assert(!e->inode);
1521 
1522 				inode = ubifs_iget(c->vfs_sb, e->inum);
1523 				if (IS_ERR(inode))
1524 					return PTR_ERR(inode);
1525 
1526 				ui = ubifs_inode(inode);
1527 				if (inode->i_size < e->d_size) {
1528 					dbg_rcvry("ino %lu size %lld -> %lld",
1529 						  (unsigned long)e->inum,
1530 						  inode->i_size, e->d_size);
1531 					inode->i_size = e->d_size;
1532 					ui->ui_size = e->d_size;
1533 					ui->synced_i_size = e->d_size;
1534 					e->inode = inode;
1535 					this = rb_next(this);
1536 					continue;
1537 				}
1538 				iput(inode);
1539 #ifndef __UBOOT__
1540 			} else {
1541 				/* Fix the size in place */
1542 				err = fix_size_in_place(c, e);
1543 				if (err)
1544 					return err;
1545 				if (e->inode)
1546 					iput(e->inode);
1547 #endif
1548 			}
1549 		}
1550 
1551 		this = rb_next(this);
1552 		rb_erase(&e->rb, &c->size_tree);
1553 		kfree(e);
1554 	}
1555 
1556 	return 0;
1557 }
1558