1 /*
2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/sysbus.h"
29 #include "migration/vmstate.h"
30 #include "qemu/module.h"
31 #include "hw/char/escc.h"
32 #include "ui/console.h"
33 #include "trace.h"
34
35 /*
36 * Chipset docs:
37 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
38 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
39 *
40 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
41 * (Slave I/O), also produced as NCR89C105. See
42 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43 *
44 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
45 * mouse and keyboard ports don't implement all functions and they are
46 * only asynchronous. There is no DMA.
47 *
48 * Z85C30 is also used on PowerMacs and m68k Macs.
49 *
50 * There are some small differences between Sparc version (sunzilog)
51 * and PowerMac (pmac):
52 * Offset between control and data registers
53 * There is some kind of lockup bug, but we can ignore it
54 * CTS is inverted
55 * DMA on pmac using DBDMA chip
56 * pmac can do IRDA and faster rates, sunzilog can only do 38400
57 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
58 *
59 * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
60 * but registers are grouped by type and not by channel:
61 * channel is selected by bit 0 of the address (instead of bit 1)
62 * and register is selected by bit 1 of the address (instead of bit 0).
63 */
64
65 /*
66 * Modifications:
67 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
68 * serial mouse queue.
69 * Implemented serial mouse protocol.
70 *
71 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic
72 */
73
74 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
75
76 #define SERIAL_CTRL 0
77 #define SERIAL_DATA 1
78
79 #define W_CMD 0
80 #define CMD_PTR_MASK 0x07
81 #define CMD_CMD_MASK 0x38
82 #define CMD_HI 0x08
83 #define CMD_CLR_TXINT 0x28
84 #define CMD_CLR_IUS 0x38
85 #define W_INTR 1
86 #define INTR_INTALL 0x01
87 #define INTR_TXINT 0x02
88 #define INTR_RXMODEMSK 0x18
89 #define INTR_RXINT1ST 0x08
90 #define INTR_RXINTALL 0x10
91 #define W_IVEC 2
92 #define W_RXCTRL 3
93 #define RXCTRL_RXEN 0x01
94 #define W_TXCTRL1 4
95 #define TXCTRL1_PAREN 0x01
96 #define TXCTRL1_PAREV 0x02
97 #define TXCTRL1_1STOP 0x04
98 #define TXCTRL1_1HSTOP 0x08
99 #define TXCTRL1_2STOP 0x0c
100 #define TXCTRL1_STPMSK 0x0c
101 #define TXCTRL1_CLK1X 0x00
102 #define TXCTRL1_CLK16X 0x40
103 #define TXCTRL1_CLK32X 0x80
104 #define TXCTRL1_CLK64X 0xc0
105 #define TXCTRL1_CLKMSK 0xc0
106 #define W_TXCTRL2 5
107 #define TXCTRL2_TXEN 0x08
108 #define TXCTRL2_BITMSK 0x60
109 #define TXCTRL2_5BITS 0x00
110 #define TXCTRL2_7BITS 0x20
111 #define TXCTRL2_6BITS 0x40
112 #define TXCTRL2_8BITS 0x60
113 #define W_SYNC1 6
114 #define W_SYNC2 7
115 #define W_TXBUF 8
116 #define W_MINTR 9
117 #define MINTR_STATUSHI 0x10
118 #define MINTR_RST_MASK 0xc0
119 #define MINTR_RST_B 0x40
120 #define MINTR_RST_A 0x80
121 #define MINTR_RST_ALL 0xc0
122 #define W_MISC1 10
123 #define W_CLOCK 11
124 #define CLOCK_TRXC 0x08
125 #define W_BRGLO 12
126 #define W_BRGHI 13
127 #define W_MISC2 14
128 #define MISC2_PLLDIS 0x30
129 #define W_EXTINT 15
130 #define EXTINT_DCD 0x08
131 #define EXTINT_SYNCINT 0x10
132 #define EXTINT_CTSINT 0x20
133 #define EXTINT_TXUNDRN 0x40
134 #define EXTINT_BRKINT 0x80
135
136 #define R_STATUS 0
137 #define STATUS_RXAV 0x01
138 #define STATUS_ZERO 0x02
139 #define STATUS_TXEMPTY 0x04
140 #define STATUS_DCD 0x08
141 #define STATUS_SYNC 0x10
142 #define STATUS_CTS 0x20
143 #define STATUS_TXUNDRN 0x40
144 #define STATUS_BRK 0x80
145 #define R_SPEC 1
146 #define SPEC_ALLSENT 0x01
147 #define SPEC_BITS8 0x06
148 #define R_IVEC 2
149 #define IVEC_TXINTB 0x00
150 #define IVEC_LONOINT 0x06
151 #define IVEC_LORXINTA 0x0c
152 #define IVEC_LORXINTB 0x04
153 #define IVEC_LOTXINTA 0x08
154 #define IVEC_HINOINT 0x60
155 #define IVEC_HIRXINTA 0x30
156 #define IVEC_HIRXINTB 0x20
157 #define IVEC_HITXINTA 0x10
158 #define R_INTR 3
159 #define INTR_EXTINTB 0x01
160 #define INTR_TXINTB 0x02
161 #define INTR_RXINTB 0x04
162 #define INTR_EXTINTA 0x08
163 #define INTR_TXINTA 0x10
164 #define INTR_RXINTA 0x20
165 #define R_IPEN 4
166 #define R_TXCTRL1 5
167 #define R_TXCTRL2 6
168 #define R_BC 7
169 #define R_RXBUF 8
170 #define R_RXCTRL 9
171 #define R_MISC 10
172 #define R_MISC1 11
173 #define R_BRGLO 12
174 #define R_BRGHI 13
175 #define R_MISC1I 14
176 #define R_EXTINT 15
177
178 static void handle_kbd_command(ESCCChannelState *s, int val);
179 static int serial_can_receive(void *opaque);
180 static void serial_receive_byte(ESCCChannelState *s, int ch);
181
reg_shift(ESCCState * s)182 static int reg_shift(ESCCState *s)
183 {
184 return s->bit_swap ? s->it_shift + 1 : s->it_shift;
185 }
186
chn_shift(ESCCState * s)187 static int chn_shift(ESCCState *s)
188 {
189 return s->bit_swap ? s->it_shift : s->it_shift + 1;
190 }
191
clear_queue(void * opaque)192 static void clear_queue(void *opaque)
193 {
194 ESCCChannelState *s = opaque;
195 ESCCSERIOQueue *q = &s->queue;
196 q->rptr = q->wptr = q->count = 0;
197 }
198
put_queue(void * opaque,int b)199 static void put_queue(void *opaque, int b)
200 {
201 ESCCChannelState *s = opaque;
202 ESCCSERIOQueue *q = &s->queue;
203
204 trace_escc_put_queue(CHN_C(s), b);
205 if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
206 return;
207 }
208 q->data[q->wptr] = b;
209 if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
210 q->wptr = 0;
211 }
212 q->count++;
213 serial_receive_byte(s, 0);
214 }
215
get_queue(void * opaque)216 static uint32_t get_queue(void *opaque)
217 {
218 ESCCChannelState *s = opaque;
219 ESCCSERIOQueue *q = &s->queue;
220 int val;
221
222 if (q->count == 0) {
223 return 0;
224 } else {
225 val = q->data[q->rptr];
226 if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
227 q->rptr = 0;
228 }
229 q->count--;
230 }
231 trace_escc_get_queue(CHN_C(s), val);
232 if (q->count > 0)
233 serial_receive_byte(s, 0);
234 return val;
235 }
236
escc_update_irq_chn(ESCCChannelState * s)237 static int escc_update_irq_chn(ESCCChannelState *s)
238 {
239 if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
240 // tx ints enabled, pending
241 ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
242 ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
243 s->rxint == 1) || // rx ints enabled, pending
244 ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
245 (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
246 return 1;
247 }
248 return 0;
249 }
250
escc_update_irq(ESCCChannelState * s)251 static void escc_update_irq(ESCCChannelState *s)
252 {
253 int irq;
254
255 irq = escc_update_irq_chn(s);
256 irq |= escc_update_irq_chn(s->otherchn);
257
258 trace_escc_update_irq(irq);
259 qemu_set_irq(s->irq, irq);
260 }
261
escc_reset_chn(ESCCChannelState * s)262 static void escc_reset_chn(ESCCChannelState *s)
263 {
264 int i;
265
266 s->reg = 0;
267 for (i = 0; i < ESCC_SERIAL_REGS; i++) {
268 s->rregs[i] = 0;
269 s->wregs[i] = 0;
270 }
271 s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
272 s->wregs[W_MINTR] = MINTR_RST_ALL;
273 s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
274 s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
275 s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
276 EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
277 if (s->disabled)
278 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
279 STATUS_CTS | STATUS_TXUNDRN;
280 else
281 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
282 s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
283
284 s->rx = s->tx = 0;
285 s->rxint = s->txint = 0;
286 s->rxint_under_svc = s->txint_under_svc = 0;
287 s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
288 clear_queue(s);
289 }
290
escc_reset(DeviceState * d)291 static void escc_reset(DeviceState *d)
292 {
293 ESCCState *s = ESCC(d);
294
295 escc_reset_chn(&s->chn[0]);
296 escc_reset_chn(&s->chn[1]);
297 }
298
set_rxint(ESCCChannelState * s)299 static inline void set_rxint(ESCCChannelState *s)
300 {
301 s->rxint = 1;
302 /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
303 than chn_a rx/tx/special_condition service*/
304 s->rxint_under_svc = 1;
305 if (s->chn == escc_chn_a) {
306 s->rregs[R_INTR] |= INTR_RXINTA;
307 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
308 s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
309 else
310 s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
311 } else {
312 s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
313 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
314 s->rregs[R_IVEC] = IVEC_HIRXINTB;
315 else
316 s->rregs[R_IVEC] = IVEC_LORXINTB;
317 }
318 escc_update_irq(s);
319 }
320
set_txint(ESCCChannelState * s)321 static inline void set_txint(ESCCChannelState *s)
322 {
323 s->txint = 1;
324 if (!s->rxint_under_svc) {
325 s->txint_under_svc = 1;
326 if (s->chn == escc_chn_a) {
327 if (s->wregs[W_INTR] & INTR_TXINT) {
328 s->rregs[R_INTR] |= INTR_TXINTA;
329 }
330 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
331 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
332 else
333 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
334 } else {
335 s->rregs[R_IVEC] = IVEC_TXINTB;
336 if (s->wregs[W_INTR] & INTR_TXINT) {
337 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
338 }
339 }
340 escc_update_irq(s);
341 }
342 }
343
clr_rxint(ESCCChannelState * s)344 static inline void clr_rxint(ESCCChannelState *s)
345 {
346 s->rxint = 0;
347 s->rxint_under_svc = 0;
348 if (s->chn == escc_chn_a) {
349 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
350 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
351 else
352 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
353 s->rregs[R_INTR] &= ~INTR_RXINTA;
354 } else {
355 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
356 s->rregs[R_IVEC] = IVEC_HINOINT;
357 else
358 s->rregs[R_IVEC] = IVEC_LONOINT;
359 s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
360 }
361 if (s->txint)
362 set_txint(s);
363 escc_update_irq(s);
364 }
365
clr_txint(ESCCChannelState * s)366 static inline void clr_txint(ESCCChannelState *s)
367 {
368 s->txint = 0;
369 s->txint_under_svc = 0;
370 if (s->chn == escc_chn_a) {
371 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
372 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
373 else
374 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
375 s->rregs[R_INTR] &= ~INTR_TXINTA;
376 } else {
377 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
378 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
379 s->rregs[R_IVEC] = IVEC_HINOINT;
380 else
381 s->rregs[R_IVEC] = IVEC_LONOINT;
382 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
383 }
384 if (s->rxint)
385 set_rxint(s);
386 escc_update_irq(s);
387 }
388
escc_update_parameters(ESCCChannelState * s)389 static void escc_update_parameters(ESCCChannelState *s)
390 {
391 int speed, parity, data_bits, stop_bits;
392 QEMUSerialSetParams ssp;
393
394 if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
395 return;
396
397 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
398 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
399 parity = 'E';
400 else
401 parity = 'O';
402 } else {
403 parity = 'N';
404 }
405 if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
406 stop_bits = 2;
407 else
408 stop_bits = 1;
409 switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
410 case TXCTRL2_5BITS:
411 data_bits = 5;
412 break;
413 case TXCTRL2_7BITS:
414 data_bits = 7;
415 break;
416 case TXCTRL2_6BITS:
417 data_bits = 6;
418 break;
419 default:
420 case TXCTRL2_8BITS:
421 data_bits = 8;
422 break;
423 }
424 speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
425 switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
426 case TXCTRL1_CLK1X:
427 break;
428 case TXCTRL1_CLK16X:
429 speed /= 16;
430 break;
431 case TXCTRL1_CLK32X:
432 speed /= 32;
433 break;
434 default:
435 case TXCTRL1_CLK64X:
436 speed /= 64;
437 break;
438 }
439 ssp.speed = speed;
440 ssp.parity = parity;
441 ssp.data_bits = data_bits;
442 ssp.stop_bits = stop_bits;
443 trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
444 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
445 }
446
escc_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)447 static void escc_mem_write(void *opaque, hwaddr addr,
448 uint64_t val, unsigned size)
449 {
450 ESCCState *serial = opaque;
451 ESCCChannelState *s;
452 uint32_t saddr;
453 int newreg, channel;
454
455 val &= 0xff;
456 saddr = (addr >> reg_shift(serial)) & 1;
457 channel = (addr >> chn_shift(serial)) & 1;
458 s = &serial->chn[channel];
459 switch (saddr) {
460 case SERIAL_CTRL:
461 trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
462 newreg = 0;
463 switch (s->reg) {
464 case W_CMD:
465 newreg = val & CMD_PTR_MASK;
466 val &= CMD_CMD_MASK;
467 switch (val) {
468 case CMD_HI:
469 newreg |= CMD_HI;
470 break;
471 case CMD_CLR_TXINT:
472 clr_txint(s);
473 break;
474 case CMD_CLR_IUS:
475 if (s->rxint_under_svc) {
476 s->rxint_under_svc = 0;
477 if (s->txint) {
478 set_txint(s);
479 }
480 } else if (s->txint_under_svc) {
481 s->txint_under_svc = 0;
482 }
483 escc_update_irq(s);
484 break;
485 default:
486 break;
487 }
488 break;
489 case W_INTR ... W_RXCTRL:
490 case W_SYNC1 ... W_TXBUF:
491 case W_MISC1 ... W_CLOCK:
492 case W_MISC2 ... W_EXTINT:
493 s->wregs[s->reg] = val;
494 break;
495 case W_TXCTRL1:
496 case W_TXCTRL2:
497 s->wregs[s->reg] = val;
498 escc_update_parameters(s);
499 break;
500 case W_BRGLO:
501 case W_BRGHI:
502 s->wregs[s->reg] = val;
503 s->rregs[s->reg] = val;
504 escc_update_parameters(s);
505 break;
506 case W_MINTR:
507 switch (val & MINTR_RST_MASK) {
508 case 0:
509 default:
510 break;
511 case MINTR_RST_B:
512 escc_reset_chn(&serial->chn[0]);
513 return;
514 case MINTR_RST_A:
515 escc_reset_chn(&serial->chn[1]);
516 return;
517 case MINTR_RST_ALL:
518 escc_reset(DEVICE(serial));
519 return;
520 }
521 break;
522 default:
523 break;
524 }
525 if (s->reg == 0)
526 s->reg = newreg;
527 else
528 s->reg = 0;
529 break;
530 case SERIAL_DATA:
531 trace_escc_mem_writeb_data(CHN_C(s), val);
532 /*
533 * Lower the irq when data is written to the Tx buffer and no other
534 * interrupts are currently pending. The irq will be raised again once
535 * the Tx buffer becomes empty below.
536 */
537 s->txint = 0;
538 escc_update_irq(s);
539 s->tx = val;
540 if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
541 if (qemu_chr_fe_backend_connected(&s->chr)) {
542 /* XXX this blocks entire thread. Rewrite to use
543 * qemu_chr_fe_write and background I/O callbacks */
544 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
545 } else if (s->type == escc_kbd && !s->disabled) {
546 handle_kbd_command(s, val);
547 }
548 }
549 s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
550 s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
551 set_txint(s);
552 break;
553 default:
554 break;
555 }
556 }
557
escc_mem_read(void * opaque,hwaddr addr,unsigned size)558 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
559 unsigned size)
560 {
561 ESCCState *serial = opaque;
562 ESCCChannelState *s;
563 uint32_t saddr;
564 uint32_t ret;
565 int channel;
566
567 saddr = (addr >> reg_shift(serial)) & 1;
568 channel = (addr >> chn_shift(serial)) & 1;
569 s = &serial->chn[channel];
570 switch (saddr) {
571 case SERIAL_CTRL:
572 trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
573 ret = s->rregs[s->reg];
574 s->reg = 0;
575 return ret;
576 case SERIAL_DATA:
577 s->rregs[R_STATUS] &= ~STATUS_RXAV;
578 clr_rxint(s);
579 if (s->type == escc_kbd || s->type == escc_mouse) {
580 ret = get_queue(s);
581 } else {
582 ret = s->rx;
583 }
584 trace_escc_mem_readb_data(CHN_C(s), ret);
585 qemu_chr_fe_accept_input(&s->chr);
586 return ret;
587 default:
588 break;
589 }
590 return 0;
591 }
592
593 static const MemoryRegionOps escc_mem_ops = {
594 .read = escc_mem_read,
595 .write = escc_mem_write,
596 .endianness = DEVICE_NATIVE_ENDIAN,
597 .valid = {
598 .min_access_size = 1,
599 .max_access_size = 1,
600 },
601 };
602
serial_can_receive(void * opaque)603 static int serial_can_receive(void *opaque)
604 {
605 ESCCChannelState *s = opaque;
606 int ret;
607
608 if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
609 || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
610 // char already available
611 ret = 0;
612 else
613 ret = 1;
614 return ret;
615 }
616
serial_receive_byte(ESCCChannelState * s,int ch)617 static void serial_receive_byte(ESCCChannelState *s, int ch)
618 {
619 trace_escc_serial_receive_byte(CHN_C(s), ch);
620 s->rregs[R_STATUS] |= STATUS_RXAV;
621 s->rx = ch;
622 set_rxint(s);
623 }
624
serial_receive_break(ESCCChannelState * s)625 static void serial_receive_break(ESCCChannelState *s)
626 {
627 s->rregs[R_STATUS] |= STATUS_BRK;
628 escc_update_irq(s);
629 }
630
serial_receive1(void * opaque,const uint8_t * buf,int size)631 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
632 {
633 ESCCChannelState *s = opaque;
634 serial_receive_byte(s, buf[0]);
635 }
636
serial_event(void * opaque,int event)637 static void serial_event(void *opaque, int event)
638 {
639 ESCCChannelState *s = opaque;
640 if (event == CHR_EVENT_BREAK)
641 serial_receive_break(s);
642 }
643
644 static const VMStateDescription vmstate_escc_chn = {
645 .name ="escc_chn",
646 .version_id = 2,
647 .minimum_version_id = 1,
648 .fields = (VMStateField[]) {
649 VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
650 VMSTATE_UINT32(reg, ESCCChannelState),
651 VMSTATE_UINT32(rxint, ESCCChannelState),
652 VMSTATE_UINT32(txint, ESCCChannelState),
653 VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
654 VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
655 VMSTATE_UINT8(rx, ESCCChannelState),
656 VMSTATE_UINT8(tx, ESCCChannelState),
657 VMSTATE_BUFFER(wregs, ESCCChannelState),
658 VMSTATE_BUFFER(rregs, ESCCChannelState),
659 VMSTATE_END_OF_LIST()
660 }
661 };
662
663 static const VMStateDescription vmstate_escc = {
664 .name ="escc",
665 .version_id = 2,
666 .minimum_version_id = 1,
667 .fields = (VMStateField[]) {
668 VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
669 ESCCChannelState),
670 VMSTATE_END_OF_LIST()
671 }
672 };
673
sunkbd_handle_event(DeviceState * dev,QemuConsole * src,InputEvent * evt)674 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
675 InputEvent *evt)
676 {
677 ESCCChannelState *s = (ESCCChannelState *)dev;
678 int qcode, keycode;
679 InputKeyEvent *key;
680
681 assert(evt->type == INPUT_EVENT_KIND_KEY);
682 key = evt->u.key.data;
683 qcode = qemu_input_key_value_to_qcode(key->key);
684 trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
685 key->down);
686
687 if (qcode == Q_KEY_CODE_CAPS_LOCK) {
688 if (key->down) {
689 s->caps_lock_mode ^= 1;
690 if (s->caps_lock_mode == 2) {
691 return; /* Drop second press */
692 }
693 } else {
694 s->caps_lock_mode ^= 2;
695 if (s->caps_lock_mode == 3) {
696 return; /* Drop first release */
697 }
698 }
699 }
700
701 if (qcode == Q_KEY_CODE_NUM_LOCK) {
702 if (key->down) {
703 s->num_lock_mode ^= 1;
704 if (s->num_lock_mode == 2) {
705 return; /* Drop second press */
706 }
707 } else {
708 s->num_lock_mode ^= 2;
709 if (s->num_lock_mode == 3) {
710 return; /* Drop first release */
711 }
712 }
713 }
714
715 if (qcode > qemu_input_map_qcode_to_sun_len) {
716 return;
717 }
718
719 keycode = qemu_input_map_qcode_to_sun[qcode];
720 if (!key->down) {
721 keycode |= 0x80;
722 }
723 trace_escc_sunkbd_event_out(keycode);
724 put_queue(s, keycode);
725 }
726
727 static QemuInputHandler sunkbd_handler = {
728 .name = "sun keyboard",
729 .mask = INPUT_EVENT_MASK_KEY,
730 .event = sunkbd_handle_event,
731 };
732
handle_kbd_command(ESCCChannelState * s,int val)733 static void handle_kbd_command(ESCCChannelState *s, int val)
734 {
735 trace_escc_kbd_command(val);
736 if (s->led_mode) { // Ignore led byte
737 s->led_mode = 0;
738 return;
739 }
740 switch (val) {
741 case 1: // Reset, return type code
742 clear_queue(s);
743 put_queue(s, 0xff);
744 put_queue(s, 4); // Type 4
745 put_queue(s, 0x7f);
746 break;
747 case 0xe: // Set leds
748 s->led_mode = 1;
749 break;
750 case 7: // Query layout
751 case 0xf:
752 clear_queue(s);
753 put_queue(s, 0xfe);
754 put_queue(s, 0x21); /* en-us layout */
755 break;
756 default:
757 break;
758 }
759 }
760
sunmouse_event(void * opaque,int dx,int dy,int dz,int buttons_state)761 static void sunmouse_event(void *opaque,
762 int dx, int dy, int dz, int buttons_state)
763 {
764 ESCCChannelState *s = opaque;
765 int ch;
766
767 trace_escc_sunmouse_event(dx, dy, buttons_state);
768 ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
769
770 if (buttons_state & MOUSE_EVENT_LBUTTON)
771 ch ^= 0x4;
772 if (buttons_state & MOUSE_EVENT_MBUTTON)
773 ch ^= 0x2;
774 if (buttons_state & MOUSE_EVENT_RBUTTON)
775 ch ^= 0x1;
776
777 put_queue(s, ch);
778
779 ch = dx;
780
781 if (ch > 127)
782 ch = 127;
783 else if (ch < -127)
784 ch = -127;
785
786 put_queue(s, ch & 0xff);
787
788 ch = -dy;
789
790 if (ch > 127)
791 ch = 127;
792 else if (ch < -127)
793 ch = -127;
794
795 put_queue(s, ch & 0xff);
796
797 // MSC protocol specify two extra motion bytes
798
799 put_queue(s, 0);
800 put_queue(s, 0);
801 }
802
escc_init1(Object * obj)803 static void escc_init1(Object *obj)
804 {
805 ESCCState *s = ESCC(obj);
806 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
807 unsigned int i;
808
809 for (i = 0; i < 2; i++) {
810 sysbus_init_irq(dev, &s->chn[i].irq);
811 s->chn[i].chn = 1 - i;
812 }
813 s->chn[0].otherchn = &s->chn[1];
814 s->chn[1].otherchn = &s->chn[0];
815
816 sysbus_init_mmio(dev, &s->mmio);
817 }
818
escc_realize(DeviceState * dev,Error ** errp)819 static void escc_realize(DeviceState *dev, Error **errp)
820 {
821 ESCCState *s = ESCC(dev);
822 unsigned int i;
823
824 s->chn[0].disabled = s->disabled;
825 s->chn[1].disabled = s->disabled;
826
827 memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
828 ESCC_SIZE << s->it_shift);
829
830 for (i = 0; i < 2; i++) {
831 if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
832 s->chn[i].clock = s->frequency / 2;
833 qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
834 serial_receive1, serial_event, NULL,
835 &s->chn[i], NULL, true);
836 }
837 }
838
839 if (s->chn[0].type == escc_mouse) {
840 qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
841 "QEMU Sun Mouse");
842 }
843 if (s->chn[1].type == escc_kbd) {
844 s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
845 &sunkbd_handler);
846 }
847 }
848
849 static Property escc_properties[] = {
850 DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
851 DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
852 DEFINE_PROP_BOOL("bit_swap", ESCCState, bit_swap, false),
853 DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
854 DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
855 DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
856 DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
857 DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
858 DEFINE_PROP_END_OF_LIST(),
859 };
860
escc_class_init(ObjectClass * klass,void * data)861 static void escc_class_init(ObjectClass *klass, void *data)
862 {
863 DeviceClass *dc = DEVICE_CLASS(klass);
864
865 dc->reset = escc_reset;
866 dc->realize = escc_realize;
867 dc->vmsd = &vmstate_escc;
868 dc->props = escc_properties;
869 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
870 }
871
872 static const TypeInfo escc_info = {
873 .name = TYPE_ESCC,
874 .parent = TYPE_SYS_BUS_DEVICE,
875 .instance_size = sizeof(ESCCState),
876 .instance_init = escc_init1,
877 .class_init = escc_class_init,
878 };
879
escc_register_types(void)880 static void escc_register_types(void)
881 {
882 type_register_static(&escc_info);
883 }
884
885 type_init(escc_register_types)
886