1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 *
31 * At the moment we only attach UBI devices by scanning, which will become a
32 * bottleneck when flashes reach certain large size. Then one may improve UBI
33 * and add other methods, although it does not seem to be easy to do.
34 */
35
36 #ifdef UBI_LINUX
37 #include <linux/err.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/stringify.h>
41 #include <linux/stat.h>
42 #include <linux/miscdevice.h>
43 #include <linux/log2.h>
44 #include <linux/kthread.h>
45 #endif
46 #include <ubi_uboot.h>
47 #include "ubi.h"
48
49 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
50 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
51 #endif
52
53 /* Maximum length of the 'mtd=' parameter */
54 #define MTD_PARAM_LEN_MAX 64
55
56 /**
57 * struct mtd_dev_param - MTD device parameter description data structure.
58 * @name: MTD device name or number string
59 * @vid_hdr_offs: VID header offset
60 */
61 struct mtd_dev_param
62 {
63 char name[MTD_PARAM_LEN_MAX];
64 int vid_hdr_offs;
65 };
66
67 /* Numbers of elements set in the @mtd_dev_param array */
68 static int mtd_devs = 0;
69
70 /* MTD devices specification parameters */
71 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
72
73 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
74 struct class *ubi_class;
75
76 #ifdef UBI_LINUX
77 /* Slab cache for wear-leveling entries */
78 struct kmem_cache *ubi_wl_entry_slab;
79
80 /* UBI control character device */
81 static struct miscdevice ubi_ctrl_cdev = {
82 .minor = MISC_DYNAMIC_MINOR,
83 .name = "ubi_ctrl",
84 .fops = &ubi_ctrl_cdev_operations,
85 };
86 #endif
87
88 /* All UBI devices in system */
89 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
90
91 #ifdef UBI_LINUX
92 /* Serializes UBI devices creations and removals */
93 DEFINE_MUTEX(ubi_devices_mutex);
94
95 /* Protects @ubi_devices and @ubi->ref_count */
96 static DEFINE_SPINLOCK(ubi_devices_lock);
97
98 /* "Show" method for files in '/<sysfs>/class/ubi/' */
ubi_version_show(struct class * class,char * buf)99 static ssize_t ubi_version_show(struct class *class, char *buf)
100 {
101 return sprintf(buf, "%d\n", UBI_VERSION);
102 }
103
104 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
105 static struct class_attribute ubi_version =
106 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
107
108 static ssize_t dev_attribute_show(struct device *dev,
109 struct device_attribute *attr, char *buf);
110
111 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
112 static struct device_attribute dev_eraseblock_size =
113 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_avail_eraseblocks =
115 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_total_eraseblocks =
117 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_volumes_count =
119 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_max_ec =
121 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_reserved_for_bad =
123 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_bad_peb_count =
125 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_max_vol_count =
127 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_min_io_size =
129 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_bgt_enabled =
131 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_mtd_num =
133 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
134 #endif
135
136 /**
137 * ubi_get_device - get UBI device.
138 * @ubi_num: UBI device number
139 *
140 * This function returns UBI device description object for UBI device number
141 * @ubi_num, or %NULL if the device does not exist. This function increases the
142 * device reference count to prevent removal of the device. In other words, the
143 * device cannot be removed if its reference count is not zero.
144 */
ubi_get_device(int ubi_num)145 struct ubi_device *ubi_get_device(int ubi_num)
146 {
147 struct ubi_device *ubi;
148
149 spin_lock(&ubi_devices_lock);
150 ubi = ubi_devices[ubi_num];
151 if (ubi) {
152 ubi_assert(ubi->ref_count >= 0);
153 ubi->ref_count += 1;
154 get_device(&ubi->dev);
155 }
156 spin_unlock(&ubi_devices_lock);
157
158 return ubi;
159 }
160
161 /**
162 * ubi_put_device - drop an UBI device reference.
163 * @ubi: UBI device description object
164 */
ubi_put_device(struct ubi_device * ubi)165 void ubi_put_device(struct ubi_device *ubi)
166 {
167 spin_lock(&ubi_devices_lock);
168 ubi->ref_count -= 1;
169 put_device(&ubi->dev);
170 spin_unlock(&ubi_devices_lock);
171 }
172
173 /**
174 * ubi_get_by_major - get UBI device description object by character device
175 * major number.
176 * @major: major number
177 *
178 * This function is similar to 'ubi_get_device()', but it searches the device
179 * by its major number.
180 */
ubi_get_by_major(int major)181 struct ubi_device *ubi_get_by_major(int major)
182 {
183 int i;
184 struct ubi_device *ubi;
185
186 spin_lock(&ubi_devices_lock);
187 for (i = 0; i < UBI_MAX_DEVICES; i++) {
188 ubi = ubi_devices[i];
189 if (ubi && MAJOR(ubi->cdev.dev) == major) {
190 ubi_assert(ubi->ref_count >= 0);
191 ubi->ref_count += 1;
192 get_device(&ubi->dev);
193 spin_unlock(&ubi_devices_lock);
194 return ubi;
195 }
196 }
197 spin_unlock(&ubi_devices_lock);
198
199 return NULL;
200 }
201
202 /**
203 * ubi_major2num - get UBI device number by character device major number.
204 * @major: major number
205 *
206 * This function searches UBI device number object by its major number. If UBI
207 * device was not found, this function returns -ENODEV, otherwise the UBI device
208 * number is returned.
209 */
ubi_major2num(int major)210 int ubi_major2num(int major)
211 {
212 int i, ubi_num = -ENODEV;
213
214 spin_lock(&ubi_devices_lock);
215 for (i = 0; i < UBI_MAX_DEVICES; i++) {
216 struct ubi_device *ubi = ubi_devices[i];
217
218 if (ubi && MAJOR(ubi->cdev.dev) == major) {
219 ubi_num = ubi->ubi_num;
220 break;
221 }
222 }
223 spin_unlock(&ubi_devices_lock);
224
225 return ubi_num;
226 }
227
228 #ifdef UBI_LINUX
229 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)230 static ssize_t dev_attribute_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
232 {
233 ssize_t ret;
234 struct ubi_device *ubi;
235
236 /*
237 * The below code looks weird, but it actually makes sense. We get the
238 * UBI device reference from the contained 'struct ubi_device'. But it
239 * is unclear if the device was removed or not yet. Indeed, if the
240 * device was removed before we increased its reference count,
241 * 'ubi_get_device()' will return -ENODEV and we fail.
242 *
243 * Remember, 'struct ubi_device' is freed in the release function, so
244 * we still can use 'ubi->ubi_num'.
245 */
246 ubi = container_of(dev, struct ubi_device, dev);
247 ubi = ubi_get_device(ubi->ubi_num);
248 if (!ubi)
249 return -ENODEV;
250
251 if (attr == &dev_eraseblock_size)
252 ret = sprintf(buf, "%d\n", ubi->leb_size);
253 else if (attr == &dev_avail_eraseblocks)
254 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
255 else if (attr == &dev_total_eraseblocks)
256 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
257 else if (attr == &dev_volumes_count)
258 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
259 else if (attr == &dev_max_ec)
260 ret = sprintf(buf, "%d\n", ubi->max_ec);
261 else if (attr == &dev_reserved_for_bad)
262 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
263 else if (attr == &dev_bad_peb_count)
264 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
265 else if (attr == &dev_max_vol_count)
266 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
267 else if (attr == &dev_min_io_size)
268 ret = sprintf(buf, "%d\n", ubi->min_io_size);
269 else if (attr == &dev_bgt_enabled)
270 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
271 else if (attr == &dev_mtd_num)
272 ret = sprintf(buf, "%d\n", ubi->mtd->index);
273 else
274 ret = -EINVAL;
275
276 ubi_put_device(ubi);
277 return ret;
278 }
279
280 /* Fake "release" method for UBI devices */
dev_release(struct device * dev)281 static void dev_release(struct device *dev) { }
282
283 /**
284 * ubi_sysfs_init - initialize sysfs for an UBI device.
285 * @ubi: UBI device description object
286 *
287 * This function returns zero in case of success and a negative error code in
288 * case of failure.
289 */
ubi_sysfs_init(struct ubi_device * ubi)290 static int ubi_sysfs_init(struct ubi_device *ubi)
291 {
292 int err;
293
294 ubi->dev.release = dev_release;
295 ubi->dev.devt = ubi->cdev.dev;
296 ubi->dev.class = ubi_class;
297 sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num);
298 err = device_register(&ubi->dev);
299 if (err)
300 return err;
301
302 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
303 if (err)
304 return err;
305 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
306 if (err)
307 return err;
308 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
309 if (err)
310 return err;
311 err = device_create_file(&ubi->dev, &dev_volumes_count);
312 if (err)
313 return err;
314 err = device_create_file(&ubi->dev, &dev_max_ec);
315 if (err)
316 return err;
317 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
318 if (err)
319 return err;
320 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
321 if (err)
322 return err;
323 err = device_create_file(&ubi->dev, &dev_max_vol_count);
324 if (err)
325 return err;
326 err = device_create_file(&ubi->dev, &dev_min_io_size);
327 if (err)
328 return err;
329 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
330 if (err)
331 return err;
332 err = device_create_file(&ubi->dev, &dev_mtd_num);
333 return err;
334 }
335
336 /**
337 * ubi_sysfs_close - close sysfs for an UBI device.
338 * @ubi: UBI device description object
339 */
ubi_sysfs_close(struct ubi_device * ubi)340 static void ubi_sysfs_close(struct ubi_device *ubi)
341 {
342 device_remove_file(&ubi->dev, &dev_mtd_num);
343 device_remove_file(&ubi->dev, &dev_bgt_enabled);
344 device_remove_file(&ubi->dev, &dev_min_io_size);
345 device_remove_file(&ubi->dev, &dev_max_vol_count);
346 device_remove_file(&ubi->dev, &dev_bad_peb_count);
347 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
348 device_remove_file(&ubi->dev, &dev_max_ec);
349 device_remove_file(&ubi->dev, &dev_volumes_count);
350 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
351 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
352 device_remove_file(&ubi->dev, &dev_eraseblock_size);
353 device_unregister(&ubi->dev);
354 }
355 #endif
356
357 /**
358 * kill_volumes - destroy all volumes.
359 * @ubi: UBI device description object
360 */
kill_volumes(struct ubi_device * ubi)361 static void kill_volumes(struct ubi_device *ubi)
362 {
363 int i;
364
365 for (i = 0; i < ubi->vtbl_slots; i++)
366 if (ubi->volumes[i])
367 ubi_free_volume(ubi, ubi->volumes[i]);
368 }
369
370 /**
371 * uif_init - initialize user interfaces for an UBI device.
372 * @ubi: UBI device description object
373 *
374 * This function returns zero in case of success and a negative error code in
375 * case of failure.
376 */
uif_init(struct ubi_device * ubi)377 static int uif_init(struct ubi_device *ubi)
378 {
379 int i, err;
380 #ifdef UBI_LINUX
381 dev_t dev;
382 #endif
383
384 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
385
386 /*
387 * Major numbers for the UBI character devices are allocated
388 * dynamically. Major numbers of volume character devices are
389 * equivalent to ones of the corresponding UBI character device. Minor
390 * numbers of UBI character devices are 0, while minor numbers of
391 * volume character devices start from 1. Thus, we allocate one major
392 * number and ubi->vtbl_slots + 1 minor numbers.
393 */
394 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
395 if (err) {
396 ubi_err("cannot register UBI character devices");
397 return err;
398 }
399
400 ubi_assert(MINOR(dev) == 0);
401 cdev_init(&ubi->cdev, &ubi_cdev_operations);
402 dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev));
403 ubi->cdev.owner = THIS_MODULE;
404
405 err = cdev_add(&ubi->cdev, dev, 1);
406 if (err) {
407 ubi_err("cannot add character device");
408 goto out_unreg;
409 }
410
411 err = ubi_sysfs_init(ubi);
412 if (err)
413 goto out_sysfs;
414
415 for (i = 0; i < ubi->vtbl_slots; i++)
416 if (ubi->volumes[i]) {
417 err = ubi_add_volume(ubi, ubi->volumes[i]);
418 if (err) {
419 ubi_err("cannot add volume %d", i);
420 goto out_volumes;
421 }
422 }
423
424 return 0;
425
426 out_volumes:
427 kill_volumes(ubi);
428 out_sysfs:
429 ubi_sysfs_close(ubi);
430 cdev_del(&ubi->cdev);
431 out_unreg:
432 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
433 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
434 return err;
435 }
436
437 /**
438 * uif_close - close user interfaces for an UBI device.
439 * @ubi: UBI device description object
440 */
uif_close(struct ubi_device * ubi)441 static void uif_close(struct ubi_device *ubi)
442 {
443 kill_volumes(ubi);
444 ubi_sysfs_close(ubi);
445 cdev_del(&ubi->cdev);
446 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
447 }
448
449 /**
450 * attach_by_scanning - attach an MTD device using scanning method.
451 * @ubi: UBI device descriptor
452 *
453 * This function returns zero in case of success and a negative error code in
454 * case of failure.
455 *
456 * Note, currently this is the only method to attach UBI devices. Hopefully in
457 * the future we'll have more scalable attaching methods and avoid full media
458 * scanning. But even in this case scanning will be needed as a fall-back
459 * attaching method if there are some on-flash table corruptions.
460 */
attach_by_scanning(struct ubi_device * ubi)461 static int attach_by_scanning(struct ubi_device *ubi)
462 {
463 int err;
464 struct ubi_scan_info *si;
465
466 si = ubi_scan(ubi);
467 if (IS_ERR(si))
468 return PTR_ERR(si);
469
470 ubi->bad_peb_count = si->bad_peb_count;
471 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
472 ubi->max_ec = si->max_ec;
473 ubi->mean_ec = si->mean_ec;
474
475 err = ubi_read_volume_table(ubi, si);
476 if (err)
477 goto out_si;
478
479 err = ubi_wl_init_scan(ubi, si);
480 if (err)
481 goto out_vtbl;
482
483 err = ubi_eba_init_scan(ubi, si);
484 if (err)
485 goto out_wl;
486
487 ubi_scan_destroy_si(si);
488 return 0;
489
490 out_wl:
491 ubi_wl_close(ubi);
492 out_vtbl:
493 vfree(ubi->vtbl);
494 out_si:
495 ubi_scan_destroy_si(si);
496 return err;
497 }
498
499 /**
500 * io_init - initialize I/O unit for a given UBI device.
501 * @ubi: UBI device description object
502 *
503 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
504 * assumed:
505 * o EC header is always at offset zero - this cannot be changed;
506 * o VID header starts just after the EC header at the closest address
507 * aligned to @io->hdrs_min_io_size;
508 * o data starts just after the VID header at the closest address aligned to
509 * @io->min_io_size
510 *
511 * This function returns zero in case of success and a negative error code in
512 * case of failure.
513 */
io_init(struct ubi_device * ubi)514 static int io_init(struct ubi_device *ubi)
515 {
516 if (ubi->mtd->numeraseregions != 0) {
517 /*
518 * Some flashes have several erase regions. Different regions
519 * may have different eraseblock size and other
520 * characteristics. It looks like mostly multi-region flashes
521 * have one "main" region and one or more small regions to
522 * store boot loader code or boot parameters or whatever. I
523 * guess we should just pick the largest region. But this is
524 * not implemented.
525 */
526 ubi_err("multiple regions, not implemented");
527 return -EINVAL;
528 }
529
530 if (ubi->vid_hdr_offset < 0)
531 return -EINVAL;
532
533 /*
534 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
535 * physical eraseblocks maximum.
536 */
537
538 ubi->peb_size = ubi->mtd->erasesize;
539 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
540 ubi->flash_size = ubi->mtd->size;
541
542 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
543 ubi->bad_allowed = 1;
544
545 ubi->min_io_size = ubi->mtd->writesize;
546 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
547
548 /*
549 * Make sure minimal I/O unit is power of 2. Note, there is no
550 * fundamental reason for this assumption. It is just an optimization
551 * which allows us to avoid costly division operations.
552 */
553 if (!is_power_of_2(ubi->min_io_size)) {
554 ubi_err("min. I/O unit (%d) is not power of 2",
555 ubi->min_io_size);
556 return -EINVAL;
557 }
558
559 ubi_assert(ubi->hdrs_min_io_size > 0);
560 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
561 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
562
563 /* Calculate default aligned sizes of EC and VID headers */
564 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
565 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
566
567 dbg_msg("min_io_size %d", ubi->min_io_size);
568 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
569 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
570 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
571
572 if (ubi->vid_hdr_offset == 0)
573 /* Default offset */
574 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
575 ubi->ec_hdr_alsize;
576 else {
577 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
578 ~(ubi->hdrs_min_io_size - 1);
579 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
580 ubi->vid_hdr_aloffset;
581 }
582
583 /* Similar for the data offset */
584 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
585 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
586
587 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
588 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
589 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
590 dbg_msg("leb_start %d", ubi->leb_start);
591
592 /* The shift must be aligned to 32-bit boundary */
593 if (ubi->vid_hdr_shift % 4) {
594 ubi_err("unaligned VID header shift %d",
595 ubi->vid_hdr_shift);
596 return -EINVAL;
597 }
598
599 /* Check sanity */
600 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
601 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
602 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
603 ubi->leb_start & (ubi->min_io_size - 1)) {
604 ubi_err("bad VID header (%d) or data offsets (%d)",
605 ubi->vid_hdr_offset, ubi->leb_start);
606 return -EINVAL;
607 }
608
609 /*
610 * It may happen that EC and VID headers are situated in one minimal
611 * I/O unit. In this case we can only accept this UBI image in
612 * read-only mode.
613 */
614 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
615 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
616 "switch to read-only mode");
617 ubi->ro_mode = 1;
618 }
619
620 ubi->leb_size = ubi->peb_size - ubi->leb_start;
621
622 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
623 ubi_msg("MTD device %d is write-protected, attach in "
624 "read-only mode", ubi->mtd->index);
625 ubi->ro_mode = 1;
626 }
627
628 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
629 ubi->peb_size, ubi->peb_size >> 10);
630 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
631 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
632 if (ubi->hdrs_min_io_size != ubi->min_io_size)
633 ubi_msg("sub-page size: %d",
634 ubi->hdrs_min_io_size);
635 ubi_msg("VID header offset: %d (aligned %d)",
636 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
637 ubi_msg("data offset: %d", ubi->leb_start);
638
639 /*
640 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
641 * unfortunately, MTD does not provide this information. We should loop
642 * over all physical eraseblocks and invoke mtd->block_is_bad() for
643 * each physical eraseblock. So, we skip ubi->bad_peb_count
644 * uninitialized and initialize it after scanning.
645 */
646
647 return 0;
648 }
649
650 /**
651 * autoresize - re-size the volume which has the "auto-resize" flag set.
652 * @ubi: UBI device description object
653 * @vol_id: ID of the volume to re-size
654 *
655 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
656 * the volume table to the largest possible size. See comments in ubi-header.h
657 * for more description of the flag. Returns zero in case of success and a
658 * negative error code in case of failure.
659 */
autoresize(struct ubi_device * ubi,int vol_id)660 static int autoresize(struct ubi_device *ubi, int vol_id)
661 {
662 struct ubi_volume_desc desc;
663 struct ubi_volume *vol = ubi->volumes[vol_id];
664 int err, old_reserved_pebs = vol->reserved_pebs;
665
666 /*
667 * Clear the auto-resize flag in the volume in-memory copy of the
668 * volume table, and 'ubi_resize_volume()' will propogate this change
669 * to the flash.
670 */
671 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
672
673 if (ubi->avail_pebs == 0) {
674 struct ubi_vtbl_record vtbl_rec;
675
676 /*
677 * No avalilable PEBs to re-size the volume, clear the flag on
678 * flash and exit.
679 */
680 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
681 sizeof(struct ubi_vtbl_record));
682 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
683 if (err)
684 ubi_err("cannot clean auto-resize flag for volume %d",
685 vol_id);
686 } else {
687 desc.vol = vol;
688 err = ubi_resize_volume(&desc,
689 old_reserved_pebs + ubi->avail_pebs);
690 if (err)
691 ubi_err("cannot auto-resize volume %d", vol_id);
692 }
693
694 if (err)
695 return err;
696
697 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
698 vol->name, old_reserved_pebs, vol->reserved_pebs);
699 return 0;
700 }
701
702 /**
703 * ubi_attach_mtd_dev - attach an MTD device.
704 * @mtd_dev: MTD device description object
705 * @ubi_num: number to assign to the new UBI device
706 * @vid_hdr_offset: VID header offset
707 *
708 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
709 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
710 * which case this function finds a vacant device nubert and assings it
711 * automatically. Returns the new UBI device number in case of success and a
712 * negative error code in case of failure.
713 *
714 * Note, the invocations of this function has to be serialized by the
715 * @ubi_devices_mutex.
716 */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset)717 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
718 {
719 struct ubi_device *ubi;
720 int i, err;
721
722 /*
723 * Check if we already have the same MTD device attached.
724 *
725 * Note, this function assumes that UBI devices creations and deletions
726 * are serialized, so it does not take the &ubi_devices_lock.
727 */
728 for (i = 0; i < UBI_MAX_DEVICES; i++) {
729 ubi = ubi_devices[i];
730 if (ubi && mtd->index == ubi->mtd->index) {
731 dbg_err("mtd%d is already attached to ubi%d",
732 mtd->index, i);
733 return -EEXIST;
734 }
735 }
736
737 /*
738 * Make sure this MTD device is not emulated on top of an UBI volume
739 * already. Well, generally this recursion works fine, but there are
740 * different problems like the UBI module takes a reference to itself
741 * by attaching (and thus, opening) the emulated MTD device. This
742 * results in inability to unload the module. And in general it makes
743 * no sense to attach emulated MTD devices, so we prohibit this.
744 */
745 if (mtd->type == MTD_UBIVOLUME) {
746 ubi_err("refuse attaching mtd%d - it is already emulated on "
747 "top of UBI", mtd->index);
748 return -EINVAL;
749 }
750
751 if (ubi_num == UBI_DEV_NUM_AUTO) {
752 /* Search for an empty slot in the @ubi_devices array */
753 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
754 if (!ubi_devices[ubi_num])
755 break;
756 if (ubi_num == UBI_MAX_DEVICES) {
757 dbg_err("only %d UBI devices may be created", UBI_MAX_DEVICES);
758 return -ENFILE;
759 }
760 } else {
761 if (ubi_num >= UBI_MAX_DEVICES)
762 return -EINVAL;
763
764 /* Make sure ubi_num is not busy */
765 if (ubi_devices[ubi_num]) {
766 dbg_err("ubi%d already exists", ubi_num);
767 return -EEXIST;
768 }
769 }
770
771 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
772 if (!ubi)
773 return -ENOMEM;
774
775 ubi->mtd = mtd;
776 ubi->ubi_num = ubi_num;
777 ubi->vid_hdr_offset = vid_hdr_offset;
778 ubi->autoresize_vol_id = -1;
779
780 mutex_init(&ubi->buf_mutex);
781 mutex_init(&ubi->ckvol_mutex);
782 mutex_init(&ubi->volumes_mutex);
783 spin_lock_init(&ubi->volumes_lock);
784
785 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
786
787 err = io_init(ubi);
788 if (err)
789 goto out_free;
790
791 err = -ENOMEM;
792 ubi->peb_buf1 = vmalloc(ubi->peb_size);
793 if (!ubi->peb_buf1)
794 goto out_free;
795
796 ubi->peb_buf2 = vmalloc(ubi->peb_size);
797 if (!ubi->peb_buf2)
798 goto out_free;
799
800 #ifdef CONFIG_MTD_UBI_DEBUG
801 mutex_init(&ubi->dbg_buf_mutex);
802 ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
803 if (!ubi->dbg_peb_buf)
804 goto out_free;
805 #endif
806
807 err = attach_by_scanning(ubi);
808 if (err) {
809 dbg_err("failed to attach by scanning, error %d", err);
810 goto out_free;
811 }
812
813 if (ubi->autoresize_vol_id != -1) {
814 err = autoresize(ubi, ubi->autoresize_vol_id);
815 if (err)
816 goto out_detach;
817 }
818
819 err = uif_init(ubi);
820 if (err)
821 goto out_detach;
822
823 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
824 if (IS_ERR(ubi->bgt_thread)) {
825 err = PTR_ERR(ubi->bgt_thread);
826 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
827 err);
828 goto out_uif;
829 }
830
831 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
832 ubi_msg("MTD device name: \"%s\"", mtd->name);
833 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
834 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
835 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
836 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
837 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
838 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
839 ubi_msg("number of user volumes: %d",
840 ubi->vol_count - UBI_INT_VOL_COUNT);
841 ubi_msg("available PEBs: %d", ubi->avail_pebs);
842 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
843 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
844 ubi->beb_rsvd_pebs);
845 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
846
847 /* Enable the background thread */
848 if (!DBG_DISABLE_BGT) {
849 ubi->thread_enabled = 1;
850 wake_up_process(ubi->bgt_thread);
851 }
852
853 ubi_devices[ubi_num] = ubi;
854 return ubi_num;
855
856 out_uif:
857 uif_close(ubi);
858 out_detach:
859 ubi_eba_close(ubi);
860 ubi_wl_close(ubi);
861 vfree(ubi->vtbl);
862 out_free:
863 vfree(ubi->peb_buf1);
864 vfree(ubi->peb_buf2);
865 #ifdef CONFIG_MTD_UBI_DEBUG
866 vfree(ubi->dbg_peb_buf);
867 #endif
868 kfree(ubi);
869 return err;
870 }
871
872 /**
873 * ubi_detach_mtd_dev - detach an MTD device.
874 * @ubi_num: UBI device number to detach from
875 * @anyway: detach MTD even if device reference count is not zero
876 *
877 * This function destroys an UBI device number @ubi_num and detaches the
878 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
879 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
880 * exist.
881 *
882 * Note, the invocations of this function has to be serialized by the
883 * @ubi_devices_mutex.
884 */
ubi_detach_mtd_dev(int ubi_num,int anyway)885 int ubi_detach_mtd_dev(int ubi_num, int anyway)
886 {
887 struct ubi_device *ubi;
888
889 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
890 return -EINVAL;
891
892 spin_lock(&ubi_devices_lock);
893 ubi = ubi_devices[ubi_num];
894 if (!ubi) {
895 spin_unlock(&ubi_devices_lock);
896 return -EINVAL;
897 }
898
899 if (ubi->ref_count) {
900 if (!anyway) {
901 spin_unlock(&ubi_devices_lock);
902 return -EBUSY;
903 }
904 /* This may only happen if there is a bug */
905 ubi_err("%s reference count %d, destroy anyway",
906 ubi->ubi_name, ubi->ref_count);
907 }
908 ubi_devices[ubi_num] = NULL;
909 spin_unlock(&ubi_devices_lock);
910
911 ubi_assert(ubi_num == ubi->ubi_num);
912 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
913
914 /*
915 * Before freeing anything, we have to stop the background thread to
916 * prevent it from doing anything on this device while we are freeing.
917 */
918 if (ubi->bgt_thread)
919 kthread_stop(ubi->bgt_thread);
920
921 uif_close(ubi);
922 ubi_eba_close(ubi);
923 ubi_wl_close(ubi);
924 vfree(ubi->vtbl);
925 put_mtd_device(ubi->mtd);
926 vfree(ubi->peb_buf1);
927 vfree(ubi->peb_buf2);
928 #ifdef CONFIG_MTD_UBI_DEBUG
929 vfree(ubi->dbg_peb_buf);
930 #endif
931 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
932 kfree(ubi);
933 return 0;
934 }
935
936 /**
937 * find_mtd_device - open an MTD device by its name or number.
938 * @mtd_dev: name or number of the device
939 *
940 * This function tries to open and MTD device described by @mtd_dev string,
941 * which is first treated as an ASCII number, and if it is not true, it is
942 * treated as MTD device name. Returns MTD device description object in case of
943 * success and a negative error code in case of failure.
944 */
open_mtd_device(const char * mtd_dev)945 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
946 {
947 struct mtd_info *mtd;
948 int mtd_num;
949 char *endp;
950
951 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
952 if (*endp != '\0' || mtd_dev == endp) {
953 /*
954 * This does not look like an ASCII integer, probably this is
955 * MTD device name.
956 */
957 mtd = get_mtd_device_nm(mtd_dev);
958 } else
959 mtd = get_mtd_device(NULL, mtd_num);
960
961 return mtd;
962 }
963
ubi_init(void)964 int __init ubi_init(void)
965 {
966 int err, i, k;
967
968 /* Ensure that EC and VID headers have correct size */
969 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
970 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
971
972 if (mtd_devs > UBI_MAX_DEVICES) {
973 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
974 return -EINVAL;
975 }
976
977 /* Create base sysfs directory and sysfs files */
978 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
979 if (IS_ERR(ubi_class)) {
980 err = PTR_ERR(ubi_class);
981 ubi_err("cannot create UBI class");
982 goto out;
983 }
984
985 err = class_create_file(ubi_class, &ubi_version);
986 if (err) {
987 ubi_err("cannot create sysfs file");
988 goto out_class;
989 }
990
991 err = misc_register(&ubi_ctrl_cdev);
992 if (err) {
993 ubi_err("cannot register device");
994 goto out_version;
995 }
996
997 #ifdef UBI_LINUX
998 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
999 sizeof(struct ubi_wl_entry),
1000 0, 0, NULL);
1001 if (!ubi_wl_entry_slab)
1002 goto out_dev_unreg;
1003 #endif
1004
1005 /* Attach MTD devices */
1006 for (i = 0; i < mtd_devs; i++) {
1007 struct mtd_dev_param *p = &mtd_dev_param[i];
1008 struct mtd_info *mtd;
1009
1010 cond_resched();
1011
1012 mtd = open_mtd_device(p->name);
1013 if (IS_ERR(mtd)) {
1014 err = PTR_ERR(mtd);
1015 goto out_detach;
1016 }
1017
1018 mutex_lock(&ubi_devices_mutex);
1019 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1020 p->vid_hdr_offs);
1021 mutex_unlock(&ubi_devices_mutex);
1022 if (err < 0) {
1023 put_mtd_device(mtd);
1024 ubi_err("cannot attach mtd%d", mtd->index);
1025 goto out_detach;
1026 }
1027 }
1028
1029 return 0;
1030
1031 out_detach:
1032 for (k = 0; k < i; k++)
1033 if (ubi_devices[k]) {
1034 mutex_lock(&ubi_devices_mutex);
1035 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1036 mutex_unlock(&ubi_devices_mutex);
1037 }
1038 #ifdef UBI_LINUX
1039 kmem_cache_destroy(ubi_wl_entry_slab);
1040 out_dev_unreg:
1041 #endif
1042 misc_deregister(&ubi_ctrl_cdev);
1043 out_version:
1044 class_remove_file(ubi_class, &ubi_version);
1045 out_class:
1046 class_destroy(ubi_class);
1047 out:
1048 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1049 return err;
1050 }
1051 module_init(ubi_init);
1052
ubi_exit(void)1053 void __exit ubi_exit(void)
1054 {
1055 int i;
1056
1057 for (i = 0; i < UBI_MAX_DEVICES; i++)
1058 if (ubi_devices[i]) {
1059 mutex_lock(&ubi_devices_mutex);
1060 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1061 mutex_unlock(&ubi_devices_mutex);
1062 }
1063 kmem_cache_destroy(ubi_wl_entry_slab);
1064 misc_deregister(&ubi_ctrl_cdev);
1065 class_remove_file(ubi_class, &ubi_version);
1066 class_destroy(ubi_class);
1067 mtd_devs = 0;
1068 }
1069 module_exit(ubi_exit);
1070
1071 /**
1072 * bytes_str_to_int - convert a string representing number of bytes to an
1073 * integer.
1074 * @str: the string to convert
1075 *
1076 * This function returns positive resulting integer in case of success and a
1077 * negative error code in case of failure.
1078 */
bytes_str_to_int(const char * str)1079 static int __init bytes_str_to_int(const char *str)
1080 {
1081 char *endp;
1082 unsigned long result;
1083
1084 result = simple_strtoul(str, &endp, 0);
1085 if (str == endp || result < 0) {
1086 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1087 str);
1088 return -EINVAL;
1089 }
1090
1091 switch (*endp) {
1092 case 'G':
1093 result *= 1024;
1094 case 'M':
1095 result *= 1024;
1096 case 'K':
1097 result *= 1024;
1098 if (endp[1] == 'i' && endp[2] == 'B')
1099 endp += 2;
1100 case '\0':
1101 break;
1102 default:
1103 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1104 str);
1105 return -EINVAL;
1106 }
1107
1108 return result;
1109 }
1110
1111 /**
1112 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1113 * @val: the parameter value to parse
1114 * @kp: not used
1115 *
1116 * This function returns zero in case of success and a negative error code in
1117 * case of error.
1118 */
ubi_mtd_param_parse(const char * val,struct kernel_param * kp)1119 int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1120 {
1121 int i, len;
1122 struct mtd_dev_param *p;
1123 char buf[MTD_PARAM_LEN_MAX];
1124 char *pbuf = &buf[0];
1125 char *tokens[2] = {NULL, NULL};
1126
1127 if (!val)
1128 return -EINVAL;
1129
1130 if (mtd_devs == UBI_MAX_DEVICES) {
1131 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1132 UBI_MAX_DEVICES);
1133 return -EINVAL;
1134 }
1135
1136 len = strnlen(val, MTD_PARAM_LEN_MAX);
1137 if (len == MTD_PARAM_LEN_MAX) {
1138 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1139 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1140 return -EINVAL;
1141 }
1142
1143 if (len == 0) {
1144 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1145 "ignored\n");
1146 return 0;
1147 }
1148
1149 strcpy(buf, val);
1150
1151 /* Get rid of the final newline */
1152 if (buf[len - 1] == '\n')
1153 buf[len - 1] = '\0';
1154
1155 for (i = 0; i < 2; i++)
1156 tokens[i] = strsep(&pbuf, ",");
1157
1158 if (pbuf) {
1159 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1160 val);
1161 return -EINVAL;
1162 }
1163
1164 p = &mtd_dev_param[mtd_devs];
1165 strcpy(&p->name[0], tokens[0]);
1166
1167 if (tokens[1])
1168 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1169
1170 if (p->vid_hdr_offs < 0)
1171 return p->vid_hdr_offs;
1172
1173 mtd_devs += 1;
1174 return 0;
1175 }
1176
1177 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1178 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1179 "mtd=<name|num>[,<vid_hdr_offs>].\n"
1180 "Multiple \"mtd\" parameters may be specified.\n"
1181 "MTD devices may be specified by their number or name.\n"
1182 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1183 "header position and data starting position to be used "
1184 "by UBI.\n"
1185 "Example: mtd=content,1984 mtd=4 - attach MTD device"
1186 "with name \"content\" using VID header offset 1984, and "
1187 "MTD device number 4 with default VID header offset.");
1188
1189 MODULE_VERSION(__stringify(UBI_VERSION));
1190 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1191 MODULE_AUTHOR("Artem Bityutskiy");
1192 MODULE_LICENSE("GPL");
1193