1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16 
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21 
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA	02111-1307, USA.
25 
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28 
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  */
44 
45 #include "e1000.h"
46 
47 #define TOUT_LOOP   100000
48 
49 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
50 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
51 #define mdelay(n)	udelay((n)*1000)
52 
53 #define E1000_DEFAULT_PCI_PBA	0x00000030
54 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
55 
56 /* NIC specific static variables go here */
57 
58 static char tx_pool[128 + 16];
59 static char rx_pool[128 + 16];
60 static char packet[2096];
61 
62 static struct e1000_tx_desc *tx_base;
63 static struct e1000_rx_desc *rx_base;
64 
65 static int tx_tail;
66 static int rx_tail, rx_last;
67 
68 static struct pci_device_id supported[] = {
69 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
72 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
86 	/* E1000 PCIe card */
87 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
95 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
96 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
97 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
98 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
99 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
100 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
101 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
102 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
103 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
104 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
105 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
106 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
107 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
108 	{}
109 };
110 
111 /* Function forward declarations */
112 static int e1000_setup_link(struct eth_device *nic);
113 static int e1000_setup_fiber_link(struct eth_device *nic);
114 static int e1000_setup_copper_link(struct eth_device *nic);
115 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
116 static void e1000_config_collision_dist(struct e1000_hw *hw);
117 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
118 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
119 static int e1000_check_for_link(struct eth_device *nic);
120 static int e1000_wait_autoneg(struct e1000_hw *hw);
121 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
122 				       uint16_t * duplex);
123 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
124 			      uint16_t * phy_data);
125 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 			       uint16_t phy_data);
127 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
128 static int e1000_phy_reset(struct e1000_hw *hw);
129 static int e1000_detect_gig_phy(struct e1000_hw *hw);
130 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
131 static void e1000_set_media_type(struct e1000_hw *hw);
132 
133 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
134 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
135 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
136 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
137 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
138 			writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
139 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
140 	readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
141 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
142 
143 #ifndef CONFIG_AP1000 /* remove for warnings */
144 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
145 		uint16_t words,
146 		uint16_t *data);
147 /******************************************************************************
148  * Raises the EEPROM's clock input.
149  *
150  * hw - Struct containing variables accessed by shared code
151  * eecd - EECD's current value
152  *****************************************************************************/
153 static void
e1000_raise_ee_clk(struct e1000_hw * hw,uint32_t * eecd)154 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
155 {
156 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
157 	 * wait 50 microseconds.
158 	 */
159 	*eecd = *eecd | E1000_EECD_SK;
160 	E1000_WRITE_REG(hw, EECD, *eecd);
161 	E1000_WRITE_FLUSH(hw);
162 	udelay(50);
163 }
164 
165 /******************************************************************************
166  * Lowers the EEPROM's clock input.
167  *
168  * hw - Struct containing variables accessed by shared code
169  * eecd - EECD's current value
170  *****************************************************************************/
171 static void
e1000_lower_ee_clk(struct e1000_hw * hw,uint32_t * eecd)172 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
173 {
174 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
175 	 * wait 50 microseconds.
176 	 */
177 	*eecd = *eecd & ~E1000_EECD_SK;
178 	E1000_WRITE_REG(hw, EECD, *eecd);
179 	E1000_WRITE_FLUSH(hw);
180 	udelay(50);
181 }
182 
183 /******************************************************************************
184  * Shift data bits out to the EEPROM.
185  *
186  * hw - Struct containing variables accessed by shared code
187  * data - data to send to the EEPROM
188  * count - number of bits to shift out
189  *****************************************************************************/
190 static void
e1000_shift_out_ee_bits(struct e1000_hw * hw,uint16_t data,uint16_t count)191 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
192 {
193 	uint32_t eecd;
194 	uint32_t mask;
195 
196 	/* We need to shift "count" bits out to the EEPROM. So, value in the
197 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
198 	 * In order to do this, "data" must be broken down into bits.
199 	 */
200 	mask = 0x01 << (count - 1);
201 	eecd = E1000_READ_REG(hw, EECD);
202 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
203 	do {
204 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
205 		 * and then raising and then lowering the clock (the SK bit controls
206 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
207 		 * by setting "DI" to "0" and then raising and then lowering the clock.
208 		 */
209 		eecd &= ~E1000_EECD_DI;
210 
211 		if (data & mask)
212 			eecd |= E1000_EECD_DI;
213 
214 		E1000_WRITE_REG(hw, EECD, eecd);
215 		E1000_WRITE_FLUSH(hw);
216 
217 		udelay(50);
218 
219 		e1000_raise_ee_clk(hw, &eecd);
220 		e1000_lower_ee_clk(hw, &eecd);
221 
222 		mask = mask >> 1;
223 
224 	} while (mask);
225 
226 	/* We leave the "DI" bit set to "0" when we leave this routine. */
227 	eecd &= ~E1000_EECD_DI;
228 	E1000_WRITE_REG(hw, EECD, eecd);
229 }
230 
231 /******************************************************************************
232  * Shift data bits in from the EEPROM
233  *
234  * hw - Struct containing variables accessed by shared code
235  *****************************************************************************/
236 static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw * hw,uint16_t count)237 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
238 {
239 	uint32_t eecd;
240 	uint32_t i;
241 	uint16_t data;
242 
243 	/* In order to read a register from the EEPROM, we need to shift 'count'
244 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
245 	 * input to the EEPROM (setting the SK bit), and then reading the
246 	 * value of the "DO" bit.  During this "shifting in" process the
247 	 * "DI" bit should always be clear.
248 	 */
249 
250 	eecd = E1000_READ_REG(hw, EECD);
251 
252 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
253 	data = 0;
254 
255 	for (i = 0; i < count; i++) {
256 		data = data << 1;
257 		e1000_raise_ee_clk(hw, &eecd);
258 
259 		eecd = E1000_READ_REG(hw, EECD);
260 
261 		eecd &= ~(E1000_EECD_DI);
262 		if (eecd & E1000_EECD_DO)
263 			data |= 1;
264 
265 		e1000_lower_ee_clk(hw, &eecd);
266 	}
267 
268 	return data;
269 }
270 
271 /******************************************************************************
272  * Returns EEPROM to a "standby" state
273  *
274  * hw - Struct containing variables accessed by shared code
275  *****************************************************************************/
276 static void
e1000_standby_eeprom(struct e1000_hw * hw)277 e1000_standby_eeprom(struct e1000_hw *hw)
278 {
279 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
280 	uint32_t eecd;
281 
282 	eecd = E1000_READ_REG(hw, EECD);
283 
284 	if (eeprom->type == e1000_eeprom_microwire) {
285 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
286 		E1000_WRITE_REG(hw, EECD, eecd);
287 		E1000_WRITE_FLUSH(hw);
288 		udelay(eeprom->delay_usec);
289 
290 		/* Clock high */
291 		eecd |= E1000_EECD_SK;
292 		E1000_WRITE_REG(hw, EECD, eecd);
293 		E1000_WRITE_FLUSH(hw);
294 		udelay(eeprom->delay_usec);
295 
296 		/* Select EEPROM */
297 		eecd |= E1000_EECD_CS;
298 		E1000_WRITE_REG(hw, EECD, eecd);
299 		E1000_WRITE_FLUSH(hw);
300 		udelay(eeprom->delay_usec);
301 
302 		/* Clock low */
303 		eecd &= ~E1000_EECD_SK;
304 		E1000_WRITE_REG(hw, EECD, eecd);
305 		E1000_WRITE_FLUSH(hw);
306 		udelay(eeprom->delay_usec);
307 	} else if (eeprom->type == e1000_eeprom_spi) {
308 		/* Toggle CS to flush commands */
309 		eecd |= E1000_EECD_CS;
310 		E1000_WRITE_REG(hw, EECD, eecd);
311 		E1000_WRITE_FLUSH(hw);
312 		udelay(eeprom->delay_usec);
313 		eecd &= ~E1000_EECD_CS;
314 		E1000_WRITE_REG(hw, EECD, eecd);
315 		E1000_WRITE_FLUSH(hw);
316 		udelay(eeprom->delay_usec);
317 	}
318 }
319 
320 /***************************************************************************
321 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
322 *
323 * hw - Struct containing variables accessed by shared code
324 ****************************************************************************/
e1000_is_onboard_nvm_eeprom(struct e1000_hw * hw)325 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
326 {
327 	uint32_t eecd = 0;
328 
329 	DEBUGFUNC();
330 
331 	if (hw->mac_type == e1000_ich8lan)
332 		return FALSE;
333 
334 	if (hw->mac_type == e1000_82573) {
335 		eecd = E1000_READ_REG(hw, EECD);
336 
337 		/* Isolate bits 15 & 16 */
338 		eecd = ((eecd >> 15) & 0x03);
339 
340 		/* If both bits are set, device is Flash type */
341 		if (eecd == 0x03)
342 			return FALSE;
343 	}
344 	return TRUE;
345 }
346 
347 /******************************************************************************
348  * Prepares EEPROM for access
349  *
350  * hw - Struct containing variables accessed by shared code
351  *
352  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
353  * function should be called before issuing a command to the EEPROM.
354  *****************************************************************************/
355 static int32_t
e1000_acquire_eeprom(struct e1000_hw * hw)356 e1000_acquire_eeprom(struct e1000_hw *hw)
357 {
358 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
359 	uint32_t eecd, i = 0;
360 
361 	DEBUGFUNC();
362 
363 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
364 		return -E1000_ERR_SWFW_SYNC;
365 	eecd = E1000_READ_REG(hw, EECD);
366 
367 	if (hw->mac_type != e1000_82573) {
368 		/* Request EEPROM Access */
369 		if (hw->mac_type > e1000_82544) {
370 			eecd |= E1000_EECD_REQ;
371 			E1000_WRITE_REG(hw, EECD, eecd);
372 			eecd = E1000_READ_REG(hw, EECD);
373 			while ((!(eecd & E1000_EECD_GNT)) &&
374 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
375 				i++;
376 				udelay(5);
377 				eecd = E1000_READ_REG(hw, EECD);
378 			}
379 			if (!(eecd & E1000_EECD_GNT)) {
380 				eecd &= ~E1000_EECD_REQ;
381 				E1000_WRITE_REG(hw, EECD, eecd);
382 				DEBUGOUT("Could not acquire EEPROM grant\n");
383 				return -E1000_ERR_EEPROM;
384 			}
385 		}
386 	}
387 
388 	/* Setup EEPROM for Read/Write */
389 
390 	if (eeprom->type == e1000_eeprom_microwire) {
391 		/* Clear SK and DI */
392 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
393 		E1000_WRITE_REG(hw, EECD, eecd);
394 
395 		/* Set CS */
396 		eecd |= E1000_EECD_CS;
397 		E1000_WRITE_REG(hw, EECD, eecd);
398 	} else if (eeprom->type == e1000_eeprom_spi) {
399 		/* Clear SK and CS */
400 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
401 		E1000_WRITE_REG(hw, EECD, eecd);
402 		udelay(1);
403 	}
404 
405 	return E1000_SUCCESS;
406 }
407 
408 /******************************************************************************
409  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
410  * is configured.  Additionally, if this is ICH8, the flash controller GbE
411  * registers must be mapped, or this will crash.
412  *
413  * hw - Struct containing variables accessed by shared code
414  *****************************************************************************/
e1000_init_eeprom_params(struct e1000_hw * hw)415 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
416 {
417 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
418 	uint32_t eecd = E1000_READ_REG(hw, EECD);
419 	int32_t ret_val = E1000_SUCCESS;
420 	uint16_t eeprom_size;
421 
422 	DEBUGFUNC();
423 
424 	switch (hw->mac_type) {
425 	case e1000_82542_rev2_0:
426 	case e1000_82542_rev2_1:
427 	case e1000_82543:
428 	case e1000_82544:
429 		eeprom->type = e1000_eeprom_microwire;
430 		eeprom->word_size = 64;
431 		eeprom->opcode_bits = 3;
432 		eeprom->address_bits = 6;
433 		eeprom->delay_usec = 50;
434 		eeprom->use_eerd = FALSE;
435 		eeprom->use_eewr = FALSE;
436 	break;
437 	case e1000_82540:
438 	case e1000_82545:
439 	case e1000_82545_rev_3:
440 	case e1000_82546:
441 	case e1000_82546_rev_3:
442 		eeprom->type = e1000_eeprom_microwire;
443 		eeprom->opcode_bits = 3;
444 		eeprom->delay_usec = 50;
445 		if (eecd & E1000_EECD_SIZE) {
446 			eeprom->word_size = 256;
447 			eeprom->address_bits = 8;
448 		} else {
449 			eeprom->word_size = 64;
450 			eeprom->address_bits = 6;
451 		}
452 		eeprom->use_eerd = FALSE;
453 		eeprom->use_eewr = FALSE;
454 		break;
455 	case e1000_82541:
456 	case e1000_82541_rev_2:
457 	case e1000_82547:
458 	case e1000_82547_rev_2:
459 		if (eecd & E1000_EECD_TYPE) {
460 			eeprom->type = e1000_eeprom_spi;
461 			eeprom->opcode_bits = 8;
462 			eeprom->delay_usec = 1;
463 			if (eecd & E1000_EECD_ADDR_BITS) {
464 				eeprom->page_size = 32;
465 				eeprom->address_bits = 16;
466 			} else {
467 				eeprom->page_size = 8;
468 				eeprom->address_bits = 8;
469 			}
470 		} else {
471 			eeprom->type = e1000_eeprom_microwire;
472 			eeprom->opcode_bits = 3;
473 			eeprom->delay_usec = 50;
474 			if (eecd & E1000_EECD_ADDR_BITS) {
475 				eeprom->word_size = 256;
476 				eeprom->address_bits = 8;
477 			} else {
478 				eeprom->word_size = 64;
479 				eeprom->address_bits = 6;
480 			}
481 		}
482 		eeprom->use_eerd = FALSE;
483 		eeprom->use_eewr = FALSE;
484 		break;
485 	case e1000_82571:
486 	case e1000_82572:
487 		eeprom->type = e1000_eeprom_spi;
488 		eeprom->opcode_bits = 8;
489 		eeprom->delay_usec = 1;
490 		if (eecd & E1000_EECD_ADDR_BITS) {
491 			eeprom->page_size = 32;
492 			eeprom->address_bits = 16;
493 		} else {
494 			eeprom->page_size = 8;
495 			eeprom->address_bits = 8;
496 		}
497 		eeprom->use_eerd = FALSE;
498 		eeprom->use_eewr = FALSE;
499 		break;
500 	case e1000_82573:
501 		eeprom->type = e1000_eeprom_spi;
502 		eeprom->opcode_bits = 8;
503 		eeprom->delay_usec = 1;
504 		if (eecd & E1000_EECD_ADDR_BITS) {
505 			eeprom->page_size = 32;
506 			eeprom->address_bits = 16;
507 		} else {
508 			eeprom->page_size = 8;
509 			eeprom->address_bits = 8;
510 		}
511 		eeprom->use_eerd = TRUE;
512 		eeprom->use_eewr = TRUE;
513 		if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
514 			eeprom->type = e1000_eeprom_flash;
515 			eeprom->word_size = 2048;
516 
517 		/* Ensure that the Autonomous FLASH update bit is cleared due to
518 		 * Flash update issue on parts which use a FLASH for NVM. */
519 			eecd &= ~E1000_EECD_AUPDEN;
520 			E1000_WRITE_REG(hw, EECD, eecd);
521 		}
522 		break;
523 	case e1000_80003es2lan:
524 		eeprom->type = e1000_eeprom_spi;
525 		eeprom->opcode_bits = 8;
526 		eeprom->delay_usec = 1;
527 		if (eecd & E1000_EECD_ADDR_BITS) {
528 			eeprom->page_size = 32;
529 			eeprom->address_bits = 16;
530 		} else {
531 			eeprom->page_size = 8;
532 			eeprom->address_bits = 8;
533 		}
534 		eeprom->use_eerd = TRUE;
535 		eeprom->use_eewr = FALSE;
536 		break;
537 
538 	/* ich8lan does not support currently. if needed, please
539 	 * add corresponding code and functions.
540 	 */
541 #if 0
542 	case e1000_ich8lan:
543 		{
544 		int32_t  i = 0;
545 
546 		eeprom->type = e1000_eeprom_ich8;
547 		eeprom->use_eerd = FALSE;
548 		eeprom->use_eewr = FALSE;
549 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
550 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
551 				ICH_FLASH_GFPREG);
552 		/* Zero the shadow RAM structure. But don't load it from NVM
553 		 * so as to save time for driver init */
554 		if (hw->eeprom_shadow_ram != NULL) {
555 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
556 				hw->eeprom_shadow_ram[i].modified = FALSE;
557 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
558 			}
559 		}
560 
561 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
562 				ICH_FLASH_SECTOR_SIZE;
563 
564 		hw->flash_bank_size = ((flash_size >> 16)
565 				& ICH_GFPREG_BASE_MASK) + 1;
566 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
567 
568 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
569 
570 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
571 		break;
572 		}
573 #endif
574 	default:
575 		break;
576 	}
577 
578 	if (eeprom->type == e1000_eeprom_spi) {
579 		/* eeprom_size will be an enum [0..8] that maps
580 		 * to eeprom sizes 128B to
581 		 * 32KB (incremented by powers of 2).
582 		 */
583 		if (hw->mac_type <= e1000_82547_rev_2) {
584 			/* Set to default value for initial eeprom read. */
585 			eeprom->word_size = 64;
586 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
587 					&eeprom_size);
588 			if (ret_val)
589 				return ret_val;
590 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
591 				>> EEPROM_SIZE_SHIFT;
592 			/* 256B eeprom size was not supported in earlier
593 			 * hardware, so we bump eeprom_size up one to
594 			 * ensure that "1" (which maps to 256B) is never
595 			 * the result used in the shifting logic below. */
596 			if (eeprom_size)
597 				eeprom_size++;
598 		} else {
599 			eeprom_size = (uint16_t)((eecd &
600 				E1000_EECD_SIZE_EX_MASK) >>
601 				E1000_EECD_SIZE_EX_SHIFT);
602 		}
603 
604 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
605 	}
606 	return ret_val;
607 }
608 
609 /******************************************************************************
610  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
611  *
612  * hw - Struct containing variables accessed by shared code
613  *****************************************************************************/
614 static int32_t
e1000_poll_eerd_eewr_done(struct e1000_hw * hw,int eerd)615 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
616 {
617 	uint32_t attempts = 100000;
618 	uint32_t i, reg = 0;
619 	int32_t done = E1000_ERR_EEPROM;
620 
621 	for (i = 0; i < attempts; i++) {
622 		if (eerd == E1000_EEPROM_POLL_READ)
623 			reg = E1000_READ_REG(hw, EERD);
624 		else
625 			reg = E1000_READ_REG(hw, EEWR);
626 
627 		if (reg & E1000_EEPROM_RW_REG_DONE) {
628 			done = E1000_SUCCESS;
629 			break;
630 		}
631 		udelay(5);
632 	}
633 
634 	return done;
635 }
636 
637 /******************************************************************************
638  * Reads a 16 bit word from the EEPROM using the EERD register.
639  *
640  * hw - Struct containing variables accessed by shared code
641  * offset - offset of  word in the EEPROM to read
642  * data - word read from the EEPROM
643  * words - number of words to read
644  *****************************************************************************/
645 static int32_t
e1000_read_eeprom_eerd(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)646 e1000_read_eeprom_eerd(struct e1000_hw *hw,
647 			uint16_t offset,
648 			uint16_t words,
649 			uint16_t *data)
650 {
651 	uint32_t i, eerd = 0;
652 	int32_t error = 0;
653 
654 	for (i = 0; i < words; i++) {
655 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
656 			E1000_EEPROM_RW_REG_START;
657 
658 		E1000_WRITE_REG(hw, EERD, eerd);
659 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
660 
661 		if (error)
662 			break;
663 		data[i] = (E1000_READ_REG(hw, EERD) >>
664 				E1000_EEPROM_RW_REG_DATA);
665 
666 	}
667 
668 	return error;
669 }
670 
671 static void
e1000_release_eeprom(struct e1000_hw * hw)672 e1000_release_eeprom(struct e1000_hw *hw)
673 {
674 	uint32_t eecd;
675 
676 	DEBUGFUNC();
677 
678 	eecd = E1000_READ_REG(hw, EECD);
679 
680 	if (hw->eeprom.type == e1000_eeprom_spi) {
681 		eecd |= E1000_EECD_CS;  /* Pull CS high */
682 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
683 
684 		E1000_WRITE_REG(hw, EECD, eecd);
685 
686 		udelay(hw->eeprom.delay_usec);
687 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
688 		/* cleanup eeprom */
689 
690 		/* CS on Microwire is active-high */
691 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
692 
693 		E1000_WRITE_REG(hw, EECD, eecd);
694 
695 		/* Rising edge of clock */
696 		eecd |= E1000_EECD_SK;
697 		E1000_WRITE_REG(hw, EECD, eecd);
698 		E1000_WRITE_FLUSH(hw);
699 		udelay(hw->eeprom.delay_usec);
700 
701 		/* Falling edge of clock */
702 		eecd &= ~E1000_EECD_SK;
703 		E1000_WRITE_REG(hw, EECD, eecd);
704 		E1000_WRITE_FLUSH(hw);
705 		udelay(hw->eeprom.delay_usec);
706 	}
707 
708 	/* Stop requesting EEPROM access */
709 	if (hw->mac_type > e1000_82544) {
710 		eecd &= ~E1000_EECD_REQ;
711 		E1000_WRITE_REG(hw, EECD, eecd);
712 	}
713 }
714 /******************************************************************************
715  * Reads a 16 bit word from the EEPROM.
716  *
717  * hw - Struct containing variables accessed by shared code
718  *****************************************************************************/
719 static int32_t
e1000_spi_eeprom_ready(struct e1000_hw * hw)720 e1000_spi_eeprom_ready(struct e1000_hw *hw)
721 {
722 	uint16_t retry_count = 0;
723 	uint8_t spi_stat_reg;
724 
725 	DEBUGFUNC();
726 
727 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
728 	 * EEPROM will signal that the command has been completed by clearing
729 	 * bit 0 of the internal status register.  If it's not cleared within
730 	 * 5 milliseconds, then error out.
731 	 */
732 	retry_count = 0;
733 	do {
734 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
735 			hw->eeprom.opcode_bits);
736 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
737 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
738 			break;
739 
740 		udelay(5);
741 		retry_count += 5;
742 
743 		e1000_standby_eeprom(hw);
744 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
745 
746 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
747 	 * only 0-5mSec on 5V devices)
748 	 */
749 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
750 		DEBUGOUT("SPI EEPROM Status error\n");
751 		return -E1000_ERR_EEPROM;
752 	}
753 
754 	return E1000_SUCCESS;
755 }
756 
757 /******************************************************************************
758  * Reads a 16 bit word from the EEPROM.
759  *
760  * hw - Struct containing variables accessed by shared code
761  * offset - offset of  word in the EEPROM to read
762  * data - word read from the EEPROM
763  *****************************************************************************/
764 static int32_t
e1000_read_eeprom(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)765 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
766 		uint16_t words, uint16_t *data)
767 {
768 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
769 	uint32_t i = 0;
770 
771 	DEBUGFUNC();
772 
773 	/* If eeprom is not yet detected, do so now */
774 	if (eeprom->word_size == 0)
775 		e1000_init_eeprom_params(hw);
776 
777 	/* A check for invalid values:  offset too large, too many words,
778 	 * and not enough words.
779 	 */
780 	if ((offset >= eeprom->word_size) ||
781 		(words > eeprom->word_size - offset) ||
782 		(words == 0)) {
783 		DEBUGOUT("\"words\" parameter out of bounds."
784 			"Words = %d, size = %d\n", offset, eeprom->word_size);
785 		return -E1000_ERR_EEPROM;
786 	}
787 
788 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
789 	 * directly. In this case, we need to acquire the EEPROM so that
790 	 * FW or other port software does not interrupt.
791 	 */
792 	if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
793 		hw->eeprom.use_eerd == FALSE) {
794 
795 		/* Prepare the EEPROM for bit-bang reading */
796 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
797 			return -E1000_ERR_EEPROM;
798 	}
799 
800 	/* Eerd register EEPROM access requires no eeprom aquire/release */
801 	if (eeprom->use_eerd == TRUE)
802 		return e1000_read_eeprom_eerd(hw, offset, words, data);
803 
804 	/* ich8lan does not support currently. if needed, please
805 	 * add corresponding code and functions.
806 	 */
807 #if 0
808 	/* ICH EEPROM access is done via the ICH flash controller */
809 	if (eeprom->type == e1000_eeprom_ich8)
810 		return e1000_read_eeprom_ich8(hw, offset, words, data);
811 #endif
812 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
813 	 * acquired the EEPROM at this point, so any returns should relase it */
814 	if (eeprom->type == e1000_eeprom_spi) {
815 		uint16_t word_in;
816 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
817 
818 		if (e1000_spi_eeprom_ready(hw)) {
819 			e1000_release_eeprom(hw);
820 			return -E1000_ERR_EEPROM;
821 		}
822 
823 		e1000_standby_eeprom(hw);
824 
825 		/* Some SPI eeproms use the 8th address bit embedded in
826 		 * the opcode */
827 		if ((eeprom->address_bits == 8) && (offset >= 128))
828 			read_opcode |= EEPROM_A8_OPCODE_SPI;
829 
830 		/* Send the READ command (opcode + addr)  */
831 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
832 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
833 				eeprom->address_bits);
834 
835 		/* Read the data.  The address of the eeprom internally
836 		 * increments with each byte (spi) being read, saving on the
837 		 * overhead of eeprom setup and tear-down.  The address
838 		 * counter will roll over if reading beyond the size of
839 		 * the eeprom, thus allowing the entire memory to be read
840 		 * starting from any offset. */
841 		for (i = 0; i < words; i++) {
842 			word_in = e1000_shift_in_ee_bits(hw, 16);
843 			data[i] = (word_in >> 8) | (word_in << 8);
844 		}
845 	} else if (eeprom->type == e1000_eeprom_microwire) {
846 		for (i = 0; i < words; i++) {
847 			/* Send the READ command (opcode + addr)  */
848 			e1000_shift_out_ee_bits(hw,
849 				EEPROM_READ_OPCODE_MICROWIRE,
850 				eeprom->opcode_bits);
851 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
852 				eeprom->address_bits);
853 
854 			/* Read the data.  For microwire, each word requires
855 			 * the overhead of eeprom setup and tear-down. */
856 			data[i] = e1000_shift_in_ee_bits(hw, 16);
857 			e1000_standby_eeprom(hw);
858 		}
859 	}
860 
861 	/* End this read operation */
862 	e1000_release_eeprom(hw);
863 
864 	return E1000_SUCCESS;
865 }
866 
867 /******************************************************************************
868  * Verifies that the EEPROM has a valid checksum
869  *
870  * hw - Struct containing variables accessed by shared code
871  *
872  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
873  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
874  * valid.
875  *****************************************************************************/
876 static int
e1000_validate_eeprom_checksum(struct eth_device * nic)877 e1000_validate_eeprom_checksum(struct eth_device *nic)
878 {
879 	struct e1000_hw *hw = nic->priv;
880 	uint16_t checksum = 0;
881 	uint16_t i, eeprom_data;
882 
883 	DEBUGFUNC();
884 
885 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
886 		if (e1000_read_eeprom(hw, i, 1,  &eeprom_data) < 0) {
887 			DEBUGOUT("EEPROM Read Error\n");
888 			return -E1000_ERR_EEPROM;
889 		}
890 		checksum += eeprom_data;
891 	}
892 
893 	if (checksum == (uint16_t) EEPROM_SUM) {
894 		return 0;
895 	} else {
896 		DEBUGOUT("EEPROM Checksum Invalid\n");
897 		return -E1000_ERR_EEPROM;
898 	}
899 }
900 
901 /*****************************************************************************
902  * Set PHY to class A mode
903  * Assumes the following operations will follow to enable the new class mode.
904  *  1. Do a PHY soft reset
905  *  2. Restart auto-negotiation or force link.
906  *
907  * hw - Struct containing variables accessed by shared code
908  ****************************************************************************/
909 static int32_t
e1000_set_phy_mode(struct e1000_hw * hw)910 e1000_set_phy_mode(struct e1000_hw *hw)
911 {
912 	int32_t ret_val;
913 	uint16_t eeprom_data;
914 
915 	DEBUGFUNC();
916 
917 	if ((hw->mac_type == e1000_82545_rev_3) &&
918 		(hw->media_type == e1000_media_type_copper)) {
919 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
920 				1, &eeprom_data);
921 		if (ret_val)
922 			return ret_val;
923 
924 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
925 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
926 			ret_val = e1000_write_phy_reg(hw,
927 					M88E1000_PHY_PAGE_SELECT, 0x000B);
928 			if (ret_val)
929 				return ret_val;
930 			ret_val = e1000_write_phy_reg(hw,
931 					M88E1000_PHY_GEN_CONTROL, 0x8104);
932 			if (ret_val)
933 				return ret_val;
934 
935 			hw->phy_reset_disable = FALSE;
936 		}
937 	}
938 
939 	return E1000_SUCCESS;
940 }
941 #endif /* #ifndef CONFIG_AP1000 */
942 
943 /***************************************************************************
944  *
945  * Obtaining software semaphore bit (SMBI) before resetting PHY.
946  *
947  * hw: Struct containing variables accessed by shared code
948  *
949  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
950  *            E1000_SUCCESS at any other case.
951  *
952  ***************************************************************************/
953 static int32_t
e1000_get_software_semaphore(struct e1000_hw * hw)954 e1000_get_software_semaphore(struct e1000_hw *hw)
955 {
956 	 int32_t timeout = hw->eeprom.word_size + 1;
957 	 uint32_t swsm;
958 
959 	DEBUGFUNC();
960 
961 	if (hw->mac_type != e1000_80003es2lan)
962 		return E1000_SUCCESS;
963 
964 	while (timeout) {
965 		swsm = E1000_READ_REG(hw, SWSM);
966 		/* If SMBI bit cleared, it is now set and we hold
967 		 * the semaphore */
968 		if (!(swsm & E1000_SWSM_SMBI))
969 			break;
970 		mdelay(1);
971 		timeout--;
972 	}
973 
974 	if (!timeout) {
975 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
976 		return -E1000_ERR_RESET;
977 	}
978 
979 	return E1000_SUCCESS;
980 }
981 
982 /***************************************************************************
983  * This function clears HW semaphore bits.
984  *
985  * hw: Struct containing variables accessed by shared code
986  *
987  * returns: - None.
988  *
989  ***************************************************************************/
990 static void
e1000_put_hw_eeprom_semaphore(struct e1000_hw * hw)991 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
992 {
993 	 uint32_t swsm;
994 
995 	DEBUGFUNC();
996 
997 	if (!hw->eeprom_semaphore_present)
998 		return;
999 
1000 	swsm = E1000_READ_REG(hw, SWSM);
1001 	if (hw->mac_type == e1000_80003es2lan) {
1002 		/* Release both semaphores. */
1003 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1004 	} else
1005 		swsm &= ~(E1000_SWSM_SWESMBI);
1006 	E1000_WRITE_REG(hw, SWSM, swsm);
1007 }
1008 
1009 /***************************************************************************
1010  *
1011  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1012  * adapter or Eeprom access.
1013  *
1014  * hw: Struct containing variables accessed by shared code
1015  *
1016  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1017  *            E1000_SUCCESS at any other case.
1018  *
1019  ***************************************************************************/
1020 static int32_t
e1000_get_hw_eeprom_semaphore(struct e1000_hw * hw)1021 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1022 {
1023 	int32_t timeout;
1024 	uint32_t swsm;
1025 
1026 	DEBUGFUNC();
1027 
1028 	if (!hw->eeprom_semaphore_present)
1029 		return E1000_SUCCESS;
1030 
1031 	if (hw->mac_type == e1000_80003es2lan) {
1032 		/* Get the SW semaphore. */
1033 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1034 			return -E1000_ERR_EEPROM;
1035 	}
1036 
1037 	/* Get the FW semaphore. */
1038 	timeout = hw->eeprom.word_size + 1;
1039 	while (timeout) {
1040 		swsm = E1000_READ_REG(hw, SWSM);
1041 		swsm |= E1000_SWSM_SWESMBI;
1042 		E1000_WRITE_REG(hw, SWSM, swsm);
1043 		/* if we managed to set the bit we got the semaphore. */
1044 		swsm = E1000_READ_REG(hw, SWSM);
1045 		if (swsm & E1000_SWSM_SWESMBI)
1046 			break;
1047 
1048 		udelay(50);
1049 		timeout--;
1050 	}
1051 
1052 	if (!timeout) {
1053 		/* Release semaphores */
1054 		e1000_put_hw_eeprom_semaphore(hw);
1055 		DEBUGOUT("Driver can't access the Eeprom - "
1056 				"SWESMBI bit is set.\n");
1057 		return -E1000_ERR_EEPROM;
1058 	}
1059 
1060 	return E1000_SUCCESS;
1061 }
1062 
1063 static int32_t
e1000_swfw_sync_acquire(struct e1000_hw * hw,uint16_t mask)1064 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1065 {
1066 	uint32_t swfw_sync = 0;
1067 	uint32_t swmask = mask;
1068 	uint32_t fwmask = mask << 16;
1069 	int32_t timeout = 200;
1070 
1071 	DEBUGFUNC();
1072 	while (timeout) {
1073 		if (e1000_get_hw_eeprom_semaphore(hw))
1074 			return -E1000_ERR_SWFW_SYNC;
1075 
1076 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1077 		if (!(swfw_sync & (fwmask | swmask)))
1078 			break;
1079 
1080 		/* firmware currently using resource (fwmask) */
1081 		/* or other software thread currently using resource (swmask) */
1082 		e1000_put_hw_eeprom_semaphore(hw);
1083 		mdelay(5);
1084 		timeout--;
1085 	}
1086 
1087 	if (!timeout) {
1088 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1089 		return -E1000_ERR_SWFW_SYNC;
1090 	}
1091 
1092 	swfw_sync |= swmask;
1093 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1094 
1095 	e1000_put_hw_eeprom_semaphore(hw);
1096 	return E1000_SUCCESS;
1097 }
1098 
1099 /******************************************************************************
1100  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1101  * second function of dual function devices
1102  *
1103  * nic - Struct containing variables accessed by shared code
1104  *****************************************************************************/
1105 static int
e1000_read_mac_addr(struct eth_device * nic)1106 e1000_read_mac_addr(struct eth_device *nic)
1107 {
1108 #ifndef CONFIG_AP1000
1109 	struct e1000_hw *hw = nic->priv;
1110 	uint16_t offset;
1111 	uint16_t eeprom_data;
1112 	int i;
1113 
1114 	DEBUGFUNC();
1115 
1116 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1117 		offset = i >> 1;
1118 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1119 			DEBUGOUT("EEPROM Read Error\n");
1120 			return -E1000_ERR_EEPROM;
1121 		}
1122 		nic->enetaddr[i] = eeprom_data & 0xff;
1123 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1124 	}
1125 	if ((hw->mac_type == e1000_82546) &&
1126 	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1127 		/* Invert the last bit if this is the second device */
1128 		nic->enetaddr[5] += 1;
1129 	}
1130 #ifdef CONFIG_E1000_FALLBACK_MAC
1131 	if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1132 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1133 
1134 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1135 	}
1136 #endif
1137 #else
1138 	/*
1139 	 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1140 	 * environment variables.  Currently this does not support the addition
1141 	 * of a PMC e1000 card, which is certainly a possibility, so this should
1142 	 * be updated to properly use the env variable only for the onboard e1000
1143 	 */
1144 
1145 	int ii;
1146 	char *s, *e;
1147 
1148 	DEBUGFUNC();
1149 
1150 	s = getenv ("ethaddr");
1151 	if (s == NULL) {
1152 		return -E1000_ERR_EEPROM;
1153 	} else {
1154 		for(ii = 0; ii < 6; ii++) {
1155 			nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1156 			if (s){
1157 				s = (*e) ? e + 1 : e;
1158 			}
1159 		}
1160 	}
1161 #endif
1162 	return 0;
1163 }
1164 
1165 /******************************************************************************
1166  * Initializes receive address filters.
1167  *
1168  * hw - Struct containing variables accessed by shared code
1169  *
1170  * Places the MAC address in receive address register 0 and clears the rest
1171  * of the receive addresss registers. Clears the multicast table. Assumes
1172  * the receiver is in reset when the routine is called.
1173  *****************************************************************************/
1174 static void
e1000_init_rx_addrs(struct eth_device * nic)1175 e1000_init_rx_addrs(struct eth_device *nic)
1176 {
1177 	struct e1000_hw *hw = nic->priv;
1178 	uint32_t i;
1179 	uint32_t addr_low;
1180 	uint32_t addr_high;
1181 
1182 	DEBUGFUNC();
1183 
1184 	/* Setup the receive address. */
1185 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1186 	addr_low = (nic->enetaddr[0] |
1187 		    (nic->enetaddr[1] << 8) |
1188 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1189 
1190 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1191 
1192 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1193 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1194 
1195 	/* Zero out the other 15 receive addresses. */
1196 	DEBUGOUT("Clearing RAR[1-15]\n");
1197 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1198 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1199 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1200 	}
1201 }
1202 
1203 /******************************************************************************
1204  * Clears the VLAN filer table
1205  *
1206  * hw - Struct containing variables accessed by shared code
1207  *****************************************************************************/
1208 static void
e1000_clear_vfta(struct e1000_hw * hw)1209 e1000_clear_vfta(struct e1000_hw *hw)
1210 {
1211 	uint32_t offset;
1212 
1213 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1214 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1215 }
1216 
1217 /******************************************************************************
1218  * Set the mac type member in the hw struct.
1219  *
1220  * hw - Struct containing variables accessed by shared code
1221  *****************************************************************************/
1222 int32_t
e1000_set_mac_type(struct e1000_hw * hw)1223 e1000_set_mac_type(struct e1000_hw *hw)
1224 {
1225 	DEBUGFUNC();
1226 
1227 	switch (hw->device_id) {
1228 	case E1000_DEV_ID_82542:
1229 		switch (hw->revision_id) {
1230 		case E1000_82542_2_0_REV_ID:
1231 			hw->mac_type = e1000_82542_rev2_0;
1232 			break;
1233 		case E1000_82542_2_1_REV_ID:
1234 			hw->mac_type = e1000_82542_rev2_1;
1235 			break;
1236 		default:
1237 			/* Invalid 82542 revision ID */
1238 			return -E1000_ERR_MAC_TYPE;
1239 		}
1240 		break;
1241 	case E1000_DEV_ID_82543GC_FIBER:
1242 	case E1000_DEV_ID_82543GC_COPPER:
1243 		hw->mac_type = e1000_82543;
1244 		break;
1245 	case E1000_DEV_ID_82544EI_COPPER:
1246 	case E1000_DEV_ID_82544EI_FIBER:
1247 	case E1000_DEV_ID_82544GC_COPPER:
1248 	case E1000_DEV_ID_82544GC_LOM:
1249 		hw->mac_type = e1000_82544;
1250 		break;
1251 	case E1000_DEV_ID_82540EM:
1252 	case E1000_DEV_ID_82540EM_LOM:
1253 	case E1000_DEV_ID_82540EP:
1254 	case E1000_DEV_ID_82540EP_LOM:
1255 	case E1000_DEV_ID_82540EP_LP:
1256 		hw->mac_type = e1000_82540;
1257 		break;
1258 	case E1000_DEV_ID_82545EM_COPPER:
1259 	case E1000_DEV_ID_82545EM_FIBER:
1260 		hw->mac_type = e1000_82545;
1261 		break;
1262 	case E1000_DEV_ID_82545GM_COPPER:
1263 	case E1000_DEV_ID_82545GM_FIBER:
1264 	case E1000_DEV_ID_82545GM_SERDES:
1265 		hw->mac_type = e1000_82545_rev_3;
1266 		break;
1267 	case E1000_DEV_ID_82546EB_COPPER:
1268 	case E1000_DEV_ID_82546EB_FIBER:
1269 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1270 		hw->mac_type = e1000_82546;
1271 		break;
1272 	case E1000_DEV_ID_82546GB_COPPER:
1273 	case E1000_DEV_ID_82546GB_FIBER:
1274 	case E1000_DEV_ID_82546GB_SERDES:
1275 	case E1000_DEV_ID_82546GB_PCIE:
1276 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1277 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1278 		hw->mac_type = e1000_82546_rev_3;
1279 		break;
1280 	case E1000_DEV_ID_82541EI:
1281 	case E1000_DEV_ID_82541EI_MOBILE:
1282 	case E1000_DEV_ID_82541ER_LOM:
1283 		hw->mac_type = e1000_82541;
1284 		break;
1285 	case E1000_DEV_ID_82541ER:
1286 	case E1000_DEV_ID_82541GI:
1287 	case E1000_DEV_ID_82541GI_LF:
1288 	case E1000_DEV_ID_82541GI_MOBILE:
1289 		hw->mac_type = e1000_82541_rev_2;
1290 		break;
1291 	case E1000_DEV_ID_82547EI:
1292 	case E1000_DEV_ID_82547EI_MOBILE:
1293 		hw->mac_type = e1000_82547;
1294 		break;
1295 	case E1000_DEV_ID_82547GI:
1296 		hw->mac_type = e1000_82547_rev_2;
1297 		break;
1298 	case E1000_DEV_ID_82571EB_COPPER:
1299 	case E1000_DEV_ID_82571EB_FIBER:
1300 	case E1000_DEV_ID_82571EB_SERDES:
1301 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1302 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1303 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1304 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1305 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1306 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1307 		hw->mac_type = e1000_82571;
1308 		break;
1309 	case E1000_DEV_ID_82572EI_COPPER:
1310 	case E1000_DEV_ID_82572EI_FIBER:
1311 	case E1000_DEV_ID_82572EI_SERDES:
1312 	case E1000_DEV_ID_82572EI:
1313 		hw->mac_type = e1000_82572;
1314 		break;
1315 	case E1000_DEV_ID_82573E:
1316 	case E1000_DEV_ID_82573E_IAMT:
1317 	case E1000_DEV_ID_82573L:
1318 		hw->mac_type = e1000_82573;
1319 		break;
1320 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1321 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1322 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1323 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1324 		hw->mac_type = e1000_80003es2lan;
1325 		break;
1326 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1327 	case E1000_DEV_ID_ICH8_IGP_AMT:
1328 	case E1000_DEV_ID_ICH8_IGP_C:
1329 	case E1000_DEV_ID_ICH8_IFE:
1330 	case E1000_DEV_ID_ICH8_IFE_GT:
1331 	case E1000_DEV_ID_ICH8_IFE_G:
1332 	case E1000_DEV_ID_ICH8_IGP_M:
1333 		hw->mac_type = e1000_ich8lan;
1334 		break;
1335 	default:
1336 		/* Should never have loaded on this device */
1337 		return -E1000_ERR_MAC_TYPE;
1338 	}
1339 	return E1000_SUCCESS;
1340 }
1341 
1342 /******************************************************************************
1343  * Reset the transmit and receive units; mask and clear all interrupts.
1344  *
1345  * hw - Struct containing variables accessed by shared code
1346  *****************************************************************************/
1347 void
e1000_reset_hw(struct e1000_hw * hw)1348 e1000_reset_hw(struct e1000_hw *hw)
1349 {
1350 	uint32_t ctrl;
1351 	uint32_t ctrl_ext;
1352 	uint32_t icr;
1353 	uint32_t manc;
1354 	uint32_t pba = 0;
1355 
1356 	DEBUGFUNC();
1357 
1358 	/* get the correct pba value for both PCI and PCIe*/
1359 	if (hw->mac_type <  e1000_82571)
1360 		pba = E1000_DEFAULT_PCI_PBA;
1361 	else
1362 		pba = E1000_DEFAULT_PCIE_PBA;
1363 
1364 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1365 	if (hw->mac_type == e1000_82542_rev2_0) {
1366 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1367 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1368 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1369 	}
1370 
1371 	/* Clear interrupt mask to stop board from generating interrupts */
1372 	DEBUGOUT("Masking off all interrupts\n");
1373 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1374 
1375 	/* Disable the Transmit and Receive units.  Then delay to allow
1376 	 * any pending transactions to complete before we hit the MAC with
1377 	 * the global reset.
1378 	 */
1379 	E1000_WRITE_REG(hw, RCTL, 0);
1380 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1381 	E1000_WRITE_FLUSH(hw);
1382 
1383 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1384 	hw->tbi_compatibility_on = FALSE;
1385 
1386 	/* Delay to allow any outstanding PCI transactions to complete before
1387 	 * resetting the device
1388 	 */
1389 	mdelay(10);
1390 
1391 	/* Issue a global reset to the MAC.  This will reset the chip's
1392 	 * transmit, receive, DMA, and link units.  It will not effect
1393 	 * the current PCI configuration.  The global reset bit is self-
1394 	 * clearing, and should clear within a microsecond.
1395 	 */
1396 	DEBUGOUT("Issuing a global reset to MAC\n");
1397 	ctrl = E1000_READ_REG(hw, CTRL);
1398 
1399 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1400 
1401 	/* Force a reload from the EEPROM if necessary */
1402 	if (hw->mac_type < e1000_82540) {
1403 		/* Wait for reset to complete */
1404 		udelay(10);
1405 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1406 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1407 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1408 		E1000_WRITE_FLUSH(hw);
1409 		/* Wait for EEPROM reload */
1410 		mdelay(2);
1411 	} else {
1412 		/* Wait for EEPROM reload (it happens automatically) */
1413 		mdelay(4);
1414 		/* Dissable HW ARPs on ASF enabled adapters */
1415 		manc = E1000_READ_REG(hw, MANC);
1416 		manc &= ~(E1000_MANC_ARP_EN);
1417 		E1000_WRITE_REG(hw, MANC, manc);
1418 	}
1419 
1420 	/* Clear interrupt mask to stop board from generating interrupts */
1421 	DEBUGOUT("Masking off all interrupts\n");
1422 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1423 
1424 	/* Clear any pending interrupt events. */
1425 	icr = E1000_READ_REG(hw, ICR);
1426 
1427 	/* If MWI was previously enabled, reenable it. */
1428 	if (hw->mac_type == e1000_82542_rev2_0) {
1429 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1430 	}
1431 	E1000_WRITE_REG(hw, PBA, pba);
1432 }
1433 
1434 /******************************************************************************
1435  *
1436  * Initialize a number of hardware-dependent bits
1437  *
1438  * hw: Struct containing variables accessed by shared code
1439  *
1440  * This function contains hardware limitation workarounds for PCI-E adapters
1441  *
1442  *****************************************************************************/
1443 static void
e1000_initialize_hardware_bits(struct e1000_hw * hw)1444 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1445 {
1446 	if ((hw->mac_type >= e1000_82571) &&
1447 			(!hw->initialize_hw_bits_disable)) {
1448 		/* Settings common to all PCI-express silicon */
1449 		uint32_t reg_ctrl, reg_ctrl_ext;
1450 		uint32_t reg_tarc0, reg_tarc1;
1451 		uint32_t reg_tctl;
1452 		uint32_t reg_txdctl, reg_txdctl1;
1453 
1454 		/* link autonegotiation/sync workarounds */
1455 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1456 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1457 
1458 		/* Enable not-done TX descriptor counting */
1459 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1460 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1461 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1462 
1463 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1464 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1465 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1466 
1467 		switch (hw->mac_type) {
1468 		case e1000_82571:
1469 		case e1000_82572:
1470 			/* Clear PHY TX compatible mode bits */
1471 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1472 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1473 
1474 			/* link autonegotiation/sync workarounds */
1475 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1476 
1477 			/* TX ring control fixes */
1478 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1479 
1480 			/* Multiple read bit is reversed polarity */
1481 			reg_tctl = E1000_READ_REG(hw, TCTL);
1482 			if (reg_tctl & E1000_TCTL_MULR)
1483 				reg_tarc1 &= ~(1 << 28);
1484 			else
1485 				reg_tarc1 |= (1 << 28);
1486 
1487 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1488 			break;
1489 		case e1000_82573:
1490 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1491 			reg_ctrl_ext &= ~(1 << 23);
1492 			reg_ctrl_ext |= (1 << 22);
1493 
1494 			/* TX byte count fix */
1495 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1496 			reg_ctrl &= ~(1 << 29);
1497 
1498 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1499 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1500 			break;
1501 		case e1000_80003es2lan:
1502 	/* improve small packet performace for fiber/serdes */
1503 			if ((hw->media_type == e1000_media_type_fiber)
1504 			|| (hw->media_type ==
1505 				e1000_media_type_internal_serdes)) {
1506 				reg_tarc0 &= ~(1 << 20);
1507 			}
1508 
1509 		/* Multiple read bit is reversed polarity */
1510 			reg_tctl = E1000_READ_REG(hw, TCTL);
1511 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1512 			if (reg_tctl & E1000_TCTL_MULR)
1513 				reg_tarc1 &= ~(1 << 28);
1514 			else
1515 				reg_tarc1 |= (1 << 28);
1516 
1517 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1518 			break;
1519 		case e1000_ich8lan:
1520 			/* Reduce concurrent DMA requests to 3 from 4 */
1521 			if ((hw->revision_id < 3) ||
1522 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1523 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1524 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1525 
1526 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1527 			reg_ctrl_ext |= (1 << 22);
1528 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1529 
1530 			/* workaround TX hang with TSO=on */
1531 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1532 
1533 			/* Multiple read bit is reversed polarity */
1534 			reg_tctl = E1000_READ_REG(hw, TCTL);
1535 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1536 			if (reg_tctl & E1000_TCTL_MULR)
1537 				reg_tarc1 &= ~(1 << 28);
1538 			else
1539 				reg_tarc1 |= (1 << 28);
1540 
1541 			/* workaround TX hang with TSO=on */
1542 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1543 
1544 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1545 			break;
1546 		default:
1547 			break;
1548 		}
1549 
1550 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1551 	}
1552 }
1553 
1554 /******************************************************************************
1555  * Performs basic configuration of the adapter.
1556  *
1557  * hw - Struct containing variables accessed by shared code
1558  *
1559  * Assumes that the controller has previously been reset and is in a
1560  * post-reset uninitialized state. Initializes the receive address registers,
1561  * multicast table, and VLAN filter table. Calls routines to setup link
1562  * configuration and flow control settings. Clears all on-chip counters. Leaves
1563  * the transmit and receive units disabled and uninitialized.
1564  *****************************************************************************/
1565 static int
e1000_init_hw(struct eth_device * nic)1566 e1000_init_hw(struct eth_device *nic)
1567 {
1568 	struct e1000_hw *hw = nic->priv;
1569 	uint32_t ctrl;
1570 	uint32_t i;
1571 	int32_t ret_val;
1572 	uint16_t pcix_cmd_word;
1573 	uint16_t pcix_stat_hi_word;
1574 	uint16_t cmd_mmrbc;
1575 	uint16_t stat_mmrbc;
1576 	uint32_t mta_size;
1577 	uint32_t reg_data;
1578 	uint32_t ctrl_ext;
1579 	DEBUGFUNC();
1580 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1581 	if ((hw->mac_type == e1000_ich8lan) &&
1582 		((hw->revision_id < 3) ||
1583 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1584 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1585 			reg_data = E1000_READ_REG(hw, STATUS);
1586 			reg_data &= ~0x80000000;
1587 			E1000_WRITE_REG(hw, STATUS, reg_data);
1588 	}
1589 	/* Do not need initialize Identification LED */
1590 
1591 	/* Set the media type and TBI compatibility */
1592 	e1000_set_media_type(hw);
1593 
1594 	/* Must be called after e1000_set_media_type
1595 	 * because media_type is used */
1596 	e1000_initialize_hardware_bits(hw);
1597 
1598 	/* Disabling VLAN filtering. */
1599 	DEBUGOUT("Initializing the IEEE VLAN\n");
1600 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1601 	if (hw->mac_type != e1000_ich8lan) {
1602 		if (hw->mac_type < e1000_82545_rev_3)
1603 			E1000_WRITE_REG(hw, VET, 0);
1604 		e1000_clear_vfta(hw);
1605 	}
1606 
1607 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1608 	if (hw->mac_type == e1000_82542_rev2_0) {
1609 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1610 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1611 				      hw->
1612 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1613 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1614 		E1000_WRITE_FLUSH(hw);
1615 		mdelay(5);
1616 	}
1617 
1618 	/* Setup the receive address. This involves initializing all of the Receive
1619 	 * Address Registers (RARs 0 - 15).
1620 	 */
1621 	e1000_init_rx_addrs(nic);
1622 
1623 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1624 	if (hw->mac_type == e1000_82542_rev2_0) {
1625 		E1000_WRITE_REG(hw, RCTL, 0);
1626 		E1000_WRITE_FLUSH(hw);
1627 		mdelay(1);
1628 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1629 	}
1630 
1631 	/* Zero out the Multicast HASH table */
1632 	DEBUGOUT("Zeroing the MTA\n");
1633 	mta_size = E1000_MC_TBL_SIZE;
1634 	if (hw->mac_type == e1000_ich8lan)
1635 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1636 	for (i = 0; i < mta_size; i++) {
1637 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1638 		/* use write flush to prevent Memory Write Block (MWB) from
1639 		 * occuring when accessing our register space */
1640 		E1000_WRITE_FLUSH(hw);
1641 	}
1642 #if 0
1643 	/* Set the PCI priority bit correctly in the CTRL register.  This
1644 	 * determines if the adapter gives priority to receives, or if it
1645 	 * gives equal priority to transmits and receives.  Valid only on
1646 	 * 82542 and 82543 silicon.
1647 	 */
1648 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1649 		ctrl = E1000_READ_REG(hw, CTRL);
1650 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1651 	}
1652 #endif
1653 	switch (hw->mac_type) {
1654 	case e1000_82545_rev_3:
1655 	case e1000_82546_rev_3:
1656 		break;
1657 	default:
1658 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1659 	if (hw->bus_type == e1000_bus_type_pcix) {
1660 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1661 				     &pcix_cmd_word);
1662 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1663 				     &pcix_stat_hi_word);
1664 		cmd_mmrbc =
1665 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1666 		    PCIX_COMMAND_MMRBC_SHIFT;
1667 		stat_mmrbc =
1668 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1669 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1670 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1671 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1672 		if (cmd_mmrbc > stat_mmrbc) {
1673 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1674 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1675 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1676 					      pcix_cmd_word);
1677 		}
1678 	}
1679 		break;
1680 	}
1681 
1682 	/* More time needed for PHY to initialize */
1683 	if (hw->mac_type == e1000_ich8lan)
1684 		mdelay(15);
1685 
1686 	/* Call a subroutine to configure the link and setup flow control. */
1687 	ret_val = e1000_setup_link(nic);
1688 
1689 	/* Set the transmit descriptor write-back policy */
1690 	if (hw->mac_type > e1000_82544) {
1691 		ctrl = E1000_READ_REG(hw, TXDCTL);
1692 		ctrl =
1693 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1694 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1695 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1696 	}
1697 
1698 	switch (hw->mac_type) {
1699 	default:
1700 		break;
1701 	case e1000_80003es2lan:
1702 		/* Enable retransmit on late collisions */
1703 		reg_data = E1000_READ_REG(hw, TCTL);
1704 		reg_data |= E1000_TCTL_RTLC;
1705 		E1000_WRITE_REG(hw, TCTL, reg_data);
1706 
1707 		/* Configure Gigabit Carry Extend Padding */
1708 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1709 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1710 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1711 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1712 
1713 		/* Configure Transmit Inter-Packet Gap */
1714 		reg_data = E1000_READ_REG(hw, TIPG);
1715 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1716 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1717 		E1000_WRITE_REG(hw, TIPG, reg_data);
1718 
1719 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1720 		reg_data &= ~0x00100000;
1721 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1722 		/* Fall through */
1723 	case e1000_82571:
1724 	case e1000_82572:
1725 	case e1000_ich8lan:
1726 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1727 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1728 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1729 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1730 		break;
1731 	}
1732 
1733 	if (hw->mac_type == e1000_82573) {
1734 		uint32_t gcr = E1000_READ_REG(hw, GCR);
1735 		gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1736 		E1000_WRITE_REG(hw, GCR, gcr);
1737 	}
1738 
1739 #if 0
1740 	/* Clear all of the statistics registers (clear on read).  It is
1741 	 * important that we do this after we have tried to establish link
1742 	 * because the symbol error count will increment wildly if there
1743 	 * is no link.
1744 	 */
1745 	e1000_clear_hw_cntrs(hw);
1746 
1747 	/* ICH8 No-snoop bits are opposite polarity.
1748 	 * Set to snoop by default after reset. */
1749 	if (hw->mac_type == e1000_ich8lan)
1750 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1751 #endif
1752 
1753 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1754 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1755 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1756 		/* Relaxed ordering must be disabled to avoid a parity
1757 		 * error crash in a PCI slot. */
1758 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1759 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1760 	}
1761 
1762 	return ret_val;
1763 }
1764 
1765 /******************************************************************************
1766  * Configures flow control and link settings.
1767  *
1768  * hw - Struct containing variables accessed by shared code
1769  *
1770  * Determines which flow control settings to use. Calls the apropriate media-
1771  * specific link configuration function. Configures the flow control settings.
1772  * Assuming the adapter has a valid link partner, a valid link should be
1773  * established. Assumes the hardware has previously been reset and the
1774  * transmitter and receiver are not enabled.
1775  *****************************************************************************/
1776 static int
e1000_setup_link(struct eth_device * nic)1777 e1000_setup_link(struct eth_device *nic)
1778 {
1779 	struct e1000_hw *hw = nic->priv;
1780 	uint32_t ctrl_ext;
1781 	int32_t ret_val;
1782 	uint16_t eeprom_data;
1783 
1784 	DEBUGFUNC();
1785 
1786 	/* In the case of the phy reset being blocked, we already have a link.
1787 	 * We do not have to set it up again. */
1788 	if (e1000_check_phy_reset_block(hw))
1789 		return E1000_SUCCESS;
1790 
1791 #ifndef CONFIG_AP1000
1792 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1793 	 * that determine the hardware's default PAUSE (flow control) mode,
1794 	 * a bit that determines whether the HW defaults to enabling or
1795 	 * disabling auto-negotiation, and the direction of the
1796 	 * SW defined pins. If there is no SW over-ride of the flow
1797 	 * control setting, then the variable hw->fc will
1798 	 * be initialized based on a value in the EEPROM.
1799 	 */
1800 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1801 				&eeprom_data) < 0) {
1802 		DEBUGOUT("EEPROM Read Error\n");
1803 		return -E1000_ERR_EEPROM;
1804 	}
1805 #else
1806 	/* we have to hardcode the proper value for our hardware. */
1807 	/* this value is for the 82540EM pci card used for prototyping, and it works. */
1808 	eeprom_data = 0xb220;
1809 #endif
1810 
1811 	if (hw->fc == e1000_fc_default) {
1812 		switch (hw->mac_type) {
1813 		case e1000_ich8lan:
1814 		case e1000_82573:
1815 			hw->fc = e1000_fc_full;
1816 			break;
1817 		default:
1818 #ifndef CONFIG_AP1000
1819 			ret_val = e1000_read_eeprom(hw,
1820 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1821 			if (ret_val) {
1822 				DEBUGOUT("EEPROM Read Error\n");
1823 				return -E1000_ERR_EEPROM;
1824 			}
1825 #else
1826 			eeprom_data = 0xb220;
1827 #endif
1828 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1829 				hw->fc = e1000_fc_none;
1830 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1831 				    EEPROM_WORD0F_ASM_DIR)
1832 				hw->fc = e1000_fc_tx_pause;
1833 			else
1834 				hw->fc = e1000_fc_full;
1835 			break;
1836 		}
1837 	}
1838 
1839 	/* We want to save off the original Flow Control configuration just
1840 	 * in case we get disconnected and then reconnected into a different
1841 	 * hub or switch with different Flow Control capabilities.
1842 	 */
1843 	if (hw->mac_type == e1000_82542_rev2_0)
1844 		hw->fc &= (~e1000_fc_tx_pause);
1845 
1846 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1847 		hw->fc &= (~e1000_fc_rx_pause);
1848 
1849 	hw->original_fc = hw->fc;
1850 
1851 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1852 
1853 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1854 	 * polarity value for the SW controlled pins, and setup the
1855 	 * Extended Device Control reg with that info.
1856 	 * This is needed because one of the SW controlled pins is used for
1857 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1858 	 * or e1000_phy_setup() is called.
1859 	 */
1860 	if (hw->mac_type == e1000_82543) {
1861 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1862 			    SWDPIO__EXT_SHIFT);
1863 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1864 	}
1865 
1866 	/* Call the necessary subroutine to configure the link. */
1867 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1868 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1869 	if (ret_val < 0) {
1870 		return ret_val;
1871 	}
1872 
1873 	/* Initialize the flow control address, type, and PAUSE timer
1874 	 * registers to their default values.  This is done even if flow
1875 	 * control is disabled, because it does not hurt anything to
1876 	 * initialize these registers.
1877 	 */
1878 	DEBUGOUT("Initializing the Flow Control address, type"
1879 			"and timer regs\n");
1880 
1881 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1882 	if (hw->mac_type != e1000_ich8lan) {
1883 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1884 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1885 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1886 	}
1887 
1888 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1889 
1890 	/* Set the flow control receive threshold registers.  Normally,
1891 	 * these registers will be set to a default threshold that may be
1892 	 * adjusted later by the driver's runtime code.  However, if the
1893 	 * ability to transmit pause frames in not enabled, then these
1894 	 * registers will be set to 0.
1895 	 */
1896 	if (!(hw->fc & e1000_fc_tx_pause)) {
1897 		E1000_WRITE_REG(hw, FCRTL, 0);
1898 		E1000_WRITE_REG(hw, FCRTH, 0);
1899 	} else {
1900 		/* We need to set up the Receive Threshold high and low water marks
1901 		 * as well as (optionally) enabling the transmission of XON frames.
1902 		 */
1903 		if (hw->fc_send_xon) {
1904 			E1000_WRITE_REG(hw, FCRTL,
1905 					(hw->fc_low_water | E1000_FCRTL_XONE));
1906 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1907 		} else {
1908 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1909 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1910 		}
1911 	}
1912 	return ret_val;
1913 }
1914 
1915 /******************************************************************************
1916  * Sets up link for a fiber based adapter
1917  *
1918  * hw - Struct containing variables accessed by shared code
1919  *
1920  * Manipulates Physical Coding Sublayer functions in order to configure
1921  * link. Assumes the hardware has been previously reset and the transmitter
1922  * and receiver are not enabled.
1923  *****************************************************************************/
1924 static int
e1000_setup_fiber_link(struct eth_device * nic)1925 e1000_setup_fiber_link(struct eth_device *nic)
1926 {
1927 	struct e1000_hw *hw = nic->priv;
1928 	uint32_t ctrl;
1929 	uint32_t status;
1930 	uint32_t txcw = 0;
1931 	uint32_t i;
1932 	uint32_t signal;
1933 	int32_t ret_val;
1934 
1935 	DEBUGFUNC();
1936 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1937 	 * set when the optics detect a signal. On older adapters, it will be
1938 	 * cleared when there is a signal
1939 	 */
1940 	ctrl = E1000_READ_REG(hw, CTRL);
1941 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1942 		signal = E1000_CTRL_SWDPIN1;
1943 	else
1944 		signal = 0;
1945 
1946 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1947 	       ctrl);
1948 	/* Take the link out of reset */
1949 	ctrl &= ~(E1000_CTRL_LRST);
1950 
1951 	e1000_config_collision_dist(hw);
1952 
1953 	/* Check for a software override of the flow control settings, and setup
1954 	 * the device accordingly.  If auto-negotiation is enabled, then software
1955 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1956 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1957 	 * auto-negotiation is disabled, then software will have to manually
1958 	 * configure the two flow control enable bits in the CTRL register.
1959 	 *
1960 	 * The possible values of the "fc" parameter are:
1961 	 *	0:  Flow control is completely disabled
1962 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1963 	 *	    not send pause frames).
1964 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1965 	 *	    not support receiving pause frames).
1966 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1967 	 */
1968 	switch (hw->fc) {
1969 	case e1000_fc_none:
1970 		/* Flow control is completely disabled by a software over-ride. */
1971 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1972 		break;
1973 	case e1000_fc_rx_pause:
1974 		/* RX Flow control is enabled and TX Flow control is disabled by a
1975 		 * software over-ride. Since there really isn't a way to advertise
1976 		 * that we are capable of RX Pause ONLY, we will advertise that we
1977 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1978 		 *  disable the adapter's ability to send PAUSE frames.
1979 		 */
1980 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1981 		break;
1982 	case e1000_fc_tx_pause:
1983 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1984 		 * software over-ride.
1985 		 */
1986 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1987 		break;
1988 	case e1000_fc_full:
1989 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1990 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1991 		break;
1992 	default:
1993 		DEBUGOUT("Flow control param set incorrectly\n");
1994 		return -E1000_ERR_CONFIG;
1995 		break;
1996 	}
1997 
1998 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1999 	 * will be in reset, because we previously reset the chip). This will
2000 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2001 	 * link-up status bit will be set and the flow control enable bits (RFCE
2002 	 * and TFCE) will be set according to their negotiated value.
2003 	 */
2004 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2005 
2006 	E1000_WRITE_REG(hw, TXCW, txcw);
2007 	E1000_WRITE_REG(hw, CTRL, ctrl);
2008 	E1000_WRITE_FLUSH(hw);
2009 
2010 	hw->txcw = txcw;
2011 	mdelay(1);
2012 
2013 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2014 	 * indication in the Device Status Register.  Time-out if a link isn't
2015 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2016 	 * less than 500 milliseconds even if the other end is doing it in SW).
2017 	 */
2018 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2019 		DEBUGOUT("Looking for Link\n");
2020 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2021 			mdelay(10);
2022 			status = E1000_READ_REG(hw, STATUS);
2023 			if (status & E1000_STATUS_LU)
2024 				break;
2025 		}
2026 		if (i == (LINK_UP_TIMEOUT / 10)) {
2027 			/* AutoNeg failed to achieve a link, so we'll call
2028 			 * e1000_check_for_link. This routine will force the link up if we
2029 			 * detect a signal. This will allow us to communicate with
2030 			 * non-autonegotiating link partners.
2031 			 */
2032 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2033 			hw->autoneg_failed = 1;
2034 			ret_val = e1000_check_for_link(nic);
2035 			if (ret_val < 0) {
2036 				DEBUGOUT("Error while checking for link\n");
2037 				return ret_val;
2038 			}
2039 			hw->autoneg_failed = 0;
2040 		} else {
2041 			hw->autoneg_failed = 0;
2042 			DEBUGOUT("Valid Link Found\n");
2043 		}
2044 	} else {
2045 		DEBUGOUT("No Signal Detected\n");
2046 		return -E1000_ERR_NOLINK;
2047 	}
2048 	return 0;
2049 }
2050 
2051 /******************************************************************************
2052 * Make sure we have a valid PHY and change PHY mode before link setup.
2053 *
2054 * hw - Struct containing variables accessed by shared code
2055 ******************************************************************************/
2056 static int32_t
e1000_copper_link_preconfig(struct e1000_hw * hw)2057 e1000_copper_link_preconfig(struct e1000_hw *hw)
2058 {
2059 	uint32_t ctrl;
2060 	int32_t ret_val;
2061 	uint16_t phy_data;
2062 
2063 	DEBUGFUNC();
2064 
2065 	ctrl = E1000_READ_REG(hw, CTRL);
2066 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2067 	 * the PHY speed and duplex configuration is. In addition, we need to
2068 	 * perform a hardware reset on the PHY to take it out of reset.
2069 	 */
2070 	if (hw->mac_type > e1000_82543) {
2071 		ctrl |= E1000_CTRL_SLU;
2072 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2073 		E1000_WRITE_REG(hw, CTRL, ctrl);
2074 	} else {
2075 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2076 				| E1000_CTRL_SLU);
2077 		E1000_WRITE_REG(hw, CTRL, ctrl);
2078 		ret_val = e1000_phy_hw_reset(hw);
2079 		if (ret_val)
2080 			return ret_val;
2081 	}
2082 
2083 	/* Make sure we have a valid PHY */
2084 	ret_val = e1000_detect_gig_phy(hw);
2085 	if (ret_val) {
2086 		DEBUGOUT("Error, did not detect valid phy.\n");
2087 		return ret_val;
2088 	}
2089 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2090 
2091 #ifndef CONFIG_AP1000
2092 	/* Set PHY to class A mode (if necessary) */
2093 	ret_val = e1000_set_phy_mode(hw);
2094 	if (ret_val)
2095 		return ret_val;
2096 #endif
2097 	if ((hw->mac_type == e1000_82545_rev_3) ||
2098 		(hw->mac_type == e1000_82546_rev_3)) {
2099 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2100 				&phy_data);
2101 		phy_data |= 0x00000008;
2102 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2103 				phy_data);
2104 	}
2105 
2106 	if (hw->mac_type <= e1000_82543 ||
2107 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2108 		hw->mac_type == e1000_82541_rev_2
2109 		|| hw->mac_type == e1000_82547_rev_2)
2110 			hw->phy_reset_disable = FALSE;
2111 
2112 	return E1000_SUCCESS;
2113 }
2114 
2115 /*****************************************************************************
2116  *
2117  * This function sets the lplu state according to the active flag.  When
2118  * activating lplu this function also disables smart speed and vise versa.
2119  * lplu will not be activated unless the device autonegotiation advertisment
2120  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2121  * hw: Struct containing variables accessed by shared code
2122  * active - true to enable lplu false to disable lplu.
2123  *
2124  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2125  *            E1000_SUCCESS at any other case.
2126  *
2127  ****************************************************************************/
2128 
2129 static int32_t
e1000_set_d3_lplu_state(struct e1000_hw * hw,boolean_t active)2130 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2131 {
2132 	uint32_t phy_ctrl = 0;
2133 	int32_t ret_val;
2134 	uint16_t phy_data;
2135 	DEBUGFUNC();
2136 
2137 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2138 	    && hw->phy_type != e1000_phy_igp_3)
2139 		return E1000_SUCCESS;
2140 
2141 	/* During driver activity LPLU should not be used or it will attain link
2142 	 * from the lowest speeds starting from 10Mbps. The capability is used
2143 	 * for Dx transitions and states */
2144 	if (hw->mac_type == e1000_82541_rev_2
2145 			|| hw->mac_type == e1000_82547_rev_2) {
2146 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2147 				&phy_data);
2148 		if (ret_val)
2149 			return ret_val;
2150 	} else if (hw->mac_type == e1000_ich8lan) {
2151 		/* MAC writes into PHY register based on the state transition
2152 		 * and start auto-negotiation. SW driver can overwrite the
2153 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2154 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2155 	} else {
2156 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2157 				&phy_data);
2158 		if (ret_val)
2159 			return ret_val;
2160 	}
2161 
2162 	if (!active) {
2163 		if (hw->mac_type == e1000_82541_rev_2 ||
2164 			hw->mac_type == e1000_82547_rev_2) {
2165 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2166 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2167 					phy_data);
2168 			if (ret_val)
2169 				return ret_val;
2170 		} else {
2171 			if (hw->mac_type == e1000_ich8lan) {
2172 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2173 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2174 			} else {
2175 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2176 				ret_val = e1000_write_phy_reg(hw,
2177 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2178 				if (ret_val)
2179 					return ret_val;
2180 			}
2181 		}
2182 
2183 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2184 	 * Dx states where the power conservation is most important.  During
2185 	 * driver activity we should enable SmartSpeed, so performance is
2186 	 * maintained. */
2187 		if (hw->smart_speed == e1000_smart_speed_on) {
2188 			ret_val = e1000_read_phy_reg(hw,
2189 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2190 			if (ret_val)
2191 				return ret_val;
2192 
2193 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2194 			ret_val = e1000_write_phy_reg(hw,
2195 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2196 			if (ret_val)
2197 				return ret_val;
2198 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2199 			ret_val = e1000_read_phy_reg(hw,
2200 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2201 			if (ret_val)
2202 				return ret_val;
2203 
2204 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2205 			ret_val = e1000_write_phy_reg(hw,
2206 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2207 			if (ret_val)
2208 				return ret_val;
2209 		}
2210 
2211 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2212 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2213 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2214 
2215 		if (hw->mac_type == e1000_82541_rev_2 ||
2216 		    hw->mac_type == e1000_82547_rev_2) {
2217 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2218 			ret_val = e1000_write_phy_reg(hw,
2219 					IGP01E1000_GMII_FIFO, phy_data);
2220 			if (ret_val)
2221 				return ret_val;
2222 		} else {
2223 			if (hw->mac_type == e1000_ich8lan) {
2224 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2225 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2226 			} else {
2227 				phy_data |= IGP02E1000_PM_D3_LPLU;
2228 				ret_val = e1000_write_phy_reg(hw,
2229 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2230 				if (ret_val)
2231 					return ret_val;
2232 			}
2233 		}
2234 
2235 		/* When LPLU is enabled we should disable SmartSpeed */
2236 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2237 				&phy_data);
2238 		if (ret_val)
2239 			return ret_val;
2240 
2241 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2242 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2243 				phy_data);
2244 		if (ret_val)
2245 			return ret_val;
2246 	}
2247 	return E1000_SUCCESS;
2248 }
2249 
2250 /*****************************************************************************
2251  *
2252  * This function sets the lplu d0 state according to the active flag.  When
2253  * activating lplu this function also disables smart speed and vise versa.
2254  * lplu will not be activated unless the device autonegotiation advertisment
2255  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2256  * hw: Struct containing variables accessed by shared code
2257  * active - true to enable lplu false to disable lplu.
2258  *
2259  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2260  *            E1000_SUCCESS at any other case.
2261  *
2262  ****************************************************************************/
2263 
2264 static int32_t
e1000_set_d0_lplu_state(struct e1000_hw * hw,boolean_t active)2265 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2266 {
2267 	uint32_t phy_ctrl = 0;
2268 	int32_t ret_val;
2269 	uint16_t phy_data;
2270 	DEBUGFUNC();
2271 
2272 	if (hw->mac_type <= e1000_82547_rev_2)
2273 		return E1000_SUCCESS;
2274 
2275 	if (hw->mac_type == e1000_ich8lan) {
2276 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2277 	} else {
2278 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2279 				&phy_data);
2280 		if (ret_val)
2281 			return ret_val;
2282 	}
2283 
2284 	if (!active) {
2285 		if (hw->mac_type == e1000_ich8lan) {
2286 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2287 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2288 		} else {
2289 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2290 			ret_val = e1000_write_phy_reg(hw,
2291 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2292 			if (ret_val)
2293 				return ret_val;
2294 		}
2295 
2296 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2297 	 * Dx states where the power conservation is most important.  During
2298 	 * driver activity we should enable SmartSpeed, so performance is
2299 	 * maintained. */
2300 		if (hw->smart_speed == e1000_smart_speed_on) {
2301 			ret_val = e1000_read_phy_reg(hw,
2302 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2303 			if (ret_val)
2304 				return ret_val;
2305 
2306 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2307 			ret_val = e1000_write_phy_reg(hw,
2308 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2309 			if (ret_val)
2310 				return ret_val;
2311 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2312 			ret_val = e1000_read_phy_reg(hw,
2313 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2314 			if (ret_val)
2315 				return ret_val;
2316 
2317 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2318 			ret_val = e1000_write_phy_reg(hw,
2319 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2320 			if (ret_val)
2321 				return ret_val;
2322 		}
2323 
2324 
2325 	} else {
2326 
2327 		if (hw->mac_type == e1000_ich8lan) {
2328 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2329 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2330 		} else {
2331 			phy_data |= IGP02E1000_PM_D0_LPLU;
2332 			ret_val = e1000_write_phy_reg(hw,
2333 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2334 			if (ret_val)
2335 				return ret_val;
2336 		}
2337 
2338 		/* When LPLU is enabled we should disable SmartSpeed */
2339 		ret_val = e1000_read_phy_reg(hw,
2340 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2341 		if (ret_val)
2342 			return ret_val;
2343 
2344 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2345 		ret_val = e1000_write_phy_reg(hw,
2346 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2347 		if (ret_val)
2348 			return ret_val;
2349 
2350 	}
2351 	return E1000_SUCCESS;
2352 }
2353 
2354 /********************************************************************
2355 * Copper link setup for e1000_phy_igp series.
2356 *
2357 * hw - Struct containing variables accessed by shared code
2358 *********************************************************************/
2359 static int32_t
e1000_copper_link_igp_setup(struct e1000_hw * hw)2360 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2361 {
2362 	uint32_t led_ctrl;
2363 	int32_t ret_val;
2364 	uint16_t phy_data;
2365 
2366 	DEBUGFUNC();
2367 
2368 	if (hw->phy_reset_disable)
2369 		return E1000_SUCCESS;
2370 
2371 	ret_val = e1000_phy_reset(hw);
2372 	if (ret_val) {
2373 		DEBUGOUT("Error Resetting the PHY\n");
2374 		return ret_val;
2375 	}
2376 
2377 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2378 	mdelay(15);
2379 	if (hw->mac_type != e1000_ich8lan) {
2380 		/* Configure activity LED after PHY reset */
2381 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2382 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2383 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2384 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2385 	}
2386 
2387 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2388 	if (hw->phy_type == e1000_phy_igp) {
2389 		/* disable lplu d3 during driver init */
2390 		ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2391 		if (ret_val) {
2392 			DEBUGOUT("Error Disabling LPLU D3\n");
2393 			return ret_val;
2394 		}
2395 	}
2396 
2397 	/* disable lplu d0 during driver init */
2398 	ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2399 	if (ret_val) {
2400 		DEBUGOUT("Error Disabling LPLU D0\n");
2401 		return ret_val;
2402 	}
2403 	/* Configure mdi-mdix settings */
2404 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2405 	if (ret_val)
2406 		return ret_val;
2407 
2408 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2409 		hw->dsp_config_state = e1000_dsp_config_disabled;
2410 		/* Force MDI for earlier revs of the IGP PHY */
2411 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2412 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2413 		hw->mdix = 1;
2414 
2415 	} else {
2416 		hw->dsp_config_state = e1000_dsp_config_enabled;
2417 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2418 
2419 		switch (hw->mdix) {
2420 		case 1:
2421 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2422 			break;
2423 		case 2:
2424 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2425 			break;
2426 		case 0:
2427 		default:
2428 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2429 			break;
2430 		}
2431 	}
2432 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2433 	if (ret_val)
2434 		return ret_val;
2435 
2436 	/* set auto-master slave resolution settings */
2437 	if (hw->autoneg) {
2438 		e1000_ms_type phy_ms_setting = hw->master_slave;
2439 
2440 		if (hw->ffe_config_state == e1000_ffe_config_active)
2441 			hw->ffe_config_state = e1000_ffe_config_enabled;
2442 
2443 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2444 			hw->dsp_config_state = e1000_dsp_config_enabled;
2445 
2446 		/* when autonegotiation advertisment is only 1000Mbps then we
2447 		  * should disable SmartSpeed and enable Auto MasterSlave
2448 		  * resolution as hardware default. */
2449 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2450 			/* Disable SmartSpeed */
2451 			ret_val = e1000_read_phy_reg(hw,
2452 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2453 			if (ret_val)
2454 				return ret_val;
2455 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2456 			ret_val = e1000_write_phy_reg(hw,
2457 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2458 			if (ret_val)
2459 				return ret_val;
2460 			/* Set auto Master/Slave resolution process */
2461 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2462 					&phy_data);
2463 			if (ret_val)
2464 				return ret_val;
2465 			phy_data &= ~CR_1000T_MS_ENABLE;
2466 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2467 					phy_data);
2468 			if (ret_val)
2469 				return ret_val;
2470 		}
2471 
2472 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2473 		if (ret_val)
2474 			return ret_val;
2475 
2476 		/* load defaults for future use */
2477 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2478 				((phy_data & CR_1000T_MS_VALUE) ?
2479 				e1000_ms_force_master :
2480 				e1000_ms_force_slave) :
2481 				e1000_ms_auto;
2482 
2483 		switch (phy_ms_setting) {
2484 		case e1000_ms_force_master:
2485 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2486 			break;
2487 		case e1000_ms_force_slave:
2488 			phy_data |= CR_1000T_MS_ENABLE;
2489 			phy_data &= ~(CR_1000T_MS_VALUE);
2490 			break;
2491 		case e1000_ms_auto:
2492 			phy_data &= ~CR_1000T_MS_ENABLE;
2493 		default:
2494 			break;
2495 		}
2496 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2497 		if (ret_val)
2498 			return ret_val;
2499 	}
2500 
2501 	return E1000_SUCCESS;
2502 }
2503 
2504 /*****************************************************************************
2505  * This function checks the mode of the firmware.
2506  *
2507  * returns  - TRUE when the mode is IAMT or FALSE.
2508  ****************************************************************************/
2509 boolean_t
e1000_check_mng_mode(struct e1000_hw * hw)2510 e1000_check_mng_mode(struct e1000_hw *hw)
2511 {
2512 	uint32_t fwsm;
2513 	DEBUGFUNC();
2514 
2515 	fwsm = E1000_READ_REG(hw, FWSM);
2516 
2517 	if (hw->mac_type == e1000_ich8lan) {
2518 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2519 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2520 			return TRUE;
2521 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2522 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2523 			return TRUE;
2524 
2525 	return FALSE;
2526 }
2527 
2528 static int32_t
e1000_write_kmrn_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t data)2529 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2530 {
2531 	uint32_t reg_val;
2532 	uint16_t swfw;
2533 	DEBUGFUNC();
2534 
2535 	if ((hw->mac_type == e1000_80003es2lan) &&
2536 		(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2537 		swfw = E1000_SWFW_PHY1_SM;
2538 	} else {
2539 		swfw = E1000_SWFW_PHY0_SM;
2540 	}
2541 	if (e1000_swfw_sync_acquire(hw, swfw))
2542 		return -E1000_ERR_SWFW_SYNC;
2543 
2544 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2545 			& E1000_KUMCTRLSTA_OFFSET) | data;
2546 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2547 	udelay(2);
2548 
2549 	return E1000_SUCCESS;
2550 }
2551 
2552 static int32_t
e1000_read_kmrn_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t * data)2553 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2554 {
2555 	uint32_t reg_val;
2556 	uint16_t swfw;
2557 	DEBUGFUNC();
2558 
2559 	if ((hw->mac_type == e1000_80003es2lan) &&
2560 	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2561 		swfw = E1000_SWFW_PHY1_SM;
2562 	} else {
2563 		swfw = E1000_SWFW_PHY0_SM;
2564 	}
2565 	if (e1000_swfw_sync_acquire(hw, swfw))
2566 		return -E1000_ERR_SWFW_SYNC;
2567 
2568 	/* Write register address */
2569 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2570 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2571 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2572 	udelay(2);
2573 
2574 	/* Read the data returned */
2575 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2576 	*data = (uint16_t)reg_val;
2577 
2578 	return E1000_SUCCESS;
2579 }
2580 
2581 /********************************************************************
2582 * Copper link setup for e1000_phy_gg82563 series.
2583 *
2584 * hw - Struct containing variables accessed by shared code
2585 *********************************************************************/
2586 static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw * hw)2587 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2588 {
2589 	int32_t ret_val;
2590 	uint16_t phy_data;
2591 	uint32_t reg_data;
2592 
2593 	DEBUGFUNC();
2594 
2595 	if (!hw->phy_reset_disable) {
2596 		/* Enable CRS on TX for half-duplex operation. */
2597 		ret_val = e1000_read_phy_reg(hw,
2598 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2599 		if (ret_val)
2600 			return ret_val;
2601 
2602 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2603 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2604 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2605 
2606 		ret_val = e1000_write_phy_reg(hw,
2607 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2608 		if (ret_val)
2609 			return ret_val;
2610 
2611 		/* Options:
2612 		 *   MDI/MDI-X = 0 (default)
2613 		 *   0 - Auto for all speeds
2614 		 *   1 - MDI mode
2615 		 *   2 - MDI-X mode
2616 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2617 		 */
2618 		ret_val = e1000_read_phy_reg(hw,
2619 				GG82563_PHY_SPEC_CTRL, &phy_data);
2620 		if (ret_val)
2621 			return ret_val;
2622 
2623 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2624 
2625 		switch (hw->mdix) {
2626 		case 1:
2627 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2628 			break;
2629 		case 2:
2630 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2631 			break;
2632 		case 0:
2633 		default:
2634 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2635 			break;
2636 		}
2637 
2638 		/* Options:
2639 		 *   disable_polarity_correction = 0 (default)
2640 		 *       Automatic Correction for Reversed Cable Polarity
2641 		 *   0 - Disabled
2642 		 *   1 - Enabled
2643 		 */
2644 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2645 		ret_val = e1000_write_phy_reg(hw,
2646 				GG82563_PHY_SPEC_CTRL, phy_data);
2647 
2648 		if (ret_val)
2649 			return ret_val;
2650 
2651 		/* SW Reset the PHY so all changes take effect */
2652 		ret_val = e1000_phy_reset(hw);
2653 		if (ret_val) {
2654 			DEBUGOUT("Error Resetting the PHY\n");
2655 			return ret_val;
2656 		}
2657 	} /* phy_reset_disable */
2658 
2659 	if (hw->mac_type == e1000_80003es2lan) {
2660 		/* Bypass RX and TX FIFO's */
2661 		ret_val = e1000_write_kmrn_reg(hw,
2662 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2663 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2664 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2665 		if (ret_val)
2666 			return ret_val;
2667 
2668 		ret_val = e1000_read_phy_reg(hw,
2669 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2670 		if (ret_val)
2671 			return ret_val;
2672 
2673 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2674 		ret_val = e1000_write_phy_reg(hw,
2675 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2676 
2677 		if (ret_val)
2678 			return ret_val;
2679 
2680 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2681 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2682 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2683 
2684 		ret_val = e1000_read_phy_reg(hw,
2685 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2686 		if (ret_val)
2687 			return ret_val;
2688 
2689 	/* Do not init these registers when the HW is in IAMT mode, since the
2690 	 * firmware will have already initialized them.  We only initialize
2691 	 * them if the HW is not in IAMT mode.
2692 	 */
2693 		if (e1000_check_mng_mode(hw) == FALSE) {
2694 			/* Enable Electrical Idle on the PHY */
2695 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2696 			ret_val = e1000_write_phy_reg(hw,
2697 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2698 			if (ret_val)
2699 				return ret_val;
2700 
2701 			ret_val = e1000_read_phy_reg(hw,
2702 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2703 			if (ret_val)
2704 				return ret_val;
2705 
2706 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2707 			ret_val = e1000_write_phy_reg(hw,
2708 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2709 
2710 			if (ret_val)
2711 				return ret_val;
2712 		}
2713 
2714 		/* Workaround: Disable padding in Kumeran interface in the MAC
2715 		 * and in the PHY to avoid CRC errors.
2716 		 */
2717 		ret_val = e1000_read_phy_reg(hw,
2718 				GG82563_PHY_INBAND_CTRL, &phy_data);
2719 		if (ret_val)
2720 			return ret_val;
2721 		phy_data |= GG82563_ICR_DIS_PADDING;
2722 		ret_val = e1000_write_phy_reg(hw,
2723 				GG82563_PHY_INBAND_CTRL, phy_data);
2724 		if (ret_val)
2725 			return ret_val;
2726 	}
2727 	return E1000_SUCCESS;
2728 }
2729 
2730 /********************************************************************
2731 * Copper link setup for e1000_phy_m88 series.
2732 *
2733 * hw - Struct containing variables accessed by shared code
2734 *********************************************************************/
2735 static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw * hw)2736 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2737 {
2738 	int32_t ret_val;
2739 	uint16_t phy_data;
2740 
2741 	DEBUGFUNC();
2742 
2743 	if (hw->phy_reset_disable)
2744 		return E1000_SUCCESS;
2745 
2746 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2747 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2748 	if (ret_val)
2749 		return ret_val;
2750 
2751 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2752 
2753 	/* Options:
2754 	 *   MDI/MDI-X = 0 (default)
2755 	 *   0 - Auto for all speeds
2756 	 *   1 - MDI mode
2757 	 *   2 - MDI-X mode
2758 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2759 	 */
2760 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2761 
2762 	switch (hw->mdix) {
2763 	case 1:
2764 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2765 		break;
2766 	case 2:
2767 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2768 		break;
2769 	case 3:
2770 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2771 		break;
2772 	case 0:
2773 	default:
2774 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2775 		break;
2776 	}
2777 
2778 	/* Options:
2779 	 *   disable_polarity_correction = 0 (default)
2780 	 *       Automatic Correction for Reversed Cable Polarity
2781 	 *   0 - Disabled
2782 	 *   1 - Enabled
2783 	 */
2784 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2785 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2786 	if (ret_val)
2787 		return ret_val;
2788 
2789 	if (hw->phy_revision < M88E1011_I_REV_4) {
2790 		/* Force TX_CLK in the Extended PHY Specific Control Register
2791 		 * to 25MHz clock.
2792 		 */
2793 		ret_val = e1000_read_phy_reg(hw,
2794 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2795 		if (ret_val)
2796 			return ret_val;
2797 
2798 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2799 
2800 		if ((hw->phy_revision == E1000_REVISION_2) &&
2801 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2802 			/* Vidalia Phy, set the downshift counter to 5x */
2803 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2804 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2805 			ret_val = e1000_write_phy_reg(hw,
2806 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2807 			if (ret_val)
2808 				return ret_val;
2809 		} else {
2810 			/* Configure Master and Slave downshift values */
2811 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2812 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2813 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2814 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2815 			ret_val = e1000_write_phy_reg(hw,
2816 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2817 			if (ret_val)
2818 				return ret_val;
2819 		}
2820 	}
2821 
2822 	/* SW Reset the PHY so all changes take effect */
2823 	ret_val = e1000_phy_reset(hw);
2824 	if (ret_val) {
2825 		DEBUGOUT("Error Resetting the PHY\n");
2826 		return ret_val;
2827 	}
2828 
2829 	return E1000_SUCCESS;
2830 }
2831 
2832 /********************************************************************
2833 * Setup auto-negotiation and flow control advertisements,
2834 * and then perform auto-negotiation.
2835 *
2836 * hw - Struct containing variables accessed by shared code
2837 *********************************************************************/
2838 static int32_t
e1000_copper_link_autoneg(struct e1000_hw * hw)2839 e1000_copper_link_autoneg(struct e1000_hw *hw)
2840 {
2841 	int32_t ret_val;
2842 	uint16_t phy_data;
2843 
2844 	DEBUGFUNC();
2845 
2846 	/* Perform some bounds checking on the hw->autoneg_advertised
2847 	 * parameter.  If this variable is zero, then set it to the default.
2848 	 */
2849 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2850 
2851 	/* If autoneg_advertised is zero, we assume it was not defaulted
2852 	 * by the calling code so we set to advertise full capability.
2853 	 */
2854 	if (hw->autoneg_advertised == 0)
2855 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2856 
2857 	/* IFE phy only supports 10/100 */
2858 	if (hw->phy_type == e1000_phy_ife)
2859 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2860 
2861 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2862 	ret_val = e1000_phy_setup_autoneg(hw);
2863 	if (ret_val) {
2864 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2865 		return ret_val;
2866 	}
2867 	DEBUGOUT("Restarting Auto-Neg\n");
2868 
2869 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2870 	 * the Auto Neg Restart bit in the PHY control register.
2871 	 */
2872 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2873 	if (ret_val)
2874 		return ret_val;
2875 
2876 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2877 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2878 	if (ret_val)
2879 		return ret_val;
2880 
2881 	/* Does the user want to wait for Auto-Neg to complete here, or
2882 	 * check at a later time (for example, callback routine).
2883 	 */
2884 	/* If we do not wait for autonegtation to complete I
2885 	 * do not see a valid link status.
2886 	 * wait_autoneg_complete = 1 .
2887 	 */
2888 	if (hw->wait_autoneg_complete) {
2889 		ret_val = e1000_wait_autoneg(hw);
2890 		if (ret_val) {
2891 			DEBUGOUT("Error while waiting for autoneg"
2892 					"to complete\n");
2893 			return ret_val;
2894 		}
2895 	}
2896 
2897 	hw->get_link_status = TRUE;
2898 
2899 	return E1000_SUCCESS;
2900 }
2901 
2902 /******************************************************************************
2903 * Config the MAC and the PHY after link is up.
2904 *   1) Set up the MAC to the current PHY speed/duplex
2905 *      if we are on 82543.  If we
2906 *      are on newer silicon, we only need to configure
2907 *      collision distance in the Transmit Control Register.
2908 *   2) Set up flow control on the MAC to that established with
2909 *      the link partner.
2910 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2911 *
2912 * hw - Struct containing variables accessed by shared code
2913 ******************************************************************************/
2914 static int32_t
e1000_copper_link_postconfig(struct e1000_hw * hw)2915 e1000_copper_link_postconfig(struct e1000_hw *hw)
2916 {
2917 	int32_t ret_val;
2918 	DEBUGFUNC();
2919 
2920 	if (hw->mac_type >= e1000_82544) {
2921 		e1000_config_collision_dist(hw);
2922 	} else {
2923 		ret_val = e1000_config_mac_to_phy(hw);
2924 		if (ret_val) {
2925 			DEBUGOUT("Error configuring MAC to PHY settings\n");
2926 			return ret_val;
2927 		}
2928 	}
2929 	ret_val = e1000_config_fc_after_link_up(hw);
2930 	if (ret_val) {
2931 		DEBUGOUT("Error Configuring Flow Control\n");
2932 		return ret_val;
2933 	}
2934 	return E1000_SUCCESS;
2935 }
2936 
2937 /******************************************************************************
2938 * Detects which PHY is present and setup the speed and duplex
2939 *
2940 * hw - Struct containing variables accessed by shared code
2941 ******************************************************************************/
2942 static int
e1000_setup_copper_link(struct eth_device * nic)2943 e1000_setup_copper_link(struct eth_device *nic)
2944 {
2945 	struct e1000_hw *hw = nic->priv;
2946 	int32_t ret_val;
2947 	uint16_t i;
2948 	uint16_t phy_data;
2949 	uint16_t reg_data;
2950 
2951 	DEBUGFUNC();
2952 
2953 	switch (hw->mac_type) {
2954 	case e1000_80003es2lan:
2955 	case e1000_ich8lan:
2956 		/* Set the mac to wait the maximum time between each
2957 		 * iteration and increase the max iterations when
2958 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2959 		ret_val = e1000_write_kmrn_reg(hw,
2960 				GG82563_REG(0x34, 4), 0xFFFF);
2961 		if (ret_val)
2962 			return ret_val;
2963 		ret_val = e1000_read_kmrn_reg(hw,
2964 				GG82563_REG(0x34, 9), &reg_data);
2965 		if (ret_val)
2966 			return ret_val;
2967 		reg_data |= 0x3F;
2968 		ret_val = e1000_write_kmrn_reg(hw,
2969 				GG82563_REG(0x34, 9), reg_data);
2970 		if (ret_val)
2971 			return ret_val;
2972 	default:
2973 		break;
2974 	}
2975 
2976 	/* Check if it is a valid PHY and set PHY mode if necessary. */
2977 	ret_val = e1000_copper_link_preconfig(hw);
2978 	if (ret_val)
2979 		return ret_val;
2980 	switch (hw->mac_type) {
2981 	case e1000_80003es2lan:
2982 		/* Kumeran registers are written-only */
2983 		reg_data =
2984 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2985 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2986 		ret_val = e1000_write_kmrn_reg(hw,
2987 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2988 		if (ret_val)
2989 			return ret_val;
2990 		break;
2991 	default:
2992 		break;
2993 	}
2994 
2995 	if (hw->phy_type == e1000_phy_igp ||
2996 		hw->phy_type == e1000_phy_igp_3 ||
2997 		hw->phy_type == e1000_phy_igp_2) {
2998 		ret_val = e1000_copper_link_igp_setup(hw);
2999 		if (ret_val)
3000 			return ret_val;
3001 	} else if (hw->phy_type == e1000_phy_m88) {
3002 		ret_val = e1000_copper_link_mgp_setup(hw);
3003 		if (ret_val)
3004 			return ret_val;
3005 	} else if (hw->phy_type == e1000_phy_gg82563) {
3006 		ret_val = e1000_copper_link_ggp_setup(hw);
3007 		if (ret_val)
3008 			return ret_val;
3009 	}
3010 
3011 	/* always auto */
3012 	/* Setup autoneg and flow control advertisement
3013 	  * and perform autonegotiation */
3014 	ret_val = e1000_copper_link_autoneg(hw);
3015 	if (ret_val)
3016 		return ret_val;
3017 
3018 	/* Check link status. Wait up to 100 microseconds for link to become
3019 	 * valid.
3020 	 */
3021 	for (i = 0; i < 10; i++) {
3022 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3023 		if (ret_val)
3024 			return ret_val;
3025 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3026 		if (ret_val)
3027 			return ret_val;
3028 
3029 		if (phy_data & MII_SR_LINK_STATUS) {
3030 			/* Config the MAC and PHY after link is up */
3031 			ret_val = e1000_copper_link_postconfig(hw);
3032 			if (ret_val)
3033 				return ret_val;
3034 
3035 			DEBUGOUT("Valid link established!!!\n");
3036 			return E1000_SUCCESS;
3037 		}
3038 		udelay(10);
3039 	}
3040 
3041 	DEBUGOUT("Unable to establish link!!!\n");
3042 	return E1000_SUCCESS;
3043 }
3044 
3045 /******************************************************************************
3046 * Configures PHY autoneg and flow control advertisement settings
3047 *
3048 * hw - Struct containing variables accessed by shared code
3049 ******************************************************************************/
3050 int32_t
e1000_phy_setup_autoneg(struct e1000_hw * hw)3051 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3052 {
3053 	int32_t ret_val;
3054 	uint16_t mii_autoneg_adv_reg;
3055 	uint16_t mii_1000t_ctrl_reg;
3056 
3057 	DEBUGFUNC();
3058 
3059 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3060 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3061 	if (ret_val)
3062 		return ret_val;
3063 
3064 	if (hw->phy_type != e1000_phy_ife) {
3065 		/* Read the MII 1000Base-T Control Register (Address 9). */
3066 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3067 				&mii_1000t_ctrl_reg);
3068 		if (ret_val)
3069 			return ret_val;
3070 	} else
3071 		mii_1000t_ctrl_reg = 0;
3072 
3073 	/* Need to parse both autoneg_advertised and fc and set up
3074 	 * the appropriate PHY registers.  First we will parse for
3075 	 * autoneg_advertised software override.  Since we can advertise
3076 	 * a plethora of combinations, we need to check each bit
3077 	 * individually.
3078 	 */
3079 
3080 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3081 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3082 	 * the  1000Base-T Control Register (Address 9).
3083 	 */
3084 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3085 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3086 
3087 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3088 
3089 	/* Do we want to advertise 10 Mb Half Duplex? */
3090 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3091 		DEBUGOUT("Advertise 10mb Half duplex\n");
3092 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3093 	}
3094 
3095 	/* Do we want to advertise 10 Mb Full Duplex? */
3096 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3097 		DEBUGOUT("Advertise 10mb Full duplex\n");
3098 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3099 	}
3100 
3101 	/* Do we want to advertise 100 Mb Half Duplex? */
3102 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3103 		DEBUGOUT("Advertise 100mb Half duplex\n");
3104 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3105 	}
3106 
3107 	/* Do we want to advertise 100 Mb Full Duplex? */
3108 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3109 		DEBUGOUT("Advertise 100mb Full duplex\n");
3110 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3111 	}
3112 
3113 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3114 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3115 		DEBUGOUT
3116 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3117 	}
3118 
3119 	/* Do we want to advertise 1000 Mb Full Duplex? */
3120 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3121 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3122 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3123 	}
3124 
3125 	/* Check for a software override of the flow control settings, and
3126 	 * setup the PHY advertisement registers accordingly.  If
3127 	 * auto-negotiation is enabled, then software will have to set the
3128 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3129 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3130 	 *
3131 	 * The possible values of the "fc" parameter are:
3132 	 *	0:  Flow control is completely disabled
3133 	 *	1:  Rx flow control is enabled (we can receive pause frames
3134 	 *	    but not send pause frames).
3135 	 *	2:  Tx flow control is enabled (we can send pause frames
3136 	 *	    but we do not support receiving pause frames).
3137 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3138 	 *  other:  No software override.  The flow control configuration
3139 	 *	    in the EEPROM is used.
3140 	 */
3141 	switch (hw->fc) {
3142 	case e1000_fc_none:	/* 0 */
3143 		/* Flow control (RX & TX) is completely disabled by a
3144 		 * software over-ride.
3145 		 */
3146 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3147 		break;
3148 	case e1000_fc_rx_pause:	/* 1 */
3149 		/* RX Flow control is enabled, and TX Flow control is
3150 		 * disabled, by a software over-ride.
3151 		 */
3152 		/* Since there really isn't a way to advertise that we are
3153 		 * capable of RX Pause ONLY, we will advertise that we
3154 		 * support both symmetric and asymmetric RX PAUSE.  Later
3155 		 * (in e1000_config_fc_after_link_up) we will disable the
3156 		 *hw's ability to send PAUSE frames.
3157 		 */
3158 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3159 		break;
3160 	case e1000_fc_tx_pause:	/* 2 */
3161 		/* TX Flow control is enabled, and RX Flow control is
3162 		 * disabled, by a software over-ride.
3163 		 */
3164 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3165 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3166 		break;
3167 	case e1000_fc_full:	/* 3 */
3168 		/* Flow control (both RX and TX) is enabled by a software
3169 		 * over-ride.
3170 		 */
3171 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3172 		break;
3173 	default:
3174 		DEBUGOUT("Flow control param set incorrectly\n");
3175 		return -E1000_ERR_CONFIG;
3176 	}
3177 
3178 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3179 	if (ret_val)
3180 		return ret_val;
3181 
3182 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3183 
3184 	if (hw->phy_type != e1000_phy_ife) {
3185 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3186 				mii_1000t_ctrl_reg);
3187 		if (ret_val)
3188 			return ret_val;
3189 	}
3190 
3191 	return E1000_SUCCESS;
3192 }
3193 
3194 /******************************************************************************
3195 * Sets the collision distance in the Transmit Control register
3196 *
3197 * hw - Struct containing variables accessed by shared code
3198 *
3199 * Link should have been established previously. Reads the speed and duplex
3200 * information from the Device Status register.
3201 ******************************************************************************/
3202 static void
e1000_config_collision_dist(struct e1000_hw * hw)3203 e1000_config_collision_dist(struct e1000_hw *hw)
3204 {
3205 	uint32_t tctl, coll_dist;
3206 
3207 	DEBUGFUNC();
3208 
3209 	if (hw->mac_type < e1000_82543)
3210 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3211 	else
3212 		coll_dist = E1000_COLLISION_DISTANCE;
3213 
3214 	tctl = E1000_READ_REG(hw, TCTL);
3215 
3216 	tctl &= ~E1000_TCTL_COLD;
3217 	tctl |= coll_dist << E1000_COLD_SHIFT;
3218 
3219 	E1000_WRITE_REG(hw, TCTL, tctl);
3220 	E1000_WRITE_FLUSH(hw);
3221 }
3222 
3223 /******************************************************************************
3224 * Sets MAC speed and duplex settings to reflect the those in the PHY
3225 *
3226 * hw - Struct containing variables accessed by shared code
3227 * mii_reg - data to write to the MII control register
3228 *
3229 * The contents of the PHY register containing the needed information need to
3230 * be passed in.
3231 ******************************************************************************/
3232 static int
e1000_config_mac_to_phy(struct e1000_hw * hw)3233 e1000_config_mac_to_phy(struct e1000_hw *hw)
3234 {
3235 	uint32_t ctrl;
3236 	uint16_t phy_data;
3237 
3238 	DEBUGFUNC();
3239 
3240 	/* Read the Device Control Register and set the bits to Force Speed
3241 	 * and Duplex.
3242 	 */
3243 	ctrl = E1000_READ_REG(hw, CTRL);
3244 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3245 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3246 
3247 	/* Set up duplex in the Device Control and Transmit Control
3248 	 * registers depending on negotiated values.
3249 	 */
3250 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3251 		DEBUGOUT("PHY Read Error\n");
3252 		return -E1000_ERR_PHY;
3253 	}
3254 	if (phy_data & M88E1000_PSSR_DPLX)
3255 		ctrl |= E1000_CTRL_FD;
3256 	else
3257 		ctrl &= ~E1000_CTRL_FD;
3258 
3259 	e1000_config_collision_dist(hw);
3260 
3261 	/* Set up speed in the Device Control register depending on
3262 	 * negotiated values.
3263 	 */
3264 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3265 		ctrl |= E1000_CTRL_SPD_1000;
3266 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3267 		ctrl |= E1000_CTRL_SPD_100;
3268 	/* Write the configured values back to the Device Control Reg. */
3269 	E1000_WRITE_REG(hw, CTRL, ctrl);
3270 	return 0;
3271 }
3272 
3273 /******************************************************************************
3274  * Forces the MAC's flow control settings.
3275  *
3276  * hw - Struct containing variables accessed by shared code
3277  *
3278  * Sets the TFCE and RFCE bits in the device control register to reflect
3279  * the adapter settings. TFCE and RFCE need to be explicitly set by
3280  * software when a Copper PHY is used because autonegotiation is managed
3281  * by the PHY rather than the MAC. Software must also configure these
3282  * bits when link is forced on a fiber connection.
3283  *****************************************************************************/
3284 static int
e1000_force_mac_fc(struct e1000_hw * hw)3285 e1000_force_mac_fc(struct e1000_hw *hw)
3286 {
3287 	uint32_t ctrl;
3288 
3289 	DEBUGFUNC();
3290 
3291 	/* Get the current configuration of the Device Control Register */
3292 	ctrl = E1000_READ_REG(hw, CTRL);
3293 
3294 	/* Because we didn't get link via the internal auto-negotiation
3295 	 * mechanism (we either forced link or we got link via PHY
3296 	 * auto-neg), we have to manually enable/disable transmit an
3297 	 * receive flow control.
3298 	 *
3299 	 * The "Case" statement below enables/disable flow control
3300 	 * according to the "hw->fc" parameter.
3301 	 *
3302 	 * The possible values of the "fc" parameter are:
3303 	 *	0:  Flow control is completely disabled
3304 	 *	1:  Rx flow control is enabled (we can receive pause
3305 	 *	    frames but not send pause frames).
3306 	 *	2:  Tx flow control is enabled (we can send pause frames
3307 	 *	    frames but we do not receive pause frames).
3308 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3309 	 *  other:  No other values should be possible at this point.
3310 	 */
3311 
3312 	switch (hw->fc) {
3313 	case e1000_fc_none:
3314 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3315 		break;
3316 	case e1000_fc_rx_pause:
3317 		ctrl &= (~E1000_CTRL_TFCE);
3318 		ctrl |= E1000_CTRL_RFCE;
3319 		break;
3320 	case e1000_fc_tx_pause:
3321 		ctrl &= (~E1000_CTRL_RFCE);
3322 		ctrl |= E1000_CTRL_TFCE;
3323 		break;
3324 	case e1000_fc_full:
3325 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3326 		break;
3327 	default:
3328 		DEBUGOUT("Flow control param set incorrectly\n");
3329 		return -E1000_ERR_CONFIG;
3330 	}
3331 
3332 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3333 	if (hw->mac_type == e1000_82542_rev2_0)
3334 		ctrl &= (~E1000_CTRL_TFCE);
3335 
3336 	E1000_WRITE_REG(hw, CTRL, ctrl);
3337 	return 0;
3338 }
3339 
3340 /******************************************************************************
3341  * Configures flow control settings after link is established
3342  *
3343  * hw - Struct containing variables accessed by shared code
3344  *
3345  * Should be called immediately after a valid link has been established.
3346  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3347  * and autonegotiation is enabled, the MAC flow control settings will be set
3348  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3349  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3350  *****************************************************************************/
3351 static int32_t
e1000_config_fc_after_link_up(struct e1000_hw * hw)3352 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3353 {
3354 	int32_t ret_val;
3355 	uint16_t mii_status_reg;
3356 	uint16_t mii_nway_adv_reg;
3357 	uint16_t mii_nway_lp_ability_reg;
3358 	uint16_t speed;
3359 	uint16_t duplex;
3360 
3361 	DEBUGFUNC();
3362 
3363 	/* Check for the case where we have fiber media and auto-neg failed
3364 	 * so we had to force link.  In this case, we need to force the
3365 	 * configuration of the MAC to match the "fc" parameter.
3366 	 */
3367 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3368 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3369 		&& (hw->autoneg_failed))
3370 		|| ((hw->media_type == e1000_media_type_copper)
3371 		&& (!hw->autoneg))) {
3372 		ret_val = e1000_force_mac_fc(hw);
3373 		if (ret_val < 0) {
3374 			DEBUGOUT("Error forcing flow control settings\n");
3375 			return ret_val;
3376 		}
3377 	}
3378 
3379 	/* Check for the case where we have copper media and auto-neg is
3380 	 * enabled.  In this case, we need to check and see if Auto-Neg
3381 	 * has completed, and if so, how the PHY and link partner has
3382 	 * flow control configured.
3383 	 */
3384 	if (hw->media_type == e1000_media_type_copper) {
3385 		/* Read the MII Status Register and check to see if AutoNeg
3386 		 * has completed.  We read this twice because this reg has
3387 		 * some "sticky" (latched) bits.
3388 		 */
3389 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3390 			DEBUGOUT("PHY Read Error \n");
3391 			return -E1000_ERR_PHY;
3392 		}
3393 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3394 			DEBUGOUT("PHY Read Error \n");
3395 			return -E1000_ERR_PHY;
3396 		}
3397 
3398 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3399 			/* The AutoNeg process has completed, so we now need to
3400 			 * read both the Auto Negotiation Advertisement Register
3401 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3402 			 * Register (Address 5) to determine how flow control was
3403 			 * negotiated.
3404 			 */
3405 			if (e1000_read_phy_reg
3406 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3407 				DEBUGOUT("PHY Read Error\n");
3408 				return -E1000_ERR_PHY;
3409 			}
3410 			if (e1000_read_phy_reg
3411 			    (hw, PHY_LP_ABILITY,
3412 			     &mii_nway_lp_ability_reg) < 0) {
3413 				DEBUGOUT("PHY Read Error\n");
3414 				return -E1000_ERR_PHY;
3415 			}
3416 
3417 			/* Two bits in the Auto Negotiation Advertisement Register
3418 			 * (Address 4) and two bits in the Auto Negotiation Base
3419 			 * Page Ability Register (Address 5) determine flow control
3420 			 * for both the PHY and the link partner.  The following
3421 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3422 			 * 1999, describes these PAUSE resolution bits and how flow
3423 			 * control is determined based upon these settings.
3424 			 * NOTE:  DC = Don't Care
3425 			 *
3426 			 *   LOCAL DEVICE  |   LINK PARTNER
3427 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3428 			 *-------|---------|-------|---------|--------------------
3429 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3430 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3431 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3432 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3433 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3434 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3435 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3436 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3437 			 *
3438 			 */
3439 			/* Are both PAUSE bits set to 1?  If so, this implies
3440 			 * Symmetric Flow Control is enabled at both ends.  The
3441 			 * ASM_DIR bits are irrelevant per the spec.
3442 			 *
3443 			 * For Symmetric Flow Control:
3444 			 *
3445 			 *   LOCAL DEVICE  |   LINK PARTNER
3446 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3447 			 *-------|---------|-------|---------|--------------------
3448 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3449 			 *
3450 			 */
3451 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3452 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3453 				/* Now we need to check if the user selected RX ONLY
3454 				 * of pause frames.  In this case, we had to advertise
3455 				 * FULL flow control because we could not advertise RX
3456 				 * ONLY. Hence, we must now check to see if we need to
3457 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3458 				 */
3459 				if (hw->original_fc == e1000_fc_full) {
3460 					hw->fc = e1000_fc_full;
3461 					DEBUGOUT("Flow Control = FULL.\r\n");
3462 				} else {
3463 					hw->fc = e1000_fc_rx_pause;
3464 					DEBUGOUT
3465 					    ("Flow Control = RX PAUSE frames only.\r\n");
3466 				}
3467 			}
3468 			/* For receiving PAUSE frames ONLY.
3469 			 *
3470 			 *   LOCAL DEVICE  |   LINK PARTNER
3471 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3472 			 *-------|---------|-------|---------|--------------------
3473 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3474 			 *
3475 			 */
3476 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3477 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3478 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3479 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3480 			{
3481 				hw->fc = e1000_fc_tx_pause;
3482 				DEBUGOUT
3483 				    ("Flow Control = TX PAUSE frames only.\r\n");
3484 			}
3485 			/* For transmitting PAUSE frames ONLY.
3486 			 *
3487 			 *   LOCAL DEVICE  |   LINK PARTNER
3488 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3489 			 *-------|---------|-------|---------|--------------------
3490 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3491 			 *
3492 			 */
3493 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3494 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3495 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3496 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3497 			{
3498 				hw->fc = e1000_fc_rx_pause;
3499 				DEBUGOUT
3500 				    ("Flow Control = RX PAUSE frames only.\r\n");
3501 			}
3502 			/* Per the IEEE spec, at this point flow control should be
3503 			 * disabled.  However, we want to consider that we could
3504 			 * be connected to a legacy switch that doesn't advertise
3505 			 * desired flow control, but can be forced on the link
3506 			 * partner.  So if we advertised no flow control, that is
3507 			 * what we will resolve to.  If we advertised some kind of
3508 			 * receive capability (Rx Pause Only or Full Flow Control)
3509 			 * and the link partner advertised none, we will configure
3510 			 * ourselves to enable Rx Flow Control only.  We can do
3511 			 * this safely for two reasons:  If the link partner really
3512 			 * didn't want flow control enabled, and we enable Rx, no
3513 			 * harm done since we won't be receiving any PAUSE frames
3514 			 * anyway.  If the intent on the link partner was to have
3515 			 * flow control enabled, then by us enabling RX only, we
3516 			 * can at least receive pause frames and process them.
3517 			 * This is a good idea because in most cases, since we are
3518 			 * predominantly a server NIC, more times than not we will
3519 			 * be asked to delay transmission of packets than asking
3520 			 * our link partner to pause transmission of frames.
3521 			 */
3522 			else if (hw->original_fc == e1000_fc_none ||
3523 				 hw->original_fc == e1000_fc_tx_pause) {
3524 				hw->fc = e1000_fc_none;
3525 				DEBUGOUT("Flow Control = NONE.\r\n");
3526 			} else {
3527 				hw->fc = e1000_fc_rx_pause;
3528 				DEBUGOUT
3529 				    ("Flow Control = RX PAUSE frames only.\r\n");
3530 			}
3531 
3532 			/* Now we need to do one last check...	If we auto-
3533 			 * negotiated to HALF DUPLEX, flow control should not be
3534 			 * enabled per IEEE 802.3 spec.
3535 			 */
3536 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3537 
3538 			if (duplex == HALF_DUPLEX)
3539 				hw->fc = e1000_fc_none;
3540 
3541 			/* Now we call a subroutine to actually force the MAC
3542 			 * controller to use the correct flow control settings.
3543 			 */
3544 			ret_val = e1000_force_mac_fc(hw);
3545 			if (ret_val < 0) {
3546 				DEBUGOUT
3547 				    ("Error forcing flow control settings\n");
3548 				return ret_val;
3549 			}
3550 		} else {
3551 			DEBUGOUT
3552 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3553 		}
3554 	}
3555 	return E1000_SUCCESS;
3556 }
3557 
3558 /******************************************************************************
3559  * Checks to see if the link status of the hardware has changed.
3560  *
3561  * hw - Struct containing variables accessed by shared code
3562  *
3563  * Called by any function that needs to check the link status of the adapter.
3564  *****************************************************************************/
3565 static int
e1000_check_for_link(struct eth_device * nic)3566 e1000_check_for_link(struct eth_device *nic)
3567 {
3568 	struct e1000_hw *hw = nic->priv;
3569 	uint32_t rxcw;
3570 	uint32_t ctrl;
3571 	uint32_t status;
3572 	uint32_t rctl;
3573 	uint32_t signal;
3574 	int32_t ret_val;
3575 	uint16_t phy_data;
3576 	uint16_t lp_capability;
3577 
3578 	DEBUGFUNC();
3579 
3580 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3581 	 * set when the optics detect a signal. On older adapters, it will be
3582 	 * cleared when there is a signal
3583 	 */
3584 	ctrl = E1000_READ_REG(hw, CTRL);
3585 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3586 		signal = E1000_CTRL_SWDPIN1;
3587 	else
3588 		signal = 0;
3589 
3590 	status = E1000_READ_REG(hw, STATUS);
3591 	rxcw = E1000_READ_REG(hw, RXCW);
3592 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3593 
3594 	/* If we have a copper PHY then we only want to go out to the PHY
3595 	 * registers to see if Auto-Neg has completed and/or if our link
3596 	 * status has changed.	The get_link_status flag will be set if we
3597 	 * receive a Link Status Change interrupt or we have Rx Sequence
3598 	 * Errors.
3599 	 */
3600 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3601 		/* First we want to see if the MII Status Register reports
3602 		 * link.  If so, then we want to get the current speed/duplex
3603 		 * of the PHY.
3604 		 * Read the register twice since the link bit is sticky.
3605 		 */
3606 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3607 			DEBUGOUT("PHY Read Error\n");
3608 			return -E1000_ERR_PHY;
3609 		}
3610 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3611 			DEBUGOUT("PHY Read Error\n");
3612 			return -E1000_ERR_PHY;
3613 		}
3614 
3615 		if (phy_data & MII_SR_LINK_STATUS) {
3616 			hw->get_link_status = FALSE;
3617 		} else {
3618 			/* No link detected */
3619 			return -E1000_ERR_NOLINK;
3620 		}
3621 
3622 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3623 		 * have Si on board that is 82544 or newer, Auto
3624 		 * Speed Detection takes care of MAC speed/duplex
3625 		 * configuration.  So we only need to configure Collision
3626 		 * Distance in the MAC.  Otherwise, we need to force
3627 		 * speed/duplex on the MAC to the current PHY speed/duplex
3628 		 * settings.
3629 		 */
3630 		if (hw->mac_type >= e1000_82544)
3631 			e1000_config_collision_dist(hw);
3632 		else {
3633 			ret_val = e1000_config_mac_to_phy(hw);
3634 			if (ret_val < 0) {
3635 				DEBUGOUT
3636 				    ("Error configuring MAC to PHY settings\n");
3637 				return ret_val;
3638 			}
3639 		}
3640 
3641 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3642 		 * need to restore the desired flow control settings because we may
3643 		 * have had to re-autoneg with a different link partner.
3644 		 */
3645 		ret_val = e1000_config_fc_after_link_up(hw);
3646 		if (ret_val < 0) {
3647 			DEBUGOUT("Error configuring flow control\n");
3648 			return ret_val;
3649 		}
3650 
3651 		/* At this point we know that we are on copper and we have
3652 		 * auto-negotiated link.  These are conditions for checking the link
3653 		 * parter capability register.	We use the link partner capability to
3654 		 * determine if TBI Compatibility needs to be turned on or off.  If
3655 		 * the link partner advertises any speed in addition to Gigabit, then
3656 		 * we assume that they are GMII-based, and TBI compatibility is not
3657 		 * needed. If no other speeds are advertised, we assume the link
3658 		 * partner is TBI-based, and we turn on TBI Compatibility.
3659 		 */
3660 		if (hw->tbi_compatibility_en) {
3661 			if (e1000_read_phy_reg
3662 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3663 				DEBUGOUT("PHY Read Error\n");
3664 				return -E1000_ERR_PHY;
3665 			}
3666 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3667 					     NWAY_LPAR_10T_FD_CAPS |
3668 					     NWAY_LPAR_100TX_HD_CAPS |
3669 					     NWAY_LPAR_100TX_FD_CAPS |
3670 					     NWAY_LPAR_100T4_CAPS)) {
3671 				/* If our link partner advertises anything in addition to
3672 				 * gigabit, we do not need to enable TBI compatibility.
3673 				 */
3674 				if (hw->tbi_compatibility_on) {
3675 					/* If we previously were in the mode, turn it off. */
3676 					rctl = E1000_READ_REG(hw, RCTL);
3677 					rctl &= ~E1000_RCTL_SBP;
3678 					E1000_WRITE_REG(hw, RCTL, rctl);
3679 					hw->tbi_compatibility_on = FALSE;
3680 				}
3681 			} else {
3682 				/* If TBI compatibility is was previously off, turn it on. For
3683 				 * compatibility with a TBI link partner, we will store bad
3684 				 * packets. Some frames have an additional byte on the end and
3685 				 * will look like CRC errors to to the hardware.
3686 				 */
3687 				if (!hw->tbi_compatibility_on) {
3688 					hw->tbi_compatibility_on = TRUE;
3689 					rctl = E1000_READ_REG(hw, RCTL);
3690 					rctl |= E1000_RCTL_SBP;
3691 					E1000_WRITE_REG(hw, RCTL, rctl);
3692 				}
3693 			}
3694 		}
3695 	}
3696 	/* If we don't have link (auto-negotiation failed or link partner cannot
3697 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3698 	 * link partner is not trying to auto-negotiate with us (we are receiving
3699 	 * idles or data), we need to force link up. We also need to give
3700 	 * auto-negotiation time to complete, in case the cable was just plugged
3701 	 * in. The autoneg_failed flag does this.
3702 	 */
3703 	else if ((hw->media_type == e1000_media_type_fiber) &&
3704 		 (!(status & E1000_STATUS_LU)) &&
3705 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3706 		 (!(rxcw & E1000_RXCW_C))) {
3707 		if (hw->autoneg_failed == 0) {
3708 			hw->autoneg_failed = 1;
3709 			return 0;
3710 		}
3711 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3712 
3713 		/* Disable auto-negotiation in the TXCW register */
3714 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3715 
3716 		/* Force link-up and also force full-duplex. */
3717 		ctrl = E1000_READ_REG(hw, CTRL);
3718 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3719 		E1000_WRITE_REG(hw, CTRL, ctrl);
3720 
3721 		/* Configure Flow Control after forcing link up. */
3722 		ret_val = e1000_config_fc_after_link_up(hw);
3723 		if (ret_val < 0) {
3724 			DEBUGOUT("Error configuring flow control\n");
3725 			return ret_val;
3726 		}
3727 	}
3728 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3729 	 * auto-negotiation in the TXCW register and disable forced link in the
3730 	 * Device Control register in an attempt to auto-negotiate with our link
3731 	 * partner.
3732 	 */
3733 	else if ((hw->media_type == e1000_media_type_fiber) &&
3734 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3735 		DEBUGOUT
3736 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3737 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3738 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3739 	}
3740 	return 0;
3741 }
3742 
3743 /******************************************************************************
3744 * Configure the MAC-to-PHY interface for 10/100Mbps
3745 *
3746 * hw - Struct containing variables accessed by shared code
3747 ******************************************************************************/
3748 static int32_t
e1000_configure_kmrn_for_10_100(struct e1000_hw * hw,uint16_t duplex)3749 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3750 {
3751 	int32_t ret_val = E1000_SUCCESS;
3752 	uint32_t tipg;
3753 	uint16_t reg_data;
3754 
3755 	DEBUGFUNC();
3756 
3757 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3758 	ret_val = e1000_write_kmrn_reg(hw,
3759 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3760 	if (ret_val)
3761 		return ret_val;
3762 
3763 	/* Configure Transmit Inter-Packet Gap */
3764 	tipg = E1000_READ_REG(hw, TIPG);
3765 	tipg &= ~E1000_TIPG_IPGT_MASK;
3766 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3767 	E1000_WRITE_REG(hw, TIPG, tipg);
3768 
3769 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3770 
3771 	if (ret_val)
3772 		return ret_val;
3773 
3774 	if (duplex == HALF_DUPLEX)
3775 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3776 	else
3777 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3778 
3779 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3780 
3781 	return ret_val;
3782 }
3783 
3784 static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw * hw)3785 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3786 {
3787 	int32_t ret_val = E1000_SUCCESS;
3788 	uint16_t reg_data;
3789 	uint32_t tipg;
3790 
3791 	DEBUGFUNC();
3792 
3793 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3794 	ret_val = e1000_write_kmrn_reg(hw,
3795 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3796 	if (ret_val)
3797 		return ret_val;
3798 
3799 	/* Configure Transmit Inter-Packet Gap */
3800 	tipg = E1000_READ_REG(hw, TIPG);
3801 	tipg &= ~E1000_TIPG_IPGT_MASK;
3802 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3803 	E1000_WRITE_REG(hw, TIPG, tipg);
3804 
3805 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3806 
3807 	if (ret_val)
3808 		return ret_val;
3809 
3810 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3811 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3812 
3813 	return ret_val;
3814 }
3815 
3816 /******************************************************************************
3817  * Detects the current speed and duplex settings of the hardware.
3818  *
3819  * hw - Struct containing variables accessed by shared code
3820  * speed - Speed of the connection
3821  * duplex - Duplex setting of the connection
3822  *****************************************************************************/
3823 static int
e1000_get_speed_and_duplex(struct e1000_hw * hw,uint16_t * speed,uint16_t * duplex)3824 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3825 		uint16_t *duplex)
3826 {
3827 	uint32_t status;
3828 	int32_t ret_val;
3829 	uint16_t phy_data;
3830 
3831 	DEBUGFUNC();
3832 
3833 	if (hw->mac_type >= e1000_82543) {
3834 		status = E1000_READ_REG(hw, STATUS);
3835 		if (status & E1000_STATUS_SPEED_1000) {
3836 			*speed = SPEED_1000;
3837 			DEBUGOUT("1000 Mbs, ");
3838 		} else if (status & E1000_STATUS_SPEED_100) {
3839 			*speed = SPEED_100;
3840 			DEBUGOUT("100 Mbs, ");
3841 		} else {
3842 			*speed = SPEED_10;
3843 			DEBUGOUT("10 Mbs, ");
3844 		}
3845 
3846 		if (status & E1000_STATUS_FD) {
3847 			*duplex = FULL_DUPLEX;
3848 			DEBUGOUT("Full Duplex\r\n");
3849 		} else {
3850 			*duplex = HALF_DUPLEX;
3851 			DEBUGOUT(" Half Duplex\r\n");
3852 		}
3853 	} else {
3854 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3855 		*speed = SPEED_1000;
3856 		*duplex = FULL_DUPLEX;
3857 	}
3858 
3859 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3860 	 * even if it is operating at half duplex.  Here we set the duplex
3861 	 * settings to match the duplex in the link partner's capabilities.
3862 	 */
3863 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3864 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3865 		if (ret_val)
3866 			return ret_val;
3867 
3868 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3869 			*duplex = HALF_DUPLEX;
3870 		else {
3871 			ret_val = e1000_read_phy_reg(hw,
3872 					PHY_LP_ABILITY, &phy_data);
3873 			if (ret_val)
3874 				return ret_val;
3875 			if ((*speed == SPEED_100 &&
3876 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3877 				|| (*speed == SPEED_10
3878 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3879 				*duplex = HALF_DUPLEX;
3880 		}
3881 	}
3882 
3883 	if ((hw->mac_type == e1000_80003es2lan) &&
3884 		(hw->media_type == e1000_media_type_copper)) {
3885 		if (*speed == SPEED_1000)
3886 			ret_val = e1000_configure_kmrn_for_1000(hw);
3887 		else
3888 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3889 		if (ret_val)
3890 			return ret_val;
3891 	}
3892 	return E1000_SUCCESS;
3893 }
3894 
3895 /******************************************************************************
3896 * Blocks until autoneg completes or times out (~4.5 seconds)
3897 *
3898 * hw - Struct containing variables accessed by shared code
3899 ******************************************************************************/
3900 static int
e1000_wait_autoneg(struct e1000_hw * hw)3901 e1000_wait_autoneg(struct e1000_hw *hw)
3902 {
3903 	uint16_t i;
3904 	uint16_t phy_data;
3905 
3906 	DEBUGFUNC();
3907 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3908 
3909 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
3910 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3911 		/* Read the MII Status Register and wait for Auto-Neg
3912 		 * Complete bit to be set.
3913 		 */
3914 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3915 			DEBUGOUT("PHY Read Error\n");
3916 			return -E1000_ERR_PHY;
3917 		}
3918 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3919 			DEBUGOUT("PHY Read Error\n");
3920 			return -E1000_ERR_PHY;
3921 		}
3922 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3923 			DEBUGOUT("Auto-Neg complete.\n");
3924 			return 0;
3925 		}
3926 		mdelay(100);
3927 	}
3928 	DEBUGOUT("Auto-Neg timedout.\n");
3929 	return -E1000_ERR_TIMEOUT;
3930 }
3931 
3932 /******************************************************************************
3933 * Raises the Management Data Clock
3934 *
3935 * hw - Struct containing variables accessed by shared code
3936 * ctrl - Device control register's current value
3937 ******************************************************************************/
3938 static void
e1000_raise_mdi_clk(struct e1000_hw * hw,uint32_t * ctrl)3939 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3940 {
3941 	/* Raise the clock input to the Management Data Clock (by setting the MDC
3942 	 * bit), and then delay 2 microseconds.
3943 	 */
3944 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3945 	E1000_WRITE_FLUSH(hw);
3946 	udelay(2);
3947 }
3948 
3949 /******************************************************************************
3950 * Lowers the Management Data Clock
3951 *
3952 * hw - Struct containing variables accessed by shared code
3953 * ctrl - Device control register's current value
3954 ******************************************************************************/
3955 static void
e1000_lower_mdi_clk(struct e1000_hw * hw,uint32_t * ctrl)3956 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3957 {
3958 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
3959 	 * bit), and then delay 2 microseconds.
3960 	 */
3961 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3962 	E1000_WRITE_FLUSH(hw);
3963 	udelay(2);
3964 }
3965 
3966 /******************************************************************************
3967 * Shifts data bits out to the PHY
3968 *
3969 * hw - Struct containing variables accessed by shared code
3970 * data - Data to send out to the PHY
3971 * count - Number of bits to shift out
3972 *
3973 * Bits are shifted out in MSB to LSB order.
3974 ******************************************************************************/
3975 static void
e1000_shift_out_mdi_bits(struct e1000_hw * hw,uint32_t data,uint16_t count)3976 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3977 {
3978 	uint32_t ctrl;
3979 	uint32_t mask;
3980 
3981 	/* We need to shift "count" number of bits out to the PHY. So, the value
3982 	 * in the "data" parameter will be shifted out to the PHY one bit at a
3983 	 * time. In order to do this, "data" must be broken down into bits.
3984 	 */
3985 	mask = 0x01;
3986 	mask <<= (count - 1);
3987 
3988 	ctrl = E1000_READ_REG(hw, CTRL);
3989 
3990 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3991 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3992 
3993 	while (mask) {
3994 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3995 		 * then raising and lowering the Management Data Clock. A "0" is
3996 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
3997 		 * raising and lowering the clock.
3998 		 */
3999 		if (data & mask)
4000 			ctrl |= E1000_CTRL_MDIO;
4001 		else
4002 			ctrl &= ~E1000_CTRL_MDIO;
4003 
4004 		E1000_WRITE_REG(hw, CTRL, ctrl);
4005 		E1000_WRITE_FLUSH(hw);
4006 
4007 		udelay(2);
4008 
4009 		e1000_raise_mdi_clk(hw, &ctrl);
4010 		e1000_lower_mdi_clk(hw, &ctrl);
4011 
4012 		mask = mask >> 1;
4013 	}
4014 }
4015 
4016 /******************************************************************************
4017 * Shifts data bits in from the PHY
4018 *
4019 * hw - Struct containing variables accessed by shared code
4020 *
4021 * Bits are shifted in in MSB to LSB order.
4022 ******************************************************************************/
4023 static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw * hw)4024 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4025 {
4026 	uint32_t ctrl;
4027 	uint16_t data = 0;
4028 	uint8_t i;
4029 
4030 	/* In order to read a register from the PHY, we need to shift in a total
4031 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4032 	 * to avoid contention on the MDIO pin when a read operation is performed.
4033 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4034 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4035 	 * and then reading the value of the MDIO bit.
4036 	 */
4037 	ctrl = E1000_READ_REG(hw, CTRL);
4038 
4039 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4040 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4041 	ctrl &= ~E1000_CTRL_MDIO;
4042 
4043 	E1000_WRITE_REG(hw, CTRL, ctrl);
4044 	E1000_WRITE_FLUSH(hw);
4045 
4046 	/* Raise and Lower the clock before reading in the data. This accounts for
4047 	 * the turnaround bits. The first clock occurred when we clocked out the
4048 	 * last bit of the Register Address.
4049 	 */
4050 	e1000_raise_mdi_clk(hw, &ctrl);
4051 	e1000_lower_mdi_clk(hw, &ctrl);
4052 
4053 	for (data = 0, i = 0; i < 16; i++) {
4054 		data = data << 1;
4055 		e1000_raise_mdi_clk(hw, &ctrl);
4056 		ctrl = E1000_READ_REG(hw, CTRL);
4057 		/* Check to see if we shifted in a "1". */
4058 		if (ctrl & E1000_CTRL_MDIO)
4059 			data |= 1;
4060 		e1000_lower_mdi_clk(hw, &ctrl);
4061 	}
4062 
4063 	e1000_raise_mdi_clk(hw, &ctrl);
4064 	e1000_lower_mdi_clk(hw, &ctrl);
4065 
4066 	return data;
4067 }
4068 
4069 /*****************************************************************************
4070 * Reads the value from a PHY register
4071 *
4072 * hw - Struct containing variables accessed by shared code
4073 * reg_addr - address of the PHY register to read
4074 ******************************************************************************/
4075 static int
e1000_read_phy_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t * phy_data)4076 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4077 {
4078 	uint32_t i;
4079 	uint32_t mdic = 0;
4080 	const uint32_t phy_addr = 1;
4081 
4082 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4083 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4084 		return -E1000_ERR_PARAM;
4085 	}
4086 
4087 	if (hw->mac_type > e1000_82543) {
4088 		/* Set up Op-code, Phy Address, and register address in the MDI
4089 		 * Control register.  The MAC will take care of interfacing with the
4090 		 * PHY to retrieve the desired data.
4091 		 */
4092 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4093 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4094 			(E1000_MDIC_OP_READ));
4095 
4096 		E1000_WRITE_REG(hw, MDIC, mdic);
4097 
4098 		/* Poll the ready bit to see if the MDI read completed */
4099 		for (i = 0; i < 64; i++) {
4100 			udelay(10);
4101 			mdic = E1000_READ_REG(hw, MDIC);
4102 			if (mdic & E1000_MDIC_READY)
4103 				break;
4104 		}
4105 		if (!(mdic & E1000_MDIC_READY)) {
4106 			DEBUGOUT("MDI Read did not complete\n");
4107 			return -E1000_ERR_PHY;
4108 		}
4109 		if (mdic & E1000_MDIC_ERROR) {
4110 			DEBUGOUT("MDI Error\n");
4111 			return -E1000_ERR_PHY;
4112 		}
4113 		*phy_data = (uint16_t) mdic;
4114 	} else {
4115 		/* We must first send a preamble through the MDIO pin to signal the
4116 		 * beginning of an MII instruction.  This is done by sending 32
4117 		 * consecutive "1" bits.
4118 		 */
4119 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4120 
4121 		/* Now combine the next few fields that are required for a read
4122 		 * operation.  We use this method instead of calling the
4123 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4124 		 * a MII read instruction consists of a shift out of 14 bits and is
4125 		 * defined as follows:
4126 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4127 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4128 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4129 		 * READ operation is performed.  These two bits are thrown away
4130 		 * followed by a shift in of 16 bits which contains the desired data.
4131 		 */
4132 		mdic = ((reg_addr) | (phy_addr << 5) |
4133 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4134 
4135 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4136 
4137 		/* Now that we've shifted out the read command to the MII, we need to
4138 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4139 		 * register address.
4140 		 */
4141 		*phy_data = e1000_shift_in_mdi_bits(hw);
4142 	}
4143 	return 0;
4144 }
4145 
4146 /******************************************************************************
4147 * Writes a value to a PHY register
4148 *
4149 * hw - Struct containing variables accessed by shared code
4150 * reg_addr - address of the PHY register to write
4151 * data - data to write to the PHY
4152 ******************************************************************************/
4153 static int
e1000_write_phy_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t phy_data)4154 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4155 {
4156 	uint32_t i;
4157 	uint32_t mdic = 0;
4158 	const uint32_t phy_addr = 1;
4159 
4160 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4161 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4162 		return -E1000_ERR_PARAM;
4163 	}
4164 
4165 	if (hw->mac_type > e1000_82543) {
4166 		/* Set up Op-code, Phy Address, register address, and data intended
4167 		 * for the PHY register in the MDI Control register.  The MAC will take
4168 		 * care of interfacing with the PHY to send the desired data.
4169 		 */
4170 		mdic = (((uint32_t) phy_data) |
4171 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4172 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4173 			(E1000_MDIC_OP_WRITE));
4174 
4175 		E1000_WRITE_REG(hw, MDIC, mdic);
4176 
4177 		/* Poll the ready bit to see if the MDI read completed */
4178 		for (i = 0; i < 64; i++) {
4179 			udelay(10);
4180 			mdic = E1000_READ_REG(hw, MDIC);
4181 			if (mdic & E1000_MDIC_READY)
4182 				break;
4183 		}
4184 		if (!(mdic & E1000_MDIC_READY)) {
4185 			DEBUGOUT("MDI Write did not complete\n");
4186 			return -E1000_ERR_PHY;
4187 		}
4188 	} else {
4189 		/* We'll need to use the SW defined pins to shift the write command
4190 		 * out to the PHY. We first send a preamble to the PHY to signal the
4191 		 * beginning of the MII instruction.  This is done by sending 32
4192 		 * consecutive "1" bits.
4193 		 */
4194 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4195 
4196 		/* Now combine the remaining required fields that will indicate a
4197 		 * write operation. We use this method instead of calling the
4198 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4199 		 * format of a MII write instruction is as follows:
4200 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4201 		 */
4202 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4203 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4204 		mdic <<= 16;
4205 		mdic |= (uint32_t) phy_data;
4206 
4207 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4208 	}
4209 	return 0;
4210 }
4211 
4212 /******************************************************************************
4213  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4214  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4215  * the caller to figure out how to deal with it.
4216  *
4217  * hw - Struct containing variables accessed by shared code
4218  *
4219  * returns: - E1000_BLK_PHY_RESET
4220  *            E1000_SUCCESS
4221  *
4222  *****************************************************************************/
4223 int32_t
e1000_check_phy_reset_block(struct e1000_hw * hw)4224 e1000_check_phy_reset_block(struct e1000_hw *hw)
4225 {
4226 	uint32_t manc = 0;
4227 	uint32_t fwsm = 0;
4228 
4229 	if (hw->mac_type == e1000_ich8lan) {
4230 		fwsm = E1000_READ_REG(hw, FWSM);
4231 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4232 						: E1000_BLK_PHY_RESET;
4233 	}
4234 
4235 	if (hw->mac_type > e1000_82547_rev_2)
4236 		manc = E1000_READ_REG(hw, MANC);
4237 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4238 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4239 }
4240 
4241 /***************************************************************************
4242  * Checks if the PHY configuration is done
4243  *
4244  * hw: Struct containing variables accessed by shared code
4245  *
4246  * returns: - E1000_ERR_RESET if fail to reset MAC
4247  *            E1000_SUCCESS at any other case.
4248  *
4249  ***************************************************************************/
4250 static int32_t
e1000_get_phy_cfg_done(struct e1000_hw * hw)4251 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4252 {
4253 	int32_t timeout = PHY_CFG_TIMEOUT;
4254 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4255 
4256 	DEBUGFUNC();
4257 
4258 	switch (hw->mac_type) {
4259 	default:
4260 		mdelay(10);
4261 		break;
4262 	case e1000_80003es2lan:
4263 		/* Separate *_CFG_DONE_* bit for each port */
4264 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4265 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4266 	/* Fall Through */
4267 	case e1000_82571:
4268 	case e1000_82572:
4269 		while (timeout) {
4270 			if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4271 				break;
4272 			else
4273 				mdelay(1);
4274 			timeout--;
4275 		}
4276 		if (!timeout) {
4277 			DEBUGOUT("MNG configuration cycle has not "
4278 					"completed.\n");
4279 			return -E1000_ERR_RESET;
4280 		}
4281 		break;
4282 	}
4283 
4284 	return E1000_SUCCESS;
4285 }
4286 
4287 /******************************************************************************
4288 * Returns the PHY to the power-on reset state
4289 *
4290 * hw - Struct containing variables accessed by shared code
4291 ******************************************************************************/
4292 int32_t
e1000_phy_hw_reset(struct e1000_hw * hw)4293 e1000_phy_hw_reset(struct e1000_hw *hw)
4294 {
4295 	uint32_t ctrl, ctrl_ext;
4296 	uint32_t led_ctrl;
4297 	int32_t ret_val;
4298 	uint16_t swfw;
4299 
4300 	DEBUGFUNC();
4301 
4302 	/* In the case of the phy reset being blocked, it's not an error, we
4303 	 * simply return success without performing the reset. */
4304 	ret_val = e1000_check_phy_reset_block(hw);
4305 	if (ret_val)
4306 		return E1000_SUCCESS;
4307 
4308 	DEBUGOUT("Resetting Phy...\n");
4309 
4310 	if (hw->mac_type > e1000_82543) {
4311 		if ((hw->mac_type == e1000_80003es2lan) &&
4312 			(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4313 			swfw = E1000_SWFW_PHY1_SM;
4314 		} else {
4315 			swfw = E1000_SWFW_PHY0_SM;
4316 		}
4317 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4318 			DEBUGOUT("Unable to acquire swfw sync\n");
4319 			return -E1000_ERR_SWFW_SYNC;
4320 		}
4321 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4322 		 * bit. Then, take it out of reset.
4323 		 */
4324 		ctrl = E1000_READ_REG(hw, CTRL);
4325 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4326 		E1000_WRITE_FLUSH(hw);
4327 
4328 		if (hw->mac_type < e1000_82571)
4329 			udelay(10);
4330 		else
4331 			udelay(100);
4332 
4333 		E1000_WRITE_REG(hw, CTRL, ctrl);
4334 		E1000_WRITE_FLUSH(hw);
4335 
4336 		if (hw->mac_type >= e1000_82571)
4337 			mdelay(10);
4338 
4339 	} else {
4340 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4341 		 * bit to put the PHY into reset. Then, take it out of reset.
4342 		 */
4343 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4344 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4345 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4346 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4347 		E1000_WRITE_FLUSH(hw);
4348 		mdelay(10);
4349 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4350 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4351 		E1000_WRITE_FLUSH(hw);
4352 	}
4353 	udelay(150);
4354 
4355 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4356 		/* Configure activity LED after PHY reset */
4357 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4358 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4359 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4360 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4361 	}
4362 
4363 	/* Wait for FW to finish PHY configuration. */
4364 	ret_val = e1000_get_phy_cfg_done(hw);
4365 	if (ret_val != E1000_SUCCESS)
4366 		return ret_val;
4367 
4368 	return ret_val;
4369 }
4370 
4371 /******************************************************************************
4372  * IGP phy init script - initializes the GbE PHY
4373  *
4374  * hw - Struct containing variables accessed by shared code
4375  *****************************************************************************/
4376 static void
e1000_phy_init_script(struct e1000_hw * hw)4377 e1000_phy_init_script(struct e1000_hw *hw)
4378 {
4379 	uint32_t ret_val;
4380 	uint16_t phy_saved_data;
4381 	DEBUGFUNC();
4382 
4383 	if (hw->phy_init_script) {
4384 		mdelay(20);
4385 
4386 		/* Save off the current value of register 0x2F5B to be
4387 		 * restored at the end of this routine. */
4388 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4389 
4390 		/* Disabled the PHY transmitter */
4391 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4392 
4393 		mdelay(20);
4394 
4395 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4396 
4397 		mdelay(5);
4398 
4399 		switch (hw->mac_type) {
4400 		case e1000_82541:
4401 		case e1000_82547:
4402 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4403 
4404 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4405 
4406 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4407 
4408 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4409 
4410 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4411 
4412 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4413 
4414 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4415 
4416 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4417 
4418 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4419 			break;
4420 
4421 		case e1000_82541_rev_2:
4422 		case e1000_82547_rev_2:
4423 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4424 			break;
4425 		default:
4426 			break;
4427 		}
4428 
4429 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4430 
4431 		mdelay(20);
4432 
4433 		/* Now enable the transmitter */
4434 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4435 
4436 		if (hw->mac_type == e1000_82547) {
4437 			uint16_t fused, fine, coarse;
4438 
4439 			/* Move to analog registers page */
4440 			e1000_read_phy_reg(hw,
4441 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4442 
4443 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4444 				e1000_read_phy_reg(hw,
4445 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4446 
4447 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4448 				coarse = fused
4449 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4450 
4451 				if (coarse >
4452 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4453 					coarse -=
4454 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4455 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4456 				} else if (coarse
4457 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4458 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4459 
4460 				fused = (fused
4461 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4462 					(fine
4463 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4464 					(coarse
4465 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4466 
4467 				e1000_write_phy_reg(hw,
4468 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4469 				e1000_write_phy_reg(hw,
4470 					IGP01E1000_ANALOG_FUSE_BYPASS,
4471 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4472 			}
4473 		}
4474 	}
4475 }
4476 
4477 /******************************************************************************
4478 * Resets the PHY
4479 *
4480 * hw - Struct containing variables accessed by shared code
4481 *
4482 * Sets bit 15 of the MII Control register
4483 ******************************************************************************/
4484 int32_t
e1000_phy_reset(struct e1000_hw * hw)4485 e1000_phy_reset(struct e1000_hw *hw)
4486 {
4487 	int32_t ret_val;
4488 	uint16_t phy_data;
4489 
4490 	DEBUGFUNC();
4491 
4492 	/* In the case of the phy reset being blocked, it's not an error, we
4493 	 * simply return success without performing the reset. */
4494 	ret_val = e1000_check_phy_reset_block(hw);
4495 	if (ret_val)
4496 		return E1000_SUCCESS;
4497 
4498 	switch (hw->phy_type) {
4499 	case e1000_phy_igp:
4500 	case e1000_phy_igp_2:
4501 	case e1000_phy_igp_3:
4502 	case e1000_phy_ife:
4503 		ret_val = e1000_phy_hw_reset(hw);
4504 		if (ret_val)
4505 			return ret_val;
4506 		break;
4507 	default:
4508 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4509 		if (ret_val)
4510 			return ret_val;
4511 
4512 		phy_data |= MII_CR_RESET;
4513 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4514 		if (ret_val)
4515 			return ret_val;
4516 
4517 		udelay(1);
4518 		break;
4519 	}
4520 
4521 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4522 		e1000_phy_init_script(hw);
4523 
4524 	return E1000_SUCCESS;
4525 }
4526 
e1000_set_phy_type(struct e1000_hw * hw)4527 static int e1000_set_phy_type (struct e1000_hw *hw)
4528 {
4529 	DEBUGFUNC ();
4530 
4531 	if (hw->mac_type == e1000_undefined)
4532 		return -E1000_ERR_PHY_TYPE;
4533 
4534 	switch (hw->phy_id) {
4535 	case M88E1000_E_PHY_ID:
4536 	case M88E1000_I_PHY_ID:
4537 	case M88E1011_I_PHY_ID:
4538 	case M88E1111_I_PHY_ID:
4539 		hw->phy_type = e1000_phy_m88;
4540 		break;
4541 	case IGP01E1000_I_PHY_ID:
4542 		if (hw->mac_type == e1000_82541 ||
4543 			hw->mac_type == e1000_82541_rev_2 ||
4544 			hw->mac_type == e1000_82547 ||
4545 			hw->mac_type == e1000_82547_rev_2) {
4546 			hw->phy_type = e1000_phy_igp;
4547 			hw->phy_type = e1000_phy_igp;
4548 			break;
4549 		}
4550 	case IGP03E1000_E_PHY_ID:
4551 		hw->phy_type = e1000_phy_igp_3;
4552 		break;
4553 	case IFE_E_PHY_ID:
4554 	case IFE_PLUS_E_PHY_ID:
4555 	case IFE_C_E_PHY_ID:
4556 		hw->phy_type = e1000_phy_ife;
4557 		break;
4558 	case GG82563_E_PHY_ID:
4559 		if (hw->mac_type == e1000_80003es2lan) {
4560 			hw->phy_type = e1000_phy_gg82563;
4561 			break;
4562 		}
4563 		/* Fall Through */
4564 	default:
4565 		/* Should never have loaded on this device */
4566 		hw->phy_type = e1000_phy_undefined;
4567 		return -E1000_ERR_PHY_TYPE;
4568 	}
4569 
4570 	return E1000_SUCCESS;
4571 }
4572 
4573 /******************************************************************************
4574 * Probes the expected PHY address for known PHY IDs
4575 *
4576 * hw - Struct containing variables accessed by shared code
4577 ******************************************************************************/
4578 static int32_t
e1000_detect_gig_phy(struct e1000_hw * hw)4579 e1000_detect_gig_phy(struct e1000_hw *hw)
4580 {
4581 	int32_t phy_init_status, ret_val;
4582 	uint16_t phy_id_high, phy_id_low;
4583 	boolean_t match = FALSE;
4584 
4585 	DEBUGFUNC();
4586 
4587 	/* The 82571 firmware may still be configuring the PHY.  In this
4588 	 * case, we cannot access the PHY until the configuration is done.  So
4589 	 * we explicitly set the PHY values. */
4590 	if (hw->mac_type == e1000_82571 ||
4591 		hw->mac_type == e1000_82572) {
4592 		hw->phy_id = IGP01E1000_I_PHY_ID;
4593 		hw->phy_type = e1000_phy_igp_2;
4594 		return E1000_SUCCESS;
4595 	}
4596 
4597 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4598 	 * work- around that forces PHY page 0 to be set or the reads fail.
4599 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4600 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4601 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4602 	 * the routines below will figure this out as well. */
4603 	if (hw->mac_type == e1000_80003es2lan)
4604 		hw->phy_type = e1000_phy_gg82563;
4605 
4606 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4607 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4608 	if (ret_val)
4609 		return ret_val;
4610 
4611 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4612 	udelay(20);
4613 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4614 	if (ret_val)
4615 		return ret_val;
4616 
4617 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4618 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4619 
4620 	switch (hw->mac_type) {
4621 	case e1000_82543:
4622 		if (hw->phy_id == M88E1000_E_PHY_ID)
4623 			match = TRUE;
4624 		break;
4625 	case e1000_82544:
4626 		if (hw->phy_id == M88E1000_I_PHY_ID)
4627 			match = TRUE;
4628 		break;
4629 	case e1000_82540:
4630 	case e1000_82545:
4631 	case e1000_82545_rev_3:
4632 	case e1000_82546:
4633 	case e1000_82546_rev_3:
4634 		if (hw->phy_id == M88E1011_I_PHY_ID)
4635 			match = TRUE;
4636 		break;
4637 	case e1000_82541:
4638 	case e1000_82541_rev_2:
4639 	case e1000_82547:
4640 	case e1000_82547_rev_2:
4641 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4642 			match = TRUE;
4643 
4644 		break;
4645 	case e1000_82573:
4646 		if (hw->phy_id == M88E1111_I_PHY_ID)
4647 			match = TRUE;
4648 		break;
4649 	case e1000_80003es2lan:
4650 		if (hw->phy_id == GG82563_E_PHY_ID)
4651 			match = TRUE;
4652 		break;
4653 	case e1000_ich8lan:
4654 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4655 			match = TRUE;
4656 		if (hw->phy_id == IFE_E_PHY_ID)
4657 			match = TRUE;
4658 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4659 			match = TRUE;
4660 		if (hw->phy_id == IFE_C_E_PHY_ID)
4661 			match = TRUE;
4662 		break;
4663 	default:
4664 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4665 		return -E1000_ERR_CONFIG;
4666 	}
4667 
4668 	phy_init_status = e1000_set_phy_type(hw);
4669 
4670 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4671 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4672 		return 0;
4673 	}
4674 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4675 	return -E1000_ERR_PHY;
4676 }
4677 
4678 /*****************************************************************************
4679  * Set media type and TBI compatibility.
4680  *
4681  * hw - Struct containing variables accessed by shared code
4682  * **************************************************************************/
4683 void
e1000_set_media_type(struct e1000_hw * hw)4684 e1000_set_media_type(struct e1000_hw *hw)
4685 {
4686 	uint32_t status;
4687 
4688 	DEBUGFUNC();
4689 
4690 	if (hw->mac_type != e1000_82543) {
4691 		/* tbi_compatibility is only valid on 82543 */
4692 		hw->tbi_compatibility_en = FALSE;
4693 	}
4694 
4695 	switch (hw->device_id) {
4696 	case E1000_DEV_ID_82545GM_SERDES:
4697 	case E1000_DEV_ID_82546GB_SERDES:
4698 	case E1000_DEV_ID_82571EB_SERDES:
4699 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4700 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4701 	case E1000_DEV_ID_82572EI_SERDES:
4702 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4703 		hw->media_type = e1000_media_type_internal_serdes;
4704 		break;
4705 	default:
4706 		switch (hw->mac_type) {
4707 		case e1000_82542_rev2_0:
4708 		case e1000_82542_rev2_1:
4709 			hw->media_type = e1000_media_type_fiber;
4710 			break;
4711 		case e1000_ich8lan:
4712 		case e1000_82573:
4713 			/* The STATUS_TBIMODE bit is reserved or reused
4714 			 * for the this device.
4715 			 */
4716 			hw->media_type = e1000_media_type_copper;
4717 			break;
4718 		default:
4719 			status = E1000_READ_REG(hw, STATUS);
4720 			if (status & E1000_STATUS_TBIMODE) {
4721 				hw->media_type = e1000_media_type_fiber;
4722 				/* tbi_compatibility not valid on fiber */
4723 				hw->tbi_compatibility_en = FALSE;
4724 			} else {
4725 				hw->media_type = e1000_media_type_copper;
4726 			}
4727 			break;
4728 		}
4729 	}
4730 }
4731 
4732 /**
4733  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4734  *
4735  * e1000_sw_init initializes the Adapter private data structure.
4736  * Fields are initialized based on PCI device information and
4737  * OS network device settings (MTU size).
4738  **/
4739 
4740 static int
e1000_sw_init(struct eth_device * nic,int cardnum)4741 e1000_sw_init(struct eth_device *nic, int cardnum)
4742 {
4743 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4744 	int result;
4745 
4746 	/* PCI config space info */
4747 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4748 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4749 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4750 			     &hw->subsystem_vendor_id);
4751 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4752 
4753 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4754 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4755 
4756 	/* identify the MAC */
4757 	result = e1000_set_mac_type(hw);
4758 	if (result) {
4759 		E1000_ERR("Unknown MAC Type\n");
4760 		return result;
4761 	}
4762 
4763 	switch (hw->mac_type) {
4764 	default:
4765 		break;
4766 	case e1000_82541:
4767 	case e1000_82547:
4768 	case e1000_82541_rev_2:
4769 	case e1000_82547_rev_2:
4770 		hw->phy_init_script = 1;
4771 		break;
4772 	}
4773 
4774 	/* lan a vs. lan b settings */
4775 	if (hw->mac_type == e1000_82546)
4776 		/*this also works w/ multiple 82546 cards */
4777 		/*but not if they're intermingled /w other e1000s */
4778 		hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4779 	else
4780 		hw->lan_loc = e1000_lan_a;
4781 
4782 	/* flow control settings */
4783 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4784 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4785 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4786 	hw->fc_send_xon = 1;
4787 
4788 	/* Media type - copper or fiber */
4789 	e1000_set_media_type(hw);
4790 
4791 	if (hw->mac_type >= e1000_82543) {
4792 		uint32_t status = E1000_READ_REG(hw, STATUS);
4793 
4794 		if (status & E1000_STATUS_TBIMODE) {
4795 			DEBUGOUT("fiber interface\n");
4796 			hw->media_type = e1000_media_type_fiber;
4797 		} else {
4798 			DEBUGOUT("copper interface\n");
4799 			hw->media_type = e1000_media_type_copper;
4800 		}
4801 	} else {
4802 		hw->media_type = e1000_media_type_fiber;
4803 	}
4804 
4805 	hw->tbi_compatibility_en = TRUE;
4806 	hw->wait_autoneg_complete = TRUE;
4807 	if (hw->mac_type < e1000_82543)
4808 		hw->report_tx_early = 0;
4809 	else
4810 		hw->report_tx_early = 1;
4811 
4812 	return E1000_SUCCESS;
4813 }
4814 
4815 void
fill_rx(struct e1000_hw * hw)4816 fill_rx(struct e1000_hw *hw)
4817 {
4818 	struct e1000_rx_desc *rd;
4819 
4820 	rx_last = rx_tail;
4821 	rd = rx_base + rx_tail;
4822 	rx_tail = (rx_tail + 1) % 8;
4823 	memset(rd, 0, 16);
4824 	rd->buffer_addr = cpu_to_le64((u32) & packet);
4825 	E1000_WRITE_REG(hw, RDT, rx_tail);
4826 }
4827 
4828 /**
4829  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4830  * @adapter: board private structure
4831  *
4832  * Configure the Tx unit of the MAC after a reset.
4833  **/
4834 
4835 static void
e1000_configure_tx(struct e1000_hw * hw)4836 e1000_configure_tx(struct e1000_hw *hw)
4837 {
4838 	unsigned long ptr;
4839 	unsigned long tctl;
4840 	unsigned long tipg, tarc;
4841 	uint32_t ipgr1, ipgr2;
4842 
4843 	ptr = (u32) tx_pool;
4844 	if (ptr & 0xf)
4845 		ptr = (ptr + 0x10) & (~0xf);
4846 
4847 	tx_base = (typeof(tx_base)) ptr;
4848 
4849 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4850 	E1000_WRITE_REG(hw, TDBAH, 0);
4851 
4852 	E1000_WRITE_REG(hw, TDLEN, 128);
4853 
4854 	/* Setup the HW Tx Head and Tail descriptor pointers */
4855 	E1000_WRITE_REG(hw, TDH, 0);
4856 	E1000_WRITE_REG(hw, TDT, 0);
4857 	tx_tail = 0;
4858 
4859 	/* Set the default values for the Tx Inter Packet Gap timer */
4860 	if (hw->mac_type <= e1000_82547_rev_2 &&
4861 	    (hw->media_type == e1000_media_type_fiber ||
4862 	     hw->media_type == e1000_media_type_internal_serdes))
4863 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4864 	else
4865 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4866 
4867 	/* Set the default values for the Tx Inter Packet Gap timer */
4868 	switch (hw->mac_type) {
4869 	case e1000_82542_rev2_0:
4870 	case e1000_82542_rev2_1:
4871 		tipg = DEFAULT_82542_TIPG_IPGT;
4872 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4873 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4874 		break;
4875 	case e1000_80003es2lan:
4876 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4877 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4878 		break;
4879 	default:
4880 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4881 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4882 		break;
4883 	}
4884 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4885 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4886 	E1000_WRITE_REG(hw, TIPG, tipg);
4887 	/* Program the Transmit Control Register */
4888 	tctl = E1000_READ_REG(hw, TCTL);
4889 	tctl &= ~E1000_TCTL_CT;
4890 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4891 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4892 
4893 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4894 		tarc = E1000_READ_REG(hw, TARC0);
4895 		/* set the speed mode bit, we'll clear it if we're not at
4896 		 * gigabit link later */
4897 		/* git bit can be set to 1*/
4898 	} else if (hw->mac_type == e1000_80003es2lan) {
4899 		tarc = E1000_READ_REG(hw, TARC0);
4900 		tarc |= 1;
4901 		E1000_WRITE_REG(hw, TARC0, tarc);
4902 		tarc = E1000_READ_REG(hw, TARC1);
4903 		tarc |= 1;
4904 		E1000_WRITE_REG(hw, TARC1, tarc);
4905 	}
4906 
4907 
4908 	e1000_config_collision_dist(hw);
4909 	/* Setup Transmit Descriptor Settings for eop descriptor */
4910 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4911 
4912 	/* Need to set up RS bit */
4913 	if (hw->mac_type < e1000_82543)
4914 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
4915 	else
4916 		hw->txd_cmd |= E1000_TXD_CMD_RS;
4917 	E1000_WRITE_REG(hw, TCTL, tctl);
4918 }
4919 
4920 /**
4921  * e1000_setup_rctl - configure the receive control register
4922  * @adapter: Board private structure
4923  **/
4924 static void
e1000_setup_rctl(struct e1000_hw * hw)4925 e1000_setup_rctl(struct e1000_hw *hw)
4926 {
4927 	uint32_t rctl;
4928 
4929 	rctl = E1000_READ_REG(hw, RCTL);
4930 
4931 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4932 
4933 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4934 		| E1000_RCTL_RDMTS_HALF;	/* |
4935 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4936 
4937 	if (hw->tbi_compatibility_on == 1)
4938 		rctl |= E1000_RCTL_SBP;
4939 	else
4940 		rctl &= ~E1000_RCTL_SBP;
4941 
4942 	rctl &= ~(E1000_RCTL_SZ_4096);
4943 		rctl |= E1000_RCTL_SZ_2048;
4944 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4945 	E1000_WRITE_REG(hw, RCTL, rctl);
4946 }
4947 
4948 /**
4949  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4950  * @adapter: board private structure
4951  *
4952  * Configure the Rx unit of the MAC after a reset.
4953  **/
4954 static void
e1000_configure_rx(struct e1000_hw * hw)4955 e1000_configure_rx(struct e1000_hw *hw)
4956 {
4957 	unsigned long ptr;
4958 	unsigned long rctl, ctrl_ext;
4959 	rx_tail = 0;
4960 	/* make sure receives are disabled while setting up the descriptors */
4961 	rctl = E1000_READ_REG(hw, RCTL);
4962 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4963 	if (hw->mac_type >= e1000_82540) {
4964 		/* Set the interrupt throttling rate.  Value is calculated
4965 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4966 #define MAX_INTS_PER_SEC	8000
4967 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
4968 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4969 	}
4970 
4971 	if (hw->mac_type >= e1000_82571) {
4972 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4973 		/* Reset delay timers after every interrupt */
4974 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4975 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4976 		E1000_WRITE_FLUSH(hw);
4977 	}
4978 	/* Setup the Base and Length of the Rx Descriptor Ring */
4979 	ptr = (u32) rx_pool;
4980 	if (ptr & 0xf)
4981 		ptr = (ptr + 0x10) & (~0xf);
4982 	rx_base = (typeof(rx_base)) ptr;
4983 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4984 	E1000_WRITE_REG(hw, RDBAH, 0);
4985 
4986 	E1000_WRITE_REG(hw, RDLEN, 128);
4987 
4988 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
4989 	E1000_WRITE_REG(hw, RDH, 0);
4990 	E1000_WRITE_REG(hw, RDT, 0);
4991 	/* Enable Receives */
4992 
4993 	E1000_WRITE_REG(hw, RCTL, rctl);
4994 	fill_rx(hw);
4995 }
4996 
4997 /**************************************************************************
4998 POLL - Wait for a frame
4999 ***************************************************************************/
5000 static int
e1000_poll(struct eth_device * nic)5001 e1000_poll(struct eth_device *nic)
5002 {
5003 	struct e1000_hw *hw = nic->priv;
5004 	struct e1000_rx_desc *rd;
5005 	/* return true if there's an ethernet packet ready to read */
5006 	rd = rx_base + rx_last;
5007 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5008 		return 0;
5009 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5010 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5011 	fill_rx(hw);
5012 	return 1;
5013 }
5014 
5015 /**************************************************************************
5016 TRANSMIT - Transmit a frame
5017 ***************************************************************************/
5018 static int
e1000_transmit(struct eth_device * nic,volatile void * packet,int length)5019 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5020 {
5021 	struct e1000_hw *hw = nic->priv;
5022 	struct e1000_tx_desc *txp;
5023 	int i = 0;
5024 
5025 	txp = tx_base + tx_tail;
5026 	tx_tail = (tx_tail + 1) % 8;
5027 
5028 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, packet));
5029 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5030 	txp->upper.data = 0;
5031 	E1000_WRITE_REG(hw, TDT, tx_tail);
5032 
5033 	E1000_WRITE_FLUSH(hw);
5034 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5035 		if (i++ > TOUT_LOOP) {
5036 			DEBUGOUT("e1000: tx timeout\n");
5037 			return 0;
5038 		}
5039 		udelay(10);	/* give the nic a chance to write to the register */
5040 	}
5041 	return 1;
5042 }
5043 
5044 /*reset function*/
5045 static inline int
e1000_reset(struct eth_device * nic)5046 e1000_reset(struct eth_device *nic)
5047 {
5048 	struct e1000_hw *hw = nic->priv;
5049 
5050 	e1000_reset_hw(hw);
5051 	if (hw->mac_type >= e1000_82544) {
5052 		E1000_WRITE_REG(hw, WUC, 0);
5053 	}
5054 	return e1000_init_hw(nic);
5055 }
5056 
5057 /**************************************************************************
5058 DISABLE - Turn off ethernet interface
5059 ***************************************************************************/
5060 static void
e1000_disable(struct eth_device * nic)5061 e1000_disable(struct eth_device *nic)
5062 {
5063 	struct e1000_hw *hw = nic->priv;
5064 
5065 	/* Turn off the ethernet interface */
5066 	E1000_WRITE_REG(hw, RCTL, 0);
5067 	E1000_WRITE_REG(hw, TCTL, 0);
5068 
5069 	/* Clear the transmit ring */
5070 	E1000_WRITE_REG(hw, TDH, 0);
5071 	E1000_WRITE_REG(hw, TDT, 0);
5072 
5073 	/* Clear the receive ring */
5074 	E1000_WRITE_REG(hw, RDH, 0);
5075 	E1000_WRITE_REG(hw, RDT, 0);
5076 
5077 	/* put the card in its initial state */
5078 #if 0
5079 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5080 #endif
5081 	mdelay(10);
5082 
5083 }
5084 
5085 /**************************************************************************
5086 INIT - set up ethernet interface(s)
5087 ***************************************************************************/
5088 static int
e1000_init(struct eth_device * nic,bd_t * bis)5089 e1000_init(struct eth_device *nic, bd_t * bis)
5090 {
5091 	struct e1000_hw *hw = nic->priv;
5092 	int ret_val = 0;
5093 
5094 	ret_val = e1000_reset(nic);
5095 	if (ret_val < 0) {
5096 		if ((ret_val == -E1000_ERR_NOLINK) ||
5097 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5098 			E1000_ERR("Valid Link not detected\n");
5099 		} else {
5100 			E1000_ERR("Hardware Initialization Failed\n");
5101 		}
5102 		return 0;
5103 	}
5104 	e1000_configure_tx(hw);
5105 	e1000_setup_rctl(hw);
5106 	e1000_configure_rx(hw);
5107 	return 1;
5108 }
5109 
5110 /******************************************************************************
5111  * Gets the current PCI bus type of hardware
5112  *
5113  * hw - Struct containing variables accessed by shared code
5114  *****************************************************************************/
e1000_get_bus_type(struct e1000_hw * hw)5115 void e1000_get_bus_type(struct e1000_hw *hw)
5116 {
5117 	uint32_t status;
5118 
5119 	switch (hw->mac_type) {
5120 	case e1000_82542_rev2_0:
5121 	case e1000_82542_rev2_1:
5122 		hw->bus_type = e1000_bus_type_pci;
5123 		break;
5124 	case e1000_82571:
5125 	case e1000_82572:
5126 	case e1000_82573:
5127 	case e1000_80003es2lan:
5128 		hw->bus_type = e1000_bus_type_pci_express;
5129 		break;
5130 	case e1000_ich8lan:
5131 		hw->bus_type = e1000_bus_type_pci_express;
5132 		break;
5133 	default:
5134 		status = E1000_READ_REG(hw, STATUS);
5135 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5136 				e1000_bus_type_pcix : e1000_bus_type_pci;
5137 		break;
5138 	}
5139 }
5140 
5141 /**************************************************************************
5142 PROBE - Look for an adapter, this routine's visible to the outside
5143 You should omit the last argument struct pci_device * for a non-PCI NIC
5144 ***************************************************************************/
5145 int
e1000_initialize(bd_t * bis)5146 e1000_initialize(bd_t * bis)
5147 {
5148 	pci_dev_t devno;
5149 	int card_number = 0;
5150 	struct eth_device *nic = NULL;
5151 	struct e1000_hw *hw = NULL;
5152 	u32 iobase;
5153 	int idx = 0;
5154 	u32 PciCommandWord;
5155 
5156 	DEBUGFUNC();
5157 
5158 	while (1) {		/* Find PCI device(s) */
5159 		if ((devno = pci_find_devices(supported, idx++)) < 0) {
5160 			break;
5161 		}
5162 
5163 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5164 		iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */
5165 		DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5166 
5167 		pci_write_config_dword(devno, PCI_COMMAND,
5168 				       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5169 		/* Check if I/O accesses and Bus Mastering are enabled. */
5170 		pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5171 		if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5172 			printf("Error: Can not enable MEM access.\n");
5173 			continue;
5174 		} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5175 			printf("Error: Can not enable Bus Mastering.\n");
5176 			continue;
5177 		}
5178 
5179 		nic = (struct eth_device *) malloc(sizeof (*nic));
5180 		hw = (struct e1000_hw *) malloc(sizeof (*hw));
5181 		hw->pdev = devno;
5182 		nic->priv = hw;
5183 
5184 		sprintf(nic->name, "e1000#%d", card_number);
5185 
5186 		/* Are these variables needed? */
5187 		hw->fc = e1000_fc_default;
5188 		hw->original_fc = e1000_fc_default;
5189 		hw->autoneg_failed = 0;
5190 		hw->autoneg = 1;
5191 		hw->get_link_status = TRUE;
5192 		hw->hw_addr =
5193 			pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
5194 		hw->mac_type = e1000_undefined;
5195 
5196 		/* MAC and Phy settings */
5197 		if (e1000_sw_init(nic, card_number) < 0) {
5198 			free(hw);
5199 			free(nic);
5200 			return 0;
5201 		}
5202 		if (e1000_check_phy_reset_block(hw))
5203 			printf("phy reset block error \n");
5204 		e1000_reset_hw(hw);
5205 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5206 		if (e1000_init_eeprom_params(hw)) {
5207 			printf("The EEPROM Checksum Is Not Valid\n");
5208 			free(hw);
5209 			free(nic);
5210 			return 0;
5211 		}
5212 		if (e1000_validate_eeprom_checksum(nic) < 0) {
5213 			printf("The EEPROM Checksum Is Not Valid\n");
5214 			free(hw);
5215 			free(nic);
5216 			return 0;
5217 		}
5218 #endif
5219 		e1000_read_mac_addr(nic);
5220 
5221 		/* get the bus type information */
5222 		e1000_get_bus_type(hw);
5223 
5224 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5225 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5226 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5227 
5228 		nic->init = e1000_init;
5229 		nic->recv = e1000_poll;
5230 		nic->send = e1000_transmit;
5231 		nic->halt = e1000_disable;
5232 
5233 		eth_register(nic);
5234 
5235 		card_number++;
5236 	}
5237 	return card_number;
5238 }
5239