1 #ifndef _I386_BITOPS_H
2 #define _I386_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  */
7 
8 
9 /*
10  * These have to be done with inline assembly: that way the bit-setting
11  * is guaranteed to be atomic. All bit operations return 0 if the bit
12  * was cleared before the operation and != 0 if it was not.
13  *
14  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
15  */
16 
17 #include <asm-generic/bitops/fls.h>
18 #include <asm-generic/bitops/__fls.h>
19 #include <asm-generic/bitops/fls64.h>
20 
21 #ifdef CONFIG_SMP
22 #define LOCK_PREFIX "lock ; "
23 #else
24 #define LOCK_PREFIX ""
25 #endif
26 
27 #define ADDR (*(volatile long *) addr)
28 
29 /**
30  * set_bit - Atomically set a bit in memory
31  * @nr: the bit to set
32  * @addr: the address to start counting from
33  *
34  * This function is atomic and may not be reordered.  See __set_bit()
35  * if you do not require the atomic guarantees.
36  * Note that @nr may be almost arbitrarily large; this function is not
37  * restricted to acting on a single-word quantity.
38  */
set_bit(int nr,volatile void * addr)39 static __inline__ void set_bit(int nr, volatile void * addr)
40 {
41 	__asm__ __volatile__( LOCK_PREFIX
42 		"btsl %1,%0"
43 		:"=m" (ADDR)
44 		:"Ir" (nr));
45 }
46 
47 /**
48  * __set_bit - Set a bit in memory
49  * @nr: the bit to set
50  * @addr: the address to start counting from
51  *
52  * Unlike set_bit(), this function is non-atomic and may be reordered.
53  * If it's called on the same region of memory simultaneously, the effect
54  * may be that only one operation succeeds.
55  */
__set_bit(int nr,volatile void * addr)56 static __inline__ void __set_bit(int nr, volatile void * addr)
57 {
58 	__asm__(
59 		"btsl %1,%0"
60 		:"=m" (ADDR)
61 		:"Ir" (nr));
62 }
63 
64 #define PLATFORM__SET_BIT
65 
66 /**
67  * clear_bit - Clears a bit in memory
68  * @nr: Bit to clear
69  * @addr: Address to start counting from
70  *
71  * clear_bit() is atomic and may not be reordered.  However, it does
72  * not contain a memory barrier, so if it is used for locking purposes,
73  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
74  * in order to ensure changes are visible on other processors.
75  */
clear_bit(int nr,volatile void * addr)76 static __inline__ void clear_bit(int nr, volatile void * addr)
77 {
78 	__asm__ __volatile__( LOCK_PREFIX
79 		"btrl %1,%0"
80 		:"=m" (ADDR)
81 		:"Ir" (nr));
82 }
83 #define smp_mb__before_clear_bit()	barrier()
84 #define smp_mb__after_clear_bit()	barrier()
85 
86 /**
87  * __change_bit - Toggle a bit in memory
88  * @nr: the bit to set
89  * @addr: the address to start counting from
90  *
91  * Unlike change_bit(), this function is non-atomic and may be reordered.
92  * If it's called on the same region of memory simultaneously, the effect
93  * may be that only one operation succeeds.
94  */
__change_bit(int nr,volatile void * addr)95 static __inline__ void __change_bit(int nr, volatile void * addr)
96 {
97 	__asm__ __volatile__(
98 		"btcl %1,%0"
99 		:"=m" (ADDR)
100 		:"Ir" (nr));
101 }
102 
103 /**
104  * change_bit - Toggle a bit in memory
105  * @nr: Bit to clear
106  * @addr: Address to start counting from
107  *
108  * change_bit() is atomic and may not be reordered.
109  * Note that @nr may be almost arbitrarily large; this function is not
110  * restricted to acting on a single-word quantity.
111  */
change_bit(int nr,volatile void * addr)112 static __inline__ void change_bit(int nr, volatile void * addr)
113 {
114 	__asm__ __volatile__( LOCK_PREFIX
115 		"btcl %1,%0"
116 		:"=m" (ADDR)
117 		:"Ir" (nr));
118 }
119 
120 /**
121  * test_and_set_bit - Set a bit and return its old value
122  * @nr: Bit to set
123  * @addr: Address to count from
124  *
125  * This operation is atomic and cannot be reordered.
126  * It also implies a memory barrier.
127  */
test_and_set_bit(int nr,volatile void * addr)128 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
129 {
130 	int oldbit;
131 
132 	__asm__ __volatile__( LOCK_PREFIX
133 		"btsl %2,%1\n\tsbbl %0,%0"
134 		:"=r" (oldbit),"=m" (ADDR)
135 		:"Ir" (nr) : "memory");
136 	return oldbit;
137 }
138 
139 /**
140  * __test_and_set_bit - Set a bit and return its old value
141  * @nr: Bit to set
142  * @addr: Address to count from
143  *
144  * This operation is non-atomic and can be reordered.
145  * If two examples of this operation race, one can appear to succeed
146  * but actually fail.  You must protect multiple accesses with a lock.
147  */
__test_and_set_bit(int nr,volatile void * addr)148 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
149 {
150 	int oldbit;
151 
152 	__asm__(
153 		"btsl %2,%1\n\tsbbl %0,%0"
154 		:"=r" (oldbit),"=m" (ADDR)
155 		:"Ir" (nr));
156 	return oldbit;
157 }
158 
159 /**
160  * test_and_clear_bit - Clear a bit and return its old value
161  * @nr: Bit to set
162  * @addr: Address to count from
163  *
164  * This operation is atomic and cannot be reordered.
165  * It also implies a memory barrier.
166  */
test_and_clear_bit(int nr,volatile void * addr)167 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
168 {
169 	int oldbit;
170 
171 	__asm__ __volatile__( LOCK_PREFIX
172 		"btrl %2,%1\n\tsbbl %0,%0"
173 		:"=r" (oldbit),"=m" (ADDR)
174 		:"Ir" (nr) : "memory");
175 	return oldbit;
176 }
177 
178 /**
179  * __test_and_clear_bit - Clear a bit and return its old value
180  * @nr: Bit to set
181  * @addr: Address to count from
182  *
183  * This operation is non-atomic and can be reordered.
184  * If two examples of this operation race, one can appear to succeed
185  * but actually fail.  You must protect multiple accesses with a lock.
186  */
__test_and_clear_bit(int nr,volatile void * addr)187 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
188 {
189 	int oldbit;
190 
191 	__asm__(
192 		"btrl %2,%1\n\tsbbl %0,%0"
193 		:"=r" (oldbit),"=m" (ADDR)
194 		:"Ir" (nr));
195 	return oldbit;
196 }
197 
198 /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile void * addr)199 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
200 {
201 	int oldbit;
202 
203 	__asm__ __volatile__(
204 		"btcl %2,%1\n\tsbbl %0,%0"
205 		:"=r" (oldbit),"=m" (ADDR)
206 		:"Ir" (nr) : "memory");
207 	return oldbit;
208 }
209 
210 /**
211  * test_and_change_bit - Change a bit and return its new value
212  * @nr: Bit to set
213  * @addr: Address to count from
214  *
215  * This operation is atomic and cannot be reordered.
216  * It also implies a memory barrier.
217  */
test_and_change_bit(int nr,volatile void * addr)218 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
219 {
220 	int oldbit;
221 
222 	__asm__ __volatile__( LOCK_PREFIX
223 		"btcl %2,%1\n\tsbbl %0,%0"
224 		:"=r" (oldbit),"=m" (ADDR)
225 		:"Ir" (nr) : "memory");
226 	return oldbit;
227 }
228 
229 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
230 /**
231  * test_bit - Determine whether a bit is set
232  * @nr: bit number to test
233  * @addr: Address to start counting from
234  */
235 static int test_bit(int nr, const volatile void * addr);
236 #endif
237 
constant_test_bit(int nr,const volatile void * addr)238 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
239 {
240 	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
241 }
242 
variable_test_bit(int nr,volatile void * addr)243 static __inline__ int variable_test_bit(int nr, volatile void * addr)
244 {
245 	int oldbit;
246 
247 	__asm__ __volatile__(
248 		"btl %2,%1\n\tsbbl %0,%0"
249 		:"=r" (oldbit)
250 		:"m" (ADDR),"Ir" (nr));
251 	return oldbit;
252 }
253 
254 #define test_bit(nr,addr) \
255 (__builtin_constant_p(nr) ? \
256  constant_test_bit((nr),(addr)) : \
257  variable_test_bit((nr),(addr)))
258 
259 /**
260  * find_first_zero_bit - find the first zero bit in a memory region
261  * @addr: The address to start the search at
262  * @size: The maximum size to search
263  *
264  * Returns the bit-number of the first zero bit, not the number of the byte
265  * containing a bit.
266  */
find_first_zero_bit(void * addr,unsigned size)267 static __inline__ int find_first_zero_bit(void * addr, unsigned size)
268 {
269 	int d0, d1, d2;
270 	int res;
271 
272 	if (!size)
273 		return 0;
274 	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
275 	__asm__ __volatile__(
276 		"movl $-1,%%eax\n\t"
277 		"xorl %%edx,%%edx\n\t"
278 		"repe; scasl\n\t"
279 		"je 1f\n\t"
280 		"xorl -4(%%edi),%%eax\n\t"
281 		"subl $4,%%edi\n\t"
282 		"bsfl %%eax,%%edx\n"
283 		"1:\tsubl %%ebx,%%edi\n\t"
284 		"shll $3,%%edi\n\t"
285 		"addl %%edi,%%edx"
286 		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
287 		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
288 	return res;
289 }
290 
291 /**
292  * find_next_zero_bit - find the first zero bit in a memory region
293  * @addr: The address to base the search on
294  * @offset: The bitnumber to start searching at
295  * @size: The maximum size to search
296  */
find_next_zero_bit(void * addr,int size,int offset)297 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
298 {
299 	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
300 	int set = 0, bit = offset & 31, res;
301 
302 	if (bit) {
303 		/*
304 		 * Look for zero in first byte
305 		 */
306 		__asm__("bsfl %1,%0\n\t"
307 			"jne 1f\n\t"
308 			"movl $32, %0\n"
309 			"1:"
310 			: "=r" (set)
311 			: "r" (~(*p >> bit)));
312 		if (set < (32 - bit))
313 			return set + offset;
314 		set = 32 - bit;
315 		p++;
316 	}
317 	/*
318 	 * No zero yet, search remaining full bytes for a zero
319 	 */
320 	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
321 	return (offset + set + res);
322 }
323 
324 /**
325  * ffz - find first zero in word.
326  * @word: The word to search
327  *
328  * Undefined if no zero exists, so code should check against ~0UL first.
329  */
ffz(unsigned long word)330 static __inline__ unsigned long ffz(unsigned long word)
331 {
332 	__asm__("bsfl %1,%0"
333 		:"=r" (word)
334 		:"r" (~word));
335 	return word;
336 }
337 
338 #ifdef __KERNEL__
339 
340 /**
341  * __ffs - find first set bit in word
342  * @word: The word to search
343  *
344  * Undefined if no bit exists, so code should check against 0 first.
345  */
__ffs(unsigned long word)346 static inline unsigned long __ffs(unsigned long word)
347 {
348 	__asm__("rep; bsf %1,%0"
349 		: "=r" (word)
350 		: "rm" (word));
351 	return word;
352 }
353 
354 /**
355  * ffs - find first bit set
356  * @x: the word to search
357  *
358  * This is defined the same way as
359  * the libc and compiler builtin ffs routines, therefore
360  * differs in spirit from the above ffz (man ffs).
361  */
ffs(int x)362 static __inline__ int ffs(int x)
363 {
364 	int r;
365 
366 	__asm__("bsfl %1,%0\n\t"
367 		"jnz 1f\n\t"
368 		"movl $-1,%0\n"
369 		"1:" : "=r" (r) : "rm" (x));
370 
371 	return r+1;
372 }
373 #define PLATFORM_FFS
374 
__ilog2(unsigned int x)375 static inline int __ilog2(unsigned int x)
376 {
377 	return generic_fls(x) - 1;
378 }
379 
380 /**
381  * hweightN - returns the hamming weight of a N-bit word
382  * @x: the word to weigh
383  *
384  * The Hamming Weight of a number is the total number of bits set in it.
385  */
386 
387 #define hweight32(x) generic_hweight32(x)
388 #define hweight16(x) generic_hweight16(x)
389 #define hweight8(x) generic_hweight8(x)
390 
391 #endif /* __KERNEL__ */
392 
393 #ifdef __KERNEL__
394 
395 #define ext2_set_bit                 __test_and_set_bit
396 #define ext2_clear_bit               __test_and_clear_bit
397 #define ext2_test_bit                test_bit
398 #define ext2_find_first_zero_bit     find_first_zero_bit
399 #define ext2_find_next_zero_bit      find_next_zero_bit
400 
401 /* Bitmap functions for the minix filesystem.  */
402 #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
403 #define minix_set_bit(nr,addr) __set_bit(nr,addr)
404 #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
405 #define minix_test_bit(nr,addr) test_bit(nr,addr)
406 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
407 
408 #endif /* __KERNEL__ */
409 
410 #endif /* _I386_BITOPS_H */
411