• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..03-May-2022-

etype/H25-Jun-2020-1,9041,218

test/H03-May-2022-2,1161,639

.gitignoreH A D25-Jun-20206 21

READMEH A D25-Jun-202029 KiB781576

README.entriesH A D25-Jun-202024.8 KiB699445

binmanH A D25-Jun-20204.6 KiB158119

binman.pyH A D25-Jun-20204.6 KiB158119

bsection.pyH A D25-Jun-202017 KiB465394

cmdline.pyH A D25-Jun-20203 KiB6754

control.pyH A D25-Jun-20206.6 KiB196141

elf.pyH A D25-Jun-20204.3 KiB131104

elf_test.pyH A D25-Jun-20204.8 KiB141108

entry.pyH A D25-Jun-202018.2 KiB533414

entry_test.pyH A D25-Jun-20202.6 KiB8565

fdt_test.pyH A D25-Jun-20202.8 KiB8765

fmap_util.pyH A D25-Jun-20203.2 KiB11482

ftest.pyH A D25-Jun-202072.2 KiB1,7771,460

image.pyH A D25-Jun-20205 KiB154116

image_test.pyH A D25-Jun-20201.8 KiB4937

state.pyH A D25-Jun-20207 KiB254184

README

1# SPDX-License-Identifier: GPL-2.0+
2# Copyright (c) 2016 Google, Inc
3
4Introduction
5------------
6
7Firmware often consists of several components which must be packaged together.
8For example, we may have SPL, U-Boot, a device tree and an environment area
9grouped together and placed in MMC flash. When the system starts, it must be
10able to find these pieces.
11
12So far U-Boot has not provided a way to handle creating such images in a
13general way. Each SoC does what it needs to build an image, often packing or
14concatenating images in the U-Boot build system.
15
16Binman aims to provide a mechanism for building images, from simple
17SPL + U-Boot combinations, to more complex arrangements with many parts.
18
19
20What it does
21------------
22
23Binman reads your board's device tree and finds a node which describes the
24required image layout. It uses this to work out what to place where. The
25output file normally contains the device tree, so it is in principle possible
26to read an image and extract its constituent parts.
27
28
29Features
30--------
31
32So far binman is pretty simple. It supports binary blobs, such as 'u-boot',
33'spl' and 'fdt'. It supports empty entries (such as setting to 0xff). It can
34place entries at a fixed location in the image, or fit them together with
35suitable padding and alignment. It provides a way to process binaries before
36they are included, by adding a Python plug-in. The device tree is available
37to U-Boot at run-time so that the images can be interpreted.
38
39Binman does not yet update the device tree with the final location of
40everything when it is done. A simple C structure could be generated for
41constrained environments like SPL (using dtoc) but this is also not
42implemented.
43
44Binman can also support incorporating filesystems in the image if required.
45For example x86 platforms may use CBFS in some cases.
46
47Binman is intended for use with U-Boot but is designed to be general enough
48to be useful in other image-packaging situations.
49
50
51Motivation
52----------
53
54Packaging of firmware is quite a different task from building the various
55parts. In many cases the various binaries which go into the image come from
56separate build systems. For example, ARM Trusted Firmware is used on ARMv8
57devices but is not built in the U-Boot tree. If a Linux kernel is included
58in the firmware image, it is built elsewhere.
59
60It is of course possible to add more and more build rules to the U-Boot
61build system to cover these cases. It can shell out to other Makefiles and
62build scripts. But it seems better to create a clear divide between building
63software and packaging it.
64
65At present this is handled by manual instructions, different for each board,
66on how to create images that will boot. By turning these instructions into a
67standard format, we can support making valid images for any board without
68manual effort, lots of READMEs, etc.
69
70Benefits:
71- Each binary can have its own build system and tool chain without creating
72any dependencies between them
73- Avoids the need for a single-shot build: individual parts can be updated
74and brought in as needed
75- Provides for a standard image description available in the build and at
76run-time
77- SoC-specific image-signing tools can be accomodated
78- Avoids cluttering the U-Boot build system with image-building code
79- The image description is automatically available at run-time in U-Boot,
80SPL. It can be made available to other software also
81- The image description is easily readable (it's a text file in device-tree
82format) and permits flexible packing of binaries
83
84
85Terminology
86-----------
87
88Binman uses the following terms:
89
90- image - an output file containing a firmware image
91- binary - an input binary that goes into the image
92
93
94Relationship to FIT
95-------------------
96
97FIT is U-Boot's official image format. It supports multiple binaries with
98load / execution addresses, compression. It also supports verification
99through hashing and RSA signatures.
100
101FIT was originally designed to support booting a Linux kernel (with an
102optional ramdisk) and device tree chosen from various options in the FIT.
103Now that U-Boot supports configuration via device tree, it is possible to
104load U-Boot from a FIT, with the device tree chosen by SPL.
105
106Binman considers FIT to be one of the binaries it can place in the image.
107
108Where possible it is best to put as much as possible in the FIT, with binman
109used to deal with cases not covered by FIT. Examples include initial
110execution (since FIT itself does not have an executable header) and dealing
111with device boundaries, such as the read-only/read-write separation in SPI
112flash.
113
114For U-Boot, binman should not be used to create ad-hoc images in place of
115FIT.
116
117
118Relationship to mkimage
119-----------------------
120
121The mkimage tool provides a means to create a FIT. Traditionally it has
122needed an image description file: a device tree, like binman, but in a
123different format. More recently it has started to support a '-f auto' mode
124which can generate that automatically.
125
126More relevant to binman, mkimage also permits creation of many SoC-specific
127image types. These can be listed by running 'mkimage -T list'. Examples
128include 'rksd', the Rockchip SD/MMC boot format. The mkimage tool is often
129called from the U-Boot build system for this reason.
130
131Binman considers the output files created by mkimage to be binary blobs
132which it can place in an image. Binman does not replace the mkimage tool or
133this purpose. It would be possible in some situations to create a new entry
134type for the images in mkimage, but this would not add functionality. It
135seems better to use the mkimage tool to generate binaries and avoid blurring
136the boundaries between building input files (mkimage) and packaging then
137into a final image (binman).
138
139
140Example use of binman in U-Boot
141-------------------------------
142
143Binman aims to replace some of the ad-hoc image creation in the U-Boot
144build system.
145
146Consider sunxi. It has the following steps:
147
1481. It uses a custom mksunxiboot tool to build an SPL image called
149sunxi-spl.bin. This should probably move into mkimage.
150
1512. It uses mkimage to package U-Boot into a legacy image file (so that it can
152hold the load and execution address) called u-boot.img.
153
1543. It builds a final output image called u-boot-sunxi-with-spl.bin which
155consists of sunxi-spl.bin, some padding and u-boot.img.
156
157Binman is intended to replace the last step. The U-Boot build system builds
158u-boot.bin and sunxi-spl.bin. Binman can then take over creation of
159sunxi-spl.bin (by calling mksunxiboot, or hopefully one day mkimage). In any
160case, it would then create the image from the component parts.
161
162This simplifies the U-Boot Makefile somewhat, since various pieces of logic
163can be replaced by a call to binman.
164
165
166Example use of binman for x86
167-----------------------------
168
169In most cases x86 images have a lot of binary blobs, 'black-box' code
170provided by Intel which must be run for the platform to work. Typically
171these blobs are not relocatable and must be placed at fixed areas in the
172firmware image.
173
174Currently this is handled by ifdtool, which places microcode, FSP, MRC, VGA
175BIOS, reference code and Intel ME binaries into a u-boot.rom file.
176
177Binman is intended to replace all of this, with ifdtool left to handle only
178the configuration of the Intel-format descriptor.
179
180
181Running binman
182--------------
183
184Type:
185
186	binman -b <board_name>
187
188to build an image for a board. The board name is the same name used when
189configuring U-Boot (e.g. for sandbox_defconfig the board name is 'sandbox').
190Binman assumes that the input files for the build are in ../b/<board_name>.
191
192Or you can specify this explicitly:
193
194	binman -I <build_path>
195
196where <build_path> is the build directory containing the output of the U-Boot
197build.
198
199(Future work will make this more configurable)
200
201In either case, binman picks up the device tree file (u-boot.dtb) and looks
202for its instructions in the 'binman' node.
203
204Binman has a few other options which you can see by running 'binman -h'.
205
206
207Enabling binman for a board
208---------------------------
209
210At present binman is invoked from a rule in the main Makefile. Typically you
211will have a rule like:
212
213ifneq ($(CONFIG_ARCH_<something>),)
214u-boot-<your_suffix>.bin: <input_file_1> <input_file_2> checkbinman FORCE
215	$(call if_changed,binman)
216endif
217
218This assumes that u-boot-<your_suffix>.bin is a target, and is the final file
219that you need to produce. You can make it a target by adding it to ALL-y
220either in the main Makefile or in a config.mk file in your arch subdirectory.
221
222Once binman is executed it will pick up its instructions from a device-tree
223file, typically <soc>-u-boot.dtsi, where <soc> is your CONFIG_SYS_SOC value.
224You can use other, more specific CONFIG options - see 'Automatic .dtsi
225inclusion' below.
226
227
228Image description format
229------------------------
230
231The binman node is called 'binman'. An example image description is shown
232below:
233
234	binman {
235		filename = "u-boot-sunxi-with-spl.bin";
236		pad-byte = <0xff>;
237		blob {
238			filename = "spl/sunxi-spl.bin";
239		};
240		u-boot {
241			offset = <CONFIG_SPL_PAD_TO>;
242		};
243	};
244
245
246This requests binman to create an image file called u-boot-sunxi-with-spl.bin
247consisting of a specially formatted SPL (spl/sunxi-spl.bin, built by the
248normal U-Boot Makefile), some 0xff padding, and a U-Boot legacy image. The
249padding comes from the fact that the second binary is placed at
250CONFIG_SPL_PAD_TO. If that line were omitted then the U-Boot binary would
251immediately follow the SPL binary.
252
253The binman node describes an image. The sub-nodes describe entries in the
254image. Each entry represents a region within the overall image. The name of
255the entry (blob, u-boot) tells binman what to put there. For 'blob' we must
256provide a filename. For 'u-boot', binman knows that this means 'u-boot.bin'.
257
258Entries are normally placed into the image sequentially, one after the other.
259The image size is the total size of all entries. As you can see, you can
260specify the start offset of an entry using the 'offset' property.
261
262Note that due to a device tree requirement, all entries must have a unique
263name. If you want to put the same binary in the image multiple times, you can
264use any unique name, with the 'type' property providing the type.
265
266The attributes supported for entries are described below.
267
268offset:
269	This sets the offset of an entry within the image or section containing
270	it. The first byte of the image is normally at offset 0. If 'offset' is
271	not provided, binman sets it to the end of the previous region, or the
272	start of the image's entry area (normally 0) if there is no previous
273	region.
274
275align:
276	This sets the alignment of the entry. The entry offset is adjusted
277	so that the entry starts on an aligned boundary within the image. For
278	example 'align = <16>' means that the entry will start on a 16-byte
279	boundary. Alignment shold be a power of 2. If 'align' is not
280	provided, no alignment is performed.
281
282size:
283	This sets the size of the entry. The contents will be padded out to
284	this size. If this is not provided, it will be set to the size of the
285	contents.
286
287pad-before:
288	Padding before the contents of the entry. Normally this is 0, meaning
289	that the contents start at the beginning of the entry. This can be
290	offset the entry contents a little. Defaults to 0.
291
292pad-after:
293	Padding after the contents of the entry. Normally this is 0, meaning
294	that the entry ends at the last byte of content (unless adjusted by
295	other properties). This allows room to be created in the image for
296	this entry to expand later. Defaults to 0.
297
298align-size:
299	This sets the alignment of the entry size. For example, to ensure
300	that the size of an entry is a multiple of 64 bytes, set this to 64.
301	If 'align-size' is not provided, no alignment is performed.
302
303align-end:
304	This sets the alignment of the end of an entry. Some entries require
305	that they end on an alignment boundary, regardless of where they
306	start. This does not move the start of the entry, so the contents of
307	the entry will still start at the beginning. But there may be padding
308	at the end. If 'align-end' is not provided, no alignment is performed.
309
310filename:
311	For 'blob' types this provides the filename containing the binary to
312	put into the entry. If binman knows about the entry type (like
313	u-boot-bin), then there is no need to specify this.
314
315type:
316	Sets the type of an entry. This defaults to the entry name, but it is
317	possible to use any name, and then add (for example) 'type = "u-boot"'
318	to specify the type.
319
320offset-unset:
321	Indicates that the offset of this entry should not be set by placing
322	it immediately after the entry before. Instead, is set by another
323	entry which knows where this entry should go. When this boolean
324	property is present, binman will give an error if another entry does
325	not set the offset (with the GetOffsets() method).
326
327image-pos:
328	This cannot be set on entry (or at least it is ignored if it is), but
329	with the -u option, binman will set it to the absolute image position
330	for each entry. This makes it easy to find out exactly where the entry
331	ended up in the image, regardless of parent sections, etc.
332
333expand-size:
334	Expand the size of this entry to fit available space. This space is only
335	limited by the size of the image/section and the position of the next
336	entry.
337
338The attributes supported for images and sections are described below. Several
339are similar to those for entries.
340
341size:
342	Sets the image size in bytes, for example 'size = <0x100000>' for a
343	1MB image.
344
345align-size:
346	This sets the alignment of the image size. For example, to ensure
347	that the image ends on a 512-byte boundary, use 'align-size = <512>'.
348	If 'align-size' is not provided, no alignment is performed.
349
350pad-before:
351	This sets the padding before the image entries. The first entry will
352	be positioned after the padding. This defaults to 0.
353
354pad-after:
355	This sets the padding after the image entries. The padding will be
356	placed after the last entry. This defaults to 0.
357
358pad-byte:
359	This specifies the pad byte to use when padding in the image. It
360	defaults to 0. To use 0xff, you would add 'pad-byte = <0xff>'.
361
362filename:
363	This specifies the image filename. It defaults to 'image.bin'.
364
365sort-by-offset:
366	This causes binman to reorder the entries as needed to make sure they
367	are in increasing positional order. This can be used when your entry
368	order may not match the positional order. A common situation is where
369	the 'offset' properties are set by CONFIG options, so their ordering is
370	not known a priori.
371
372	This is a boolean property so needs no value. To enable it, add a
373	line 'sort-by-offset;' to your description.
374
375multiple-images:
376	Normally only a single image is generated. To create more than one
377	image, put this property in the binman node. For example, this will
378	create image1.bin containing u-boot.bin, and image2.bin containing
379	both spl/u-boot-spl.bin and u-boot.bin:
380
381	binman {
382		multiple-images;
383		image1 {
384			u-boot {
385			};
386		};
387
388		image2 {
389			spl {
390			};
391			u-boot {
392			};
393		};
394	};
395
396end-at-4gb:
397	For x86 machines the ROM offsets start just before 4GB and extend
398	up so that the image finished at the 4GB boundary. This boolean
399	option can be enabled to support this. The image size must be
400	provided so that binman knows when the image should start. For an
401	8MB ROM, the offset of the first entry would be 0xfff80000 with
402	this option, instead of 0 without this option.
403
404skip-at-start:
405	This property specifies the entry offset of the first entry.
406
407	For PowerPC mpc85xx based CPU, CONFIG_SYS_TEXT_BASE is the entry
408	offset of the first entry. It can be 0xeff40000 or 0xfff40000 for
409	nor flash boot, 0x201000 for sd boot etc.
410
411	'end-at-4gb' property is not applicable where CONFIG_SYS_TEXT_BASE +
412	Image size != 4gb.
413
414Examples of the above options can be found in the tests. See the
415tools/binman/test directory.
416
417It is possible to have the same binary appear multiple times in the image,
418either by using a unit number suffix (u-boot@0, u-boot@1) or by using a
419different name for each and specifying the type with the 'type' attribute.
420
421
422Sections and hierachical images
423-------------------------------
424
425Sometimes it is convenient to split an image into several pieces, each of which
426contains its own set of binaries. An example is a flash device where part of
427the image is read-only and part is read-write. We can set up sections for each
428of these, and place binaries in them independently. The image is still produced
429as a single output file.
430
431This feature provides a way of creating hierarchical images. For example here
432is an example image with two copies of U-Boot. One is read-only (ro), intended
433to be written only in the factory. Another is read-write (rw), so that it can be
434upgraded in the field. The sizes are fixed so that the ro/rw boundary is known
435and can be programmed:
436
437	binman {
438		section@0 {
439			read-only;
440			name-prefix = "ro-";
441			size = <0x100000>;
442			u-boot {
443			};
444		};
445		section@1 {
446			name-prefix = "rw-";
447			size = <0x100000>;
448			u-boot {
449			};
450		};
451	};
452
453This image could be placed into a SPI flash chip, with the protection boundary
454set at 1MB.
455
456A few special properties are provided for sections:
457
458read-only:
459	Indicates that this section is read-only. This has no impact on binman's
460	operation, but his property can be read at run time.
461
462name-prefix:
463	This string is prepended to all the names of the binaries in the
464	section. In the example above, the 'u-boot' binaries which actually be
465	renamed to 'ro-u-boot' and 'rw-u-boot'. This can be useful to
466	distinguish binaries with otherwise identical names.
467
468
469Entry Documentation
470-------------------
471
472For details on the various entry types supported by binman and how to use them,
473see README.entries. This is generated from the source code using:
474
475	binman -E >tools/binman/README.entries
476
477
478Hashing Entries
479---------------
480
481It is possible to ask binman to hash the contents of an entry and write that
482value back to the device-tree node. For example:
483
484	binman {
485		u-boot {
486			hash {
487				algo = "sha256";
488			};
489		};
490	};
491
492Here, a new 'value' property will be written to the 'hash' node containing
493the hash of the 'u-boot' entry. Only SHA256 is supported at present. Whole
494sections can be hased if desired, by adding the 'hash' node to the section.
495
496The has value can be chcked at runtime by hashing the data actually read and
497comparing this has to the value in the device tree.
498
499
500Order of image creation
501-----------------------
502
503Image creation proceeds in the following order, for each entry in the image.
504
5051. AddMissingProperties() - binman can add calculated values to the device
506tree as part of its processing, for example the offset and size of each
507entry. This method adds any properties associated with this, expanding the
508device tree as needed. These properties can have placeholder values which are
509set later by SetCalculatedProperties(). By that stage the size of sections
510cannot be changed (since it would cause the images to need to be repacked),
511but the correct values can be inserted.
512
5132. ProcessFdt() - process the device tree information as required by the
514particular entry. This may involve adding or deleting properties. If the
515processing is complete, this method should return True. If the processing
516cannot complete because it needs the ProcessFdt() method of another entry to
517run first, this method should return False, in which case it will be called
518again later.
519
5203. GetEntryContents() - the contents of each entry are obtained, normally by
521reading from a file. This calls the Entry.ObtainContents() to read the
522contents. The default version of Entry.ObtainContents() calls
523Entry.GetDefaultFilename() and then reads that file. So a common mechanism
524to select a file to read is to override that function in the subclass. The
525functions must return True when they have read the contents. Binman will
526retry calling the functions a few times if False is returned, allowing
527dependencies between the contents of different entries.
528
5294. GetEntryOffsets() - calls Entry.GetOffsets() for each entry. This can
530return a dict containing entries that need updating. The key should be the
531entry name and the value is a tuple (offset, size). This allows an entry to
532provide the offset and size for other entries. The default implementation
533of GetEntryOffsets() returns {}.
534
5355. PackEntries() - calls Entry.Pack() which figures out the offset and
536size of an entry. The 'current' image offset is passed in, and the function
537returns the offset immediately after the entry being packed. The default
538implementation of Pack() is usually sufficient.
539
5406. CheckSize() - checks that the contents of all the entries fits within
541the image size. If the image does not have a defined size, the size is set
542large enough to hold all the entries.
543
5447. CheckEntries() - checks that the entries do not overlap, nor extend
545outside the image.
546
5478. SetCalculatedProperties() - update any calculated properties in the device
548tree. This sets the correct 'offset' and 'size' vaues, for example.
549
5509. ProcessEntryContents() - this calls Entry.ProcessContents() on each entry.
551The default implementatoin does nothing. This can be overriden to adjust the
552contents of an entry in some way. For example, it would be possible to create
553an entry containing a hash of the contents of some other entries. At this
554stage the offset and size of entries should not be adjusted.
555
55610. WriteSymbols() - write the value of symbols into the U-Boot SPL binary.
557See 'Access to binman entry offsets at run time' below for a description of
558what happens in this stage.
559
56011. BuildImage() - builds the image and writes it to a file. This is the final
561step.
562
563
564Automatic .dtsi inclusion
565-------------------------
566
567It is sometimes inconvenient to add a 'binman' node to the .dts file for each
568board. This can be done by using #include to bring in a common file. Another
569approach supported by the U-Boot build system is to automatically include
570a common header. You can then put the binman node (and anything else that is
571specific to U-Boot, such as u-boot,dm-pre-reloc properies) in that header
572file.
573
574Binman will search for the following files in arch/<arch>/dts:
575
576   <dts>-u-boot.dtsi where <dts> is the base name of the .dts file
577   <CONFIG_SYS_SOC>-u-boot.dtsi
578   <CONFIG_SYS_CPU>-u-boot.dtsi
579   <CONFIG_SYS_VENDOR>-u-boot.dtsi
580   u-boot.dtsi
581
582U-Boot will only use the first one that it finds. If you need to include a
583more general file you can do that from the more specific file using #include.
584If you are having trouble figuring out what is going on, you can uncomment
585the 'warning' line in scripts/Makefile.lib to see what it has found:
586
587   # Uncomment for debugging
588   # This shows all the files that were considered and the one that we chose.
589   # u_boot_dtsi_options_debug = $(u_boot_dtsi_options_raw)
590
591
592Access to binman entry offsets at run time (symbols)
593----------------------------------------------------
594
595Binman assembles images and determines where each entry is placed in the image.
596This information may be useful to U-Boot at run time. For example, in SPL it
597is useful to be able to find the location of U-Boot so that it can be executed
598when SPL is finished.
599
600Binman allows you to declare symbols in the SPL image which are filled in
601with their correct values during the build. For example:
602
603    binman_sym_declare(ulong, u_boot_any, offset);
604
605declares a ulong value which will be assigned to the offset of any U-Boot
606image (u-boot.bin, u-boot.img, u-boot-nodtb.bin) that is present in the image.
607You can access this value with something like:
608
609    ulong u_boot_offset = binman_sym(ulong, u_boot_any, offset);
610
611Thus u_boot_offset will be set to the offset of U-Boot in memory, assuming that
612the whole image has been loaded, or is available in flash. You can then jump to
613that address to start U-Boot.
614
615At present this feature is only supported in SPL. In principle it is possible
616to fill in such symbols in U-Boot proper, as well.
617
618
619Access to binman entry offsets at run time (fdt)
620------------------------------------------------
621
622Binman can update the U-Boot FDT to include the final position and size of
623each entry in the images it processes. The option to enable this is -u and it
624causes binman to make sure that the 'offset', 'image-pos' and 'size' properties
625are set correctly for every entry. Since it is not necessary to specify these in
626the image definition, binman calculates the final values and writes these to
627the device tree. These can be used by U-Boot at run-time to find the location
628of each entry.
629
630
631Compression
632-----------
633
634Binman support compression for 'blob' entries (those of type 'blob' and
635derivatives). To enable this for an entry, add a 'compression' property:
636
637    blob {
638        filename = "datafile";
639        compression = "lz4";
640    };
641
642The entry will then contain the compressed data, using the 'lz4' compression
643algorithm. Currently this is the only one that is supported.
644
645
646
647Map files
648---------
649
650The -m option causes binman to output a .map file for each image that it
651generates. This shows the offset and size of each entry. For example:
652
653      Offset      Size  Name
654    00000000  00000028  main-section
655     00000000  00000010  section@0
656      00000000  00000004  u-boot
657     00000010  00000010  section@1
658      00000000  00000004  u-boot
659
660This shows a hierarchical image with two sections, each with a single entry. The
661offsets of the sections are absolute hex byte offsets within the image. The
662offsets of the entries are relative to their respective sections. The size of
663each entry is also shown, in bytes (hex). The indentation shows the entries
664nested inside their sections.
665
666
667Passing command-line arguments to entries
668-----------------------------------------
669
670Sometimes it is useful to pass binman the value of an entry property from the
671command line. For example some entries need access to files and it is not
672always convenient to put these filenames in the image definition (device tree).
673
674The-a option supports this:
675
676    -a<prop>=<value>
677
678where
679
680    <prop> is the property to set
681    <value> is the value to set it to
682
683Not all properties can be provided this way. Only some entries support it,
684typically for filenames.
685
686
687Code coverage
688-------------
689
690Binman is a critical tool and is designed to be very testable. Entry
691implementations target 100% test coverage. Run 'binman -T' to check this.
692
693To enable Python test coverage on Debian-type distributions (e.g. Ubuntu):
694
695   $ sudo apt-get install python-coverage python-pytest
696
697
698Advanced Features / Technical docs
699----------------------------------
700
701The behaviour of entries is defined by the Entry class. All other entries are
702a subclass of this. An important subclass is Entry_blob which takes binary
703data from a file and places it in the entry. In fact most entry types are
704subclasses of Entry_blob.
705
706Each entry type is a separate file in the tools/binman/etype directory. Each
707file contains a class called Entry_<type> where <type> is the entry type.
708New entry types can be supported by adding new files in that directory.
709These will automatically be detected by binman when needed.
710
711Entry properties are documented in entry.py. The entry subclasses are free
712to change the values of properties to support special behaviour. For example,
713when Entry_blob loads a file, it sets content_size to the size of the file.
714Entry classes can adjust other entries. For example, an entry that knows
715where other entries should be positioned can set up those entries' offsets
716so they don't need to be set in the binman decription. It can also adjust
717entry contents.
718
719Most of the time such essoteric behaviour is not needed, but it can be
720essential for complex images.
721
722If you need to specify a particular device-tree compiler to use, you can define
723the DTC environment variable. This can be useful when the system dtc is too
724old.
725
726To enable a full backtrace and other debugging features in binman, pass
727BINMAN_DEBUG=1 to your build:
728
729   make sandbox_defconfig
730   make BINMAN_DEBUG=1
731
732
733History / Credits
734-----------------
735
736Binman takes a lot of inspiration from a Chrome OS tool called
737'cros_bundle_firmware', which I wrote some years ago. That tool was based on
738a reasonably simple and sound design but has expanded greatly over the
739years. In particular its handling of x86 images is convoluted.
740
741Quite a few lessons have been learned which are hopefully applied here.
742
743
744Design notes
745------------
746
747On the face of it, a tool to create firmware images should be fairly simple:
748just find all the input binaries and place them at the right place in the
749image. The difficulty comes from the wide variety of input types (simple
750flat binaries containing code, packaged data with various headers), packing
751requirments (alignment, spacing, device boundaries) and other required
752features such as hierarchical images.
753
754The design challenge is to make it easy to create simple images, while
755allowing the more complex cases to be supported. For example, for most
756images we don't much care exactly where each binary ends up, so we should
757not have to specify that unnecessarily.
758
759New entry types should aim to provide simple usage where possible. If new
760core features are needed, they can be added in the Entry base class.
761
762
763To do
764-----
765
766Some ideas:
767- Use of-platdata to make the information available to code that is unable
768  to use device tree (such as a very small SPL image)
769- Allow easy building of images by specifying just the board name
770- Produce a full Python binding for libfdt (for upstream). This is nearing
771    completion but some work remains
772- Add an option to decode an image into the constituent binaries
773- Support building an image for a board (-b) more completely, with a
774  configurable build directory
775- Consider making binman work with buildman, although if it is used in the
776  Makefile, this will be automatic
777
778--
779Simon Glass <sjg@chromium.org>
7807/7/2016
781

README.entries

1Binman Entry Documentation
2===========================
3
4This file describes the entry types supported by binman. These entry types can
5be placed in an image one by one to build up a final firmware image. It is
6fairly easy to create new entry types. Just add a new file to the 'etype'
7directory. You can use the existing entries as examples.
8
9Note that some entries are subclasses of others, using and extending their
10features to produce new behaviours.
11
12
13
14Entry: blob: Entry containing an arbitrary binary blob
15------------------------------------------------------
16
17Note: This should not be used by itself. It is normally used as a parent
18class by other entry types.
19
20Properties / Entry arguments:
21    - filename: Filename of file to read into entry
22    - compress: Compression algorithm to use:
23        none: No compression
24        lz4: Use lz4 compression (via 'lz4' command-line utility)
25
26This entry reads data from a file and places it in the entry. The
27default filename is often specified specified by the subclass. See for
28example the 'u_boot' entry which provides the filename 'u-boot.bin'.
29
30If compression is enabled, an extra 'uncomp-size' property is written to
31the node (if enabled with -u) which provides the uncompressed size of the
32data.
33
34
35
36Entry: blob-dtb: A blob that holds a device tree
37------------------------------------------------
38
39This is a blob containing a device tree. The contents of the blob are
40obtained from the list of available device-tree files, managed by the
41'state' module.
42
43
44
45Entry: blob-named-by-arg: A blob entry which gets its filename property from its subclass
46-----------------------------------------------------------------------------------------
47
48Properties / Entry arguments:
49    - <xxx>-path: Filename containing the contents of this entry (optional,
50        defaults to 0)
51
52where <xxx> is the blob_fname argument to the constructor.
53
54This entry cannot be used directly. Instead, it is used as a parent class
55for another entry, which defined blob_fname. This parameter is used to
56set the entry-arg or property containing the filename. The entry-arg or
57property is in turn used to set the actual filename.
58
59See cros_ec_rw for an example of this.
60
61
62
63Entry: cros-ec-rw: A blob entry which contains a Chromium OS read-write EC image
64--------------------------------------------------------------------------------
65
66Properties / Entry arguments:
67    - cros-ec-rw-path: Filename containing the EC image
68
69This entry holds a Chromium OS EC (embedded controller) image, for use in
70updating the EC on startup via software sync.
71
72
73
74Entry: files: Entry containing a set of files
75---------------------------------------------
76
77Properties / Entry arguments:
78    - pattern: Filename pattern to match the files to include
79    - compress: Compression algorithm to use:
80        none: No compression
81        lz4: Use lz4 compression (via 'lz4' command-line utility)
82
83This entry reads a number of files and places each in a separate sub-entry
84within this entry. To access these you need to enable device-tree updates
85at run-time so you can obtain the file positions.
86
87
88
89Entry: fill: An entry which is filled to a particular byte value
90----------------------------------------------------------------
91
92Properties / Entry arguments:
93    - fill-byte: Byte to use to fill the entry
94
95Note that the size property must be set since otherwise this entry does not
96know how large it should be.
97
98You can often achieve the same effect using the pad-byte property of the
99overall image, in that the space between entries will then be padded with
100that byte. But this entry is sometimes useful for explicitly setting the
101byte value of a region.
102
103
104
105Entry: fmap: An entry which contains an Fmap section
106----------------------------------------------------
107
108Properties / Entry arguments:
109    None
110
111FMAP is a simple format used by flashrom, an open-source utility for
112reading and writing the SPI flash, typically on x86 CPUs. The format
113provides flashrom with a list of areas, so it knows what it in the flash.
114It can then read or write just a single area, instead of the whole flash.
115
116The format is defined by the flashrom project, in the file lib/fmap.h -
117see www.flashrom.org/Flashrom for more information.
118
119When used, this entry will be populated with an FMAP which reflects the
120entries in the current image. Note that any hierarchy is squashed, since
121FMAP does not support this.
122
123
124
125Entry: gbb: An entry which contains a Chromium OS Google Binary Block
126---------------------------------------------------------------------
127
128Properties / Entry arguments:
129    - hardware-id: Hardware ID to use for this build (a string)
130    - keydir: Directory containing the public keys to use
131    - bmpblk: Filename containing images used by recovery
132
133Chromium OS uses a GBB to store various pieces of information, in particular
134the root and recovery keys that are used to verify the boot process. Some
135more details are here:
136
137    https://www.chromium.org/chromium-os/firmware-porting-guide/2-concepts
138
139but note that the page dates from 2013 so is quite out of date. See
140README.chromium for how to obtain the required keys and tools.
141
142
143
144Entry: intel-cmc: Entry containing an Intel Chipset Micro Code (CMC) file
145-------------------------------------------------------------------------
146
147Properties / Entry arguments:
148    - filename: Filename of file to read into entry
149
150This file contains microcode for some devices in a special format. An
151example filename is 'Microcode/C0_22211.BIN'.
152
153See README.x86 for information about x86 binary blobs.
154
155
156
157Entry: intel-descriptor: Intel flash descriptor block (4KB)
158-----------------------------------------------------------
159
160Properties / Entry arguments:
161    filename: Filename of file containing the descriptor. This is typically
162        a 4KB binary file, sometimes called 'descriptor.bin'
163
164This entry is placed at the start of flash and provides information about
165the SPI flash regions. In particular it provides the base address and
166size of the ME (Management Engine) region, allowing us to place the ME
167binary in the right place.
168
169With this entry in your image, the position of the 'intel-me' entry will be
170fixed in the image, which avoids you needed to specify an offset for that
171region. This is useful, because it is not possible to change the position
172of the ME region without updating the descriptor.
173
174See README.x86 for information about x86 binary blobs.
175
176
177
178Entry: intel-fsp: Entry containing an Intel Firmware Support Package (FSP) file
179-------------------------------------------------------------------------------
180
181Properties / Entry arguments:
182    - filename: Filename of file to read into entry
183
184This file contains binary blobs which are used on some devices to make the
185platform work. U-Boot executes this code since it is not possible to set up
186the hardware using U-Boot open-source code. Documentation is typically not
187available in sufficient detail to allow this.
188
189An example filename is 'FSP/QUEENSBAY_FSP_GOLD_001_20-DECEMBER-2013.fd'
190
191See README.x86 for information about x86 binary blobs.
192
193
194
195Entry: intel-me: Entry containing an Intel Management Engine (ME) file
196----------------------------------------------------------------------
197
198Properties / Entry arguments:
199    - filename: Filename of file to read into entry
200
201This file contains code used by the SoC that is required to make it work.
202The Management Engine is like a background task that runs things that are
203not clearly documented, but may include keyboard, deplay and network
204access. For platform that use ME it is not possible to disable it. U-Boot
205does not directly execute code in the ME binary.
206
207A typical filename is 'me.bin'.
208
209See README.x86 for information about x86 binary blobs.
210
211
212
213Entry: intel-mrc: Entry containing an Intel Memory Reference Code (MRC) file
214----------------------------------------------------------------------------
215
216Properties / Entry arguments:
217    - filename: Filename of file to read into entry
218
219This file contains code for setting up the SDRAM on some Intel systems. This
220is executed by U-Boot when needed early during startup. A typical filename
221is 'mrc.bin'.
222
223See README.x86 for information about x86 binary blobs.
224
225
226
227Entry: intel-vbt: Entry containing an Intel Video BIOS Table (VBT) file
228-----------------------------------------------------------------------
229
230Properties / Entry arguments:
231    - filename: Filename of file to read into entry
232
233This file contains code that sets up the integrated graphics subsystem on
234some Intel SoCs. U-Boot executes this when the display is started up.
235
236See README.x86 for information about Intel binary blobs.
237
238
239
240Entry: intel-vga: Entry containing an Intel Video Graphics Adaptor (VGA) file
241-----------------------------------------------------------------------------
242
243Properties / Entry arguments:
244    - filename: Filename of file to read into entry
245
246This file contains code that sets up the integrated graphics subsystem on
247some Intel SoCs. U-Boot executes this when the display is started up.
248
249This is similar to the VBT file but in a different format.
250
251See README.x86 for information about Intel binary blobs.
252
253
254
255Entry: powerpc-mpc85xx-bootpg-resetvec: PowerPC mpc85xx bootpg + resetvec code for U-Boot
256-----------------------------------------------------------------------------------------
257
258Properties / Entry arguments:
259    - filename: Filename of u-boot-br.bin (default 'u-boot-br.bin')
260
261This enrty is valid for PowerPC mpc85xx cpus. This entry holds
262'bootpg + resetvec' code for PowerPC mpc85xx CPUs which needs to be
263placed at offset 'RESET_VECTOR_ADDRESS - 0xffc'.
264
265
266
267Entry: section: Entry that contains other entries
268-------------------------------------------------
269
270Properties / Entry arguments: (see binman README for more information)
271    - size: Size of section in bytes
272    - align-size: Align size to a particular power of two
273    - pad-before: Add padding before the entry
274    - pad-after: Add padding after the entry
275    - pad-byte: Pad byte to use when padding
276    - sort-by-offset: Reorder the entries by offset
277    - end-at-4gb: Used to build an x86 ROM which ends at 4GB (2^32)
278    - name-prefix: Adds a prefix to the name of every entry in the section
279        when writing out the map
280
281A section is an entry which can contain other entries, thus allowing
282hierarchical images to be created. See 'Sections and hierarchical images'
283in the binman README for more information.
284
285
286
287Entry: text: An entry which contains text
288-----------------------------------------
289
290The text can be provided either in the node itself or by a command-line
291argument. There is a level of indirection to allow multiple text strings
292and sharing of text.
293
294Properties / Entry arguments:
295    text-label: The value of this string indicates the property / entry-arg
296        that contains the string to place in the entry
297    <xxx> (actual name is the value of text-label): contains the string to
298        place in the entry.
299
300Example node:
301
302    text {
303        size = <50>;
304        text-label = "message";
305    };
306
307You can then use:
308
309    binman -amessage="this is my message"
310
311and binman will insert that string into the entry.
312
313It is also possible to put the string directly in the node:
314
315    text {
316        size = <8>;
317        text-label = "message";
318        message = "a message directly in the node"
319    };
320
321The text is not itself nul-terminated. This can be achieved, if required,
322by setting the size of the entry to something larger than the text.
323
324
325
326Entry: u-boot: U-Boot flat binary
327---------------------------------
328
329Properties / Entry arguments:
330    - filename: Filename of u-boot.bin (default 'u-boot.bin')
331
332This is the U-Boot binary, containing relocation information to allow it
333to relocate itself at runtime. The binary typically includes a device tree
334blob at the end of it. Use u_boot_nodtb if you want to package the device
335tree separately.
336
337U-Boot can access binman symbols at runtime. See:
338
339    'Access to binman entry offsets at run time (fdt)'
340
341in the binman README for more information.
342
343
344
345Entry: u-boot-dtb: U-Boot device tree
346-------------------------------------
347
348Properties / Entry arguments:
349    - filename: Filename of u-boot.dtb (default 'u-boot.dtb')
350
351This is the U-Boot device tree, containing configuration information for
352U-Boot. U-Boot needs this to know what devices are present and which drivers
353to activate.
354
355Note: This is mostly an internal entry type, used by others. This allows
356binman to know which entries contain a device tree.
357
358
359
360Entry: u-boot-dtb-with-ucode: A U-Boot device tree file, with the microcode removed
361-----------------------------------------------------------------------------------
362
363Properties / Entry arguments:
364    - filename: Filename of u-boot.dtb (default 'u-boot.dtb')
365
366See Entry_u_boot_ucode for full details of the three entries involved in
367this process. This entry provides the U-Boot device-tree file, which
368contains the microcode. If the microcode is not being collated into one
369place then the offset and size of the microcode is recorded by this entry,
370for use by u_boot_with_ucode_ptr. If it is being collated, then this
371entry deletes the microcode from the device tree (to save space) and makes
372it available to u_boot_ucode.
373
374
375
376Entry: u-boot-elf: U-Boot ELF image
377-----------------------------------
378
379Properties / Entry arguments:
380    - filename: Filename of u-boot (default 'u-boot')
381
382This is the U-Boot ELF image. It does not include a device tree but can be
383relocated to any address for execution.
384
385
386
387Entry: u-boot-img: U-Boot legacy image
388--------------------------------------
389
390Properties / Entry arguments:
391    - filename: Filename of u-boot.img (default 'u-boot.img')
392
393This is the U-Boot binary as a packaged image, in legacy format. It has a
394header which allows it to be loaded at the correct address for execution.
395
396You should use FIT (Flat Image Tree) instead of the legacy image for new
397applications.
398
399
400
401Entry: u-boot-nodtb: U-Boot flat binary without device tree appended
402--------------------------------------------------------------------
403
404Properties / Entry arguments:
405    - filename: Filename of u-boot.bin (default 'u-boot-nodtb.bin')
406
407This is the U-Boot binary, containing relocation information to allow it
408to relocate itself at runtime. It does not include a device tree blob at
409the end of it so normally cannot work without it. You can add a u_boot_dtb
410entry after this one, or use a u_boot entry instead (which contains both
411U-Boot and the device tree).
412
413
414
415Entry: u-boot-spl: U-Boot SPL binary
416------------------------------------
417
418Properties / Entry arguments:
419    - filename: Filename of u-boot-spl.bin (default 'spl/u-boot-spl.bin')
420
421This is the U-Boot SPL (Secondary Program Loader) binary. This is a small
422binary which loads before U-Boot proper, typically into on-chip SRAM. It is
423responsible for locating, loading and jumping to U-Boot. Note that SPL is
424not relocatable so must be loaded to the correct address in SRAM, or written
425to run from the correct address if direct flash execution is possible (e.g.
426on x86 devices).
427
428SPL can access binman symbols at runtime. See:
429
430    'Access to binman entry offsets at run time (symbols)'
431
432in the binman README for more information.
433
434The ELF file 'spl/u-boot-spl' must also be available for this to work, since
435binman uses that to look up symbols to write into the SPL binary.
436
437
438
439Entry: u-boot-spl-bss-pad: U-Boot SPL binary padded with a BSS region
440---------------------------------------------------------------------
441
442Properties / Entry arguments:
443    None
444
445This is similar to u_boot_spl except that padding is added after the SPL
446binary to cover the BSS (Block Started by Symbol) region. This region holds
447the various used by SPL. It is set to 0 by SPL when it starts up. If you
448want to append data to the SPL image (such as a device tree file), you must
449pad out the BSS region to avoid the data overlapping with U-Boot variables.
450This entry is useful in that case. It automatically pads out the entry size
451to cover both the code, data and BSS.
452
453The ELF file 'spl/u-boot-spl' must also be available for this to work, since
454binman uses that to look up the BSS address.
455
456
457
458Entry: u-boot-spl-dtb: U-Boot SPL device tree
459---------------------------------------------
460
461Properties / Entry arguments:
462    - filename: Filename of u-boot.dtb (default 'spl/u-boot-spl.dtb')
463
464This is the SPL device tree, containing configuration information for
465SPL. SPL needs this to know what devices are present and which drivers
466to activate.
467
468
469
470Entry: u-boot-spl-elf: U-Boot SPL ELF image
471-------------------------------------------
472
473Properties / Entry arguments:
474    - filename: Filename of SPL u-boot (default 'spl/u-boot')
475
476This is the U-Boot SPL ELF image. It does not include a device tree but can
477be relocated to any address for execution.
478
479
480
481Entry: u-boot-spl-nodtb: SPL binary without device tree appended
482----------------------------------------------------------------
483
484Properties / Entry arguments:
485    - filename: Filename of spl/u-boot-spl-nodtb.bin (default
486        'spl/u-boot-spl-nodtb.bin')
487
488This is the U-Boot SPL binary, It does not include a device tree blob at
489the end of it so may not be able to work without it, assuming SPL needs
490a device tree to operation on your platform. You can add a u_boot_spl_dtb
491entry after this one, or use a u_boot_spl entry instead (which contains
492both SPL and the device tree).
493
494
495
496Entry: u-boot-spl-with-ucode-ptr: U-Boot SPL with embedded microcode pointer
497----------------------------------------------------------------------------
498
499This is used when SPL must set up the microcode for U-Boot.
500
501See Entry_u_boot_ucode for full details of the entries involved in this
502process.
503
504
505
506Entry: u-boot-tpl: U-Boot TPL binary
507------------------------------------
508
509Properties / Entry arguments:
510    - filename: Filename of u-boot-tpl.bin (default 'tpl/u-boot-tpl.bin')
511
512This is the U-Boot TPL (Tertiary Program Loader) binary. This is a small
513binary which loads before SPL, typically into on-chip SRAM. It is
514responsible for locating, loading and jumping to SPL, the next-stage
515loader. Note that SPL is not relocatable so must be loaded to the correct
516address in SRAM, or written to run from the correct address if direct
517flash execution is possible (e.g. on x86 devices).
518
519SPL can access binman symbols at runtime. See:
520
521    'Access to binman entry offsets at run time (symbols)'
522
523in the binman README for more information.
524
525The ELF file 'tpl/u-boot-tpl' must also be available for this to work, since
526binman uses that to look up symbols to write into the TPL binary.
527
528
529
530Entry: u-boot-tpl-dtb: U-Boot TPL device tree
531---------------------------------------------
532
533Properties / Entry arguments:
534    - filename: Filename of u-boot.dtb (default 'tpl/u-boot-tpl.dtb')
535
536This is the TPL device tree, containing configuration information for
537TPL. TPL needs this to know what devices are present and which drivers
538to activate.
539
540
541
542Entry: u-boot-tpl-dtb-with-ucode: U-Boot TPL with embedded microcode pointer
543----------------------------------------------------------------------------
544
545This is used when TPL must set up the microcode for U-Boot.
546
547See Entry_u_boot_ucode for full details of the entries involved in this
548process.
549
550
551
552Entry: u-boot-tpl-with-ucode-ptr: U-Boot TPL with embedded microcode pointer
553----------------------------------------------------------------------------
554
555See Entry_u_boot_ucode for full details of the entries involved in this
556process.
557
558
559
560Entry: u-boot-ucode: U-Boot microcode block
561-------------------------------------------
562
563Properties / Entry arguments:
564    None
565
566The contents of this entry are filled in automatically by other entries
567which must also be in the image.
568
569U-Boot on x86 needs a single block of microcode. This is collected from
570the various microcode update nodes in the device tree. It is also unable
571to read the microcode from the device tree on platforms that use FSP
572(Firmware Support Package) binaries, because the API requires that the
573microcode is supplied before there is any SRAM available to use (i.e.
574the FSP sets up the SRAM / cache-as-RAM but does so in the call that
575requires the microcode!). To keep things simple, all x86 platforms handle
576microcode the same way in U-Boot (even non-FSP platforms). This is that
577a table is placed at _dt_ucode_base_size containing the base address and
578size of the microcode. This is either passed to the FSP (for FSP
579platforms), or used to set up the microcode (for non-FSP platforms).
580This all happens in the build system since it is the only way to get
581the microcode into a single blob and accessible without SRAM.
582
583There are two cases to handle. If there is only one microcode blob in
584the device tree, then the ucode pointer it set to point to that. This
585entry (u-boot-ucode) is empty. If there is more than one update, then
586this entry holds the concatenation of all updates, and the device tree
587entry (u-boot-dtb-with-ucode) is updated to remove the microcode. This
588last step ensures that that the microcode appears in one contiguous
589block in the image and is not unnecessarily duplicated in the device
590tree. It is referred to as 'collation' here.
591
592Entry types that have a part to play in handling microcode:
593
594    Entry_u_boot_with_ucode_ptr:
595        Contains u-boot-nodtb.bin (i.e. U-Boot without the device tree).
596        It updates it with the address and size of the microcode so that
597        U-Boot can find it early on start-up.
598    Entry_u_boot_dtb_with_ucode:
599        Contains u-boot.dtb. It stores the microcode in a
600        'self.ucode_data' property, which is then read by this class to
601        obtain the microcode if needed. If collation is performed, it
602        removes the microcode from the device tree.
603    Entry_u_boot_ucode:
604        This class. If collation is enabled it reads the microcode from
605        the Entry_u_boot_dtb_with_ucode entry, and uses it as the
606        contents of this entry.
607
608
609
610Entry: u-boot-with-ucode-ptr: U-Boot with embedded microcode pointer
611--------------------------------------------------------------------
612
613Properties / Entry arguments:
614    - filename: Filename of u-boot-nodtb.dtb (default 'u-boot-nodtb.dtb')
615    - optional-ucode: boolean property to make microcode optional. If the
616        u-boot.bin image does not include microcode, no error will
617        be generated.
618
619See Entry_u_boot_ucode for full details of the three entries involved in
620this process. This entry updates U-Boot with the offset and size of the
621microcode, to allow early x86 boot code to find it without doing anything
622complicated. Otherwise it is the same as the u_boot entry.
623
624
625
626Entry: vblock: An entry which contains a Chromium OS verified boot block
627------------------------------------------------------------------------
628
629Properties / Entry arguments:
630    - keydir: Directory containing the public keys to use
631    - keyblock: Name of the key file to use (inside keydir)
632    - signprivate: Name of provide key file to use (inside keydir)
633    - version: Version number of the vblock (typically 1)
634    - kernelkey: Name of the kernel key to use (inside keydir)
635    - preamble-flags: Value of the vboot preamble flags (typically 0)
636
637Output files:
638    - input.<unique_name> - input file passed to futility
639    - vblock.<unique_name> - output file generated by futility (which is
640        used as the entry contents)
641
642Chromium OS signs the read-write firmware and kernel, writing the signature
643in this block. This allows U-Boot to verify that the next firmware stage
644and kernel are genuine.
645
646
647
648Entry: x86-start16: x86 16-bit start-up code for U-Boot
649-------------------------------------------------------
650
651Properties / Entry arguments:
652    - filename: Filename of u-boot-x86-16bit.bin (default
653        'u-boot-x86-16bit.bin')
654
655x86 CPUs start up in 16-bit mode, even if they are 32-bit CPUs. This code
656must be placed at a particular address. This entry holds that code. It is
657typically placed at offset CONFIG_SYS_X86_START16. The code is responsible
658for changing to 32-bit mode and jumping to U-Boot's entry point, which
659requires 32-bit mode (for 32-bit U-Boot).
660
661For 64-bit U-Boot, the 'x86_start16_spl' entry type is used instead.
662
663
664
665Entry: x86-start16-spl: x86 16-bit start-up code for SPL
666--------------------------------------------------------
667
668Properties / Entry arguments:
669    - filename: Filename of spl/u-boot-x86-16bit-spl.bin (default
670        'spl/u-boot-x86-16bit-spl.bin')
671
672x86 CPUs start up in 16-bit mode, even if they are 64-bit CPUs. This code
673must be placed at a particular address. This entry holds that code. It is
674typically placed at offset CONFIG_SYS_X86_START16. The code is responsible
675for changing to 32-bit mode and starting SPL, which in turn changes to
67664-bit mode and jumps to U-Boot (for 64-bit U-Boot).
677
678For 32-bit U-Boot, the 'x86_start16' entry type is used instead.
679
680
681
682Entry: x86-start16-tpl: x86 16-bit start-up code for TPL
683--------------------------------------------------------
684
685Properties / Entry arguments:
686    - filename: Filename of tpl/u-boot-x86-16bit-tpl.bin (default
687        'tpl/u-boot-x86-16bit-tpl.bin')
688
689x86 CPUs start up in 16-bit mode, even if they are 64-bit CPUs. This code
690must be placed at a particular address. This entry holds that code. It is
691typically placed at offset CONFIG_SYS_X86_START16. The code is responsible
692for changing to 32-bit mode and starting TPL, which in turn jumps to SPL.
693
694If TPL is not being used, the 'x86_start16_spl or 'x86_start16' entry types
695may be used instead.
696
697
698
699