1 /*
2  * ARM NEON vector operations.
3  *
4  * Copyright (c) 2007, 2008 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GNU GPL v2.
8  */
9 #include "qemu/osdep.h"
10 
11 #include "cpu.h"
12 #include "exec/helper-proto.h"
13 #include "fpu/softfloat.h"
14 
15 #define SIGNBIT (uint32_t)0x80000000
16 #define SIGNBIT64 ((uint64_t)1 << 63)
17 
18 #define SET_QC() env->vfp.qc[0] = 1
19 
20 #define NEON_TYPE1(name, type) \
21 typedef struct \
22 { \
23     type v1; \
24 } neon_##name;
25 #ifdef HOST_WORDS_BIGENDIAN
26 #define NEON_TYPE2(name, type) \
27 typedef struct \
28 { \
29     type v2; \
30     type v1; \
31 } neon_##name;
32 #define NEON_TYPE4(name, type) \
33 typedef struct \
34 { \
35     type v4; \
36     type v3; \
37     type v2; \
38     type v1; \
39 } neon_##name;
40 #else
41 #define NEON_TYPE2(name, type) \
42 typedef struct \
43 { \
44     type v1; \
45     type v2; \
46 } neon_##name;
47 #define NEON_TYPE4(name, type) \
48 typedef struct \
49 { \
50     type v1; \
51     type v2; \
52     type v3; \
53     type v4; \
54 } neon_##name;
55 #endif
56 
NEON_TYPE4(s8,int8_t)57 NEON_TYPE4(s8, int8_t)
58 NEON_TYPE4(u8, uint8_t)
59 NEON_TYPE2(s16, int16_t)
60 NEON_TYPE2(u16, uint16_t)
61 NEON_TYPE1(s32, int32_t)
62 NEON_TYPE1(u32, uint32_t)
63 #undef NEON_TYPE4
64 #undef NEON_TYPE2
65 #undef NEON_TYPE1
66 
67 /* Copy from a uint32_t to a vector structure type.  */
68 #define NEON_UNPACK(vtype, dest, val) do { \
69     union { \
70         vtype v; \
71         uint32_t i; \
72     } conv_u; \
73     conv_u.i = (val); \
74     dest = conv_u.v; \
75     } while(0)
76 
77 /* Copy from a vector structure type to a uint32_t.  */
78 #define NEON_PACK(vtype, dest, val) do { \
79     union { \
80         vtype v; \
81         uint32_t i; \
82     } conv_u; \
83     conv_u.v = (val); \
84     dest = conv_u.i; \
85     } while(0)
86 
87 #define NEON_DO1 \
88     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
89 #define NEON_DO2 \
90     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
91     NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
92 #define NEON_DO4 \
93     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94     NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
95     NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
96     NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
97 
98 #define NEON_VOP_BODY(vtype, n) \
99 { \
100     uint32_t res; \
101     vtype vsrc1; \
102     vtype vsrc2; \
103     vtype vdest; \
104     NEON_UNPACK(vtype, vsrc1, arg1); \
105     NEON_UNPACK(vtype, vsrc2, arg2); \
106     NEON_DO##n; \
107     NEON_PACK(vtype, res, vdest); \
108     return res; \
109 }
110 
111 #define NEON_VOP(name, vtype, n) \
112 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
113 NEON_VOP_BODY(vtype, n)
114 
115 #define NEON_VOP_ENV(name, vtype, n) \
116 uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
117 NEON_VOP_BODY(vtype, n)
118 
119 /* Pairwise operations.  */
120 /* For 32-bit elements each segment only contains a single element, so
121    the elementwise and pairwise operations are the same.  */
122 #define NEON_PDO2 \
123     NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
124     NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
125 #define NEON_PDO4 \
126     NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
127     NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
128     NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
129     NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
130 
131 #define NEON_POP(name, vtype, n) \
132 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
133 { \
134     uint32_t res; \
135     vtype vsrc1; \
136     vtype vsrc2; \
137     vtype vdest; \
138     NEON_UNPACK(vtype, vsrc1, arg1); \
139     NEON_UNPACK(vtype, vsrc2, arg2); \
140     NEON_PDO##n; \
141     NEON_PACK(vtype, res, vdest); \
142     return res; \
143 }
144 
145 /* Unary operators.  */
146 #define NEON_VOP1(name, vtype, n) \
147 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
148 { \
149     vtype vsrc1; \
150     vtype vdest; \
151     NEON_UNPACK(vtype, vsrc1, arg); \
152     NEON_DO##n; \
153     NEON_PACK(vtype, arg, vdest); \
154     return arg; \
155 }
156 
157 
158 #define NEON_USAT(dest, src1, src2, type) do { \
159     uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
160     if (tmp != (type)tmp) { \
161         SET_QC(); \
162         dest = ~0; \
163     } else { \
164         dest = tmp; \
165     }} while(0)
166 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
167 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
168 #undef NEON_FN
169 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
170 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
171 #undef NEON_FN
172 #undef NEON_USAT
173 
174 uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
175 {
176     uint32_t res = a + b;
177     if (res < a) {
178         SET_QC();
179         res = ~0;
180     }
181     return res;
182 }
183 
HELPER(neon_qadd_u64)184 uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
185 {
186     uint64_t res;
187 
188     res = src1 + src2;
189     if (res < src1) {
190         SET_QC();
191         res = ~(uint64_t)0;
192     }
193     return res;
194 }
195 
196 #define NEON_SSAT(dest, src1, src2, type) do { \
197     int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
198     if (tmp != (type)tmp) { \
199         SET_QC(); \
200         if (src2 > 0) { \
201             tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
202         } else { \
203             tmp = 1 << (sizeof(type) * 8 - 1); \
204         } \
205     } \
206     dest = tmp; \
207     } while(0)
208 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
209 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
210 #undef NEON_FN
211 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
212 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
213 #undef NEON_FN
214 #undef NEON_SSAT
215 
HELPER(neon_qadd_s32)216 uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
217 {
218     uint32_t res = a + b;
219     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
220         SET_QC();
221         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
222     }
223     return res;
224 }
225 
HELPER(neon_qadd_s64)226 uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
227 {
228     uint64_t res;
229 
230     res = src1 + src2;
231     if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
232         SET_QC();
233         res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
234     }
235     return res;
236 }
237 
238 /* Unsigned saturating accumulate of signed value
239  *
240  * Op1/Rn is treated as signed
241  * Op2/Rd is treated as unsigned
242  *
243  * Explicit casting is used to ensure the correct sign extension of
244  * inputs. The result is treated as a unsigned value and saturated as such.
245  *
246  * We use a macro for the 8/16 bit cases which expects signed integers of va,
247  * vb, and vr for interim calculation and an unsigned 32 bit result value r.
248  */
249 
250 #define USATACC(bits, shift) \
251     do { \
252         va = sextract32(a, shift, bits);                                \
253         vb = extract32(b, shift, bits);                                 \
254         vr = va + vb;                                                   \
255         if (vr > UINT##bits##_MAX) {                                    \
256             SET_QC();                                                   \
257             vr = UINT##bits##_MAX;                                      \
258         } else if (vr < 0) {                                            \
259             SET_QC();                                                   \
260             vr = 0;                                                     \
261         }                                                               \
262         r = deposit32(r, shift, bits, vr);                              \
263    } while (0)
264 
HELPER(neon_uqadd_s8)265 uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
266 {
267     int16_t va, vb, vr;
268     uint32_t r = 0;
269 
270     USATACC(8, 0);
271     USATACC(8, 8);
272     USATACC(8, 16);
273     USATACC(8, 24);
274     return r;
275 }
276 
HELPER(neon_uqadd_s16)277 uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
278 {
279     int32_t va, vb, vr;
280     uint64_t r = 0;
281 
282     USATACC(16, 0);
283     USATACC(16, 16);
284     return r;
285 }
286 
287 #undef USATACC
288 
HELPER(neon_uqadd_s32)289 uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
290 {
291     int64_t va = (int32_t)a;
292     int64_t vb = (uint32_t)b;
293     int64_t vr = va + vb;
294     if (vr > UINT32_MAX) {
295         SET_QC();
296         vr = UINT32_MAX;
297     } else if (vr < 0) {
298         SET_QC();
299         vr = 0;
300     }
301     return vr;
302 }
303 
HELPER(neon_uqadd_s64)304 uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
305 {
306     uint64_t res;
307     res = a + b;
308     /* We only need to look at the pattern of SIGN bits to detect
309      * +ve/-ve saturation
310      */
311     if (~a & b & ~res & SIGNBIT64) {
312         SET_QC();
313         res = UINT64_MAX;
314     } else if (a & ~b & res & SIGNBIT64) {
315         SET_QC();
316         res = 0;
317     }
318     return res;
319 }
320 
321 /* Signed saturating accumulate of unsigned value
322  *
323  * Op1/Rn is treated as unsigned
324  * Op2/Rd is treated as signed
325  *
326  * The result is treated as a signed value and saturated as such
327  *
328  * We use a macro for the 8/16 bit cases which expects signed integers of va,
329  * vb, and vr for interim calculation and an unsigned 32 bit result value r.
330  */
331 
332 #define SSATACC(bits, shift) \
333     do { \
334         va = extract32(a, shift, bits);                                 \
335         vb = sextract32(b, shift, bits);                                \
336         vr = va + vb;                                                   \
337         if (vr > INT##bits##_MAX) {                                     \
338             SET_QC();                                                   \
339             vr = INT##bits##_MAX;                                       \
340         } else if (vr < INT##bits##_MIN) {                              \
341             SET_QC();                                                   \
342             vr = INT##bits##_MIN;                                       \
343         }                                                               \
344         r = deposit32(r, shift, bits, vr);                              \
345     } while (0)
346 
HELPER(neon_sqadd_u8)347 uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
348 {
349     int16_t va, vb, vr;
350     uint32_t r = 0;
351 
352     SSATACC(8, 0);
353     SSATACC(8, 8);
354     SSATACC(8, 16);
355     SSATACC(8, 24);
356     return r;
357 }
358 
HELPER(neon_sqadd_u16)359 uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
360 {
361     int32_t va, vb, vr;
362     uint32_t r = 0;
363 
364     SSATACC(16, 0);
365     SSATACC(16, 16);
366 
367     return r;
368 }
369 
370 #undef SSATACC
371 
HELPER(neon_sqadd_u32)372 uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
373 {
374     int64_t res;
375     int64_t op1 = (uint32_t)a;
376     int64_t op2 = (int32_t)b;
377     res = op1 + op2;
378     if (res > INT32_MAX) {
379         SET_QC();
380         res = INT32_MAX;
381     } else if (res < INT32_MIN) {
382         SET_QC();
383         res = INT32_MIN;
384     }
385     return res;
386 }
387 
HELPER(neon_sqadd_u64)388 uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
389 {
390     uint64_t res;
391     res = a + b;
392     /* We only need to look at the pattern of SIGN bits to detect an overflow */
393     if (((a & res)
394          | (~b & res)
395          | (a & ~b)) & SIGNBIT64) {
396         SET_QC();
397         res = INT64_MAX;
398     }
399     return res;
400 }
401 
402 
403 #define NEON_USAT(dest, src1, src2, type) do { \
404     uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
405     if (tmp != (type)tmp) { \
406         SET_QC(); \
407         dest = 0; \
408     } else { \
409         dest = tmp; \
410     }} while(0)
411 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
412 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
413 #undef NEON_FN
414 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
415 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
416 #undef NEON_FN
417 #undef NEON_USAT
418 
HELPER(neon_qsub_u32)419 uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
420 {
421     uint32_t res = a - b;
422     if (res > a) {
423         SET_QC();
424         res = 0;
425     }
426     return res;
427 }
428 
HELPER(neon_qsub_u64)429 uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
430 {
431     uint64_t res;
432 
433     if (src1 < src2) {
434         SET_QC();
435         res = 0;
436     } else {
437         res = src1 - src2;
438     }
439     return res;
440 }
441 
442 #define NEON_SSAT(dest, src1, src2, type) do { \
443     int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
444     if (tmp != (type)tmp) { \
445         SET_QC(); \
446         if (src2 < 0) { \
447             tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
448         } else { \
449             tmp = 1 << (sizeof(type) * 8 - 1); \
450         } \
451     } \
452     dest = tmp; \
453     } while(0)
454 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
455 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
456 #undef NEON_FN
457 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
458 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
459 #undef NEON_FN
460 #undef NEON_SSAT
461 
HELPER(neon_qsub_s32)462 uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
463 {
464     uint32_t res = a - b;
465     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
466         SET_QC();
467         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
468     }
469     return res;
470 }
471 
HELPER(neon_qsub_s64)472 uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
473 {
474     uint64_t res;
475 
476     res = src1 - src2;
477     if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
478         SET_QC();
479         res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
480     }
481     return res;
482 }
483 
484 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
485 NEON_VOP(hadd_s8, neon_s8, 4)
486 NEON_VOP(hadd_u8, neon_u8, 4)
487 NEON_VOP(hadd_s16, neon_s16, 2)
488 NEON_VOP(hadd_u16, neon_u16, 2)
489 #undef NEON_FN
490 
HELPER(neon_hadd_s32)491 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
492 {
493     int32_t dest;
494 
495     dest = (src1 >> 1) + (src2 >> 1);
496     if (src1 & src2 & 1)
497         dest++;
498     return dest;
499 }
500 
HELPER(neon_hadd_u32)501 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
502 {
503     uint32_t dest;
504 
505     dest = (src1 >> 1) + (src2 >> 1);
506     if (src1 & src2 & 1)
507         dest++;
508     return dest;
509 }
510 
511 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
512 NEON_VOP(rhadd_s8, neon_s8, 4)
513 NEON_VOP(rhadd_u8, neon_u8, 4)
514 NEON_VOP(rhadd_s16, neon_s16, 2)
515 NEON_VOP(rhadd_u16, neon_u16, 2)
516 #undef NEON_FN
517 
HELPER(neon_rhadd_s32)518 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
519 {
520     int32_t dest;
521 
522     dest = (src1 >> 1) + (src2 >> 1);
523     if ((src1 | src2) & 1)
524         dest++;
525     return dest;
526 }
527 
HELPER(neon_rhadd_u32)528 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
529 {
530     uint32_t dest;
531 
532     dest = (src1 >> 1) + (src2 >> 1);
533     if ((src1 | src2) & 1)
534         dest++;
535     return dest;
536 }
537 
538 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
539 NEON_VOP(hsub_s8, neon_s8, 4)
540 NEON_VOP(hsub_u8, neon_u8, 4)
541 NEON_VOP(hsub_s16, neon_s16, 2)
542 NEON_VOP(hsub_u16, neon_u16, 2)
543 #undef NEON_FN
544 
HELPER(neon_hsub_s32)545 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
546 {
547     int32_t dest;
548 
549     dest = (src1 >> 1) - (src2 >> 1);
550     if ((~src1) & src2 & 1)
551         dest--;
552     return dest;
553 }
554 
HELPER(neon_hsub_u32)555 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
556 {
557     uint32_t dest;
558 
559     dest = (src1 >> 1) - (src2 >> 1);
560     if ((~src1) & src2 & 1)
561         dest--;
562     return dest;
563 }
564 
565 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
566 NEON_VOP(cgt_s8, neon_s8, 4)
567 NEON_VOP(cgt_u8, neon_u8, 4)
568 NEON_VOP(cgt_s16, neon_s16, 2)
569 NEON_VOP(cgt_u16, neon_u16, 2)
570 NEON_VOP(cgt_s32, neon_s32, 1)
571 NEON_VOP(cgt_u32, neon_u32, 1)
572 #undef NEON_FN
573 
574 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
575 NEON_VOP(cge_s8, neon_s8, 4)
576 NEON_VOP(cge_u8, neon_u8, 4)
577 NEON_VOP(cge_s16, neon_s16, 2)
578 NEON_VOP(cge_u16, neon_u16, 2)
579 NEON_VOP(cge_s32, neon_s32, 1)
580 NEON_VOP(cge_u32, neon_u32, 1)
581 #undef NEON_FN
582 
583 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
584 NEON_POP(pmin_s8, neon_s8, 4)
585 NEON_POP(pmin_u8, neon_u8, 4)
586 NEON_POP(pmin_s16, neon_s16, 2)
587 NEON_POP(pmin_u16, neon_u16, 2)
588 #undef NEON_FN
589 
590 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
591 NEON_POP(pmax_s8, neon_s8, 4)
592 NEON_POP(pmax_u8, neon_u8, 4)
593 NEON_POP(pmax_s16, neon_s16, 2)
594 NEON_POP(pmax_u16, neon_u16, 2)
595 #undef NEON_FN
596 
597 #define NEON_FN(dest, src1, src2) \
598     dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
599 NEON_VOP(abd_s8, neon_s8, 4)
600 NEON_VOP(abd_u8, neon_u8, 4)
601 NEON_VOP(abd_s16, neon_s16, 2)
602 NEON_VOP(abd_u16, neon_u16, 2)
603 NEON_VOP(abd_s32, neon_s32, 1)
604 NEON_VOP(abd_u32, neon_u32, 1)
605 #undef NEON_FN
606 
607 #define NEON_FN(dest, src1, src2) do { \
608     int8_t tmp; \
609     tmp = (int8_t)src2; \
610     if (tmp >= (ssize_t)sizeof(src1) * 8 || \
611         tmp <= -(ssize_t)sizeof(src1) * 8) { \
612         dest = 0; \
613     } else if (tmp < 0) { \
614         dest = src1 >> -tmp; \
615     } else { \
616         dest = src1 << tmp; \
617     }} while (0)
618 NEON_VOP(shl_u8, neon_u8, 4)
619 NEON_VOP(shl_u16, neon_u16, 2)
620 NEON_VOP(shl_u32, neon_u32, 1)
621 #undef NEON_FN
622 
HELPER(neon_shl_u64)623 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
624 {
625     int8_t shift = (int8_t)shiftop;
626     if (shift >= 64 || shift <= -64) {
627         val = 0;
628     } else if (shift < 0) {
629         val >>= -shift;
630     } else {
631         val <<= shift;
632     }
633     return val;
634 }
635 
636 #define NEON_FN(dest, src1, src2) do { \
637     int8_t tmp; \
638     tmp = (int8_t)src2; \
639     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
640         dest = 0; \
641     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
642         dest = src1 >> (sizeof(src1) * 8 - 1); \
643     } else if (tmp < 0) { \
644         dest = src1 >> -tmp; \
645     } else { \
646         dest = src1 << tmp; \
647     }} while (0)
648 NEON_VOP(shl_s8, neon_s8, 4)
649 NEON_VOP(shl_s16, neon_s16, 2)
650 NEON_VOP(shl_s32, neon_s32, 1)
651 #undef NEON_FN
652 
HELPER(neon_shl_s64)653 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
654 {
655     int8_t shift = (int8_t)shiftop;
656     int64_t val = valop;
657     if (shift >= 64) {
658         val = 0;
659     } else if (shift <= -64) {
660         val >>= 63;
661     } else if (shift < 0) {
662         val >>= -shift;
663     } else {
664         val <<= shift;
665     }
666     return val;
667 }
668 
669 #define NEON_FN(dest, src1, src2) do { \
670     int8_t tmp; \
671     tmp = (int8_t)src2; \
672     if ((tmp >= (ssize_t)sizeof(src1) * 8) \
673         || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
674         dest = 0; \
675     } else if (tmp < 0) { \
676         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
677     } else { \
678         dest = src1 << tmp; \
679     }} while (0)
680 NEON_VOP(rshl_s8, neon_s8, 4)
681 NEON_VOP(rshl_s16, neon_s16, 2)
682 #undef NEON_FN
683 
684 /* The addition of the rounding constant may overflow, so we use an
685  * intermediate 64 bit accumulator.  */
HELPER(neon_rshl_s32)686 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
687 {
688     int32_t dest;
689     int32_t val = (int32_t)valop;
690     int8_t shift = (int8_t)shiftop;
691     if ((shift >= 32) || (shift <= -32)) {
692         dest = 0;
693     } else if (shift < 0) {
694         int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
695         dest = big_dest >> -shift;
696     } else {
697         dest = val << shift;
698     }
699     return dest;
700 }
701 
702 /* Handling addition overflow with 64 bit input values is more
703  * tricky than with 32 bit values.  */
HELPER(neon_rshl_s64)704 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
705 {
706     int8_t shift = (int8_t)shiftop;
707     int64_t val = valop;
708     if ((shift >= 64) || (shift <= -64)) {
709         val = 0;
710     } else if (shift < 0) {
711         val >>= (-shift - 1);
712         if (val == INT64_MAX) {
713             /* In this case, it means that the rounding constant is 1,
714              * and the addition would overflow. Return the actual
715              * result directly.  */
716             val = 0x4000000000000000LL;
717         } else {
718             val++;
719             val >>= 1;
720         }
721     } else {
722         val <<= shift;
723     }
724     return val;
725 }
726 
727 #define NEON_FN(dest, src1, src2) do { \
728     int8_t tmp; \
729     tmp = (int8_t)src2; \
730     if (tmp >= (ssize_t)sizeof(src1) * 8 || \
731         tmp < -(ssize_t)sizeof(src1) * 8) { \
732         dest = 0; \
733     } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
734         dest = src1 >> (-tmp - 1); \
735     } else if (tmp < 0) { \
736         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
737     } else { \
738         dest = src1 << tmp; \
739     }} while (0)
740 NEON_VOP(rshl_u8, neon_u8, 4)
741 NEON_VOP(rshl_u16, neon_u16, 2)
742 #undef NEON_FN
743 
744 /* The addition of the rounding constant may overflow, so we use an
745  * intermediate 64 bit accumulator.  */
HELPER(neon_rshl_u32)746 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
747 {
748     uint32_t dest;
749     int8_t shift = (int8_t)shiftop;
750     if (shift >= 32 || shift < -32) {
751         dest = 0;
752     } else if (shift == -32) {
753         dest = val >> 31;
754     } else if (shift < 0) {
755         uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
756         dest = big_dest >> -shift;
757     } else {
758         dest = val << shift;
759     }
760     return dest;
761 }
762 
763 /* Handling addition overflow with 64 bit input values is more
764  * tricky than with 32 bit values.  */
HELPER(neon_rshl_u64)765 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
766 {
767     int8_t shift = (uint8_t)shiftop;
768     if (shift >= 64 || shift < -64) {
769         val = 0;
770     } else if (shift == -64) {
771         /* Rounding a 1-bit result just preserves that bit.  */
772         val >>= 63;
773     } else if (shift < 0) {
774         val >>= (-shift - 1);
775         if (val == UINT64_MAX) {
776             /* In this case, it means that the rounding constant is 1,
777              * and the addition would overflow. Return the actual
778              * result directly.  */
779             val = 0x8000000000000000ULL;
780         } else {
781             val++;
782             val >>= 1;
783         }
784     } else {
785         val <<= shift;
786     }
787     return val;
788 }
789 
790 #define NEON_FN(dest, src1, src2) do { \
791     int8_t tmp; \
792     tmp = (int8_t)src2; \
793     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
794         if (src1) { \
795             SET_QC(); \
796             dest = ~0; \
797         } else { \
798             dest = 0; \
799         } \
800     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
801         dest = 0; \
802     } else if (tmp < 0) { \
803         dest = src1 >> -tmp; \
804     } else { \
805         dest = src1 << tmp; \
806         if ((dest >> tmp) != src1) { \
807             SET_QC(); \
808             dest = ~0; \
809         } \
810     }} while (0)
811 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
812 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
813 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
814 #undef NEON_FN
815 
HELPER(neon_qshl_u64)816 uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
817 {
818     int8_t shift = (int8_t)shiftop;
819     if (shift >= 64) {
820         if (val) {
821             val = ~(uint64_t)0;
822             SET_QC();
823         }
824     } else if (shift <= -64) {
825         val = 0;
826     } else if (shift < 0) {
827         val >>= -shift;
828     } else {
829         uint64_t tmp = val;
830         val <<= shift;
831         if ((val >> shift) != tmp) {
832             SET_QC();
833             val = ~(uint64_t)0;
834         }
835     }
836     return val;
837 }
838 
839 #define NEON_FN(dest, src1, src2) do { \
840     int8_t tmp; \
841     tmp = (int8_t)src2; \
842     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
843         if (src1) { \
844             SET_QC(); \
845             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
846             if (src1 > 0) { \
847                 dest--; \
848             } \
849         } else { \
850             dest = src1; \
851         } \
852     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
853         dest = src1 >> 31; \
854     } else if (tmp < 0) { \
855         dest = src1 >> -tmp; \
856     } else { \
857         dest = src1 << tmp; \
858         if ((dest >> tmp) != src1) { \
859             SET_QC(); \
860             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
861             if (src1 > 0) { \
862                 dest--; \
863             } \
864         } \
865     }} while (0)
866 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
867 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
868 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
869 #undef NEON_FN
870 
HELPER(neon_qshl_s64)871 uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
872 {
873     int8_t shift = (uint8_t)shiftop;
874     int64_t val = valop;
875     if (shift >= 64) {
876         if (val) {
877             SET_QC();
878             val = (val >> 63) ^ ~SIGNBIT64;
879         }
880     } else if (shift <= -64) {
881         val >>= 63;
882     } else if (shift < 0) {
883         val >>= -shift;
884     } else {
885         int64_t tmp = val;
886         val <<= shift;
887         if ((val >> shift) != tmp) {
888             SET_QC();
889             val = (tmp >> 63) ^ ~SIGNBIT64;
890         }
891     }
892     return val;
893 }
894 
895 #define NEON_FN(dest, src1, src2) do { \
896     if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
897         SET_QC(); \
898         dest = 0; \
899     } else { \
900         int8_t tmp; \
901         tmp = (int8_t)src2; \
902         if (tmp >= (ssize_t)sizeof(src1) * 8) { \
903             if (src1) { \
904                 SET_QC(); \
905                 dest = ~0; \
906             } else { \
907                 dest = 0; \
908             } \
909         } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
910             dest = 0; \
911         } else if (tmp < 0) { \
912             dest = src1 >> -tmp; \
913         } else { \
914             dest = src1 << tmp; \
915             if ((dest >> tmp) != src1) { \
916                 SET_QC(); \
917                 dest = ~0; \
918             } \
919         } \
920     }} while (0)
921 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
922 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
923 #undef NEON_FN
924 
HELPER(neon_qshlu_s32)925 uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
926 {
927     if ((int32_t)valop < 0) {
928         SET_QC();
929         return 0;
930     }
931     return helper_neon_qshl_u32(env, valop, shiftop);
932 }
933 
HELPER(neon_qshlu_s64)934 uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
935 {
936     if ((int64_t)valop < 0) {
937         SET_QC();
938         return 0;
939     }
940     return helper_neon_qshl_u64(env, valop, shiftop);
941 }
942 
943 #define NEON_FN(dest, src1, src2) do { \
944     int8_t tmp; \
945     tmp = (int8_t)src2; \
946     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
947         if (src1) { \
948             SET_QC(); \
949             dest = ~0; \
950         } else { \
951             dest = 0; \
952         } \
953     } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
954         dest = 0; \
955     } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
956         dest = src1 >> (sizeof(src1) * 8 - 1); \
957     } else if (tmp < 0) { \
958         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
959     } else { \
960         dest = src1 << tmp; \
961         if ((dest >> tmp) != src1) { \
962             SET_QC(); \
963             dest = ~0; \
964         } \
965     }} while (0)
966 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
967 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
968 #undef NEON_FN
969 
970 /* The addition of the rounding constant may overflow, so we use an
971  * intermediate 64 bit accumulator.  */
HELPER(neon_qrshl_u32)972 uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
973 {
974     uint32_t dest;
975     int8_t shift = (int8_t)shiftop;
976     if (shift >= 32) {
977         if (val) {
978             SET_QC();
979             dest = ~0;
980         } else {
981             dest = 0;
982         }
983     } else if (shift < -32) {
984         dest = 0;
985     } else if (shift == -32) {
986         dest = val >> 31;
987     } else if (shift < 0) {
988         uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
989         dest = big_dest >> -shift;
990     } else {
991         dest = val << shift;
992         if ((dest >> shift) != val) {
993             SET_QC();
994             dest = ~0;
995         }
996     }
997     return dest;
998 }
999 
1000 /* Handling addition overflow with 64 bit input values is more
1001  * tricky than with 32 bit values.  */
HELPER(neon_qrshl_u64)1002 uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
1003 {
1004     int8_t shift = (int8_t)shiftop;
1005     if (shift >= 64) {
1006         if (val) {
1007             SET_QC();
1008             val = ~0;
1009         }
1010     } else if (shift < -64) {
1011         val = 0;
1012     } else if (shift == -64) {
1013         val >>= 63;
1014     } else if (shift < 0) {
1015         val >>= (-shift - 1);
1016         if (val == UINT64_MAX) {
1017             /* In this case, it means that the rounding constant is 1,
1018              * and the addition would overflow. Return the actual
1019              * result directly.  */
1020             val = 0x8000000000000000ULL;
1021         } else {
1022             val++;
1023             val >>= 1;
1024         }
1025     } else { \
1026         uint64_t tmp = val;
1027         val <<= shift;
1028         if ((val >> shift) != tmp) {
1029             SET_QC();
1030             val = ~0;
1031         }
1032     }
1033     return val;
1034 }
1035 
1036 #define NEON_FN(dest, src1, src2) do { \
1037     int8_t tmp; \
1038     tmp = (int8_t)src2; \
1039     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
1040         if (src1) { \
1041             SET_QC(); \
1042             dest = (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); \
1043             if (src1 > 0) { \
1044                 dest--; \
1045             } \
1046         } else { \
1047             dest = 0; \
1048         } \
1049     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
1050         dest = 0; \
1051     } else if (tmp < 0) { \
1052         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
1053     } else { \
1054         dest = src1 << tmp; \
1055         if ((dest >> tmp) != src1) { \
1056             SET_QC(); \
1057             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
1058             if (src1 > 0) { \
1059                 dest--; \
1060             } \
1061         } \
1062     }} while (0)
1063 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
1064 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
1065 #undef NEON_FN
1066 
1067 /* The addition of the rounding constant may overflow, so we use an
1068  * intermediate 64 bit accumulator.  */
HELPER(neon_qrshl_s32)1069 uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
1070 {
1071     int32_t dest;
1072     int32_t val = (int32_t)valop;
1073     int8_t shift = (int8_t)shiftop;
1074     if (shift >= 32) {
1075         if (val) {
1076             SET_QC();
1077             dest = (val >> 31) ^ ~SIGNBIT;
1078         } else {
1079             dest = 0;
1080         }
1081     } else if (shift <= -32) {
1082         dest = 0;
1083     } else if (shift < 0) {
1084         int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
1085         dest = big_dest >> -shift;
1086     } else {
1087         dest = val << shift;
1088         if ((dest >> shift) != val) {
1089             SET_QC();
1090             dest = (val >> 31) ^ ~SIGNBIT;
1091         }
1092     }
1093     return dest;
1094 }
1095 
1096 /* Handling addition overflow with 64 bit input values is more
1097  * tricky than with 32 bit values.  */
HELPER(neon_qrshl_s64)1098 uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
1099 {
1100     int8_t shift = (uint8_t)shiftop;
1101     int64_t val = valop;
1102 
1103     if (shift >= 64) {
1104         if (val) {
1105             SET_QC();
1106             val = (val >> 63) ^ ~SIGNBIT64;
1107         }
1108     } else if (shift <= -64) {
1109         val = 0;
1110     } else if (shift < 0) {
1111         val >>= (-shift - 1);
1112         if (val == INT64_MAX) {
1113             /* In this case, it means that the rounding constant is 1,
1114              * and the addition would overflow. Return the actual
1115              * result directly.  */
1116             val = 0x4000000000000000ULL;
1117         } else {
1118             val++;
1119             val >>= 1;
1120         }
1121     } else {
1122         int64_t tmp = val;
1123         val <<= shift;
1124         if ((val >> shift) != tmp) {
1125             SET_QC();
1126             val = (tmp >> 63) ^ ~SIGNBIT64;
1127         }
1128     }
1129     return val;
1130 }
1131 
HELPER(neon_add_u8)1132 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
1133 {
1134     uint32_t mask;
1135     mask = (a ^ b) & 0x80808080u;
1136     a &= ~0x80808080u;
1137     b &= ~0x80808080u;
1138     return (a + b) ^ mask;
1139 }
1140 
HELPER(neon_add_u16)1141 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
1142 {
1143     uint32_t mask;
1144     mask = (a ^ b) & 0x80008000u;
1145     a &= ~0x80008000u;
1146     b &= ~0x80008000u;
1147     return (a + b) ^ mask;
1148 }
1149 
1150 #define NEON_FN(dest, src1, src2) dest = src1 + src2
1151 NEON_POP(padd_u8, neon_u8, 4)
1152 NEON_POP(padd_u16, neon_u16, 2)
1153 #undef NEON_FN
1154 
1155 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1156 NEON_VOP(sub_u8, neon_u8, 4)
1157 NEON_VOP(sub_u16, neon_u16, 2)
1158 #undef NEON_FN
1159 
1160 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1161 NEON_VOP(mul_u8, neon_u8, 4)
1162 NEON_VOP(mul_u16, neon_u16, 2)
1163 #undef NEON_FN
1164 
1165 /* Polynomial multiplication is like integer multiplication except the
1166    partial products are XORed, not added.  */
HELPER(neon_mul_p8)1167 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1168 {
1169     uint32_t mask;
1170     uint32_t result;
1171     result = 0;
1172     while (op1) {
1173         mask = 0;
1174         if (op1 & 1)
1175             mask |= 0xff;
1176         if (op1 & (1 << 8))
1177             mask |= (0xff << 8);
1178         if (op1 & (1 << 16))
1179             mask |= (0xff << 16);
1180         if (op1 & (1 << 24))
1181             mask |= (0xff << 24);
1182         result ^= op2 & mask;
1183         op1 = (op1 >> 1) & 0x7f7f7f7f;
1184         op2 = (op2 << 1) & 0xfefefefe;
1185     }
1186     return result;
1187 }
1188 
HELPER(neon_mull_p8)1189 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1190 {
1191     uint64_t result = 0;
1192     uint64_t mask;
1193     uint64_t op2ex = op2;
1194     op2ex = (op2ex & 0xff) |
1195         ((op2ex & 0xff00) << 8) |
1196         ((op2ex & 0xff0000) << 16) |
1197         ((op2ex & 0xff000000) << 24);
1198     while (op1) {
1199         mask = 0;
1200         if (op1 & 1) {
1201             mask |= 0xffff;
1202         }
1203         if (op1 & (1 << 8)) {
1204             mask |= (0xffffU << 16);
1205         }
1206         if (op1 & (1 << 16)) {
1207             mask |= (0xffffULL << 32);
1208         }
1209         if (op1 & (1 << 24)) {
1210             mask |= (0xffffULL << 48);
1211         }
1212         result ^= op2ex & mask;
1213         op1 = (op1 >> 1) & 0x7f7f7f7f;
1214         op2ex <<= 1;
1215     }
1216     return result;
1217 }
1218 
1219 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1220 NEON_VOP(tst_u8, neon_u8, 4)
1221 NEON_VOP(tst_u16, neon_u16, 2)
1222 NEON_VOP(tst_u32, neon_u32, 1)
1223 #undef NEON_FN
1224 
1225 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1226 NEON_VOP(ceq_u8, neon_u8, 4)
1227 NEON_VOP(ceq_u16, neon_u16, 2)
1228 NEON_VOP(ceq_u32, neon_u32, 1)
1229 #undef NEON_FN
1230 
1231 /* Count Leading Sign/Zero Bits.  */
do_clz8(uint8_t x)1232 static inline int do_clz8(uint8_t x)
1233 {
1234     int n;
1235     for (n = 8; x; n--)
1236         x >>= 1;
1237     return n;
1238 }
1239 
do_clz16(uint16_t x)1240 static inline int do_clz16(uint16_t x)
1241 {
1242     int n;
1243     for (n = 16; x; n--)
1244         x >>= 1;
1245     return n;
1246 }
1247 
1248 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1249 NEON_VOP1(clz_u8, neon_u8, 4)
1250 #undef NEON_FN
1251 
1252 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1253 NEON_VOP1(clz_u16, neon_u16, 2)
1254 #undef NEON_FN
1255 
1256 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1257 NEON_VOP1(cls_s8, neon_s8, 4)
1258 #undef NEON_FN
1259 
1260 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1261 NEON_VOP1(cls_s16, neon_s16, 2)
1262 #undef NEON_FN
1263 
HELPER(neon_cls_s32)1264 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1265 {
1266     int count;
1267     if ((int32_t)x < 0)
1268         x = ~x;
1269     for (count = 32; x; count--)
1270         x = x >> 1;
1271     return count - 1;
1272 }
1273 
1274 /* Bit count.  */
HELPER(neon_cnt_u8)1275 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1276 {
1277     x = (x & 0x55555555) + ((x >>  1) & 0x55555555);
1278     x = (x & 0x33333333) + ((x >>  2) & 0x33333333);
1279     x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f);
1280     return x;
1281 }
1282 
1283 /* Reverse bits in each 8 bit word */
HELPER(neon_rbit_u8)1284 uint32_t HELPER(neon_rbit_u8)(uint32_t x)
1285 {
1286     x =  ((x & 0xf0f0f0f0) >> 4)
1287        | ((x & 0x0f0f0f0f) << 4);
1288     x =  ((x & 0x88888888) >> 3)
1289        | ((x & 0x44444444) >> 1)
1290        | ((x & 0x22222222) << 1)
1291        | ((x & 0x11111111) << 3);
1292     return x;
1293 }
1294 
1295 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1296     uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1297     if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1298         SET_QC(); \
1299         tmp = (tmp >> 31) ^ ~SIGNBIT; \
1300     } else { \
1301         tmp <<= 1; \
1302     } \
1303     if (round) { \
1304         int32_t old = tmp; \
1305         tmp += 1 << 15; \
1306         if ((int32_t)tmp < old) { \
1307             SET_QC(); \
1308             tmp = SIGNBIT - 1; \
1309         } \
1310     } \
1311     dest = tmp >> 16; \
1312     } while(0)
1313 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1314 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1315 #undef NEON_FN
1316 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1317 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1318 #undef NEON_FN
1319 #undef NEON_QDMULH16
1320 
1321 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1322     uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1323     if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1324         SET_QC(); \
1325         tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1326     } else { \
1327         tmp <<= 1; \
1328     } \
1329     if (round) { \
1330         int64_t old = tmp; \
1331         tmp += (int64_t)1 << 31; \
1332         if ((int64_t)tmp < old) { \
1333             SET_QC(); \
1334             tmp = SIGNBIT64 - 1; \
1335         } \
1336     } \
1337     dest = tmp >> 32; \
1338     } while(0)
1339 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1340 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1341 #undef NEON_FN
1342 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1343 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1344 #undef NEON_FN
1345 #undef NEON_QDMULH32
1346 
HELPER(neon_narrow_u8)1347 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1348 {
1349     return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1350            | ((x >> 24) & 0xff000000u);
1351 }
1352 
HELPER(neon_narrow_u16)1353 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1354 {
1355     return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1356 }
1357 
HELPER(neon_narrow_high_u8)1358 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1359 {
1360     return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1361             | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1362 }
1363 
HELPER(neon_narrow_high_u16)1364 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1365 {
1366     return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1367 }
1368 
HELPER(neon_narrow_round_high_u8)1369 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1370 {
1371     x &= 0xff80ff80ff80ff80ull;
1372     x += 0x0080008000800080ull;
1373     return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1374             | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1375 }
1376 
HELPER(neon_narrow_round_high_u16)1377 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1378 {
1379     x &= 0xffff8000ffff8000ull;
1380     x += 0x0000800000008000ull;
1381     return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1382 }
1383 
HELPER(neon_unarrow_sat8)1384 uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1385 {
1386     uint16_t s;
1387     uint8_t d;
1388     uint32_t res = 0;
1389 #define SAT8(n) \
1390     s = x >> n; \
1391     if (s & 0x8000) { \
1392         SET_QC(); \
1393     } else { \
1394         if (s > 0xff) { \
1395             d = 0xff; \
1396             SET_QC(); \
1397         } else  { \
1398             d = s; \
1399         } \
1400         res |= (uint32_t)d << (n / 2); \
1401     }
1402 
1403     SAT8(0);
1404     SAT8(16);
1405     SAT8(32);
1406     SAT8(48);
1407 #undef SAT8
1408     return res;
1409 }
1410 
HELPER(neon_narrow_sat_u8)1411 uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1412 {
1413     uint16_t s;
1414     uint8_t d;
1415     uint32_t res = 0;
1416 #define SAT8(n) \
1417     s = x >> n; \
1418     if (s > 0xff) { \
1419         d = 0xff; \
1420         SET_QC(); \
1421     } else  { \
1422         d = s; \
1423     } \
1424     res |= (uint32_t)d << (n / 2);
1425 
1426     SAT8(0);
1427     SAT8(16);
1428     SAT8(32);
1429     SAT8(48);
1430 #undef SAT8
1431     return res;
1432 }
1433 
HELPER(neon_narrow_sat_s8)1434 uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1435 {
1436     int16_t s;
1437     uint8_t d;
1438     uint32_t res = 0;
1439 #define SAT8(n) \
1440     s = x >> n; \
1441     if (s != (int8_t)s) { \
1442         d = (s >> 15) ^ 0x7f; \
1443         SET_QC(); \
1444     } else  { \
1445         d = s; \
1446     } \
1447     res |= (uint32_t)d << (n / 2);
1448 
1449     SAT8(0);
1450     SAT8(16);
1451     SAT8(32);
1452     SAT8(48);
1453 #undef SAT8
1454     return res;
1455 }
1456 
HELPER(neon_unarrow_sat16)1457 uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1458 {
1459     uint32_t high;
1460     uint32_t low;
1461     low = x;
1462     if (low & 0x80000000) {
1463         low = 0;
1464         SET_QC();
1465     } else if (low > 0xffff) {
1466         low = 0xffff;
1467         SET_QC();
1468     }
1469     high = x >> 32;
1470     if (high & 0x80000000) {
1471         high = 0;
1472         SET_QC();
1473     } else if (high > 0xffff) {
1474         high = 0xffff;
1475         SET_QC();
1476     }
1477     return low | (high << 16);
1478 }
1479 
HELPER(neon_narrow_sat_u16)1480 uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1481 {
1482     uint32_t high;
1483     uint32_t low;
1484     low = x;
1485     if (low > 0xffff) {
1486         low = 0xffff;
1487         SET_QC();
1488     }
1489     high = x >> 32;
1490     if (high > 0xffff) {
1491         high = 0xffff;
1492         SET_QC();
1493     }
1494     return low | (high << 16);
1495 }
1496 
HELPER(neon_narrow_sat_s16)1497 uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1498 {
1499     int32_t low;
1500     int32_t high;
1501     low = x;
1502     if (low != (int16_t)low) {
1503         low = (low >> 31) ^ 0x7fff;
1504         SET_QC();
1505     }
1506     high = x >> 32;
1507     if (high != (int16_t)high) {
1508         high = (high >> 31) ^ 0x7fff;
1509         SET_QC();
1510     }
1511     return (uint16_t)low | (high << 16);
1512 }
1513 
HELPER(neon_unarrow_sat32)1514 uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1515 {
1516     if (x & 0x8000000000000000ull) {
1517         SET_QC();
1518         return 0;
1519     }
1520     if (x > 0xffffffffu) {
1521         SET_QC();
1522         return 0xffffffffu;
1523     }
1524     return x;
1525 }
1526 
HELPER(neon_narrow_sat_u32)1527 uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1528 {
1529     if (x > 0xffffffffu) {
1530         SET_QC();
1531         return 0xffffffffu;
1532     }
1533     return x;
1534 }
1535 
HELPER(neon_narrow_sat_s32)1536 uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1537 {
1538     if ((int64_t)x != (int32_t)x) {
1539         SET_QC();
1540         return ((int64_t)x >> 63) ^ 0x7fffffff;
1541     }
1542     return x;
1543 }
1544 
HELPER(neon_widen_u8)1545 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1546 {
1547     uint64_t tmp;
1548     uint64_t ret;
1549     ret = (uint8_t)x;
1550     tmp = (uint8_t)(x >> 8);
1551     ret |= tmp << 16;
1552     tmp = (uint8_t)(x >> 16);
1553     ret |= tmp << 32;
1554     tmp = (uint8_t)(x >> 24);
1555     ret |= tmp << 48;
1556     return ret;
1557 }
1558 
HELPER(neon_widen_s8)1559 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1560 {
1561     uint64_t tmp;
1562     uint64_t ret;
1563     ret = (uint16_t)(int8_t)x;
1564     tmp = (uint16_t)(int8_t)(x >> 8);
1565     ret |= tmp << 16;
1566     tmp = (uint16_t)(int8_t)(x >> 16);
1567     ret |= tmp << 32;
1568     tmp = (uint16_t)(int8_t)(x >> 24);
1569     ret |= tmp << 48;
1570     return ret;
1571 }
1572 
HELPER(neon_widen_u16)1573 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1574 {
1575     uint64_t high = (uint16_t)(x >> 16);
1576     return ((uint16_t)x) | (high << 32);
1577 }
1578 
HELPER(neon_widen_s16)1579 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1580 {
1581     uint64_t high = (int16_t)(x >> 16);
1582     return ((uint32_t)(int16_t)x) | (high << 32);
1583 }
1584 
HELPER(neon_addl_u16)1585 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1586 {
1587     uint64_t mask;
1588     mask = (a ^ b) & 0x8000800080008000ull;
1589     a &= ~0x8000800080008000ull;
1590     b &= ~0x8000800080008000ull;
1591     return (a + b) ^ mask;
1592 }
1593 
HELPER(neon_addl_u32)1594 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1595 {
1596     uint64_t mask;
1597     mask = (a ^ b) & 0x8000000080000000ull;
1598     a &= ~0x8000000080000000ull;
1599     b &= ~0x8000000080000000ull;
1600     return (a + b) ^ mask;
1601 }
1602 
HELPER(neon_paddl_u16)1603 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1604 {
1605     uint64_t tmp;
1606     uint64_t tmp2;
1607 
1608     tmp = a & 0x0000ffff0000ffffull;
1609     tmp += (a >> 16) & 0x0000ffff0000ffffull;
1610     tmp2 = b & 0xffff0000ffff0000ull;
1611     tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1612     return    ( tmp         & 0xffff)
1613             | ((tmp  >> 16) & 0xffff0000ull)
1614             | ((tmp2 << 16) & 0xffff00000000ull)
1615             | ( tmp2        & 0xffff000000000000ull);
1616 }
1617 
HELPER(neon_paddl_u32)1618 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1619 {
1620     uint32_t low = a + (a >> 32);
1621     uint32_t high = b + (b >> 32);
1622     return low + ((uint64_t)high << 32);
1623 }
1624 
HELPER(neon_subl_u16)1625 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1626 {
1627     uint64_t mask;
1628     mask = (a ^ ~b) & 0x8000800080008000ull;
1629     a |= 0x8000800080008000ull;
1630     b &= ~0x8000800080008000ull;
1631     return (a - b) ^ mask;
1632 }
1633 
HELPER(neon_subl_u32)1634 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1635 {
1636     uint64_t mask;
1637     mask = (a ^ ~b) & 0x8000000080000000ull;
1638     a |= 0x8000000080000000ull;
1639     b &= ~0x8000000080000000ull;
1640     return (a - b) ^ mask;
1641 }
1642 
HELPER(neon_addl_saturate_s32)1643 uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1644 {
1645     uint32_t x, y;
1646     uint32_t low, high;
1647 
1648     x = a;
1649     y = b;
1650     low = x + y;
1651     if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1652         SET_QC();
1653         low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1654     }
1655     x = a >> 32;
1656     y = b >> 32;
1657     high = x + y;
1658     if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1659         SET_QC();
1660         high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1661     }
1662     return low | ((uint64_t)high << 32);
1663 }
1664 
HELPER(neon_addl_saturate_s64)1665 uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1666 {
1667     uint64_t result;
1668 
1669     result = a + b;
1670     if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1671         SET_QC();
1672         result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1673     }
1674     return result;
1675 }
1676 
1677 /* We have to do the arithmetic in a larger type than
1678  * the input type, because for example with a signed 32 bit
1679  * op the absolute difference can overflow a signed 32 bit value.
1680  */
1681 #define DO_ABD(dest, x, y, intype, arithtype) do {            \
1682     arithtype tmp_x = (intype)(x);                            \
1683     arithtype tmp_y = (intype)(y);                            \
1684     dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1685     } while(0)
1686 
HELPER(neon_abdl_u16)1687 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1688 {
1689     uint64_t tmp;
1690     uint64_t result;
1691     DO_ABD(result, a, b, uint8_t, uint32_t);
1692     DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1693     result |= tmp << 16;
1694     DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1695     result |= tmp << 32;
1696     DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1697     result |= tmp << 48;
1698     return result;
1699 }
1700 
HELPER(neon_abdl_s16)1701 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1702 {
1703     uint64_t tmp;
1704     uint64_t result;
1705     DO_ABD(result, a, b, int8_t, int32_t);
1706     DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1707     result |= tmp << 16;
1708     DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1709     result |= tmp << 32;
1710     DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1711     result |= tmp << 48;
1712     return result;
1713 }
1714 
HELPER(neon_abdl_u32)1715 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1716 {
1717     uint64_t tmp;
1718     uint64_t result;
1719     DO_ABD(result, a, b, uint16_t, uint32_t);
1720     DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1721     return result | (tmp << 32);
1722 }
1723 
HELPER(neon_abdl_s32)1724 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1725 {
1726     uint64_t tmp;
1727     uint64_t result;
1728     DO_ABD(result, a, b, int16_t, int32_t);
1729     DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1730     return result | (tmp << 32);
1731 }
1732 
HELPER(neon_abdl_u64)1733 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1734 {
1735     uint64_t result;
1736     DO_ABD(result, a, b, uint32_t, uint64_t);
1737     return result;
1738 }
1739 
HELPER(neon_abdl_s64)1740 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1741 {
1742     uint64_t result;
1743     DO_ABD(result, a, b, int32_t, int64_t);
1744     return result;
1745 }
1746 #undef DO_ABD
1747 
1748 /* Widening multiply. Named type is the source type.  */
1749 #define DO_MULL(dest, x, y, type1, type2) do { \
1750     type1 tmp_x = x; \
1751     type1 tmp_y = y; \
1752     dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1753     } while(0)
1754 
HELPER(neon_mull_u8)1755 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1756 {
1757     uint64_t tmp;
1758     uint64_t result;
1759 
1760     DO_MULL(result, a, b, uint8_t, uint16_t);
1761     DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1762     result |= tmp << 16;
1763     DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1764     result |= tmp << 32;
1765     DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1766     result |= tmp << 48;
1767     return result;
1768 }
1769 
HELPER(neon_mull_s8)1770 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1771 {
1772     uint64_t tmp;
1773     uint64_t result;
1774 
1775     DO_MULL(result, a, b, int8_t, uint16_t);
1776     DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1777     result |= tmp << 16;
1778     DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1779     result |= tmp << 32;
1780     DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1781     result |= tmp << 48;
1782     return result;
1783 }
1784 
HELPER(neon_mull_u16)1785 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1786 {
1787     uint64_t tmp;
1788     uint64_t result;
1789 
1790     DO_MULL(result, a, b, uint16_t, uint32_t);
1791     DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1792     return result | (tmp << 32);
1793 }
1794 
HELPER(neon_mull_s16)1795 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1796 {
1797     uint64_t tmp;
1798     uint64_t result;
1799 
1800     DO_MULL(result, a, b, int16_t, uint32_t);
1801     DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1802     return result | (tmp << 32);
1803 }
1804 
HELPER(neon_negl_u16)1805 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1806 {
1807     uint16_t tmp;
1808     uint64_t result;
1809     result = (uint16_t)-x;
1810     tmp = -(x >> 16);
1811     result |= (uint64_t)tmp << 16;
1812     tmp = -(x >> 32);
1813     result |= (uint64_t)tmp << 32;
1814     tmp = -(x >> 48);
1815     result |= (uint64_t)tmp << 48;
1816     return result;
1817 }
1818 
HELPER(neon_negl_u32)1819 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1820 {
1821     uint32_t low = -x;
1822     uint32_t high = -(x >> 32);
1823     return low | ((uint64_t)high << 32);
1824 }
1825 
1826 /* Saturating sign manipulation.  */
1827 /* ??? Make these use NEON_VOP1 */
1828 #define DO_QABS8(x) do { \
1829     if (x == (int8_t)0x80) { \
1830         x = 0x7f; \
1831         SET_QC(); \
1832     } else if (x < 0) { \
1833         x = -x; \
1834     }} while (0)
HELPER(neon_qabs_s8)1835 uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1836 {
1837     neon_s8 vec;
1838     NEON_UNPACK(neon_s8, vec, x);
1839     DO_QABS8(vec.v1);
1840     DO_QABS8(vec.v2);
1841     DO_QABS8(vec.v3);
1842     DO_QABS8(vec.v4);
1843     NEON_PACK(neon_s8, x, vec);
1844     return x;
1845 }
1846 #undef DO_QABS8
1847 
1848 #define DO_QNEG8(x) do { \
1849     if (x == (int8_t)0x80) { \
1850         x = 0x7f; \
1851         SET_QC(); \
1852     } else { \
1853         x = -x; \
1854     }} while (0)
HELPER(neon_qneg_s8)1855 uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1856 {
1857     neon_s8 vec;
1858     NEON_UNPACK(neon_s8, vec, x);
1859     DO_QNEG8(vec.v1);
1860     DO_QNEG8(vec.v2);
1861     DO_QNEG8(vec.v3);
1862     DO_QNEG8(vec.v4);
1863     NEON_PACK(neon_s8, x, vec);
1864     return x;
1865 }
1866 #undef DO_QNEG8
1867 
1868 #define DO_QABS16(x) do { \
1869     if (x == (int16_t)0x8000) { \
1870         x = 0x7fff; \
1871         SET_QC(); \
1872     } else if (x < 0) { \
1873         x = -x; \
1874     }} while (0)
HELPER(neon_qabs_s16)1875 uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1876 {
1877     neon_s16 vec;
1878     NEON_UNPACK(neon_s16, vec, x);
1879     DO_QABS16(vec.v1);
1880     DO_QABS16(vec.v2);
1881     NEON_PACK(neon_s16, x, vec);
1882     return x;
1883 }
1884 #undef DO_QABS16
1885 
1886 #define DO_QNEG16(x) do { \
1887     if (x == (int16_t)0x8000) { \
1888         x = 0x7fff; \
1889         SET_QC(); \
1890     } else { \
1891         x = -x; \
1892     }} while (0)
HELPER(neon_qneg_s16)1893 uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1894 {
1895     neon_s16 vec;
1896     NEON_UNPACK(neon_s16, vec, x);
1897     DO_QNEG16(vec.v1);
1898     DO_QNEG16(vec.v2);
1899     NEON_PACK(neon_s16, x, vec);
1900     return x;
1901 }
1902 #undef DO_QNEG16
1903 
HELPER(neon_qabs_s32)1904 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1905 {
1906     if (x == SIGNBIT) {
1907         SET_QC();
1908         x = ~SIGNBIT;
1909     } else if ((int32_t)x < 0) {
1910         x = -x;
1911     }
1912     return x;
1913 }
1914 
HELPER(neon_qneg_s32)1915 uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1916 {
1917     if (x == SIGNBIT) {
1918         SET_QC();
1919         x = ~SIGNBIT;
1920     } else {
1921         x = -x;
1922     }
1923     return x;
1924 }
1925 
HELPER(neon_qabs_s64)1926 uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
1927 {
1928     if (x == SIGNBIT64) {
1929         SET_QC();
1930         x = ~SIGNBIT64;
1931     } else if ((int64_t)x < 0) {
1932         x = -x;
1933     }
1934     return x;
1935 }
1936 
HELPER(neon_qneg_s64)1937 uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
1938 {
1939     if (x == SIGNBIT64) {
1940         SET_QC();
1941         x = ~SIGNBIT64;
1942     } else {
1943         x = -x;
1944     }
1945     return x;
1946 }
1947 
1948 /* NEON Float helpers.  */
HELPER(neon_abd_f32)1949 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1950 {
1951     float_status *fpst = fpstp;
1952     float32 f0 = make_float32(a);
1953     float32 f1 = make_float32(b);
1954     return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1955 }
1956 
1957 /* Floating point comparisons produce an integer result.
1958  * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1959  * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1960  */
HELPER(neon_ceq_f32)1961 uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1962 {
1963     float_status *fpst = fpstp;
1964     return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1965 }
1966 
HELPER(neon_cge_f32)1967 uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1968 {
1969     float_status *fpst = fpstp;
1970     return -float32_le(make_float32(b), make_float32(a), fpst);
1971 }
1972 
HELPER(neon_cgt_f32)1973 uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1974 {
1975     float_status *fpst = fpstp;
1976     return -float32_lt(make_float32(b), make_float32(a), fpst);
1977 }
1978 
HELPER(neon_acge_f32)1979 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1980 {
1981     float_status *fpst = fpstp;
1982     float32 f0 = float32_abs(make_float32(a));
1983     float32 f1 = float32_abs(make_float32(b));
1984     return -float32_le(f1, f0, fpst);
1985 }
1986 
HELPER(neon_acgt_f32)1987 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1988 {
1989     float_status *fpst = fpstp;
1990     float32 f0 = float32_abs(make_float32(a));
1991     float32 f1 = float32_abs(make_float32(b));
1992     return -float32_lt(f1, f0, fpst);
1993 }
1994 
HELPER(neon_acge_f64)1995 uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
1996 {
1997     float_status *fpst = fpstp;
1998     float64 f0 = float64_abs(make_float64(a));
1999     float64 f1 = float64_abs(make_float64(b));
2000     return -float64_le(f1, f0, fpst);
2001 }
2002 
HELPER(neon_acgt_f64)2003 uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
2004 {
2005     float_status *fpst = fpstp;
2006     float64 f0 = float64_abs(make_float64(a));
2007     float64 f1 = float64_abs(make_float64(b));
2008     return -float64_lt(f1, f0, fpst);
2009 }
2010 
2011 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
2012 
HELPER(neon_qunzip8)2013 void HELPER(neon_qunzip8)(void *vd, void *vm)
2014 {
2015     uint64_t *rd = vd, *rm = vm;
2016     uint64_t zd0 = rd[0], zd1 = rd[1];
2017     uint64_t zm0 = rm[0], zm1 = rm[1];
2018 
2019     uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
2020         | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
2021         | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
2022         | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
2023     uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
2024         | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
2025         | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2026         | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
2027     uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
2028         | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
2029         | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
2030         | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
2031     uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
2032         | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
2033         | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
2034         | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2035 
2036     rm[0] = m0;
2037     rm[1] = m1;
2038     rd[0] = d0;
2039     rd[1] = d1;
2040 }
2041 
HELPER(neon_qunzip16)2042 void HELPER(neon_qunzip16)(void *vd, void *vm)
2043 {
2044     uint64_t *rd = vd, *rm = vm;
2045     uint64_t zd0 = rd[0], zd1 = rd[1];
2046     uint64_t zm0 = rm[0], zm1 = rm[1];
2047 
2048     uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
2049         | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
2050     uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
2051         | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
2052     uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
2053         | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
2054     uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
2055         | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2056 
2057     rm[0] = m0;
2058     rm[1] = m1;
2059     rd[0] = d0;
2060     rd[1] = d1;
2061 }
2062 
HELPER(neon_qunzip32)2063 void HELPER(neon_qunzip32)(void *vd, void *vm)
2064 {
2065     uint64_t *rd = vd, *rm = vm;
2066     uint64_t zd0 = rd[0], zd1 = rd[1];
2067     uint64_t zm0 = rm[0], zm1 = rm[1];
2068 
2069     uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
2070     uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2071     uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
2072     uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2073 
2074     rm[0] = m0;
2075     rm[1] = m1;
2076     rd[0] = d0;
2077     rd[1] = d1;
2078 }
2079 
HELPER(neon_unzip8)2080 void HELPER(neon_unzip8)(void *vd, void *vm)
2081 {
2082     uint64_t *rd = vd, *rm = vm;
2083     uint64_t zd = rd[0], zm = rm[0];
2084 
2085     uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
2086         | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
2087         | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2088         | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
2089     uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
2090         | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
2091         | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
2092         | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2093 
2094     rm[0] = m0;
2095     rd[0] = d0;
2096 }
2097 
HELPER(neon_unzip16)2098 void HELPER(neon_unzip16)(void *vd, void *vm)
2099 {
2100     uint64_t *rd = vd, *rm = vm;
2101     uint64_t zd = rd[0], zm = rm[0];
2102 
2103     uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
2104         | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
2105     uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
2106         | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2107 
2108     rm[0] = m0;
2109     rd[0] = d0;
2110 }
2111 
HELPER(neon_qzip8)2112 void HELPER(neon_qzip8)(void *vd, void *vm)
2113 {
2114     uint64_t *rd = vd, *rm = vm;
2115     uint64_t zd0 = rd[0], zd1 = rd[1];
2116     uint64_t zm0 = rm[0], zm1 = rm[1];
2117 
2118     uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
2119         | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
2120         | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
2121         | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
2122     uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
2123         | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
2124         | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
2125         | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
2126     uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
2127         | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
2128         | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2129         | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
2130     uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
2131         | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
2132         | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
2133         | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2134 
2135     rm[0] = m0;
2136     rm[1] = m1;
2137     rd[0] = d0;
2138     rd[1] = d1;
2139 }
2140 
HELPER(neon_qzip16)2141 void HELPER(neon_qzip16)(void *vd, void *vm)
2142 {
2143     uint64_t *rd = vd, *rm = vm;
2144     uint64_t zd0 = rd[0], zd1 = rd[1];
2145     uint64_t zm0 = rm[0], zm1 = rm[1];
2146 
2147     uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
2148         | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
2149     uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
2150         | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
2151     uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
2152         | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
2153     uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
2154         | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2155 
2156     rm[0] = m0;
2157     rm[1] = m1;
2158     rd[0] = d0;
2159     rd[1] = d1;
2160 }
2161 
HELPER(neon_qzip32)2162 void HELPER(neon_qzip32)(void *vd, void *vm)
2163 {
2164     uint64_t *rd = vd, *rm = vm;
2165     uint64_t zd0 = rd[0], zd1 = rd[1];
2166     uint64_t zm0 = rm[0], zm1 = rm[1];
2167 
2168     uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
2169     uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
2170     uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2171     uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2172 
2173     rm[0] = m0;
2174     rm[1] = m1;
2175     rd[0] = d0;
2176     rd[1] = d1;
2177 }
2178 
HELPER(neon_zip8)2179 void HELPER(neon_zip8)(void *vd, void *vm)
2180 {
2181     uint64_t *rd = vd, *rm = vm;
2182     uint64_t zd = rd[0], zm = rm[0];
2183 
2184     uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2185         | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2186         | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2187         | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2188     uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2189         | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2190         | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2191         | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2192 
2193     rm[0] = m0;
2194     rd[0] = d0;
2195 }
2196 
HELPER(neon_zip16)2197 void HELPER(neon_zip16)(void *vd, void *vm)
2198 {
2199     uint64_t *rd = vd, *rm = vm;
2200     uint64_t zd = rd[0], zm = rm[0];
2201 
2202     uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2203         | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2204     uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2205         | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2206 
2207     rm[0] = m0;
2208     rd[0] = d0;
2209 }
2210 
2211 /* Helper function for 64 bit polynomial multiply case:
2212  * perform PolynomialMult(op1, op2) and return either the top or
2213  * bottom half of the 128 bit result.
2214  */
HELPER(neon_pmull_64_lo)2215 uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
2216 {
2217     int bitnum;
2218     uint64_t res = 0;
2219 
2220     for (bitnum = 0; bitnum < 64; bitnum++) {
2221         if (op1 & (1ULL << bitnum)) {
2222             res ^= op2 << bitnum;
2223         }
2224     }
2225     return res;
2226 }
HELPER(neon_pmull_64_hi)2227 uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
2228 {
2229     int bitnum;
2230     uint64_t res = 0;
2231 
2232     /* bit 0 of op1 can't influence the high 64 bits at all */
2233     for (bitnum = 1; bitnum < 64; bitnum++) {
2234         if (op1 & (1ULL << bitnum)) {
2235             res ^= op2 >> (64 - bitnum);
2236         }
2237     }
2238     return res;
2239 }
2240