1//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// AArch64 Instruction definitions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// ARM Instruction Predicate Definitions.
16//
17def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
18                                 AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
19def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
20                                 AssemblerPredicate<"HasV8_2aOps", "armv8.2a">;
21def HasV8_3a         : Predicate<"Subtarget->hasV8_3aOps()">,
22                                 AssemblerPredicate<"HasV8_3aOps", "armv8.3a">;
23def HasV8_4a         : Predicate<"Subtarget->hasV8_4aOps()">,
24                                 AssemblerPredicate<"HasV8_4aOps", "armv8.4a">;
25def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
26                               AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
27def HasNEON          : Predicate<"Subtarget->hasNEON()">,
28                                 AssemblerPredicate<"FeatureNEON", "neon">;
29def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
30                                 AssemblerPredicate<"FeatureCrypto", "crypto">;
31def HasSM4           : Predicate<"Subtarget->hasSM4()">,
32                                 AssemblerPredicate<"FeatureSM4", "sm4">;
33def HasSHA3          : Predicate<"Subtarget->hasSHA3()">,
34                                 AssemblerPredicate<"FeatureSHA3", "sha3">;
35def HasSHA2          : Predicate<"Subtarget->hasSHA2()">,
36                                 AssemblerPredicate<"FeatureSHA2", "sha2">;
37def HasAES           : Predicate<"Subtarget->hasAES()">,
38                                 AssemblerPredicate<"FeatureAES", "aes">;
39def HasDotProd       : Predicate<"Subtarget->hasDotProd()">,
40                                 AssemblerPredicate<"FeatureDotProd", "dotprod">;
41def HasCRC           : Predicate<"Subtarget->hasCRC()">,
42                                 AssemblerPredicate<"FeatureCRC", "crc">;
43def HasLSE           : Predicate<"Subtarget->hasLSE()">,
44                                 AssemblerPredicate<"FeatureLSE", "lse">;
45def HasRAS           : Predicate<"Subtarget->hasRAS()">,
46                                 AssemblerPredicate<"FeatureRAS", "ras">;
47def HasRDM           : Predicate<"Subtarget->hasRDM()">,
48                                 AssemblerPredicate<"FeatureRDM", "rdm">;
49def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
50def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
51                                 AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
52def HasSPE           : Predicate<"Subtarget->hasSPE()">,
53                                 AssemblerPredicate<"FeatureSPE", "spe">;
54def HasFuseAES       : Predicate<"Subtarget->hasFuseAES()">,
55                                 AssemblerPredicate<"FeatureFuseAES",
56                                 "fuse-aes">;
57def HasSVE           : Predicate<"Subtarget->hasSVE()">,
58                                 AssemblerPredicate<"FeatureSVE", "sve">;
59def HasRCPC          : Predicate<"Subtarget->hasRCPC()">,
60                                 AssemblerPredicate<"FeatureRCPC", "rcpc">;
61
62def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
63def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
64def UseAlternateSExtLoadCVTF32
65    : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
66
67def UseNegativeImmediates
68    : Predicate<"false">, AssemblerPredicate<"!FeatureNoNegativeImmediates",
69                                             "NegativeImmediates">;
70
71
72//===----------------------------------------------------------------------===//
73// AArch64-specific DAG Nodes.
74//
75
76// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
77def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
78                                              [SDTCisSameAs<0, 2>,
79                                               SDTCisSameAs<0, 3>,
80                                               SDTCisInt<0>, SDTCisVT<1, i32>]>;
81
82// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
83def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
84                                            [SDTCisSameAs<0, 1>,
85                                             SDTCisSameAs<0, 2>,
86                                             SDTCisInt<0>,
87                                             SDTCisVT<3, i32>]>;
88
89// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
90def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
91                                            [SDTCisSameAs<0, 2>,
92                                             SDTCisSameAs<0, 3>,
93                                             SDTCisInt<0>,
94                                             SDTCisVT<1, i32>,
95                                             SDTCisVT<4, i32>]>;
96
97def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
98                                     [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
99                                      SDTCisVT<2, i32>]>;
100def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
101def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
102                                        SDTCisVT<2, OtherVT>]>;
103
104
105def SDT_AArch64CSel  : SDTypeProfile<1, 4,
106                                   [SDTCisSameAs<0, 1>,
107                                    SDTCisSameAs<0, 2>,
108                                    SDTCisInt<3>,
109                                    SDTCisVT<4, i32>]>;
110def SDT_AArch64CCMP : SDTypeProfile<1, 5,
111                                    [SDTCisVT<0, i32>,
112                                     SDTCisInt<1>,
113                                     SDTCisSameAs<1, 2>,
114                                     SDTCisInt<3>,
115                                     SDTCisInt<4>,
116                                     SDTCisVT<5, i32>]>;
117def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
118                                     [SDTCisVT<0, i32>,
119                                      SDTCisFP<1>,
120                                      SDTCisSameAs<1, 2>,
121                                      SDTCisInt<3>,
122                                      SDTCisInt<4>,
123                                      SDTCisVT<5, i32>]>;
124def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
125                                   [SDTCisFP<0>,
126                                    SDTCisSameAs<0, 1>]>;
127def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
128def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
129def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
130                                          SDTCisSameAs<0, 1>,
131                                          SDTCisSameAs<0, 2>]>;
132def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
133def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
134def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
135                                           SDTCisInt<2>, SDTCisInt<3>]>;
136def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
137def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
138                                          SDTCisSameAs<0,2>, SDTCisInt<3>]>;
139def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
140
141def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
142def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
143def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
144def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
145                                           SDTCisSameAs<0,2>]>;
146def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
147                                           SDTCisSameAs<0,2>,
148                                           SDTCisSameAs<0,3>]>;
149def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
150def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
151
152def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
153
154def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
155                                                 SDTCisPtrTy<1>]>;
156
157// Generates the general dynamic sequences, i.e.
158//  adrp  x0, :tlsdesc:var
159//  ldr   x1, [x0, #:tlsdesc_lo12:var]
160//  add   x0, x0, #:tlsdesc_lo12:var
161//  .tlsdesccall var
162//  blr   x1
163
164// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
165// number of operands (the variable)
166def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
167                                          [SDTCisPtrTy<0>]>;
168
169def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
170                                        [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
171                                         SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
172                                         SDTCisSameAs<1, 4>]>;
173
174
175// Node definitions.
176def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
177def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
178def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
179def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
180                                SDCallSeqStart<[ SDTCisVT<0, i32>,
181                                                 SDTCisVT<1, i32> ]>,
182                                [SDNPHasChain, SDNPOutGlue]>;
183def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
184                                SDCallSeqEnd<[ SDTCisVT<0, i32>,
185                                               SDTCisVT<1, i32> ]>,
186                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
187def AArch64call          : SDNode<"AArch64ISD::CALL",
188                                SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
189                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
190                                 SDNPVariadic]>;
191def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
192                                [SDNPHasChain]>;
193def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
194                                [SDNPHasChain]>;
195def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
196                                [SDNPHasChain]>;
197def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
198                                [SDNPHasChain]>;
199def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
200                                [SDNPHasChain]>;
201
202
203def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
204def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
205def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
206def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
207def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
208                                [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
209def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
210def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
211def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
212                            [SDNPCommutative]>;
213def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
214def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
215                            [SDNPCommutative]>;
216def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
217def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;
218
219def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
220def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
221def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
222
223def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
224
225def AArch64fcmp      : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
226
227def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
228def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
229def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
230def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
231def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
232
233def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
234def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
235def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
236def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
237def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
238def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
239
240def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
241def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
242def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
243def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
244def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
245def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
246def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
247
248def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
249def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
250def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
251def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
252
253def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
254def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
255def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
256def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
257def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
258def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
259def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
260def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
261
262def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
263def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
264def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
265
266def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
267def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
268def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
269def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
270def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
271
272def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
273def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
274def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
275
276def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
277def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
278def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
279def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
280def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
281def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
282                        (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
283
284def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
285def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
286def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
287def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
288def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
289
290def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
291def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
292
293def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
294
295def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
296                  [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
297
298def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
299                               [SDNPHasChain, SDNPSideEffect]>;
300
301def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
302def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
303
304def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
305                                    SDT_AArch64TLSDescCallSeq,
306                                    [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
307                                     SDNPVariadic]>;
308
309
310def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
311                                 SDT_AArch64WrapperLarge>;
312
313def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
314
315def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
316                                    SDTCisSameAs<1, 2>]>;
317def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
318def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
319
320def AArch64frecpe   : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
321def AArch64frecps   : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
322def AArch64frsqrte  : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
323def AArch64frsqrts  : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
324
325def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
326def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
327def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
328def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
329def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
330def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
331
332//===----------------------------------------------------------------------===//
333
334//===----------------------------------------------------------------------===//
335
336// AArch64 Instruction Predicate Definitions.
337// We could compute these on a per-module basis but doing so requires accessing
338// the Function object through the <Target>Subtarget and objections were raised
339// to that (see post-commit review comments for r301750).
340let RecomputePerFunction = 1 in {
341  def ForCodeSize   : Predicate<"MF->getFunction().optForSize()">;
342  def NotForCodeSize   : Predicate<"!MF->getFunction().optForSize()">;
343  // Avoid generating STRQro if it is slow, unless we're optimizing for code size.
344  def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || MF->getFunction().optForSize()">;
345}
346
347include "AArch64InstrFormats.td"
348include "SVEInstrFormats.td"
349
350//===----------------------------------------------------------------------===//
351
352//===----------------------------------------------------------------------===//
353// Miscellaneous instructions.
354//===----------------------------------------------------------------------===//
355
356let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
357// We set Sched to empty list because we expect these instructions to simply get
358// removed in most cases.
359def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
360                              [(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
361                              Sched<[]>;
362def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
363                            [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
364                            Sched<[]>;
365} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
366
367let isReMaterializable = 1, isCodeGenOnly = 1 in {
368// FIXME: The following pseudo instructions are only needed because remat
369// cannot handle multiple instructions.  When that changes, they can be
370// removed, along with the AArch64Wrapper node.
371
372let AddedComplexity = 10 in
373def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
374                     [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
375              Sched<[WriteLDAdr]>;
376
377// The MOVaddr instruction should match only when the add is not folded
378// into a load or store address.
379def MOVaddr
380    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
381             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
382                                            tglobaladdr:$low))]>,
383      Sched<[WriteAdrAdr]>;
384def MOVaddrJT
385    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
386             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
387                                             tjumptable:$low))]>,
388      Sched<[WriteAdrAdr]>;
389def MOVaddrCP
390    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
391             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
392                                             tconstpool:$low))]>,
393      Sched<[WriteAdrAdr]>;
394def MOVaddrBA
395    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
396             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
397                                             tblockaddress:$low))]>,
398      Sched<[WriteAdrAdr]>;
399def MOVaddrTLS
400    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
401             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
402                                            tglobaltlsaddr:$low))]>,
403      Sched<[WriteAdrAdr]>;
404def MOVaddrEXT
405    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
406             [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
407                                            texternalsym:$low))]>,
408      Sched<[WriteAdrAdr]>;
409// Normally AArch64addlow either gets folded into a following ldr/str,
410// or together with an adrp into MOVaddr above. For cases with TLS, it
411// might appear without either of them, so allow lowering it into a plain
412// add.
413def ADDlowTLS
414    : Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
415             [(set GPR64:$dst, (AArch64addlow GPR64:$src,
416                                            tglobaltlsaddr:$low))]>,
417      Sched<[WriteAdr]>;
418
419} // isReMaterializable, isCodeGenOnly
420
421def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
422          (LOADgot tglobaltlsaddr:$addr)>;
423
424def : Pat<(AArch64LOADgot texternalsym:$addr),
425          (LOADgot texternalsym:$addr)>;
426
427def : Pat<(AArch64LOADgot tconstpool:$addr),
428          (LOADgot tconstpool:$addr)>;
429
430//===----------------------------------------------------------------------===//
431// System instructions.
432//===----------------------------------------------------------------------===//
433
434def HINT : HintI<"hint">;
435def : InstAlias<"nop",  (HINT 0b000)>;
436def : InstAlias<"yield",(HINT 0b001)>;
437def : InstAlias<"wfe",  (HINT 0b010)>;
438def : InstAlias<"wfi",  (HINT 0b011)>;
439def : InstAlias<"sev",  (HINT 0b100)>;
440def : InstAlias<"sevl", (HINT 0b101)>;
441def : InstAlias<"esb",  (HINT 0b10000)>, Requires<[HasRAS]>;
442def : InstAlias<"csdb", (HINT 20)>;
443
444// v8.2a Statistical Profiling extension
445def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
446
447// As far as LLVM is concerned this writes to the system's exclusive monitors.
448let mayLoad = 1, mayStore = 1 in
449def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
450
451// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
452// model patterns with sufficiently fine granularity.
453let mayLoad = ?, mayStore = ? in {
454def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
455                       [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
456
457def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
458                       [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
459
460def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
461                       [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
462
463def TSB   : CRmSystemI<barrier_op, 0b010, "tsb", []> {
464  let CRm        = 0b0010;
465  let Inst{12}   = 0;
466  let Predicates = [HasV8_4a];
467}
468}
469
470// ARMv8.2 Dot Product
471let Predicates = [HasDotProd] in {
472defm SDOT : SIMDThreeSameVectorDot<0, "sdot", int_aarch64_neon_sdot>;
473defm UDOT : SIMDThreeSameVectorDot<1, "udot", int_aarch64_neon_udot>;
474defm SDOTlane : SIMDThreeSameVectorDotIndex<0, "sdot", int_aarch64_neon_sdot>;
475defm UDOTlane : SIMDThreeSameVectorDotIndex<1, "udot", int_aarch64_neon_udot>;
476}
477
478// Armv8.2-A Crypto extensions
479let Predicates = [HasSHA3] in {
480def SHA512H   : CryptoRRRTied<0b0, 0b00, "sha512h">;
481def SHA512H2  : CryptoRRRTied<0b0, 0b01, "sha512h2">;
482def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
483def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
484def RAX1      : CryptoRRR_2D<0b0,0b11, "rax1">;
485def EOR3      : CryptoRRRR_16B<0b00, "eor3">;
486def BCAX      : CryptoRRRR_16B<0b01, "bcax">;
487def XAR       : CryptoRRRi6<"xar">;
488} // HasSHA3
489
490let Predicates = [HasSM4] in {
491def SM3TT1A   : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
492def SM3TT1B   : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
493def SM3TT2A   : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
494def SM3TT2B   : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
495def SM3SS1    : CryptoRRRR_4S<0b10, "sm3ss1">;
496def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
497def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
498def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
499def SM4E      : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
500} // HasSM4
501
502let Predicates = [HasRCPC] in {
503  // v8.3 Release Consistent Processor Consistent support, optional in v8.2.
504  def LDAPRB  : RCPCLoad<0b00, "ldaprb", GPR32>;
505  def LDAPRH  : RCPCLoad<0b01, "ldaprh", GPR32>;
506  def LDAPRW  : RCPCLoad<0b10, "ldapr", GPR32>;
507  def LDAPRX  : RCPCLoad<0b11, "ldapr", GPR64>;
508}
509
510// v8.3a complex add and multiply-accumulate. No predicate here, that is done
511// inside the multiclass as the FP16 versions need different predicates.
512defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
513                                               "fcmla", null_frag>;
514defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
515                                           "fcadd", null_frag>;
516defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
517                                       null_frag>;
518
519// v8.3a Pointer Authentication
520// These instructions inhabit part of the hint space and so can be used for
521// armv8 targets
522let Uses = [LR], Defs = [LR] in {
523  def PACIAZ   : SystemNoOperands<0b000, "paciaz">;
524  def PACIBZ   : SystemNoOperands<0b010, "pacibz">;
525  def AUTIAZ   : SystemNoOperands<0b100, "autiaz">;
526  def AUTIBZ   : SystemNoOperands<0b110, "autibz">;
527}
528let Uses = [LR, SP], Defs = [LR] in {
529  def PACIASP  : SystemNoOperands<0b001, "paciasp">;
530  def PACIBSP  : SystemNoOperands<0b011, "pacibsp">;
531  def AUTIASP  : SystemNoOperands<0b101, "autiasp">;
532  def AUTIBSP  : SystemNoOperands<0b111, "autibsp">;
533}
534let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
535  def PACIA1716  : SystemNoOperands<0b000, "pacia1716">;
536  def PACIB1716  : SystemNoOperands<0b010, "pacib1716">;
537  def AUTIA1716  : SystemNoOperands<0b100, "autia1716">;
538  def AUTIB1716  : SystemNoOperands<0b110, "autib1716">;
539}
540
541let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
542  def XPACLRI   : SystemNoOperands<0b111, "xpaclri">;
543}
544
545// These pointer authentication isntructions require armv8.3a
546let Predicates = [HasV8_3a] in {
547  multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
548    def IA   : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
549    def IB   : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
550    def DA   : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
551    def DB   : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
552    def IZA  : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
553    def DZA  : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
554    def IZB  : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
555    def DZB  : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
556  }
557
558  defm PAC : SignAuth<0b000, 0b010, "pac">;
559  defm AUT : SignAuth<0b001, 0b011, "aut">;
560
561  def XPACI : SignAuthZero<0b100, 0b00, "xpaci">;
562  def XPACD : SignAuthZero<0b100, 0b01, "xpacd">;
563  def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
564
565  // Combined Instructions
566  def BRAA    : AuthBranchTwoOperands<0, 0, "braa">;
567  def BRAB    : AuthBranchTwoOperands<0, 1, "brab">;
568  def BLRAA   : AuthBranchTwoOperands<1, 0, "blraa">;
569  def BLRAB   : AuthBranchTwoOperands<1, 1, "blrab">;
570
571  def BRAAZ   : AuthOneOperand<0b000, 0, "braaz">;
572  def BRABZ   : AuthOneOperand<0b000, 1, "brabz">;
573  def BLRAAZ  : AuthOneOperand<0b001, 0, "blraaz">;
574  def BLRABZ  : AuthOneOperand<0b001, 1, "blrabz">;
575
576  let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
577    def RETAA   : AuthReturn<0b010, 0, "retaa">;
578    def RETAB   : AuthReturn<0b010, 1, "retab">;
579    def ERETAA  : AuthReturn<0b100, 0, "eretaa">;
580    def ERETAB  : AuthReturn<0b100, 1, "eretab">;
581  }
582
583  defm LDRAA  : AuthLoad<0, "ldraa", simm10Scaled>;
584  defm LDRAB  : AuthLoad<1, "ldrab", simm10Scaled>;
585
586  // v8.3a floating point conversion for javascript
587  let Predicates = [HasV8_3a, HasFPARMv8] in
588  def FJCVTZS  : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
589                                        "fjcvtzs", []> {
590    let Inst{31} = 0;
591  }
592
593} // HasV8_3a
594
595// v8.4 Flag manipulation instructions
596let Predicates = [HasV8_4a] in {
597def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
598  let Inst{20-5} = 0b0000001000000000;
599}
600def SETF8  : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
601def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
602def RMIF   : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
603                        "{\t$Rn, $imm, $mask}">;
604} // HasV8_4a
605
606def : InstAlias<"clrex", (CLREX 0xf)>;
607def : InstAlias<"isb", (ISB 0xf)>;
608
609def MRS    : MRSI;
610def MSR    : MSRI;
611def MSRpstateImm1 : MSRpstateImm0_1;
612def MSRpstateImm4 : MSRpstateImm0_15;
613
614// The thread pointer (on Linux, at least, where this has been implemented) is
615// TPIDR_EL0.
616def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
617                       [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
618
619// The cycle counter PMC register is PMCCNTR_EL0.
620let Predicates = [HasPerfMon] in
621def : Pat<(readcyclecounter), (MRS 0xdce8)>;
622
623// FPCR register
624def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
625
626// Generic system instructions
627def SYSxt  : SystemXtI<0, "sys">;
628def SYSLxt : SystemLXtI<1, "sysl">;
629
630def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
631                (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
632                 sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
633
634//===----------------------------------------------------------------------===//
635// Move immediate instructions.
636//===----------------------------------------------------------------------===//
637
638defm MOVK : InsertImmediate<0b11, "movk">;
639defm MOVN : MoveImmediate<0b00, "movn">;
640
641let PostEncoderMethod = "fixMOVZ" in
642defm MOVZ : MoveImmediate<0b10, "movz">;
643
644// First group of aliases covers an implicit "lsl #0".
645def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0), 0>;
646def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0), 0>;
647def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
648def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
649def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
650def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
651
652// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
653def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
654def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
655def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
656def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
657
658def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
659def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
660def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
661def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
662
663def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48), 0>;
664def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32), 0>;
665def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16), 0>;
666def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0), 0>;
667
668def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
669def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
670
671def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
672def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
673
674def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16), 0>;
675def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0), 0>;
676
677// Final group of aliases covers true "mov $Rd, $imm" cases.
678multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
679                          int width, int shift> {
680  def _asmoperand : AsmOperandClass {
681    let Name = basename # width # "_lsl" # shift # "MovAlias";
682    let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
683                               # shift # ">";
684    let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
685  }
686
687  def _movimm : Operand<i32> {
688    let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
689  }
690
691  def : InstAlias<"mov $Rd, $imm",
692                  (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
693}
694
695defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
696defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
697
698defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
699defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
700defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
701defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
702
703defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
704defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
705
706defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
707defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
708defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
709defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
710
711let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
712    isAsCheapAsAMove = 1 in {
713// FIXME: The following pseudo instructions are only needed because remat
714// cannot handle multiple instructions.  When that changes, we can select
715// directly to the real instructions and get rid of these pseudos.
716
717def MOVi32imm
718    : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
719             [(set GPR32:$dst, imm:$src)]>,
720      Sched<[WriteImm]>;
721def MOVi64imm
722    : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
723             [(set GPR64:$dst, imm:$src)]>,
724      Sched<[WriteImm]>;
725} // isReMaterializable, isCodeGenOnly
726
727// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
728// eventual expansion code fewer bits to worry about getting right. Marshalling
729// the types is a little tricky though:
730def i64imm_32bit : ImmLeaf<i64, [{
731  return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
732}]>;
733
734def s64imm_32bit : ImmLeaf<i64, [{
735  int64_t Imm64 = static_cast<int64_t>(Imm);
736  return Imm64 >= std::numeric_limits<int32_t>::min() &&
737         Imm64 <= std::numeric_limits<int32_t>::max();
738}]>;
739
740def trunc_imm : SDNodeXForm<imm, [{
741  return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
742}]>;
743
744def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
745  GISDNodeXFormEquiv<trunc_imm>;
746
747def : Pat<(i64 i64imm_32bit:$src),
748          (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
749
750// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
751def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
752return CurDAG->getTargetConstant(
753  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
754}]>;
755
756def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
757return CurDAG->getTargetConstant(
758  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
759}]>;
760
761
762def : Pat<(f32 fpimm:$in),
763  (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
764def : Pat<(f64 fpimm:$in),
765  (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
766
767
768// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
769// sequences.
770def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
771                             tglobaladdr:$g1, tglobaladdr:$g0),
772          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
773                                  tglobaladdr:$g1, 16),
774                          tglobaladdr:$g2, 32),
775                  tglobaladdr:$g3, 48)>;
776
777def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
778                             tblockaddress:$g1, tblockaddress:$g0),
779          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
780                                  tblockaddress:$g1, 16),
781                          tblockaddress:$g2, 32),
782                  tblockaddress:$g3, 48)>;
783
784def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
785                             tconstpool:$g1, tconstpool:$g0),
786          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
787                                  tconstpool:$g1, 16),
788                          tconstpool:$g2, 32),
789                  tconstpool:$g3, 48)>;
790
791def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
792                             tjumptable:$g1, tjumptable:$g0),
793          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
794                                  tjumptable:$g1, 16),
795                          tjumptable:$g2, 32),
796                  tjumptable:$g3, 48)>;
797
798
799//===----------------------------------------------------------------------===//
800// Arithmetic instructions.
801//===----------------------------------------------------------------------===//
802
803// Add/subtract with carry.
804defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
805defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
806
807def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
808def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
809def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
810def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
811
812// Add/subtract
813defm ADD : AddSub<0, "add", "sub", add>;
814defm SUB : AddSub<1, "sub", "add">;
815
816def : InstAlias<"mov $dst, $src",
817                (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
818def : InstAlias<"mov $dst, $src",
819                (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
820def : InstAlias<"mov $dst, $src",
821                (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
822def : InstAlias<"mov $dst, $src",
823                (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
824
825defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
826defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
827
828// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
829def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
830          (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
831def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
832          (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
833def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
834          (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
835def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
836          (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
837def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
838          (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
839def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
840          (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
841let AddedComplexity = 1 in {
842def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
843          (SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
844def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
845          (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
846}
847
848// Because of the immediate format for add/sub-imm instructions, the
849// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
850//  These patterns capture that transformation.
851let AddedComplexity = 1 in {
852def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
853          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
854def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
855          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
856def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
857          (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
858def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
859          (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
860}
861
862// Because of the immediate format for add/sub-imm instructions, the
863// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
864//  These patterns capture that transformation.
865let AddedComplexity = 1 in {
866def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
867          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
868def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
869          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
870def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
871          (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
872def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
873          (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
874}
875
876def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
877def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
878def : InstAlias<"neg $dst, $src$shift",
879                (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
880def : InstAlias<"neg $dst, $src$shift",
881                (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
882
883def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
884def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
885def : InstAlias<"negs $dst, $src$shift",
886                (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
887def : InstAlias<"negs $dst, $src$shift",
888                (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
889
890
891// Unsigned/Signed divide
892defm UDIV : Div<0, "udiv", udiv>;
893defm SDIV : Div<1, "sdiv", sdiv>;
894
895def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
896def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
897def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
898def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
899
900// Variable shift
901defm ASRV : Shift<0b10, "asr", sra>;
902defm LSLV : Shift<0b00, "lsl", shl>;
903defm LSRV : Shift<0b01, "lsr", srl>;
904defm RORV : Shift<0b11, "ror", rotr>;
905
906def : ShiftAlias<"asrv", ASRVWr, GPR32>;
907def : ShiftAlias<"asrv", ASRVXr, GPR64>;
908def : ShiftAlias<"lslv", LSLVWr, GPR32>;
909def : ShiftAlias<"lslv", LSLVXr, GPR64>;
910def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
911def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
912def : ShiftAlias<"rorv", RORVWr, GPR32>;
913def : ShiftAlias<"rorv", RORVXr, GPR64>;
914
915// Multiply-add
916let AddedComplexity = 5 in {
917defm MADD : MulAccum<0, "madd", add>;
918defm MSUB : MulAccum<1, "msub", sub>;
919
920def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
921          (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
922def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
923          (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
924
925def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
926          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
927def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
928          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
929def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
930          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
931def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
932          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
933} // AddedComplexity = 5
934
935let AddedComplexity = 5 in {
936def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
937def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
938def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
939def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
940
941def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
942          (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
943def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
944          (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
945
946def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
947          (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
948def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
949          (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
950
951def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
952          (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
953def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
954          (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
955def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
956          (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
957                     (MOVi32imm (trunc_imm imm:$C)), XZR)>;
958
959def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
960          (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
961def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
962          (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
963def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
964          (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
965                     (MOVi32imm (trunc_imm imm:$C)), XZR)>;
966
967def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
968          (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
969def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
970          (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
971def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
972                    GPR64:$Ra)),
973          (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
974                     (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
975
976def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
977          (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
978def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
979          (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
980def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
981                                    (s64imm_32bit:$C)))),
982          (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
983                     (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
984} // AddedComplexity = 5
985
986def : MulAccumWAlias<"mul", MADDWrrr>;
987def : MulAccumXAlias<"mul", MADDXrrr>;
988def : MulAccumWAlias<"mneg", MSUBWrrr>;
989def : MulAccumXAlias<"mneg", MSUBXrrr>;
990def : WideMulAccumAlias<"smull", SMADDLrrr>;
991def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
992def : WideMulAccumAlias<"umull", UMADDLrrr>;
993def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
994
995// Multiply-high
996def SMULHrr : MulHi<0b010, "smulh", mulhs>;
997def UMULHrr : MulHi<0b110, "umulh", mulhu>;
998
999// CRC32
1000def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
1001def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
1002def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
1003def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
1004
1005def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
1006def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
1007def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
1008def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
1009
1010// v8.1 atomic CAS
1011defm CAS   : CompareAndSwap<0, 0, "">;
1012defm CASA  : CompareAndSwap<1, 0, "a">;
1013defm CASL  : CompareAndSwap<0, 1, "l">;
1014defm CASAL : CompareAndSwap<1, 1, "al">;
1015
1016// v8.1 atomic CASP
1017defm CASP   : CompareAndSwapPair<0, 0, "">;
1018defm CASPA  : CompareAndSwapPair<1, 0, "a">;
1019defm CASPL  : CompareAndSwapPair<0, 1, "l">;
1020defm CASPAL : CompareAndSwapPair<1, 1, "al">;
1021
1022// v8.1 atomic SWP
1023defm SWP   : Swap<0, 0, "">;
1024defm SWPA  : Swap<1, 0, "a">;
1025defm SWPL  : Swap<0, 1, "l">;
1026defm SWPAL : Swap<1, 1, "al">;
1027
1028// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
1029defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
1030defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
1031defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
1032defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
1033
1034defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
1035defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
1036defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
1037defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
1038
1039defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
1040defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
1041defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
1042defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
1043
1044defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
1045defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
1046defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
1047defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
1048
1049defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
1050defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
1051defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
1052defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
1053
1054defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
1055defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
1056defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
1057defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
1058
1059defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
1060defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
1061defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
1062defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
1063
1064defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
1065defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
1066defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
1067defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
1068
1069// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
1070defm : STOPregister<"stadd","LDADD">; // STADDx
1071defm : STOPregister<"stclr","LDCLR">; // STCLRx
1072defm : STOPregister<"steor","LDEOR">; // STEORx
1073defm : STOPregister<"stset","LDSET">; // STSETx
1074defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
1075defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
1076defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
1077defm : STOPregister<"stumin","LDUMIN">;// STUMINx
1078
1079//===----------------------------------------------------------------------===//
1080// Logical instructions.
1081//===----------------------------------------------------------------------===//
1082
1083// (immediate)
1084defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
1085defm AND  : LogicalImm<0b00, "and", and, "bic">;
1086defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
1087defm ORR  : LogicalImm<0b01, "orr", or, "orn">;
1088
1089// FIXME: these aliases *are* canonical sometimes (when movz can't be
1090// used). Actually, it seems to be working right now, but putting logical_immXX
1091// here is a bit dodgy on the AsmParser side too.
1092def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
1093                                          logical_imm32:$imm), 0>;
1094def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
1095                                          logical_imm64:$imm), 0>;
1096
1097
1098// (register)
1099defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
1100defm BICS : LogicalRegS<0b11, 1, "bics",
1101                        BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
1102defm AND  : LogicalReg<0b00, 0, "and", and>;
1103defm BIC  : LogicalReg<0b00, 1, "bic",
1104                       BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
1105defm EON  : LogicalReg<0b10, 1, "eon",
1106                       BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
1107defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
1108defm ORN  : LogicalReg<0b01, 1, "orn",
1109                       BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
1110defm ORR  : LogicalReg<0b01, 0, "orr", or>;
1111
1112def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
1113def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
1114
1115def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
1116def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
1117
1118def : InstAlias<"mvn $Wd, $Wm$sh",
1119                (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
1120def : InstAlias<"mvn $Xd, $Xm$sh",
1121                (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
1122
1123def : InstAlias<"tst $src1, $src2",
1124                (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
1125def : InstAlias<"tst $src1, $src2",
1126                (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
1127
1128def : InstAlias<"tst $src1, $src2",
1129                        (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
1130def : InstAlias<"tst $src1, $src2",
1131                        (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
1132
1133def : InstAlias<"tst $src1, $src2$sh",
1134               (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
1135def : InstAlias<"tst $src1, $src2$sh",
1136               (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
1137
1138
1139def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
1140def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
1141
1142
1143//===----------------------------------------------------------------------===//
1144// One operand data processing instructions.
1145//===----------------------------------------------------------------------===//
1146
1147defm CLS    : OneOperandData<0b101, "cls">;
1148defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
1149defm RBIT   : OneOperandData<0b000, "rbit", bitreverse>;
1150
1151def  REV16Wr : OneWRegData<0b001, "rev16",
1152                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
1153def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
1154
1155def : Pat<(cttz GPR32:$Rn),
1156          (CLZWr (RBITWr GPR32:$Rn))>;
1157def : Pat<(cttz GPR64:$Rn),
1158          (CLZXr (RBITXr GPR64:$Rn))>;
1159def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
1160                (i32 1))),
1161          (CLSWr GPR32:$Rn)>;
1162def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
1163                (i64 1))),
1164          (CLSXr GPR64:$Rn)>;
1165
1166// Unlike the other one operand instructions, the instructions with the "rev"
1167// mnemonic do *not* just different in the size bit, but actually use different
1168// opcode bits for the different sizes.
1169def REVWr   : OneWRegData<0b010, "rev", bswap>;
1170def REVXr   : OneXRegData<0b011, "rev", bswap>;
1171def REV32Xr : OneXRegData<0b010, "rev32",
1172                                 UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
1173
1174def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
1175
1176// The bswap commutes with the rotr so we want a pattern for both possible
1177// orders.
1178def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
1179def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
1180
1181//===----------------------------------------------------------------------===//
1182// Bitfield immediate extraction instruction.
1183//===----------------------------------------------------------------------===//
1184let hasSideEffects = 0 in
1185defm EXTR : ExtractImm<"extr">;
1186def : InstAlias<"ror $dst, $src, $shift",
1187            (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
1188def : InstAlias<"ror $dst, $src, $shift",
1189            (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
1190
1191def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
1192          (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
1193def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
1194          (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
1195
1196//===----------------------------------------------------------------------===//
1197// Other bitfield immediate instructions.
1198//===----------------------------------------------------------------------===//
1199let hasSideEffects = 0 in {
1200defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
1201defm SBFM : BitfieldImm<0b00, "sbfm">;
1202defm UBFM : BitfieldImm<0b10, "ubfm">;
1203}
1204
1205def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
1206  uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
1207  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1208}]>;
1209
1210def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
1211  uint64_t enc = 31 - N->getZExtValue();
1212  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1213}]>;
1214
1215// min(7, 31 - shift_amt)
1216def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1217  uint64_t enc = 31 - N->getZExtValue();
1218  enc = enc > 7 ? 7 : enc;
1219  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1220}]>;
1221
1222// min(15, 31 - shift_amt)
1223def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1224  uint64_t enc = 31 - N->getZExtValue();
1225  enc = enc > 15 ? 15 : enc;
1226  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1227}]>;
1228
1229def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
1230  uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
1231  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1232}]>;
1233
1234def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
1235  uint64_t enc = 63 - N->getZExtValue();
1236  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1237}]>;
1238
1239// min(7, 63 - shift_amt)
1240def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1241  uint64_t enc = 63 - N->getZExtValue();
1242  enc = enc > 7 ? 7 : enc;
1243  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1244}]>;
1245
1246// min(15, 63 - shift_amt)
1247def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1248  uint64_t enc = 63 - N->getZExtValue();
1249  enc = enc > 15 ? 15 : enc;
1250  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1251}]>;
1252
1253// min(31, 63 - shift_amt)
1254def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
1255  uint64_t enc = 63 - N->getZExtValue();
1256  enc = enc > 31 ? 31 : enc;
1257  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1258}]>;
1259
1260def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
1261          (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
1262                              (i64 (i32shift_b imm0_31:$imm)))>;
1263def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
1264          (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
1265                              (i64 (i64shift_b imm0_63:$imm)))>;
1266
1267let AddedComplexity = 10 in {
1268def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
1269          (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1270def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
1271          (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1272}
1273
1274def : InstAlias<"asr $dst, $src, $shift",
1275                (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1276def : InstAlias<"asr $dst, $src, $shift",
1277                (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1278def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1279def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1280def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1281def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1282def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1283
1284def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
1285          (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1286def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
1287          (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1288
1289def : InstAlias<"lsr $dst, $src, $shift",
1290                (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1291def : InstAlias<"lsr $dst, $src, $shift",
1292                (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1293def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1294def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1295def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1296def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1297def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1298
1299//===----------------------------------------------------------------------===//
1300// Conditional comparison instructions.
1301//===----------------------------------------------------------------------===//
1302defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
1303defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
1304
1305//===----------------------------------------------------------------------===//
1306// Conditional select instructions.
1307//===----------------------------------------------------------------------===//
1308defm CSEL  : CondSelect<0, 0b00, "csel">;
1309
1310def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
1311defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
1312defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
1313defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
1314
1315def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1316          (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1317def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1318          (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1319def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1320          (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1321def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1322          (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1323def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1324          (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1325def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1326          (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1327
1328def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
1329          (CSINCWr WZR, WZR, (i32 imm:$cc))>;
1330def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
1331          (CSINCXr XZR, XZR, (i32 imm:$cc))>;
1332def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
1333          (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1334def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
1335          (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1336def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
1337          (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1338def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
1339          (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1340def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
1341          (CSINVWr WZR, WZR, (i32 imm:$cc))>;
1342def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
1343          (CSINVXr XZR, XZR, (i32 imm:$cc))>;
1344def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
1345          (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1346def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
1347          (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1348def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
1349          (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1350def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
1351          (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1352
1353// The inverse of the condition code from the alias instruction is what is used
1354// in the aliased instruction. The parser all ready inverts the condition code
1355// for these aliases.
1356def : InstAlias<"cset $dst, $cc",
1357                (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1358def : InstAlias<"cset $dst, $cc",
1359                (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1360
1361def : InstAlias<"csetm $dst, $cc",
1362                (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1363def : InstAlias<"csetm $dst, $cc",
1364                (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1365
1366def : InstAlias<"cinc $dst, $src, $cc",
1367                (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1368def : InstAlias<"cinc $dst, $src, $cc",
1369                (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1370
1371def : InstAlias<"cinv $dst, $src, $cc",
1372                (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1373def : InstAlias<"cinv $dst, $src, $cc",
1374                (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1375
1376def : InstAlias<"cneg $dst, $src, $cc",
1377                (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1378def : InstAlias<"cneg $dst, $src, $cc",
1379                (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1380
1381//===----------------------------------------------------------------------===//
1382// PC-relative instructions.
1383//===----------------------------------------------------------------------===//
1384let isReMaterializable = 1 in {
1385let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
1386def ADR  : ADRI<0, "adr", adrlabel, []>;
1387} // hasSideEffects = 0
1388
1389def ADRP : ADRI<1, "adrp", adrplabel,
1390                [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
1391} // isReMaterializable = 1
1392
1393// page address of a constant pool entry, block address
1394def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
1395def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
1396def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
1397
1398//===----------------------------------------------------------------------===//
1399// Unconditional branch (register) instructions.
1400//===----------------------------------------------------------------------===//
1401
1402let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
1403def RET  : BranchReg<0b0010, "ret", []>;
1404def DRPS : SpecialReturn<0b0101, "drps">;
1405def ERET : SpecialReturn<0b0100, "eret">;
1406} // isReturn = 1, isTerminator = 1, isBarrier = 1
1407
1408// Default to the LR register.
1409def : InstAlias<"ret", (RET LR)>;
1410
1411let isCall = 1, Defs = [LR], Uses = [SP] in {
1412def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
1413} // isCall
1414
1415let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
1416def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
1417} // isBranch, isTerminator, isBarrier, isIndirectBranch
1418
1419// Create a separate pseudo-instruction for codegen to use so that we don't
1420// flag lr as used in every function. It'll be restored before the RET by the
1421// epilogue if it's legitimately used.
1422def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
1423                   Sched<[WriteBrReg]> {
1424  let isTerminator = 1;
1425  let isBarrier = 1;
1426  let isReturn = 1;
1427}
1428
1429// This is a directive-like pseudo-instruction. The purpose is to insert an
1430// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
1431// (which in the usual case is a BLR).
1432let hasSideEffects = 1 in
1433def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
1434  let AsmString = ".tlsdesccall $sym";
1435}
1436
1437// FIXME: maybe the scratch register used shouldn't be fixed to X1?
1438// FIXME: can "hasSideEffects be dropped?
1439let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
1440    isCodeGenOnly = 1 in
1441def TLSDESC_CALLSEQ
1442    : Pseudo<(outs), (ins i64imm:$sym),
1443             [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
1444      Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
1445def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
1446          (TLSDESC_CALLSEQ texternalsym:$sym)>;
1447
1448//===----------------------------------------------------------------------===//
1449// Conditional branch (immediate) instruction.
1450//===----------------------------------------------------------------------===//
1451def Bcc : BranchCond;
1452
1453//===----------------------------------------------------------------------===//
1454// Compare-and-branch instructions.
1455//===----------------------------------------------------------------------===//
1456defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
1457defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
1458
1459//===----------------------------------------------------------------------===//
1460// Test-bit-and-branch instructions.
1461//===----------------------------------------------------------------------===//
1462defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
1463defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
1464
1465//===----------------------------------------------------------------------===//
1466// Unconditional branch (immediate) instructions.
1467//===----------------------------------------------------------------------===//
1468let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
1469def B  : BranchImm<0, "b", [(br bb:$addr)]>;
1470} // isBranch, isTerminator, isBarrier
1471
1472let isCall = 1, Defs = [LR], Uses = [SP] in {
1473def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
1474} // isCall
1475def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
1476
1477//===----------------------------------------------------------------------===//
1478// Exception generation instructions.
1479//===----------------------------------------------------------------------===//
1480let isTrap = 1 in {
1481def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
1482}
1483def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
1484def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
1485def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
1486def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
1487def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
1488def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
1489def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;
1490
1491// DCPSn defaults to an immediate operand of zero if unspecified.
1492def : InstAlias<"dcps1", (DCPS1 0)>;
1493def : InstAlias<"dcps2", (DCPS2 0)>;
1494def : InstAlias<"dcps3", (DCPS3 0)>;
1495
1496//===----------------------------------------------------------------------===//
1497// Load instructions.
1498//===----------------------------------------------------------------------===//
1499
1500// Pair (indexed, offset)
1501defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
1502defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
1503defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
1504defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
1505defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
1506
1507defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
1508
1509// Pair (pre-indexed)
1510def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
1511def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
1512def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
1513def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
1514def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
1515
1516def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
1517
1518// Pair (post-indexed)
1519def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
1520def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
1521def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
1522def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
1523def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
1524
1525def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
1526
1527
1528// Pair (no allocate)
1529defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
1530defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
1531defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
1532defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
1533defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
1534
1535//---
1536// (register offset)
1537//---
1538
1539// Integer
1540defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
1541defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
1542defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
1543defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
1544
1545// Floating-point
1546defm LDRB : Load8RO<0b00,   1, 0b01, FPR8Op,   "ldr", untyped, load>;
1547defm LDRH : Load16RO<0b01,  1, 0b01, FPR16Op,  "ldr", f16, load>;
1548defm LDRS : Load32RO<0b10,  1, 0b01, FPR32Op,  "ldr", f32, load>;
1549defm LDRD : Load64RO<0b11,  1, 0b01, FPR64Op,  "ldr", f64, load>;
1550defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
1551
1552// Load sign-extended half-word
1553defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
1554defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
1555
1556// Load sign-extended byte
1557defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
1558defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
1559
1560// Load sign-extended word
1561defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
1562
1563// Pre-fetch.
1564defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
1565
1566// For regular load, we do not have any alignment requirement.
1567// Thus, it is safe to directly map the vector loads with interesting
1568// addressing modes.
1569// FIXME: We could do the same for bitconvert to floating point vectors.
1570multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
1571                              ValueType ScalTy, ValueType VecTy,
1572                              Instruction LOADW, Instruction LOADX,
1573                              SubRegIndex sub> {
1574  def : Pat<(VecTy (scalar_to_vector (ScalTy
1575              (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
1576            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
1577                           (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
1578                           sub)>;
1579
1580  def : Pat<(VecTy (scalar_to_vector (ScalTy
1581              (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
1582            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
1583                           (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
1584                           sub)>;
1585}
1586
1587let AddedComplexity = 10 in {
1588defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
1589defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;
1590
1591defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
1592defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
1593
1594defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
1595defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;
1596
1597defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
1598defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;
1599
1600defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
1601defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;
1602
1603defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;
1604
1605defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;
1606
1607
1608def : Pat <(v1i64 (scalar_to_vector (i64
1609                      (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
1610                                           ro_Wextend64:$extend))))),
1611           (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
1612
1613def : Pat <(v1i64 (scalar_to_vector (i64
1614                      (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
1615                                           ro_Xextend64:$extend))))),
1616           (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
1617}
1618
1619// Match all load 64 bits width whose type is compatible with FPR64
1620multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
1621                        Instruction LOADW, Instruction LOADX> {
1622
1623  def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1624            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1625
1626  def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1627            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1628}
1629
1630let AddedComplexity = 10 in {
1631let Predicates = [IsLE] in {
1632  // We must do vector loads with LD1 in big-endian.
1633  defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
1634  defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
1635  defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
1636  defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
1637  defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
1638}
1639
1640defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
1641defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;
1642
1643// Match all load 128 bits width whose type is compatible with FPR128
1644let Predicates = [IsLE] in {
1645  // We must do vector loads with LD1 in big-endian.
1646  defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
1647  defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
1648  defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
1649  defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
1650  defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
1651  defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
1652  defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
1653}
1654} // AddedComplexity = 10
1655
1656// zextload -> i64
1657multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
1658                            Instruction INSTW, Instruction INSTX> {
1659  def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1660            (SUBREG_TO_REG (i64 0),
1661                           (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
1662                           sub_32)>;
1663
1664  def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1665            (SUBREG_TO_REG (i64 0),
1666                           (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
1667                           sub_32)>;
1668}
1669
1670let AddedComplexity = 10 in {
1671  defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
1672  defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
1673  defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;
1674
1675  // zextloadi1 -> zextloadi8
1676  defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;
1677
1678  // extload -> zextload
1679  defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
1680  defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
1681  defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
1682
1683  // extloadi1 -> zextloadi8
1684  defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
1685}
1686
1687
1688// zextload -> i64
1689multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
1690                            Instruction INSTW, Instruction INSTX> {
1691  def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1692            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1693
1694  def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1695            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1696
1697}
1698
1699let AddedComplexity = 10 in {
1700  // extload -> zextload
1701  defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
1702  defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
1703  defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
1704
1705  // zextloadi1 -> zextloadi8
1706  defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
1707}
1708
1709//---
1710// (unsigned immediate)
1711//---
1712defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
1713                   [(set GPR64z:$Rt,
1714                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
1715defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
1716                   [(set GPR32z:$Rt,
1717                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
1718defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
1719                   [(set FPR8Op:$Rt,
1720                         (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
1721defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
1722                   [(set (f16 FPR16Op:$Rt),
1723                         (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
1724defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
1725                   [(set (f32 FPR32Op:$Rt),
1726                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
1727defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
1728                   [(set (f64 FPR64Op:$Rt),
1729                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
1730defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
1731                 [(set (f128 FPR128Op:$Rt),
1732                       (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
1733
1734// For regular load, we do not have any alignment requirement.
1735// Thus, it is safe to directly map the vector loads with interesting
1736// addressing modes.
1737// FIXME: We could do the same for bitconvert to floating point vectors.
1738def : Pat <(v8i8 (scalar_to_vector (i32
1739               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
1740           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
1741                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
1742def : Pat <(v16i8 (scalar_to_vector (i32
1743               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
1744           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
1745                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
1746def : Pat <(v4i16 (scalar_to_vector (i32
1747               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
1748           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
1749                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
1750def : Pat <(v8i16 (scalar_to_vector (i32
1751               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
1752           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
1753                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
1754def : Pat <(v2i32 (scalar_to_vector (i32
1755               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
1756           (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
1757                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
1758def : Pat <(v4i32 (scalar_to_vector (i32
1759               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
1760           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
1761                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
1762def : Pat <(v1i64 (scalar_to_vector (i64
1763               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
1764           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1765def : Pat <(v2i64 (scalar_to_vector (i64
1766               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
1767           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
1768                          (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
1769
1770// Match all load 64 bits width whose type is compatible with FPR64
1771let Predicates = [IsLE] in {
1772  // We must use LD1 to perform vector loads in big-endian.
1773  def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1774            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1775  def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1776            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1777  def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1778            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1779  def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1780            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1781  def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1782            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1783}
1784def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1785          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1786def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1787          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1788
1789// Match all load 128 bits width whose type is compatible with FPR128
1790let Predicates = [IsLE] in {
1791  // We must use LD1 to perform vector loads in big-endian.
1792  def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1793            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1794  def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1795            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1796  def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1797            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1798  def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1799            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1800  def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1801            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1802  def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1803            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1804  def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1805            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1806}
1807def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1808          (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1809
1810defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
1811                    [(set GPR32:$Rt,
1812                          (zextloadi16 (am_indexed16 GPR64sp:$Rn,
1813                                                     uimm12s2:$offset)))]>;
1814defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
1815                    [(set GPR32:$Rt,
1816                          (zextloadi8 (am_indexed8 GPR64sp:$Rn,
1817                                                   uimm12s1:$offset)))]>;
1818// zextload -> i64
1819def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1820    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1821def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1822    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
1823
1824// zextloadi1 -> zextloadi8
1825def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1826          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1827def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1828    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1829
1830// extload -> zextload
1831def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1832          (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
1833def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1834          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1835def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1836          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1837def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
1838    (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
1839def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1840    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
1841def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1842    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1843def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1844    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1845
1846// load sign-extended half-word
1847defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
1848                     [(set GPR32:$Rt,
1849                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
1850                                                      uimm12s2:$offset)))]>;
1851defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
1852                     [(set GPR64:$Rt,
1853                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
1854                                                      uimm12s2:$offset)))]>;
1855
1856// load sign-extended byte
1857defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
1858                     [(set GPR32:$Rt,
1859                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
1860                                                    uimm12s1:$offset)))]>;
1861defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
1862                     [(set GPR64:$Rt,
1863                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
1864                                                    uimm12s1:$offset)))]>;
1865
1866// load sign-extended word
1867defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
1868                     [(set GPR64:$Rt,
1869                           (sextloadi32 (am_indexed32 GPR64sp:$Rn,
1870                                                      uimm12s4:$offset)))]>;
1871
1872// load zero-extended word
1873def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
1874      (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
1875
1876// Pre-fetch.
1877def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
1878                        [(AArch64Prefetch imm:$Rt,
1879                                        (am_indexed64 GPR64sp:$Rn,
1880                                                      uimm12s8:$offset))]>;
1881
1882def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
1883
1884//---
1885// (literal)
1886def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr">;
1887def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr">;
1888def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr">;
1889def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr">;
1890def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr">;
1891
1892// load sign-extended word
1893def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw">;
1894
1895// prefetch
1896def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
1897//                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
1898
1899//---
1900// (unscaled immediate)
1901defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
1902                    [(set GPR64z:$Rt,
1903                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
1904defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
1905                    [(set GPR32z:$Rt,
1906                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
1907defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
1908                    [(set FPR8Op:$Rt,
1909                          (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
1910defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
1911                    [(set FPR16Op:$Rt,
1912                          (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1913defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
1914                    [(set (f32 FPR32Op:$Rt),
1915                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
1916defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
1917                    [(set (f64 FPR64Op:$Rt),
1918                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
1919defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
1920                    [(set (f128 FPR128Op:$Rt),
1921                          (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
1922
1923defm LDURHH
1924    : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
1925             [(set GPR32:$Rt,
1926                    (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1927defm LDURBB
1928    : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
1929             [(set GPR32:$Rt,
1930                    (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1931
1932// Match all load 64 bits width whose type is compatible with FPR64
1933let Predicates = [IsLE] in {
1934  def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1935            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1936  def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1937            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1938  def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1939            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1940  def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1941            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1942  def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1943            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1944}
1945def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1946          (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1947def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1948          (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1949
1950// Match all load 128 bits width whose type is compatible with FPR128
1951let Predicates = [IsLE] in {
1952  def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1953            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1954  def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1955            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1956  def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1957            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1958  def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1959            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1960  def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1961            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1962  def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1963            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1964  def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1965            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1966}
1967
1968//  anyext -> zext
1969def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1970          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
1971def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1972          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1973def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1974          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1975def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
1976    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1977def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1978    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1979def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1980    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1981def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1982    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1983// unscaled zext
1984def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1985          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
1986def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1987          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1988def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1989          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1990def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
1991    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1992def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1993    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1994def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1995    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1996def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1997    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1998
1999
2000//---
2001// LDR mnemonics fall back to LDUR for negative or unaligned offsets.
2002
2003// Define new assembler match classes as we want to only match these when
2004// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
2005// associate a DiagnosticType either, as we want the diagnostic for the
2006// canonical form (the scaled operand) to take precedence.
2007class SImm9OffsetOperand<int Width> : AsmOperandClass {
2008  let Name = "SImm9OffsetFB" # Width;
2009  let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
2010  let RenderMethod = "addImmOperands";
2011}
2012
2013def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
2014def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
2015def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
2016def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
2017def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
2018
2019def simm9_offset_fb8 : Operand<i64> {
2020  let ParserMatchClass = SImm9OffsetFB8Operand;
2021}
2022def simm9_offset_fb16 : Operand<i64> {
2023  let ParserMatchClass = SImm9OffsetFB16Operand;
2024}
2025def simm9_offset_fb32 : Operand<i64> {
2026  let ParserMatchClass = SImm9OffsetFB32Operand;
2027}
2028def simm9_offset_fb64 : Operand<i64> {
2029  let ParserMatchClass = SImm9OffsetFB64Operand;
2030}
2031def simm9_offset_fb128 : Operand<i64> {
2032  let ParserMatchClass = SImm9OffsetFB128Operand;
2033}
2034
2035def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2036                (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2037def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2038                (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2039def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2040                (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2041def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2042                (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2043def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2044                (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2045def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2046                (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2047def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2048               (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2049
2050// zextload -> i64
2051def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2052  (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2053def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2054  (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2055
2056// load sign-extended half-word
2057defm LDURSHW
2058    : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
2059               [(set GPR32:$Rt,
2060                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2061defm LDURSHX
2062    : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
2063              [(set GPR64:$Rt,
2064                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2065
2066// load sign-extended byte
2067defm LDURSBW
2068    : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
2069                [(set GPR32:$Rt,
2070                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2071defm LDURSBX
2072    : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
2073                [(set GPR64:$Rt,
2074                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2075
2076// load sign-extended word
2077defm LDURSW
2078    : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
2079              [(set GPR64:$Rt,
2080                    (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2081
2082// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
2083def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
2084                (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2085def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
2086                (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2087def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2088                (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2089def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2090                (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2091def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2092                (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2093def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2094                (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2095def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
2096                (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2097
2098// Pre-fetch.
2099defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
2100                  [(AArch64Prefetch imm:$Rt,
2101                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2102
2103//---
2104// (unscaled immediate, unprivileged)
2105defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
2106defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
2107
2108defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
2109defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
2110
2111// load sign-extended half-word
2112defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
2113defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
2114
2115// load sign-extended byte
2116defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
2117defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
2118
2119// load sign-extended word
2120defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
2121
2122//---
2123// (immediate pre-indexed)
2124def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2125def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2126def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
2127def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2128def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2129def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2130def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2131
2132// load sign-extended half-word
2133def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2134def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2135
2136// load sign-extended byte
2137def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2138def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2139
2140// load zero-extended byte
2141def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2142def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2143
2144// load sign-extended word
2145def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2146
2147//---
2148// (immediate post-indexed)
2149def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2150def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2151def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
2152def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2153def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2154def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2155def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2156
2157// load sign-extended half-word
2158def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2159def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2160
2161// load sign-extended byte
2162def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2163def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2164
2165// load zero-extended byte
2166def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2167def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2168
2169// load sign-extended word
2170def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2171
2172//===----------------------------------------------------------------------===//
2173// Store instructions.
2174//===----------------------------------------------------------------------===//
2175
2176// Pair (indexed, offset)
2177// FIXME: Use dedicated range-checked addressing mode operand here.
2178defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
2179defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
2180defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
2181defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
2182defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
2183
2184// Pair (pre-indexed)
2185def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2186def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2187def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2188def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2189def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2190
2191// Pair (pre-indexed)
2192def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2193def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2194def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2195def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2196def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2197
2198// Pair (no allocate)
2199defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
2200defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
2201defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
2202defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
2203defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
2204
2205//---
2206// (Register offset)
2207
2208// Integer
2209defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
2210defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
2211defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
2212defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;
2213
2214
2215// Floating-point
2216defm STRB : Store8RO< 0b00,  1, 0b00, FPR8Op,   "str", untyped, store>;
2217defm STRH : Store16RO<0b01,  1, 0b00, FPR16Op,  "str", f16,     store>;
2218defm STRS : Store32RO<0b10,  1, 0b00, FPR32Op,  "str", f32,     store>;
2219defm STRD : Store64RO<0b11,  1, 0b00, FPR64Op,  "str", f64,     store>;
2220defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128,    store>;
2221
2222let Predicates = [UseSTRQro], AddedComplexity = 10 in {
2223  def : Pat<(store (f128 FPR128:$Rt),
2224                        (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
2225                                        ro_Wextend128:$extend)),
2226            (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
2227  def : Pat<(store (f128 FPR128:$Rt),
2228                        (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
2229                                        ro_Xextend128:$extend)),
2230            (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
2231}
2232
2233multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
2234                                 Instruction STRW, Instruction STRX> {
2235
2236  def : Pat<(storeop GPR64:$Rt,
2237                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2238            (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2239                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2240
2241  def : Pat<(storeop GPR64:$Rt,
2242                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2243            (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2244                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2245}
2246
2247let AddedComplexity = 10 in {
2248  // truncstore i64
2249  defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
2250  defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
2251  defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
2252}
2253
2254multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
2255                         Instruction STRW, Instruction STRX> {
2256  def : Pat<(store (VecTy FPR:$Rt),
2257                   (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2258            (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2259
2260  def : Pat<(store (VecTy FPR:$Rt),
2261                   (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2262            (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2263}
2264
2265let AddedComplexity = 10 in {
2266// Match all store 64 bits width whose type is compatible with FPR64
2267let Predicates = [IsLE] in {
2268  // We must use ST1 to store vectors in big-endian.
2269  defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
2270  defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
2271  defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
2272  defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
2273  defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
2274}
2275
2276defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
2277defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
2278
2279// Match all store 128 bits width whose type is compatible with FPR128
2280let Predicates = [IsLE, UseSTRQro] in {
2281  // We must use ST1 to store vectors in big-endian.
2282  defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
2283  defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
2284  defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
2285  defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
2286  defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
2287  defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
2288  defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
2289}
2290} // AddedComplexity = 10
2291
2292// Match stores from lane 0 to the appropriate subreg's store.
2293multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
2294                              ValueType VecTy, ValueType STy,
2295                              SubRegIndex SubRegIdx,
2296                              Instruction STRW, Instruction STRX> {
2297
2298  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2299                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2300            (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2301                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2302
2303  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2304                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2305            (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2306                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2307}
2308
2309let AddedComplexity = 19 in {
2310  defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
2311  defm : VecROStoreLane0Pat<ro16,         store, v8f16, f16, hsub, STRHroW, STRHroX>;
2312  defm : VecROStoreLane0Pat<ro32,         store, v4i32, i32, ssub, STRSroW, STRSroX>;
2313  defm : VecROStoreLane0Pat<ro32,         store, v4f32, f32, ssub, STRSroW, STRSroX>;
2314  defm : VecROStoreLane0Pat<ro64,         store, v2i64, i64, dsub, STRDroW, STRDroX>;
2315  defm : VecROStoreLane0Pat<ro64,         store, v2f64, f64, dsub, STRDroW, STRDroX>;
2316}
2317
2318//---
2319// (unsigned immediate)
2320defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
2321                   [(store GPR64z:$Rt,
2322                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2323defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
2324                    [(store GPR32z:$Rt,
2325                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2326defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
2327                    [(store FPR8Op:$Rt,
2328                            (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
2329defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
2330                    [(store (f16 FPR16Op:$Rt),
2331                            (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
2332defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
2333                    [(store (f32 FPR32Op:$Rt),
2334                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2335defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
2336                    [(store (f64 FPR64Op:$Rt),
2337                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2338defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
2339
2340defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
2341                     [(truncstorei16 GPR32z:$Rt,
2342                                     (am_indexed16 GPR64sp:$Rn,
2343                                                   uimm12s2:$offset))]>;
2344defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1,  "strb",
2345                     [(truncstorei8 GPR32z:$Rt,
2346                                    (am_indexed8 GPR64sp:$Rn,
2347                                                 uimm12s1:$offset))]>;
2348
2349let AddedComplexity = 10 in {
2350
2351// Match all store 64 bits width whose type is compatible with FPR64
2352def : Pat<(store (v1i64 FPR64:$Rt),
2353                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2354          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2355def : Pat<(store (v1f64 FPR64:$Rt),
2356                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2357          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2358
2359let Predicates = [IsLE] in {
2360  // We must use ST1 to store vectors in big-endian.
2361  def : Pat<(store (v2f32 FPR64:$Rt),
2362                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2363            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2364  def : Pat<(store (v8i8 FPR64:$Rt),
2365                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2366            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2367  def : Pat<(store (v4i16 FPR64:$Rt),
2368                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2369            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2370  def : Pat<(store (v2i32 FPR64:$Rt),
2371                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2372            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2373  def : Pat<(store (v4f16 FPR64:$Rt),
2374                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2375            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2376}
2377
2378// Match all store 128 bits width whose type is compatible with FPR128
2379def : Pat<(store (f128  FPR128:$Rt),
2380                 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2381          (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2382
2383let Predicates = [IsLE] in {
2384  // We must use ST1 to store vectors in big-endian.
2385  def : Pat<(store (v4f32 FPR128:$Rt),
2386                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2387            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2388  def : Pat<(store (v2f64 FPR128:$Rt),
2389                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2390            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2391  def : Pat<(store (v16i8 FPR128:$Rt),
2392                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2393            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2394  def : Pat<(store (v8i16 FPR128:$Rt),
2395                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2396            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2397  def : Pat<(store (v4i32 FPR128:$Rt),
2398                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2399            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2400  def : Pat<(store (v2i64 FPR128:$Rt),
2401                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2402            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2403  def : Pat<(store (v8f16 FPR128:$Rt),
2404                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2405            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2406}
2407
2408// truncstore i64
2409def : Pat<(truncstorei32 GPR64:$Rt,
2410                         (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
2411  (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
2412def : Pat<(truncstorei16 GPR64:$Rt,
2413                         (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
2414  (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
2415def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
2416  (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
2417
2418} // AddedComplexity = 10
2419
2420// Match stores from lane 0 to the appropriate subreg's store.
2421multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
2422                            ValueType VTy, ValueType STy,
2423                            SubRegIndex SubRegIdx, Operand IndexType,
2424                            Instruction STR> {
2425  def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
2426                     (UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
2427            (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2428                 GPR64sp:$Rn, IndexType:$offset)>;
2429}
2430
2431let AddedComplexity = 19 in {
2432  defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
2433  defm : VecStoreLane0Pat<am_indexed16,         store, v8f16, f16, hsub, uimm12s2, STRHui>;
2434  defm : VecStoreLane0Pat<am_indexed32,         store, v4i32, i32, ssub, uimm12s4, STRSui>;
2435  defm : VecStoreLane0Pat<am_indexed32,         store, v4f32, f32, ssub, uimm12s4, STRSui>;
2436  defm : VecStoreLane0Pat<am_indexed64,         store, v2i64, i64, dsub, uimm12s8, STRDui>;
2437  defm : VecStoreLane0Pat<am_indexed64,         store, v2f64, f64, dsub, uimm12s8, STRDui>;
2438}
2439
2440//---
2441// (unscaled immediate)
2442defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
2443                         [(store GPR64z:$Rt,
2444                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2445defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
2446                         [(store GPR32z:$Rt,
2447                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
2448defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
2449                         [(store FPR8Op:$Rt,
2450                                 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
2451defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
2452                         [(store (f16 FPR16Op:$Rt),
2453                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
2454defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
2455                         [(store (f32 FPR32Op:$Rt),
2456                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
2457defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
2458                         [(store (f64 FPR64Op:$Rt),
2459                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2460defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
2461                         [(store (f128 FPR128Op:$Rt),
2462                                 (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
2463defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
2464                         [(truncstorei16 GPR32z:$Rt,
2465                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
2466defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
2467                         [(truncstorei8 GPR32z:$Rt,
2468                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
2469
2470// Armv8.4 LDAPR & STLR with Immediate Offset instruction
2471let Predicates = [HasV8_4a] in {
2472defm STLURB     : BaseStoreUnscaleV84<"stlurb",  0b00, 0b00, GPR32>;
2473defm STLURH     : BaseStoreUnscaleV84<"stlurh",  0b01, 0b00, GPR32>;
2474defm STLURW     : BaseStoreUnscaleV84<"stlur",   0b10, 0b00, GPR32>;
2475defm STLURX     : BaseStoreUnscaleV84<"stlur",   0b11, 0b00, GPR64>;
2476defm LDAPURB    : BaseLoadUnscaleV84<"ldapurb",  0b00, 0b01, GPR32>;
2477defm LDAPURSBW  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
2478defm LDAPURSBX  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
2479defm LDAPURH    : BaseLoadUnscaleV84<"ldapurh",  0b01, 0b01, GPR32>;
2480defm LDAPURSHW  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
2481defm LDAPURSHX  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
2482defm LDAPUR     : BaseLoadUnscaleV84<"ldapur",   0b10, 0b01, GPR32>;
2483defm LDAPURSW   : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
2484defm LDAPURX    : BaseLoadUnscaleV84<"ldapur",   0b11, 0b01, GPR64>;
2485}
2486
2487// Match all store 64 bits width whose type is compatible with FPR64
2488def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2489          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2490def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2491          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2492
2493let AddedComplexity = 10 in {
2494
2495let Predicates = [IsLE] in {
2496  // We must use ST1 to store vectors in big-endian.
2497  def : Pat<(store (v2f32 FPR64:$Rt),
2498                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2499            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2500  def : Pat<(store (v8i8 FPR64:$Rt),
2501                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2502            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2503  def : Pat<(store (v4i16 FPR64:$Rt),
2504                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2505            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2506  def : Pat<(store (v2i32 FPR64:$Rt),
2507                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2508            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2509  def : Pat<(store (v4f16 FPR64:$Rt),
2510                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2511            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2512}
2513
2514// Match all store 128 bits width whose type is compatible with FPR128
2515def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2516          (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2517
2518let Predicates = [IsLE] in {
2519  // We must use ST1 to store vectors in big-endian.
2520  def : Pat<(store (v4f32 FPR128:$Rt),
2521                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2522            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2523  def : Pat<(store (v2f64 FPR128:$Rt),
2524                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2525            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2526  def : Pat<(store (v16i8 FPR128:$Rt),
2527                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2528            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2529  def : Pat<(store (v8i16 FPR128:$Rt),
2530                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2531            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2532  def : Pat<(store (v4i32 FPR128:$Rt),
2533                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2534            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2535  def : Pat<(store (v2i64 FPR128:$Rt),
2536                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2537            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2538  def : Pat<(store (v2f64 FPR128:$Rt),
2539                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2540            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2541  def : Pat<(store (v8f16 FPR128:$Rt),
2542                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2543            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2544}
2545
2546} // AddedComplexity = 10
2547
2548// unscaled i64 truncating stores
2549def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
2550  (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2551def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
2552  (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2553def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
2554  (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2555
2556// Match stores from lane 0 to the appropriate subreg's store.
2557multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
2558                             ValueType VTy, ValueType STy,
2559                             SubRegIndex SubRegIdx, Instruction STR> {
2560  defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
2561}
2562
2563let AddedComplexity = 19 in {
2564  defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
2565  defm : VecStoreULane0Pat<store,         v8f16, f16, hsub, STURHi>;
2566  defm : VecStoreULane0Pat<store,         v4i32, i32, ssub, STURSi>;
2567  defm : VecStoreULane0Pat<store,         v4f32, f32, ssub, STURSi>;
2568  defm : VecStoreULane0Pat<store,         v2i64, i64, dsub, STURDi>;
2569  defm : VecStoreULane0Pat<store,         v2f64, f64, dsub, STURDi>;
2570}
2571
2572//---
2573// STR mnemonics fall back to STUR for negative or unaligned offsets.
2574def : InstAlias<"str $Rt, [$Rn, $offset]",
2575                (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2576def : InstAlias<"str $Rt, [$Rn, $offset]",
2577                (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2578def : InstAlias<"str $Rt, [$Rn, $offset]",
2579                (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2580def : InstAlias<"str $Rt, [$Rn, $offset]",
2581                (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2582def : InstAlias<"str $Rt, [$Rn, $offset]",
2583                (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2584def : InstAlias<"str $Rt, [$Rn, $offset]",
2585                (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2586def : InstAlias<"str $Rt, [$Rn, $offset]",
2587                (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2588
2589def : InstAlias<"strb $Rt, [$Rn, $offset]",
2590                (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2591def : InstAlias<"strh $Rt, [$Rn, $offset]",
2592                (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2593
2594//---
2595// (unscaled immediate, unprivileged)
2596defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
2597defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
2598
2599defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
2600defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
2601
2602//---
2603// (immediate pre-indexed)
2604def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str",  pre_store, i32>;
2605def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str",  pre_store, i64>;
2606def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op,  "str",  pre_store, untyped>;
2607def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str",  pre_store, f16>;
2608def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str",  pre_store, f32>;
2609def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str",  pre_store, f64>;
2610def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
2611
2612def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8,  i32>;
2613def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
2614
2615// truncstore i64
2616def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2617  (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2618           simm9:$off)>;
2619def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2620  (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2621            simm9:$off)>;
2622def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2623  (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2624            simm9:$off)>;
2625
2626def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2627          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2628def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2629          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2630def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2631          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2632def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2633          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2634def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2635          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2636def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2637          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2638def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2639          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2640
2641def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2642          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2643def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2644          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2645def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2646          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2647def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2648          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2649def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2650          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2651def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2652          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2653def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2654          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2655
2656//---
2657// (immediate post-indexed)
2658def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z,  "str", post_store, i32>;
2659def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z,  "str", post_store, i64>;
2660def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op,   "str", post_store, untyped>;
2661def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op,  "str", post_store, f16>;
2662def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op,  "str", post_store, f32>;
2663def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op,  "str", post_store, f64>;
2664def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
2665
2666def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
2667def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
2668
2669// truncstore i64
2670def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2671  (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2672            simm9:$off)>;
2673def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2674  (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2675             simm9:$off)>;
2676def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2677  (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2678             simm9:$off)>;
2679
2680def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2681          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2682def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2683          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2684def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2685          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2686def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2687          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2688def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2689          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2690def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2691          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2692def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2693          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2694
2695def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2696          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2697def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2698          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2699def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2700          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2701def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2702          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2703def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2704          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2705def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2706          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2707def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2708          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2709
2710//===----------------------------------------------------------------------===//
2711// Load/store exclusive instructions.
2712//===----------------------------------------------------------------------===//
2713
2714def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
2715def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
2716def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
2717def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
2718
2719def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
2720def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
2721def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
2722def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
2723
2724def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
2725def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
2726def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
2727def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
2728
2729def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
2730def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
2731def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
2732def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
2733
2734def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
2735def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
2736def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
2737def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
2738
2739def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
2740def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
2741def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
2742def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
2743
2744def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
2745def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
2746
2747def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
2748def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
2749
2750def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
2751def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
2752
2753def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
2754def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
2755
2756let Predicates = [HasV8_1a] in {
2757  // v8.1a "Limited Order Region" extension load-acquire instructions
2758  def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
2759  def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
2760  def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
2761  def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
2762
2763  // v8.1a "Limited Order Region" extension store-release instructions
2764  def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
2765  def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
2766  def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
2767  def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
2768}
2769
2770//===----------------------------------------------------------------------===//
2771// Scaled floating point to integer conversion instructions.
2772//===----------------------------------------------------------------------===//
2773
2774defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
2775defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
2776defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
2777defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
2778defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
2779defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
2780defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
2781defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
2782defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
2783defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
2784defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
2785defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
2786
2787multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
2788  def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
2789  def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
2790  def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
2791  def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
2792  def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
2793  def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
2794
2795  def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
2796            (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
2797  def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
2798            (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
2799  def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
2800            (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
2801  def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
2802            (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
2803  def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
2804            (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
2805  def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
2806            (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
2807}
2808
2809defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
2810defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
2811
2812multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
2813  def : Pat<(i32 (to_int (round f32:$Rn))),
2814            (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
2815  def : Pat<(i64 (to_int (round f32:$Rn))),
2816            (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
2817  def : Pat<(i32 (to_int (round f64:$Rn))),
2818            (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
2819  def : Pat<(i64 (to_int (round f64:$Rn))),
2820            (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
2821}
2822
2823defm : FPToIntegerPats<fp_to_sint, fceil,  "FCVTPS">;
2824defm : FPToIntegerPats<fp_to_uint, fceil,  "FCVTPU">;
2825defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
2826defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
2827defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
2828defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
2829defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
2830defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;
2831
2832//===----------------------------------------------------------------------===//
2833// Scaled integer to floating point conversion instructions.
2834//===----------------------------------------------------------------------===//
2835
2836defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
2837defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
2838
2839//===----------------------------------------------------------------------===//
2840// Unscaled integer to floating point conversion instruction.
2841//===----------------------------------------------------------------------===//
2842
2843defm FMOV : UnscaledConversion<"fmov">;
2844
2845// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
2846let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
2847def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
2848    Sched<[WriteF]>, Requires<[HasFullFP16]>;
2849def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
2850    Sched<[WriteF]>;
2851def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
2852    Sched<[WriteF]>;
2853}
2854// Similarly add aliases
2855def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
2856    Requires<[HasFullFP16]>;
2857def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
2858def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
2859
2860//===----------------------------------------------------------------------===//
2861// Floating point conversion instruction.
2862//===----------------------------------------------------------------------===//
2863
2864defm FCVT : FPConversion<"fcvt">;
2865
2866//===----------------------------------------------------------------------===//
2867// Floating point single operand instructions.
2868//===----------------------------------------------------------------------===//
2869
2870defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
2871defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
2872defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
2873defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
2874defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
2875defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
2876defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
2877defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
2878
2879def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
2880          (FRINTNDr FPR64:$Rn)>;
2881
2882defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
2883defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
2884
2885let SchedRW = [WriteFDiv] in {
2886defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
2887}
2888
2889//===----------------------------------------------------------------------===//
2890// Floating point two operand instructions.
2891//===----------------------------------------------------------------------===//
2892
2893defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
2894let SchedRW = [WriteFDiv] in {
2895defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
2896}
2897defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
2898defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaxnan>;
2899defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
2900defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminnan>;
2901let SchedRW = [WriteFMul] in {
2902defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
2903defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
2904}
2905defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;
2906
2907def : Pat<(v1f64 (fmaxnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2908          (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
2909def : Pat<(v1f64 (fminnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2910          (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
2911def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2912          (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
2913def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2914          (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
2915
2916//===----------------------------------------------------------------------===//
2917// Floating point three operand instructions.
2918//===----------------------------------------------------------------------===//
2919
2920defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
2921defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
2922     TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
2923defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
2924     TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
2925defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
2926     TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
2927
2928// The following def pats catch the case where the LHS of an FMA is negated.
2929// The TriOpFrag above catches the case where the middle operand is negated.
2930
2931// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
2932// the NEON variant.
2933def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
2934          (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2935
2936def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
2937          (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2938
2939// We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
2940// "(-a) + b*(-c)".
2941def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
2942          (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2943
2944def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
2945          (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2946
2947def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
2948          (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2949
2950def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
2951          (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2952
2953//===----------------------------------------------------------------------===//
2954// Floating point comparison instructions.
2955//===----------------------------------------------------------------------===//
2956
2957defm FCMPE : FPComparison<1, "fcmpe">;
2958defm FCMP  : FPComparison<0, "fcmp", AArch64fcmp>;
2959
2960//===----------------------------------------------------------------------===//
2961// Floating point conditional comparison instructions.
2962//===----------------------------------------------------------------------===//
2963
2964defm FCCMPE : FPCondComparison<1, "fccmpe">;
2965defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;
2966
2967//===----------------------------------------------------------------------===//
2968// Floating point conditional select instruction.
2969//===----------------------------------------------------------------------===//
2970
2971defm FCSEL : FPCondSelect<"fcsel">;
2972
2973// CSEL instructions providing f128 types need to be handled by a
2974// pseudo-instruction since the eventual code will need to introduce basic
2975// blocks and control flow.
2976def F128CSEL : Pseudo<(outs FPR128:$Rd),
2977                      (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
2978                      [(set (f128 FPR128:$Rd),
2979                            (AArch64csel FPR128:$Rn, FPR128:$Rm,
2980                                       (i32 imm:$cond), NZCV))]> {
2981  let Uses = [NZCV];
2982  let usesCustomInserter = 1;
2983  let hasNoSchedulingInfo = 1;
2984}
2985
2986
2987//===----------------------------------------------------------------------===//
2988// Floating point immediate move.
2989//===----------------------------------------------------------------------===//
2990
2991let isReMaterializable = 1 in {
2992defm FMOV : FPMoveImmediate<"fmov">;
2993}
2994
2995//===----------------------------------------------------------------------===//
2996// Advanced SIMD two vector instructions.
2997//===----------------------------------------------------------------------===//
2998
2999defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
3000                                          int_aarch64_neon_uabd>;
3001// Match UABDL in log2-shuffle patterns.
3002def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
3003                           (zext (v8i8 V64:$opB))))),
3004          (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3005def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3006               (v8i16 (add (sub (zext (v8i8 V64:$opA)),
3007                                (zext (v8i8 V64:$opB))),
3008                           (AArch64vashr v8i16:$src, (i32 15))))),
3009          (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3010def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
3011                           (zext (extract_high_v16i8 V128:$opB))))),
3012          (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3013def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3014               (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
3015                                (zext (extract_high_v16i8 V128:$opB))),
3016                           (AArch64vashr v8i16:$src, (i32 15))))),
3017          (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3018def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
3019                           (zext (v4i16 V64:$opB))))),
3020          (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
3021def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
3022                           (zext (extract_high_v8i16 V128:$opB))))),
3023          (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
3024def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
3025                           (zext (v2i32 V64:$opB))))),
3026          (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
3027def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
3028                           (zext (extract_high_v4i32 V128:$opB))))),
3029          (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
3030
3031defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
3032defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
3033defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
3034defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
3035defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
3036defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
3037defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
3038defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
3039defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
3040defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
3041
3042defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
3043defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
3044defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
3045defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
3046defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
3047defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
3048defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
3049defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
3050def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
3051          (FCVTLv4i16 V64:$Rn)>;
3052def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
3053                                                              (i64 4)))),
3054          (FCVTLv8i16 V128:$Rn)>;
3055def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
3056def : Pat<(v2f64 (fpextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
3057                                                    (i64 2))))),
3058          (FCVTLv4i32 V128:$Rn)>;
3059
3060def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
3061def : Pat<(v4f32 (fpextend (v4f16 (extract_subvector (v8f16 V128:$Rn),
3062                                                    (i64 4))))),
3063          (FCVTLv8i16 V128:$Rn)>;
3064
3065defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
3066defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
3067defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
3068defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
3069defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
3070def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
3071          (FCVTNv4i16 V128:$Rn)>;
3072def : Pat<(concat_vectors V64:$Rd,
3073                          (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
3074          (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3075def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
3076def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
3077def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
3078          (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3079defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
3080defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
3081defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
3082                                        int_aarch64_neon_fcvtxn>;
3083defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
3084defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
3085
3086def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
3087def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
3088def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
3089def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
3090def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
3091
3092def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
3093def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
3094def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
3095def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
3096def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
3097
3098defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
3099defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
3100defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
3101defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
3102defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
3103defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
3104defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
3105defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
3106defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
3107defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
3108defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
3109defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
3110                               UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
3111defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
3112// Aliases for MVN -> NOT.
3113def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
3114                (NOTv8i8 V64:$Vd, V64:$Vn)>;
3115def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
3116                (NOTv16i8 V128:$Vd, V128:$Vn)>;
3117
3118def : Pat<(AArch64neg (v8i8  V64:$Rn)),  (NEGv8i8  V64:$Rn)>;
3119def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
3120def : Pat<(AArch64neg (v4i16 V64:$Rn)),  (NEGv4i16 V64:$Rn)>;
3121def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
3122def : Pat<(AArch64neg (v2i32 V64:$Rn)),  (NEGv2i32 V64:$Rn)>;
3123def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
3124def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
3125
3126def : Pat<(AArch64not (v8i8 V64:$Rn)),   (NOTv8i8  V64:$Rn)>;
3127def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3128def : Pat<(AArch64not (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3129def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3130def : Pat<(AArch64not (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3131def : Pat<(AArch64not (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3132def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3133def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3134
3135def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3136def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3137def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3138def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3139def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3140
3141defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
3142defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
3143defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
3144defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
3145defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
3146       BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
3147defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
3148defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
3149defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
3150defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
3151defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
3152defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
3153defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
3154defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
3155defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
3156       BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
3157defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
3158                    int_aarch64_neon_uaddlp>;
3159defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
3160defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
3161defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
3162defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
3163defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
3164defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
3165
3166def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
3167def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
3168def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
3169def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
3170def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
3171def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
3172
3173// Patterns for vector long shift (by element width). These need to match all
3174// three of zext, sext and anyext so it's easier to pull the patterns out of the
3175// definition.
3176multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
3177  def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
3178            (SHLLv8i8 V64:$Rn)>;
3179  def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
3180            (SHLLv16i8 V128:$Rn)>;
3181  def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
3182            (SHLLv4i16 V64:$Rn)>;
3183  def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
3184            (SHLLv8i16 V128:$Rn)>;
3185  def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
3186            (SHLLv2i32 V64:$Rn)>;
3187  def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
3188            (SHLLv4i32 V128:$Rn)>;
3189}
3190
3191defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
3192defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
3193defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
3194
3195//===----------------------------------------------------------------------===//
3196// Advanced SIMD three vector instructions.
3197//===----------------------------------------------------------------------===//
3198
3199defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
3200defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
3201defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
3202defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
3203defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
3204defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
3205defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
3206defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
3207defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
3208let Predicates = [HasNEON] in {
3209foreach VT = [ v2f32, v4f32, v2f64 ] in
3210def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
3211}
3212let Predicates = [HasNEON, HasFullFP16] in {
3213foreach VT = [ v4f16, v8f16 ] in
3214def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
3215}
3216defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
3217defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
3218defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_addp>;
3219defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
3220defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
3221defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
3222defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
3223defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
3224defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
3225defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
3226defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
3227defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaxnan>;
3228defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
3229defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
3230defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
3231defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminnan>;
3232
3233// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
3234// instruction expects the addend first, while the fma intrinsic puts it last.
3235defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
3236            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
3237defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
3238            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
3239
3240// The following def pats catch the case where the LHS of an FMA is negated.
3241// The TriOpFrag above catches the case where the middle operand is negated.
3242def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
3243          (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
3244
3245def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
3246          (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
3247
3248def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
3249          (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
3250
3251defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
3252defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
3253defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
3254defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
3255defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
3256defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
3257                      TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
3258defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
3259                      TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
3260defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
3261defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
3262defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
3263      TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
3264defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
3265defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
3266defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
3267defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
3268defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
3269defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
3270defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
3271defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
3272defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
3273defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
3274defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
3275defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
3276defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
3277defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
3278defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
3279defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
3280defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
3281defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
3282      TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
3283defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
3284defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
3285defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
3286defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
3287defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
3288defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
3289defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
3290defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
3291defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
3292defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
3293defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
3294defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
3295defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
3296defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
3297defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
3298                                                  int_aarch64_neon_sqadd>;
3299defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
3300                                                    int_aarch64_neon_sqsub>;
3301
3302defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
3303defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
3304                                  BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
3305defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
3306defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
3307defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
3308    TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
3309defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
3310defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
3311                                  BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
3312defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
3313
3314
3315def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
3316          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3317def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
3318          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3319def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
3320          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3321def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
3322          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3323
3324def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
3325          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3326def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
3327          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3328def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
3329          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3330def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
3331          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3332
3333def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
3334                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
3335def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
3336                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3337def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
3338                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3339def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
3340                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3341
3342def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
3343                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
3344def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
3345                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
3346def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
3347                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
3348def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
3349                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
3350
3351def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
3352                "|cmls.8b\t$dst, $src1, $src2}",
3353                (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3354def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
3355                "|cmls.16b\t$dst, $src1, $src2}",
3356                (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3357def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
3358                "|cmls.4h\t$dst, $src1, $src2}",
3359                (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3360def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
3361                "|cmls.8h\t$dst, $src1, $src2}",
3362                (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3363def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
3364                "|cmls.2s\t$dst, $src1, $src2}",
3365                (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3366def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
3367                "|cmls.4s\t$dst, $src1, $src2}",
3368                (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3369def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
3370                "|cmls.2d\t$dst, $src1, $src2}",
3371                (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3372
3373def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
3374                "|cmlo.8b\t$dst, $src1, $src2}",
3375                (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3376def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
3377                "|cmlo.16b\t$dst, $src1, $src2}",
3378                (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3379def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
3380                "|cmlo.4h\t$dst, $src1, $src2}",
3381                (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3382def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
3383                "|cmlo.8h\t$dst, $src1, $src2}",
3384                (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3385def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
3386                "|cmlo.2s\t$dst, $src1, $src2}",
3387                (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3388def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
3389                "|cmlo.4s\t$dst, $src1, $src2}",
3390                (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3391def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
3392                "|cmlo.2d\t$dst, $src1, $src2}",
3393                (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3394
3395def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
3396                "|cmle.8b\t$dst, $src1, $src2}",
3397                (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3398def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
3399                "|cmle.16b\t$dst, $src1, $src2}",
3400                (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3401def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
3402                "|cmle.4h\t$dst, $src1, $src2}",
3403                (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3404def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
3405                "|cmle.8h\t$dst, $src1, $src2}",
3406                (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3407def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
3408                "|cmle.2s\t$dst, $src1, $src2}",
3409                (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3410def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
3411                "|cmle.4s\t$dst, $src1, $src2}",
3412                (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3413def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
3414                "|cmle.2d\t$dst, $src1, $src2}",
3415                (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3416
3417def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
3418                "|cmlt.8b\t$dst, $src1, $src2}",
3419                (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3420def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
3421                "|cmlt.16b\t$dst, $src1, $src2}",
3422                (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3423def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
3424                "|cmlt.4h\t$dst, $src1, $src2}",
3425                (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3426def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
3427                "|cmlt.8h\t$dst, $src1, $src2}",
3428                (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3429def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
3430                "|cmlt.2s\t$dst, $src1, $src2}",
3431                (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3432def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
3433                "|cmlt.4s\t$dst, $src1, $src2}",
3434                (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3435def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
3436                "|cmlt.2d\t$dst, $src1, $src2}",
3437                (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3438
3439let Predicates = [HasNEON, HasFullFP16] in {
3440def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
3441                "|fcmle.4h\t$dst, $src1, $src2}",
3442                (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3443def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
3444                "|fcmle.8h\t$dst, $src1, $src2}",
3445                (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3446}
3447def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
3448                "|fcmle.2s\t$dst, $src1, $src2}",
3449                (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3450def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
3451                "|fcmle.4s\t$dst, $src1, $src2}",
3452                (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3453def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
3454                "|fcmle.2d\t$dst, $src1, $src2}",
3455                (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3456
3457let Predicates = [HasNEON, HasFullFP16] in {
3458def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
3459                "|fcmlt.4h\t$dst, $src1, $src2}",
3460                (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3461def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
3462                "|fcmlt.8h\t$dst, $src1, $src2}",
3463                (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3464}
3465def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
3466                "|fcmlt.2s\t$dst, $src1, $src2}",
3467                (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3468def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
3469                "|fcmlt.4s\t$dst, $src1, $src2}",
3470                (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3471def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
3472                "|fcmlt.2d\t$dst, $src1, $src2}",
3473                (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3474
3475let Predicates = [HasNEON, HasFullFP16] in {
3476def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
3477                "|facle.4h\t$dst, $src1, $src2}",
3478                (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3479def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
3480                "|facle.8h\t$dst, $src1, $src2}",
3481                (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3482}
3483def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
3484                "|facle.2s\t$dst, $src1, $src2}",
3485                (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3486def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
3487                "|facle.4s\t$dst, $src1, $src2}",
3488                (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3489def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
3490                "|facle.2d\t$dst, $src1, $src2}",
3491                (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3492
3493let Predicates = [HasNEON, HasFullFP16] in {
3494def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
3495                "|faclt.4h\t$dst, $src1, $src2}",
3496                (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3497def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
3498                "|faclt.8h\t$dst, $src1, $src2}",
3499                (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3500}
3501def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
3502                "|faclt.2s\t$dst, $src1, $src2}",
3503                (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3504def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
3505                "|faclt.4s\t$dst, $src1, $src2}",
3506                (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3507def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
3508                "|faclt.2d\t$dst, $src1, $src2}",
3509                (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3510
3511//===----------------------------------------------------------------------===//
3512// Advanced SIMD three scalar instructions.
3513//===----------------------------------------------------------------------===//
3514
3515defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
3516defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
3517defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
3518defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
3519defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
3520defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
3521defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
3522defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
3523def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3524          (FABD64 FPR64:$Rn, FPR64:$Rm)>;
3525let Predicates = [HasFullFP16] in {
3526def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
3527}
3528def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
3529def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
3530defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
3531                                     int_aarch64_neon_facge>;
3532defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
3533                                     int_aarch64_neon_facgt>;
3534defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
3535defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
3536defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
3537defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
3538defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
3539defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
3540defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
3541defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
3542defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
3543defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
3544defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
3545defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
3546defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
3547defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
3548defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
3549defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
3550defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
3551defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
3552defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
3553defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
3554defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
3555let Predicates = [HasRDM] in {
3556  defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
3557  defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
3558  def : Pat<(i32 (int_aarch64_neon_sqadd
3559                   (i32 FPR32:$Rd),
3560                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
3561                                                   (i32 FPR32:$Rm))))),
3562            (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3563  def : Pat<(i32 (int_aarch64_neon_sqsub
3564                   (i32 FPR32:$Rd),
3565                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
3566                                                   (i32 FPR32:$Rm))))),
3567            (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3568}
3569
3570def : InstAlias<"cmls $dst, $src1, $src2",
3571                (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3572def : InstAlias<"cmle $dst, $src1, $src2",
3573                (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3574def : InstAlias<"cmlo $dst, $src1, $src2",
3575                (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3576def : InstAlias<"cmlt $dst, $src1, $src2",
3577                (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3578def : InstAlias<"fcmle $dst, $src1, $src2",
3579                (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3580def : InstAlias<"fcmle $dst, $src1, $src2",
3581                (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3582def : InstAlias<"fcmlt $dst, $src1, $src2",
3583                (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3584def : InstAlias<"fcmlt $dst, $src1, $src2",
3585                (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3586def : InstAlias<"facle $dst, $src1, $src2",
3587                (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3588def : InstAlias<"facle $dst, $src1, $src2",
3589                (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3590def : InstAlias<"faclt $dst, $src1, $src2",
3591                (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3592def : InstAlias<"faclt $dst, $src1, $src2",
3593                (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3594
3595//===----------------------------------------------------------------------===//
3596// Advanced SIMD three scalar instructions (mixed operands).
3597//===----------------------------------------------------------------------===//
3598defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
3599                                       int_aarch64_neon_sqdmulls_scalar>;
3600defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
3601defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
3602
3603def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
3604                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
3605                                                        (i32 FPR32:$Rm))))),
3606          (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3607def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
3608                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
3609                                                        (i32 FPR32:$Rm))))),
3610          (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3611
3612//===----------------------------------------------------------------------===//
3613// Advanced SIMD two scalar instructions.
3614//===----------------------------------------------------------------------===//
3615
3616defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", abs>;
3617defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
3618defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
3619defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
3620defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
3621defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
3622defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
3623defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
3624defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
3625defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
3626defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
3627defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
3628defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
3629defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
3630defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
3631defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
3632defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
3633defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
3634defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
3635def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
3636defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
3637defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
3638defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
3639defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
3640defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
3641defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
3642                                 UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
3643defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
3644defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
3645defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
3646defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
3647defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
3648defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
3649                                     int_aarch64_neon_suqadd>;
3650defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
3651defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
3652defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
3653                                    int_aarch64_neon_usqadd>;
3654
3655def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
3656
3657def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
3658          (FCVTASv1i64 FPR64:$Rn)>;
3659def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
3660          (FCVTAUv1i64 FPR64:$Rn)>;
3661def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
3662          (FCVTMSv1i64 FPR64:$Rn)>;
3663def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
3664          (FCVTMUv1i64 FPR64:$Rn)>;
3665def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
3666          (FCVTNSv1i64 FPR64:$Rn)>;
3667def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
3668          (FCVTNUv1i64 FPR64:$Rn)>;
3669def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
3670          (FCVTPSv1i64 FPR64:$Rn)>;
3671def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
3672          (FCVTPUv1i64 FPR64:$Rn)>;
3673
3674def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
3675          (FRECPEv1f16 FPR16:$Rn)>;
3676def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
3677          (FRECPEv1i32 FPR32:$Rn)>;
3678def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
3679          (FRECPEv1i64 FPR64:$Rn)>;
3680def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
3681          (FRECPEv1i64 FPR64:$Rn)>;
3682
3683def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
3684          (FRECPEv1i32 FPR32:$Rn)>;
3685def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
3686          (FRECPEv2f32 V64:$Rn)>;
3687def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
3688          (FRECPEv4f32 FPR128:$Rn)>;
3689def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
3690          (FRECPEv1i64 FPR64:$Rn)>;
3691def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
3692          (FRECPEv1i64 FPR64:$Rn)>;
3693def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
3694          (FRECPEv2f64 FPR128:$Rn)>;
3695
3696def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
3697          (FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
3698def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
3699          (FRECPSv2f32 V64:$Rn, V64:$Rm)>;
3700def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
3701          (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
3702def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
3703          (FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
3704def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
3705          (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
3706
3707def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
3708          (FRECPXv1f16 FPR16:$Rn)>;
3709def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
3710          (FRECPXv1i32 FPR32:$Rn)>;
3711def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
3712          (FRECPXv1i64 FPR64:$Rn)>;
3713
3714def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
3715          (FRSQRTEv1f16 FPR16:$Rn)>;
3716def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
3717          (FRSQRTEv1i32 FPR32:$Rn)>;
3718def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
3719          (FRSQRTEv1i64 FPR64:$Rn)>;
3720def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
3721          (FRSQRTEv1i64 FPR64:$Rn)>;
3722
3723def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
3724          (FRSQRTEv1i32 FPR32:$Rn)>;
3725def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
3726          (FRSQRTEv2f32 V64:$Rn)>;
3727def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
3728          (FRSQRTEv4f32 FPR128:$Rn)>;
3729def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
3730          (FRSQRTEv1i64 FPR64:$Rn)>;
3731def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
3732          (FRSQRTEv1i64 FPR64:$Rn)>;
3733def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
3734          (FRSQRTEv2f64 FPR128:$Rn)>;
3735
3736def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
3737          (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
3738def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
3739          (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
3740def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
3741          (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
3742def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
3743          (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
3744def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
3745          (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
3746
3747// If an integer is about to be converted to a floating point value,
3748// just load it on the floating point unit.
3749// Here are the patterns for 8 and 16-bits to float.
3750// 8-bits -> float.
3751multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
3752                             SDPatternOperator loadop, Instruction UCVTF,
3753                             ROAddrMode ro, Instruction LDRW, Instruction LDRX,
3754                             SubRegIndex sub> {
3755  def : Pat<(DstTy (uint_to_fp (SrcTy
3756                     (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
3757                                      ro.Wext:$extend))))),
3758           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
3759                                 (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
3760                                 sub))>;
3761
3762  def : Pat<(DstTy (uint_to_fp (SrcTy
3763                     (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
3764                                      ro.Wext:$extend))))),
3765           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
3766                                 (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
3767                                 sub))>;
3768}
3769
3770defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
3771                         UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
3772def : Pat <(f32 (uint_to_fp (i32
3773               (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
3774           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3775                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
3776def : Pat <(f32 (uint_to_fp (i32
3777                     (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
3778           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3779                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
3780// 16-bits -> float.
3781defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
3782                         UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
3783def : Pat <(f32 (uint_to_fp (i32
3784                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
3785           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3786                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
3787def : Pat <(f32 (uint_to_fp (i32
3788                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
3789           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3790                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
3791// 32-bits are handled in target specific dag combine:
3792// performIntToFpCombine.
3793// 64-bits integer to 32-bits floating point, not possible with
3794// UCVTF on floating point registers (both source and destination
3795// must have the same size).
3796
3797// Here are the patterns for 8, 16, 32, and 64-bits to double.
3798// 8-bits -> double.
3799defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
3800                         UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
3801def : Pat <(f64 (uint_to_fp (i32
3802                    (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
3803           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3804                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
3805def : Pat <(f64 (uint_to_fp (i32
3806                  (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
3807           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3808                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
3809// 16-bits -> double.
3810defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
3811                         UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
3812def : Pat <(f64 (uint_to_fp (i32
3813                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
3814           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3815                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
3816def : Pat <(f64 (uint_to_fp (i32
3817                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
3818           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3819                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
3820// 32-bits -> double.
3821defm : UIntToFPROLoadPat<f64, i32, load,
3822                         UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
3823def : Pat <(f64 (uint_to_fp (i32
3824                  (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
3825           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3826                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
3827def : Pat <(f64 (uint_to_fp (i32
3828                  (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
3829           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3830                          (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
3831// 64-bits -> double are handled in target specific dag combine:
3832// performIntToFpCombine.
3833
3834//===----------------------------------------------------------------------===//
3835// Advanced SIMD three different-sized vector instructions.
3836//===----------------------------------------------------------------------===//
3837
3838defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
3839defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
3840defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
3841defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
3842defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
3843defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
3844                                             int_aarch64_neon_sabd>;
3845defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
3846                                          int_aarch64_neon_sabd>;
3847defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
3848            BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
3849defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
3850                 BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
3851defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
3852    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
3853defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
3854    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
3855defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
3856defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
3857                                               int_aarch64_neon_sqadd>;
3858defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
3859                                               int_aarch64_neon_sqsub>;
3860defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
3861                                     int_aarch64_neon_sqdmull>;
3862defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
3863                 BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
3864defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
3865                 BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
3866defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
3867                                              int_aarch64_neon_uabd>;
3868defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
3869                 BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
3870defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
3871                 BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
3872defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
3873    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
3874defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
3875    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
3876defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
3877defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
3878                 BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
3879defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
3880                 BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
3881
3882// Additional patterns for SMULL and UMULL
3883multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
3884  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3885  def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
3886            (INST8B V64:$Rn, V64:$Rm)>;
3887  def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
3888            (INST4H V64:$Rn, V64:$Rm)>;
3889  def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
3890            (INST2S V64:$Rn, V64:$Rm)>;
3891}
3892
3893defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
3894  SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
3895defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
3896  UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
3897
3898// Patterns for smull2/umull2.
3899multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
3900  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3901  def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
3902                           (extract_high_v16i8 V128:$Rm))),
3903             (INST8B V128:$Rn, V128:$Rm)>;
3904  def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
3905                           (extract_high_v8i16 V128:$Rm))),
3906             (INST4H V128:$Rn, V128:$Rm)>;
3907  def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
3908                           (extract_high_v4i32 V128:$Rm))),
3909             (INST2S V128:$Rn, V128:$Rm)>;
3910}
3911
3912defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
3913  SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
3914defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
3915  UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
3916
3917// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
3918multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
3919  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3920  def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
3921            (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
3922  def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
3923            (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
3924  def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
3925            (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
3926}
3927
3928defm : Neon_mulacc_widen_patterns<
3929  TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
3930  SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
3931defm : Neon_mulacc_widen_patterns<
3932  TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
3933  UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
3934defm : Neon_mulacc_widen_patterns<
3935  TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
3936  SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
3937defm : Neon_mulacc_widen_patterns<
3938  TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
3939  UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
3940
3941// Patterns for 64-bit pmull
3942def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
3943          (PMULLv1i64 V64:$Rn, V64:$Rm)>;
3944def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
3945                                    (extractelt (v2i64 V128:$Rm), (i64 1))),
3946          (PMULLv2i64 V128:$Rn, V128:$Rm)>;
3947
3948// CodeGen patterns for addhn and subhn instructions, which can actually be
3949// written in LLVM IR without too much difficulty.
3950
3951// ADDHN
3952def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
3953          (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
3954def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3955                                           (i32 16))))),
3956          (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
3957def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3958                                           (i32 32))))),
3959          (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
3960def : Pat<(concat_vectors (v8i8 V64:$Rd),
3961                          (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3962                                                    (i32 8))))),
3963          (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3964                            V128:$Rn, V128:$Rm)>;
3965def : Pat<(concat_vectors (v4i16 V64:$Rd),
3966                          (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3967                                                    (i32 16))))),
3968          (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3969                            V128:$Rn, V128:$Rm)>;
3970def : Pat<(concat_vectors (v2i32 V64:$Rd),
3971                          (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3972                                                    (i32 32))))),
3973          (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3974                            V128:$Rn, V128:$Rm)>;
3975
3976// SUBHN
3977def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
3978          (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
3979def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3980                                           (i32 16))))),
3981          (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
3982def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3983                                           (i32 32))))),
3984          (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
3985def : Pat<(concat_vectors (v8i8 V64:$Rd),
3986                          (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3987                                                    (i32 8))))),
3988          (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3989                            V128:$Rn, V128:$Rm)>;
3990def : Pat<(concat_vectors (v4i16 V64:$Rd),
3991                          (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3992                                                    (i32 16))))),
3993          (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3994                            V128:$Rn, V128:$Rm)>;
3995def : Pat<(concat_vectors (v2i32 V64:$Rd),
3996                          (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3997                                                    (i32 32))))),
3998          (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3999                            V128:$Rn, V128:$Rm)>;
4000
4001//----------------------------------------------------------------------------
4002// AdvSIMD bitwise extract from vector instruction.
4003//----------------------------------------------------------------------------
4004
4005defm EXT : SIMDBitwiseExtract<"ext">;
4006
4007def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4008          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4009def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4010          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4011def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4012          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4013def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4014          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4015def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4016          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4017def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4018          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4019def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4020          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4021def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4022          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4023def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4024          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4025def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4026          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4027
4028// We use EXT to handle extract_subvector to copy the upper 64-bits of a
4029// 128-bit vector.
4030def : Pat<(v8i8  (extract_subvector V128:$Rn, (i64 8))),
4031          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4032def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
4033          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4034def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
4035          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4036def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
4037          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4038def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))),
4039          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4040def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
4041          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4042def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
4043          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4044
4045
4046//----------------------------------------------------------------------------
4047// AdvSIMD zip vector
4048//----------------------------------------------------------------------------
4049
4050defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
4051defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
4052defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
4053defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
4054defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
4055defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
4056
4057//----------------------------------------------------------------------------
4058// AdvSIMD TBL/TBX instructions
4059//----------------------------------------------------------------------------
4060
4061defm TBL : SIMDTableLookup<    0, "tbl">;
4062defm TBX : SIMDTableLookupTied<1, "tbx">;
4063
4064def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4065          (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
4066def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4067          (TBLv16i8One V128:$Ri, V128:$Rn)>;
4068
4069def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
4070                  (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4071          (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
4072def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
4073                   (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4074          (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
4075
4076
4077//----------------------------------------------------------------------------
4078// AdvSIMD scalar CPY instruction
4079//----------------------------------------------------------------------------
4080
4081defm CPY : SIMDScalarCPY<"cpy">;
4082
4083//----------------------------------------------------------------------------
4084// AdvSIMD scalar pairwise instructions
4085//----------------------------------------------------------------------------
4086
4087defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
4088defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
4089defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
4090defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
4091defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
4092defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
4093def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
4094          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4095def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
4096          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4097def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
4098          (FADDPv2i32p V64:$Rn)>;
4099def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
4100          (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
4101def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
4102          (FADDPv2i64p V128:$Rn)>;
4103def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
4104          (FMAXNMPv2i32p V64:$Rn)>;
4105def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
4106          (FMAXNMPv2i64p V128:$Rn)>;
4107def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
4108          (FMAXPv2i32p V64:$Rn)>;
4109def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
4110          (FMAXPv2i64p V128:$Rn)>;
4111def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
4112          (FMINNMPv2i32p V64:$Rn)>;
4113def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
4114          (FMINNMPv2i64p V128:$Rn)>;
4115def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
4116          (FMINPv2i32p V64:$Rn)>;
4117def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
4118          (FMINPv2i64p V128:$Rn)>;
4119
4120//----------------------------------------------------------------------------
4121// AdvSIMD INS/DUP instructions
4122//----------------------------------------------------------------------------
4123
4124def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
4125def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
4126def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
4127def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
4128def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
4129def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
4130def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
4131
4132def DUPv2i64lane : SIMDDup64FromElement;
4133def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
4134def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
4135def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
4136def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
4137def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
4138def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
4139
4140def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
4141          (v2f32 (DUPv2i32lane
4142            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4143            (i64 0)))>;
4144def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
4145          (v4f32 (DUPv4i32lane
4146            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4147            (i64 0)))>;
4148def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
4149          (v2f64 (DUPv2i64lane
4150            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
4151            (i64 0)))>;
4152def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
4153          (v4f16 (DUPv4i16lane
4154            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4155            (i64 0)))>;
4156def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
4157          (v8f16 (DUPv8i16lane
4158            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4159            (i64 0)))>;
4160
4161def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4162          (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
4163def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4164          (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
4165
4166def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4167          (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
4168def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4169         (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
4170def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
4171          (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
4172
4173// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
4174// instruction even if the types don't match: we just have to remap the lane
4175// carefully. N.b. this trick only applies to truncations.
4176def VecIndex_x2 : SDNodeXForm<imm, [{
4177  return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
4178}]>;
4179def VecIndex_x4 : SDNodeXForm<imm, [{
4180  return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
4181}]>;
4182def VecIndex_x8 : SDNodeXForm<imm, [{
4183  return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
4184}]>;
4185
4186multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
4187                            ValueType Src128VT, ValueType ScalVT,
4188                            Instruction DUP, SDNodeXForm IdxXFORM> {
4189  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
4190                                                     imm:$idx)))),
4191            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
4192
4193  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
4194                                                     imm:$idx)))),
4195            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
4196}
4197
4198defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
4199defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
4200defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
4201
4202defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
4203defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
4204defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
4205
4206multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
4207                               SDNodeXForm IdxXFORM> {
4208  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
4209                                                         imm:$idx))))),
4210            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
4211
4212  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
4213                                                       imm:$idx))))),
4214            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
4215}
4216
4217defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
4218defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
4219defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;
4220
4221defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
4222defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
4223defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
4224
4225// SMOV and UMOV definitions, with some extra patterns for convenience
4226defm SMOV : SMov;
4227defm UMOV : UMov;
4228
4229def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
4230          (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
4231def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
4232          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
4233def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4234          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
4235def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4236          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
4237def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4238          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
4239def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
4240          (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
4241
4242def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
4243            VectorIndexB:$idx)))), i8),
4244          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
4245def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
4246            VectorIndexH:$idx)))), i16),
4247          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
4248
4249// Extracting i8 or i16 elements will have the zero-extend transformed to
4250// an 'and' mask by type legalization since neither i8 nor i16 are legal types
4251// for AArch64. Match these patterns here since UMOV already zeroes out the high
4252// bits of the destination register.
4253def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
4254               (i32 0xff)),
4255          (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
4256def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
4257               (i32 0xffff)),
4258          (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
4259
4260defm INS : SIMDIns;
4261
4262def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
4263          (SUBREG_TO_REG (i32 0),
4264                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4265def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
4266          (SUBREG_TO_REG (i32 0),
4267                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4268
4269def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
4270          (SUBREG_TO_REG (i32 0),
4271                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4272def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
4273          (SUBREG_TO_REG (i32 0),
4274                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4275
4276def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
4277          (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4278def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
4279          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4280
4281def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
4282            (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
4283                                  (i32 FPR32:$Rn), ssub))>;
4284def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
4285            (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4286                                  (i32 FPR32:$Rn), ssub))>;
4287
4288def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
4289            (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
4290                                  (i64 FPR64:$Rn), dsub))>;
4291
4292def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
4293          (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4294def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
4295          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4296
4297def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
4298          (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
4299def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
4300          (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
4301
4302def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
4303          (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
4304
4305def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
4306            (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
4307          (EXTRACT_SUBREG
4308            (INSvi16lane
4309              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
4310              VectorIndexS:$imm,
4311              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
4312              (i64 0)),
4313            dsub)>;
4314
4315def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
4316            (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
4317          (INSvi16lane
4318            V128:$Rn, VectorIndexH:$imm,
4319            (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
4320            (i64 0))>;
4321
4322def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
4323            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
4324          (EXTRACT_SUBREG
4325            (INSvi32lane
4326              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
4327              VectorIndexS:$imm,
4328              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
4329              (i64 0)),
4330            dsub)>;
4331def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
4332            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
4333          (INSvi32lane
4334            V128:$Rn, VectorIndexS:$imm,
4335            (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
4336            (i64 0))>;
4337def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
4338            (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
4339          (INSvi64lane
4340            V128:$Rn, VectorIndexD:$imm,
4341            (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
4342            (i64 0))>;
4343
4344// Copy an element at a constant index in one vector into a constant indexed
4345// element of another.
4346// FIXME refactor to a shared class/dev parameterized on vector type, vector
4347// index type and INS extension
4348def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
4349                   (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
4350                   VectorIndexB:$idx2)),
4351          (v16i8 (INSvi8lane
4352                   V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
4353          )>;
4354def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
4355                   (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
4356                   VectorIndexH:$idx2)),
4357          (v8i16 (INSvi16lane
4358                   V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
4359          )>;
4360def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
4361                   (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
4362                   VectorIndexS:$idx2)),
4363          (v4i32 (INSvi32lane
4364                   V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
4365          )>;
4366def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
4367                   (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
4368                   VectorIndexD:$idx2)),
4369          (v2i64 (INSvi64lane
4370                   V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
4371          )>;
4372
4373multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
4374                                ValueType VTScal, Instruction INS> {
4375  def : Pat<(VT128 (vector_insert V128:$src,
4376                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
4377                        imm:$Immd)),
4378            (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
4379
4380  def : Pat<(VT128 (vector_insert V128:$src,
4381                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
4382                        imm:$Immd)),
4383            (INS V128:$src, imm:$Immd,
4384                 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
4385
4386  def : Pat<(VT64 (vector_insert V64:$src,
4387                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
4388                        imm:$Immd)),
4389            (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
4390                                 imm:$Immd, V128:$Rn, imm:$Immn),
4391                            dsub)>;
4392
4393  def : Pat<(VT64 (vector_insert V64:$src,
4394                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
4395                        imm:$Immd)),
4396            (EXTRACT_SUBREG
4397                (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
4398                     (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
4399                dsub)>;
4400}
4401
4402defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
4403defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
4404defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
4405
4406
4407// Floating point vector extractions are codegen'd as either a sequence of
4408// subregister extractions, or a MOV (aka CPY here, alias for DUP) if
4409// the lane number is anything other than zero.
4410def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
4411          (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
4412def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
4413          (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
4414def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
4415          (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
4416
4417def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
4418          (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
4419def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
4420          (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
4421def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
4422          (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
4423
4424// All concat_vectors operations are canonicalised to act on i64 vectors for
4425// AArch64. In the general case we need an instruction, which had just as well be
4426// INS.
4427class ConcatPat<ValueType DstTy, ValueType SrcTy>
4428  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
4429        (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
4430                     (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
4431
4432def : ConcatPat<v2i64, v1i64>;
4433def : ConcatPat<v2f64, v1f64>;
4434def : ConcatPat<v4i32, v2i32>;
4435def : ConcatPat<v4f32, v2f32>;
4436def : ConcatPat<v8i16, v4i16>;
4437def : ConcatPat<v8f16, v4f16>;
4438def : ConcatPat<v16i8, v8i8>;
4439
4440// If the high lanes are undef, though, we can just ignore them:
4441class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
4442  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
4443        (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
4444
4445def : ConcatUndefPat<v2i64, v1i64>;
4446def : ConcatUndefPat<v2f64, v1f64>;
4447def : ConcatUndefPat<v4i32, v2i32>;
4448def : ConcatUndefPat<v4f32, v2f32>;
4449def : ConcatUndefPat<v8i16, v4i16>;
4450def : ConcatUndefPat<v16i8, v8i8>;
4451
4452//----------------------------------------------------------------------------
4453// AdvSIMD across lanes instructions
4454//----------------------------------------------------------------------------
4455
4456defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
4457defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
4458defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
4459defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
4460defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
4461defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
4462defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
4463defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
4464defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
4465defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
4466defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
4467
4468// Patterns for across-vector intrinsics, that have a node equivalent, that
4469// returns a vector (with only the low lane defined) instead of a scalar.
4470// In effect, opNode is the same as (scalar_to_vector (IntNode)).
4471multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
4472                                    SDPatternOperator opNode> {
4473// If a lane instruction caught the vector_extract around opNode, we can
4474// directly match the latter to the instruction.
4475def : Pat<(v8i8 (opNode V64:$Rn)),
4476          (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
4477           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
4478def : Pat<(v16i8 (opNode V128:$Rn)),
4479          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4480           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
4481def : Pat<(v4i16 (opNode V64:$Rn)),
4482          (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
4483           (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
4484def : Pat<(v8i16 (opNode V128:$Rn)),
4485          (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
4486           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
4487def : Pat<(v4i32 (opNode V128:$Rn)),
4488          (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4489           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
4490
4491
4492// If none did, fallback to the explicit patterns, consuming the vector_extract.
4493def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
4494            (i32 0)), (i64 0))),
4495          (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
4496            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
4497            bsub), ssub)>;
4498def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
4499          (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4500            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
4501            bsub), ssub)>;
4502def : Pat<(i32 (vector_extract (insert_subvector undef,
4503            (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
4504          (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
4505            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
4506            hsub), ssub)>;
4507def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
4508          (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
4509            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
4510            hsub), ssub)>;
4511def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
4512          (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4513            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
4514            ssub), ssub)>;
4515
4516}
4517
4518multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
4519                                          SDPatternOperator opNode>
4520    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
4521// If there is a sign extension after this intrinsic, consume it as smov already
4522// performed it
4523def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
4524            (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
4525          (i32 (SMOVvi8to32
4526            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4527              (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
4528            (i64 0)))>;
4529def : Pat<(i32 (sext_inreg (i32 (vector_extract
4530            (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
4531          (i32 (SMOVvi8to32
4532            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4533             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
4534            (i64 0)))>;
4535def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
4536            (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
4537          (i32 (SMOVvi16to32
4538           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4539            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
4540           (i64 0)))>;
4541def : Pat<(i32 (sext_inreg (i32 (vector_extract
4542            (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
4543          (i32 (SMOVvi16to32
4544            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4545             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
4546            (i64 0)))>;
4547}
4548
4549multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
4550                                            SDPatternOperator opNode>
4551    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
4552// If there is a masking operation keeping only what has been actually
4553// generated, consume it.
4554def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
4555            (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
4556      (i32 (EXTRACT_SUBREG
4557        (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4558          (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
4559        ssub))>;
4560def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
4561            maski8_or_more)),
4562        (i32 (EXTRACT_SUBREG
4563          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4564            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
4565          ssub))>;
4566def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
4567            (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
4568          (i32 (EXTRACT_SUBREG
4569            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4570              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
4571            ssub))>;
4572def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
4573            maski16_or_more)),
4574        (i32 (EXTRACT_SUBREG
4575          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4576            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
4577          ssub))>;
4578}
4579
4580defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
4581// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
4582def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
4583          (ADDPv2i32 V64:$Rn, V64:$Rn)>;
4584
4585defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
4586// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
4587def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
4588          (ADDPv2i32 V64:$Rn, V64:$Rn)>;
4589
4590defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
4591def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
4592          (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
4593
4594defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
4595def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
4596          (SMINPv2i32 V64:$Rn, V64:$Rn)>;
4597
4598defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
4599def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
4600          (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
4601
4602defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
4603def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
4604          (UMINPv2i32 V64:$Rn, V64:$Rn)>;
4605
4606multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
4607  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
4608        (i32 (SMOVvi16to32
4609          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4610            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
4611          (i64 0)))>;
4612def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
4613        (i32 (SMOVvi16to32
4614          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4615           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
4616          (i64 0)))>;
4617
4618def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
4619          (i32 (EXTRACT_SUBREG
4620           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4621            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
4622           ssub))>;
4623def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
4624        (i32 (EXTRACT_SUBREG
4625          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4626           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
4627          ssub))>;
4628
4629def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
4630        (i64 (EXTRACT_SUBREG
4631          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4632           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
4633          dsub))>;
4634}
4635
4636multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
4637                                                Intrinsic intOp> {
4638  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
4639        (i32 (EXTRACT_SUBREG
4640          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4641            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
4642          ssub))>;
4643def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
4644        (i32 (EXTRACT_SUBREG
4645          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4646            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
4647          ssub))>;
4648
4649def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
4650          (i32 (EXTRACT_SUBREG
4651            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4652              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
4653            ssub))>;
4654def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
4655        (i32 (EXTRACT_SUBREG
4656          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4657            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
4658          ssub))>;
4659
4660def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
4661        (i64 (EXTRACT_SUBREG
4662          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4663            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
4664          dsub))>;
4665}
4666
4667defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
4668defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
4669
4670// The vaddlv_s32 intrinsic gets mapped to SADDLP.
4671def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
4672          (i64 (EXTRACT_SUBREG
4673            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4674              (SADDLPv2i32_v1i64 V64:$Rn), dsub),
4675            dsub))>;
4676// The vaddlv_u32 intrinsic gets mapped to UADDLP.
4677def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
4678          (i64 (EXTRACT_SUBREG
4679            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4680              (UADDLPv2i32_v1i64 V64:$Rn), dsub),
4681            dsub))>;
4682
4683//------------------------------------------------------------------------------
4684// AdvSIMD modified immediate instructions
4685//------------------------------------------------------------------------------
4686
4687// AdvSIMD BIC
4688defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
4689// AdvSIMD ORR
4690defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
4691
4692def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4693def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4694def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4695def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4696
4697def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4698def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4699def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4700def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4701
4702def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4703def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4704def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4705def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4706
4707def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4708def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4709def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4710def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4711
4712// AdvSIMD FMOV
4713def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
4714                                              "fmov", ".2d",
4715                       [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4716def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
4717                                              "fmov", ".2s",
4718                       [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4719def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
4720                                              "fmov", ".4s",
4721                       [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4722let Predicates = [HasNEON, HasFullFP16] in {
4723def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
4724                                              "fmov", ".4h",
4725                       [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4726def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
4727                                              "fmov", ".8h",
4728                       [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4729} // Predicates = [HasNEON, HasFullFP16]
4730
4731// AdvSIMD MOVI
4732
4733// EDIT byte mask: scalar
4734let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4735def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
4736                    [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
4737// The movi_edit node has the immediate value already encoded, so we use
4738// a plain imm0_255 here.
4739def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
4740          (MOVID imm0_255:$shift)>;
4741
4742def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
4743def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
4744def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
4745def : Pat<(v8i8  immAllZerosV), (MOVID (i32 0))>;
4746
4747def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
4748def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
4749def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
4750def : Pat<(v8i8  immAllOnesV), (MOVID (i32 255))>;
4751
4752// EDIT byte mask: 2d
4753
4754// The movi_edit node has the immediate value already encoded, so we use
4755// a plain imm0_255 in the pattern
4756let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4757def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
4758                                                simdimmtype10,
4759                                                "movi", ".2d",
4760                   [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
4761
4762def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4763def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4764def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4765def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4766
4767def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4768def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4769def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4770def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4771
4772// EDIT per word & halfword: 2s, 4h, 4s, & 8h
4773let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4774defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
4775
4776def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4777def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4778def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4779def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4780
4781def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4782def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4783def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4784def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4785
4786def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4787          (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
4788def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4789          (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
4790def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4791          (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
4792def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4793          (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
4794
4795let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
4796// EDIT per word: 2s & 4s with MSL shifter
4797def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
4798                      [(set (v2i32 V64:$Rd),
4799                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4800def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
4801                      [(set (v4i32 V128:$Rd),
4802                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4803
4804// Per byte: 8b & 16b
4805def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
4806                                                 "movi", ".8b",
4807                       [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
4808
4809def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
4810                                                 "movi", ".16b",
4811                       [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
4812}
4813
4814// AdvSIMD MVNI
4815
4816// EDIT per word & halfword: 2s, 4h, 4s, & 8h
4817let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4818defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
4819
4820def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4821def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4822def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4823def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4824
4825def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4826def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4827def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4828def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4829
4830def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4831          (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
4832def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4833          (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
4834def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4835          (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
4836def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4837          (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
4838
4839// EDIT per word: 2s & 4s with MSL shifter
4840let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
4841def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
4842                      [(set (v2i32 V64:$Rd),
4843                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4844def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
4845                      [(set (v4i32 V128:$Rd),
4846                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4847}
4848
4849//----------------------------------------------------------------------------
4850// AdvSIMD indexed element
4851//----------------------------------------------------------------------------
4852
4853let hasSideEffects = 0 in {
4854  defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
4855  defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
4856}
4857
4858// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
4859// instruction expects the addend first, while the intrinsic expects it last.
4860
4861// On the other hand, there are quite a few valid combinatorial options due to
4862// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
4863defm : SIMDFPIndexedTiedPatterns<"FMLA",
4864           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
4865defm : SIMDFPIndexedTiedPatterns<"FMLA",
4866           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
4867
4868defm : SIMDFPIndexedTiedPatterns<"FMLS",
4869           TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
4870defm : SIMDFPIndexedTiedPatterns<"FMLS",
4871           TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
4872defm : SIMDFPIndexedTiedPatterns<"FMLS",
4873           TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
4874defm : SIMDFPIndexedTiedPatterns<"FMLS",
4875           TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
4876
4877multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
4878  // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
4879  // and DUP scalar.
4880  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4881                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
4882                                           VectorIndexS:$idx))),
4883            (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
4884  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4885                           (v2f32 (AArch64duplane32
4886                                      (v4f32 (insert_subvector undef,
4887                                                 (v2f32 (fneg V64:$Rm)),
4888                                                 (i32 0))),
4889                                      VectorIndexS:$idx)))),
4890            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
4891                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4892                               VectorIndexS:$idx)>;
4893  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4894                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
4895            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
4896                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
4897
4898  // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
4899  // and DUP scalar.
4900  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4901                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
4902                                           VectorIndexS:$idx))),
4903            (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
4904                               VectorIndexS:$idx)>;
4905  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4906                           (v4f32 (AArch64duplane32
4907                                      (v4f32 (insert_subvector undef,
4908                                                 (v2f32 (fneg V64:$Rm)),
4909                                                 (i32 0))),
4910                                      VectorIndexS:$idx)))),
4911            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
4912                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4913                               VectorIndexS:$idx)>;
4914  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4915                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
4916            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
4917                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
4918
4919  // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
4920  // (DUPLANE from 64-bit would be trivial).
4921  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
4922                           (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
4923                                           VectorIndexD:$idx))),
4924            (FMLSv2i64_indexed
4925                V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
4926  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
4927                           (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
4928            (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
4929                (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
4930
4931  // 2 variants for 32-bit scalar version: extract from .2s or from .4s
4932  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
4933                         (vector_extract (v4f32 (fneg V128:$Rm)),
4934                                         VectorIndexS:$idx))),
4935            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
4936                V128:$Rm, VectorIndexS:$idx)>;
4937  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
4938                         (vector_extract (v4f32 (insert_subvector undef,
4939                                                    (v2f32 (fneg V64:$Rm)),
4940                                                    (i32 0))),
4941                                         VectorIndexS:$idx))),
4942            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
4943                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
4944
4945  // 1 variant for 64-bit scalar version: extract from .1d or from .2d
4946  def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
4947                         (vector_extract (v2f64 (fneg V128:$Rm)),
4948                                         VectorIndexS:$idx))),
4949            (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
4950                V128:$Rm, VectorIndexS:$idx)>;
4951}
4952
4953defm : FMLSIndexedAfterNegPatterns<
4954           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
4955defm : FMLSIndexedAfterNegPatterns<
4956           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
4957
4958defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
4959defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
4960
4961def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
4962          (FMULv2i32_indexed V64:$Rn,
4963            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
4964            (i64 0))>;
4965def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
4966          (FMULv4i32_indexed V128:$Rn,
4967            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
4968            (i64 0))>;
4969def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
4970          (FMULv2i64_indexed V128:$Rn,
4971            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
4972            (i64 0))>;
4973
4974defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
4975defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
4976defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
4977              TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
4978defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
4979              TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
4980defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
4981defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
4982    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4983defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
4984    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4985defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
4986                int_aarch64_neon_smull>;
4987defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
4988                                           int_aarch64_neon_sqadd>;
4989defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
4990                                           int_aarch64_neon_sqsub>;
4991defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
4992                                          int_aarch64_neon_sqadd>;
4993defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
4994                                          int_aarch64_neon_sqsub>;
4995defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
4996defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
4997    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4998defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
4999    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
5000defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
5001                int_aarch64_neon_umull>;
5002
5003// A scalar sqdmull with the second operand being a vector lane can be
5004// handled directly with the indexed instruction encoding.
5005def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
5006                                          (vector_extract (v4i32 V128:$Vm),
5007                                                           VectorIndexS:$idx)),
5008          (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
5009
5010//----------------------------------------------------------------------------
5011// AdvSIMD scalar shift instructions
5012//----------------------------------------------------------------------------
5013defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
5014defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
5015defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
5016defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
5017// Codegen patterns for the above. We don't put these directly on the
5018// instructions because TableGen's type inference can't handle the truth.
5019// Having the same base pattern for fp <--> int totally freaks it out.
5020def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
5021          (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
5022def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
5023          (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
5024def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
5025          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5026def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
5027          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5028def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
5029                                            vecshiftR64:$imm)),
5030          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5031def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
5032                                            vecshiftR64:$imm)),
5033          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5034def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
5035          (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5036def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5037          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5038def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
5039                                            vecshiftR64:$imm)),
5040          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5041def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5042          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5043def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
5044                                            vecshiftR64:$imm)),
5045          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5046def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
5047          (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5048
5049// Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
5050
5051def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
5052          (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5053def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
5054          (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5055def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
5056            (and FPR32:$Rn, (i32 65535)),
5057            vecshiftR16:$imm)),
5058          (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5059def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
5060          (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5061def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
5062          (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
5063def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
5064          (i32 (INSERT_SUBREG
5065            (i32 (IMPLICIT_DEF)),
5066            (FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
5067            hsub))>;
5068def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
5069          (i64 (INSERT_SUBREG
5070            (i64 (IMPLICIT_DEF)),
5071            (FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
5072            hsub))>;
5073def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
5074          (i32 (INSERT_SUBREG
5075            (i32 (IMPLICIT_DEF)),
5076            (FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
5077            hsub))>;
5078def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
5079          (i64 (INSERT_SUBREG
5080            (i64 (IMPLICIT_DEF)),
5081            (FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
5082            hsub))>;
5083
5084defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
5085defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
5086defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
5087                                     int_aarch64_neon_sqrshrn>;
5088defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
5089                                     int_aarch64_neon_sqrshrun>;
5090defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
5091defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
5092defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
5093                                     int_aarch64_neon_sqshrn>;
5094defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
5095                                     int_aarch64_neon_sqshrun>;
5096defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
5097defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
5098defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
5099    TriOpFrag<(add node:$LHS,
5100                   (AArch64srshri node:$MHS, node:$RHS))>>;
5101defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
5102defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
5103    TriOpFrag<(add node:$LHS,
5104                   (AArch64vashr node:$MHS, node:$RHS))>>;
5105defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
5106                                     int_aarch64_neon_uqrshrn>;
5107defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
5108defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
5109                                     int_aarch64_neon_uqshrn>;
5110defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
5111defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
5112    TriOpFrag<(add node:$LHS,
5113                   (AArch64urshri node:$MHS, node:$RHS))>>;
5114defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
5115defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
5116    TriOpFrag<(add node:$LHS,
5117                   (AArch64vlshr node:$MHS, node:$RHS))>>;
5118
5119//----------------------------------------------------------------------------
5120// AdvSIMD vector shift instructions
5121//----------------------------------------------------------------------------
5122defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
5123defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
5124defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
5125                                   int_aarch64_neon_vcvtfxs2fp>;
5126defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
5127                                         int_aarch64_neon_rshrn>;
5128defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
5129defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
5130                          BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
5131defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
5132def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
5133                                      (i32 vecshiftL64:$imm))),
5134          (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
5135defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
5136                                         int_aarch64_neon_sqrshrn>;
5137defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
5138                                         int_aarch64_neon_sqrshrun>;
5139defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
5140defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
5141defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
5142                                         int_aarch64_neon_sqshrn>;
5143defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
5144                                         int_aarch64_neon_sqshrun>;
5145defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
5146def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
5147                                      (i32 vecshiftR64:$imm))),
5148          (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
5149defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
5150defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
5151                 TriOpFrag<(add node:$LHS,
5152                                (AArch64srshri node:$MHS, node:$RHS))> >;
5153defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
5154                BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
5155
5156defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
5157defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
5158                TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
5159defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
5160                        int_aarch64_neon_vcvtfxu2fp>;
5161defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
5162                                         int_aarch64_neon_uqrshrn>;
5163defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
5164defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
5165                                         int_aarch64_neon_uqshrn>;
5166defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
5167defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
5168                TriOpFrag<(add node:$LHS,
5169                               (AArch64urshri node:$MHS, node:$RHS))> >;
5170defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
5171                BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
5172defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
5173defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
5174                TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
5175
5176// SHRN patterns for when a logical right shift was used instead of arithmetic
5177// (the immediate guarantees no sign bits actually end up in the result so it
5178// doesn't matter).
5179def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
5180          (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
5181def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
5182          (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
5183def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
5184          (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
5185
5186def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
5187                                 (trunc (AArch64vlshr (v8i16 V128:$Rn),
5188                                                    vecshiftR16Narrow:$imm)))),
5189          (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5190                           V128:$Rn, vecshiftR16Narrow:$imm)>;
5191def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
5192                                 (trunc (AArch64vlshr (v4i32 V128:$Rn),
5193                                                    vecshiftR32Narrow:$imm)))),
5194          (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5195                           V128:$Rn, vecshiftR32Narrow:$imm)>;
5196def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
5197                                 (trunc (AArch64vlshr (v2i64 V128:$Rn),
5198                                                    vecshiftR64Narrow:$imm)))),
5199          (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5200                           V128:$Rn, vecshiftR32Narrow:$imm)>;
5201
5202// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
5203// Anyexts are implemented as zexts.
5204def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
5205def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
5206def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
5207def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
5208def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
5209def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
5210def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
5211def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
5212def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
5213// Also match an extend from the upper half of a 128 bit source register.
5214def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5215          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
5216def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5217          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
5218def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5219          (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
5220def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5221          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
5222def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5223          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
5224def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5225          (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
5226def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5227          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
5228def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5229          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
5230def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5231          (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
5232
5233// Vector shift sxtl aliases
5234def : InstAlias<"sxtl.8h $dst, $src1",
5235                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5236def : InstAlias<"sxtl $dst.8h, $src1.8b",
5237                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5238def : InstAlias<"sxtl.4s $dst, $src1",
5239                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5240def : InstAlias<"sxtl $dst.4s, $src1.4h",
5241                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5242def : InstAlias<"sxtl.2d $dst, $src1",
5243                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5244def : InstAlias<"sxtl $dst.2d, $src1.2s",
5245                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5246
5247// Vector shift sxtl2 aliases
5248def : InstAlias<"sxtl2.8h $dst, $src1",
5249                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5250def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
5251                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5252def : InstAlias<"sxtl2.4s $dst, $src1",
5253                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5254def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
5255                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5256def : InstAlias<"sxtl2.2d $dst, $src1",
5257                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5258def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
5259                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5260
5261// Vector shift uxtl aliases
5262def : InstAlias<"uxtl.8h $dst, $src1",
5263                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5264def : InstAlias<"uxtl $dst.8h, $src1.8b",
5265                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5266def : InstAlias<"uxtl.4s $dst, $src1",
5267                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5268def : InstAlias<"uxtl $dst.4s, $src1.4h",
5269                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5270def : InstAlias<"uxtl.2d $dst, $src1",
5271                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5272def : InstAlias<"uxtl $dst.2d, $src1.2s",
5273                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5274
5275// Vector shift uxtl2 aliases
5276def : InstAlias<"uxtl2.8h $dst, $src1",
5277                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5278def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
5279                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5280def : InstAlias<"uxtl2.4s $dst, $src1",
5281                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5282def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
5283                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5284def : InstAlias<"uxtl2.2d $dst, $src1",
5285                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5286def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
5287                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5288
5289// If an integer is about to be converted to a floating point value,
5290// just load it on the floating point unit.
5291// These patterns are more complex because floating point loads do not
5292// support sign extension.
5293// The sign extension has to be explicitly added and is only supported for
5294// one step: byte-to-half, half-to-word, word-to-doubleword.
5295// SCVTF GPR -> FPR is 9 cycles.
5296// SCVTF FPR -> FPR is 4 cyclces.
5297// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
5298// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
5299// and still being faster.
5300// However, this is not good for code size.
5301// 8-bits -> float. 2 sizes step-up.
5302class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
5303  : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
5304        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
5305                            (SSHLLv4i16_shift
5306                              (f64
5307                                (EXTRACT_SUBREG
5308                                  (SSHLLv8i8_shift
5309                                    (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5310                                        INST,
5311                                        bsub),
5312                                    0),
5313                                  dsub)),
5314                               0),
5315                             ssub)))>,
5316    Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
5317
5318def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
5319                          (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
5320def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
5321                          (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
5322def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
5323                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
5324def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
5325                          (LDURBi GPR64sp:$Rn, simm9:$offset)>;
5326
5327// 16-bits -> float. 1 size step-up.
5328class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
5329  : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
5330        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
5331                            (SSHLLv4i16_shift
5332                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5333                                  INST,
5334                                  hsub),
5335                                0),
5336                            ssub)))>, Requires<[NotForCodeSize]>;
5337
5338def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
5339                           (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
5340def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
5341                           (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
5342def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
5343                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
5344def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
5345                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;
5346
5347// 32-bits to 32-bits are handled in target specific dag combine:
5348// performIntToFpCombine.
5349// 64-bits integer to 32-bits floating point, not possible with
5350// SCVTF on floating point registers (both source and destination
5351// must have the same size).
5352
5353// Here are the patterns for 8, 16, 32, and 64-bits to double.
5354// 8-bits -> double. 3 size step-up: give up.
5355// 16-bits -> double. 2 size step.
5356class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
5357  : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
5358           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
5359                              (SSHLLv2i32_shift
5360                                 (f64
5361                                  (EXTRACT_SUBREG
5362                                    (SSHLLv4i16_shift
5363                                      (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5364                                        INST,
5365                                        hsub),
5366                                     0),
5367                                   dsub)),
5368                               0),
5369                             dsub)))>,
5370    Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
5371
5372def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
5373                           (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
5374def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
5375                           (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
5376def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
5377                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
5378def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
5379                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;
5380// 32-bits -> double. 1 size step-up.
5381class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
5382  : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
5383           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
5384                              (SSHLLv2i32_shift
5385                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5386                                  INST,
5387                                  ssub),
5388                               0),
5389                             dsub)))>, Requires<[NotForCodeSize]>;
5390
5391def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
5392                           (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
5393def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
5394                           (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
5395def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
5396                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
5397def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
5398                           (LDURSi GPR64sp:$Rn, simm9:$offset)>;
5399
5400// 64-bits -> double are handled in target specific dag combine:
5401// performIntToFpCombine.
5402
5403
5404//----------------------------------------------------------------------------
5405// AdvSIMD Load-Store Structure
5406//----------------------------------------------------------------------------
5407defm LD1 : SIMDLd1Multiple<"ld1">;
5408defm LD2 : SIMDLd2Multiple<"ld2">;
5409defm LD3 : SIMDLd3Multiple<"ld3">;
5410defm LD4 : SIMDLd4Multiple<"ld4">;
5411
5412defm ST1 : SIMDSt1Multiple<"st1">;
5413defm ST2 : SIMDSt2Multiple<"st2">;
5414defm ST3 : SIMDSt3Multiple<"st3">;
5415defm ST4 : SIMDSt4Multiple<"st4">;
5416
5417class Ld1Pat<ValueType ty, Instruction INST>
5418  : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
5419
5420def : Ld1Pat<v16i8, LD1Onev16b>;
5421def : Ld1Pat<v8i16, LD1Onev8h>;
5422def : Ld1Pat<v4i32, LD1Onev4s>;
5423def : Ld1Pat<v2i64, LD1Onev2d>;
5424def : Ld1Pat<v8i8,  LD1Onev8b>;
5425def : Ld1Pat<v4i16, LD1Onev4h>;
5426def : Ld1Pat<v2i32, LD1Onev2s>;
5427def : Ld1Pat<v1i64, LD1Onev1d>;
5428
5429class St1Pat<ValueType ty, Instruction INST>
5430  : Pat<(store ty:$Vt, GPR64sp:$Rn),
5431        (INST ty:$Vt, GPR64sp:$Rn)>;
5432
5433def : St1Pat<v16i8, ST1Onev16b>;
5434def : St1Pat<v8i16, ST1Onev8h>;
5435def : St1Pat<v4i32, ST1Onev4s>;
5436def : St1Pat<v2i64, ST1Onev2d>;
5437def : St1Pat<v8i8,  ST1Onev8b>;
5438def : St1Pat<v4i16, ST1Onev4h>;
5439def : St1Pat<v2i32, ST1Onev2s>;
5440def : St1Pat<v1i64, ST1Onev1d>;
5441
5442//---
5443// Single-element
5444//---
5445
5446defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
5447defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
5448defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
5449defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
5450let mayLoad = 1, hasSideEffects = 0 in {
5451defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
5452defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
5453defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
5454defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
5455defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
5456defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
5457defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
5458defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
5459defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
5460defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
5461defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
5462defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
5463defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
5464defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
5465defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
5466defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
5467}
5468
5469def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
5470          (LD1Rv8b GPR64sp:$Rn)>;
5471def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
5472          (LD1Rv16b GPR64sp:$Rn)>;
5473def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
5474          (LD1Rv4h GPR64sp:$Rn)>;
5475def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
5476          (LD1Rv8h GPR64sp:$Rn)>;
5477def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
5478          (LD1Rv2s GPR64sp:$Rn)>;
5479def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
5480          (LD1Rv4s GPR64sp:$Rn)>;
5481def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
5482          (LD1Rv2d GPR64sp:$Rn)>;
5483def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
5484          (LD1Rv1d GPR64sp:$Rn)>;
5485// Grab the floating point version too
5486def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
5487          (LD1Rv2s GPR64sp:$Rn)>;
5488def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
5489          (LD1Rv4s GPR64sp:$Rn)>;
5490def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
5491          (LD1Rv2d GPR64sp:$Rn)>;
5492def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
5493          (LD1Rv1d GPR64sp:$Rn)>;
5494def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
5495          (LD1Rv4h GPR64sp:$Rn)>;
5496def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
5497          (LD1Rv8h GPR64sp:$Rn)>;
5498
5499class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
5500                    ValueType VTy, ValueType STy, Instruction LD1>
5501  : Pat<(vector_insert (VTy VecListOne128:$Rd),
5502           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
5503        (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
5504
5505def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
5506def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
5507def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
5508def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
5509def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
5510def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
5511def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
5512
5513class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
5514                   ValueType VTy, ValueType STy, Instruction LD1>
5515  : Pat<(vector_insert (VTy VecListOne64:$Rd),
5516           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
5517        (EXTRACT_SUBREG
5518            (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
5519                          VecIndex:$idx, GPR64sp:$Rn),
5520            dsub)>;
5521
5522def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
5523def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
5524def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
5525def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
5526def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
5527
5528
5529defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
5530defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
5531defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
5532defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
5533
5534// Stores
5535defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
5536defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
5537defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
5538defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
5539
5540let AddedComplexity = 19 in
5541class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
5542                    ValueType VTy, ValueType STy, Instruction ST1>
5543  : Pat<(scalar_store
5544             (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5545             GPR64sp:$Rn),
5546        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
5547
5548def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
5549def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
5550def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
5551def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
5552def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
5553def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
5554def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
5555
5556let AddedComplexity = 19 in
5557class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
5558                   ValueType VTy, ValueType STy, Instruction ST1>
5559  : Pat<(scalar_store
5560             (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5561             GPR64sp:$Rn),
5562        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5563             VecIndex:$idx, GPR64sp:$Rn)>;
5564
5565def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
5566def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
5567def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
5568def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
5569def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
5570
5571multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
5572                             ValueType VTy, ValueType STy, Instruction ST1,
5573                             int offset> {
5574  def : Pat<(scalar_store
5575              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5576              GPR64sp:$Rn, offset),
5577        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5578             VecIndex:$idx, GPR64sp:$Rn, XZR)>;
5579
5580  def : Pat<(scalar_store
5581              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5582              GPR64sp:$Rn, GPR64:$Rm),
5583        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5584             VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
5585}
5586
5587defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
5588defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
5589                        2>;
5590defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
5591defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
5592defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
5593defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
5594defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
5595
5596multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
5597                             ValueType VTy, ValueType STy, Instruction ST1,
5598                             int offset> {
5599  def : Pat<(scalar_store
5600              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5601              GPR64sp:$Rn, offset),
5602        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
5603
5604  def : Pat<(scalar_store
5605              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5606              GPR64sp:$Rn, GPR64:$Rm),
5607        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
5608}
5609
5610defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
5611                         1>;
5612defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
5613                         2>;
5614defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
5615defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
5616defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
5617defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
5618defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
5619
5620let mayStore = 1, hasSideEffects = 0 in {
5621defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
5622defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
5623defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
5624defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
5625defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
5626defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
5627defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
5628defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
5629defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
5630defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
5631defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
5632defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
5633}
5634
5635defm ST1 : SIMDLdSt1SingleAliases<"st1">;
5636defm ST2 : SIMDLdSt2SingleAliases<"st2">;
5637defm ST3 : SIMDLdSt3SingleAliases<"st3">;
5638defm ST4 : SIMDLdSt4SingleAliases<"st4">;
5639
5640//----------------------------------------------------------------------------
5641// Crypto extensions
5642//----------------------------------------------------------------------------
5643
5644let Predicates = [HasAES] in {
5645def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
5646def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
5647def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
5648def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
5649}
5650
5651// Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
5652// for AES fusion on some CPUs.
5653let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
5654def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
5655                        Sched<[WriteV]>;
5656def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
5657                         Sched<[WriteV]>;
5658}
5659
5660// Only use constrained versions of AES(I)MC instructions if they are paired with
5661// AESE/AESD.
5662def : Pat<(v16i8 (int_aarch64_crypto_aesmc
5663            (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
5664                                            (v16i8 V128:$src2))))),
5665          (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
5666                                             (v16i8 V128:$src2)))))>,
5667          Requires<[HasFuseAES]>;
5668
5669def : Pat<(v16i8 (int_aarch64_crypto_aesimc
5670            (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
5671                                            (v16i8 V128:$src2))))),
5672          (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
5673                                              (v16i8 V128:$src2)))))>,
5674          Requires<[HasFuseAES]>;
5675
5676let Predicates = [HasSHA2] in {
5677def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
5678def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
5679def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
5680def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
5681def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
5682def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
5683def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
5684
5685def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
5686def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
5687def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
5688}
5689
5690//----------------------------------------------------------------------------
5691// Compiler-pseudos
5692//----------------------------------------------------------------------------
5693// FIXME: Like for X86, these should go in their own separate .td file.
5694
5695def def32 : PatLeaf<(i32 GPR32:$src), [{
5696  return isDef32(*N);
5697}]>;
5698
5699// In the case of a 32-bit def that is known to implicitly zero-extend,
5700// we can use a SUBREG_TO_REG.
5701def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
5702
5703// For an anyext, we don't care what the high bits are, so we can perform an
5704// INSERT_SUBREF into an IMPLICIT_DEF.
5705def : Pat<(i64 (anyext GPR32:$src)),
5706          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
5707
5708// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
5709// then assert the extension has happened.
5710def : Pat<(i64 (zext GPR32:$src)),
5711          (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
5712
5713// To sign extend, we use a signed bitfield move instruction (SBFM) on the
5714// containing super-reg.
5715def : Pat<(i64 (sext GPR32:$src)),
5716   (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
5717def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
5718def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
5719def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
5720def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
5721def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
5722def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
5723def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;
5724
5725def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
5726          (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
5727                              (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
5728def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
5729          (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
5730                              (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
5731
5732def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
5733          (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
5734                              (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
5735def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
5736          (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
5737                              (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
5738
5739def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
5740          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
5741                   (i64 (i64shift_a        imm0_63:$imm)),
5742                   (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
5743
5744// sra patterns have an AddedComplexity of 10, so make sure we have a higher
5745// AddedComplexity for the following patterns since we want to match sext + sra
5746// patterns before we attempt to match a single sra node.
5747let AddedComplexity = 20 in {
5748// We support all sext + sra combinations which preserve at least one bit of the
5749// original value which is to be sign extended. E.g. we support shifts up to
5750// bitwidth-1 bits.
5751def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
5752          (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
5753def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
5754          (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
5755
5756def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
5757          (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
5758def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
5759          (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
5760
5761def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
5762          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
5763                   (i64 imm0_31:$imm), 31)>;
5764} // AddedComplexity = 20
5765
5766// To truncate, we can simply extract from a subregister.
5767def : Pat<(i32 (trunc GPR64sp:$src)),
5768          (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
5769
5770// __builtin_trap() uses the BRK instruction on AArch64.
5771def : Pat<(trap), (BRK 1)>;
5772
5773// Conversions within AdvSIMD types in the same register size are free.
5774// But because we need a consistent lane ordering, in big endian many
5775// conversions require one or more REV instructions.
5776//
5777// Consider a simple memory load followed by a bitconvert then a store.
5778//   v0 = load v2i32
5779//   v1 = BITCAST v2i32 v0 to v4i16
5780//        store v4i16 v2
5781//
5782// In big endian mode every memory access has an implicit byte swap. LDR and
5783// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
5784// is, they treat the vector as a sequence of elements to be byte-swapped.
5785// The two pairs of instructions are fundamentally incompatible. We've decided
5786// to use LD1/ST1 only to simplify compiler implementation.
5787//
5788// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
5789// the original code sequence:
5790//   v0 = load v2i32
5791//   v1 = REV v2i32                  (implicit)
5792//   v2 = BITCAST v2i32 v1 to v4i16
5793//   v3 = REV v4i16 v2               (implicit)
5794//        store v4i16 v3
5795//
5796// But this is now broken - the value stored is different to the value loaded
5797// due to lane reordering. To fix this, on every BITCAST we must perform two
5798// other REVs:
5799//   v0 = load v2i32
5800//   v1 = REV v2i32                  (implicit)
5801//   v2 = REV v2i32
5802//   v3 = BITCAST v2i32 v2 to v4i16
5803//   v4 = REV v4i16
5804//   v5 = REV v4i16 v4               (implicit)
5805//        store v4i16 v5
5806//
5807// This means an extra two instructions, but actually in most cases the two REV
5808// instructions can be combined into one. For example:
5809//   (REV64_2s (REV64_4h X)) === (REV32_4h X)
5810//
5811// There is also no 128-bit REV instruction. This must be synthesized with an
5812// EXT instruction.
5813//
5814// Most bitconverts require some sort of conversion. The only exceptions are:
5815//   a) Identity conversions -  vNfX <-> vNiX
5816//   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
5817//
5818
5819// Natural vector casts (64 bit)
5820def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
5821def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
5822def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
5823def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
5824def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
5825def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
5826
5827def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
5828def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
5829def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
5830def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
5831def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
5832
5833def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
5834def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
5835def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
5836def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
5837def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
5838def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
5839
5840def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
5841def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
5842def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
5843def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
5844def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
5845def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
5846def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
5847
5848def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
5849def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
5850def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
5851def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
5852def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
5853
5854// Natural vector casts (128 bit)
5855def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
5856def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
5857def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
5858def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
5859def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
5860def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
5861def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
5862
5863def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
5864def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
5865def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
5866def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
5867def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
5868def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
5869def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
5870
5871def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
5872def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
5873def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
5874def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
5875def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
5876def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
5877def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
5878
5879def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
5880def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
5881def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
5882def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
5883def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
5884def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
5885def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
5886
5887def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
5888def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
5889def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
5890def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
5891def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
5892def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
5893def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
5894
5895def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
5896def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
5897def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
5898def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
5899def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
5900def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
5901def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
5902
5903let Predicates = [IsLE] in {
5904def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5905def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5906def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5907def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5908def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5909
5910def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
5911          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5912def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
5913          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5914def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
5915          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5916def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
5917          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5918def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
5919          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5920def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
5921          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5922}
5923let Predicates = [IsBE] in {
5924def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
5925                 (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5926def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
5927                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5928def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
5929                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5930def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
5931                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5932def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
5933                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5934
5935def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
5936          (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5937def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
5938          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5939def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
5940          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5941def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
5942          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5943def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
5944          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5945}
5946def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5947def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5948def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
5949          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5950def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
5951          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5952def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
5953          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5954def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
5955
5956def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
5957          (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
5958def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
5959          (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
5960def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
5961          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5962def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
5963          (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
5964def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
5965          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5966
5967let Predicates = [IsLE] in {
5968def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
5969def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
5970def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
5971def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
5972def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
5973}
5974let Predicates = [IsBE] in {
5975def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
5976                             (v1i64 (REV64v2i32 FPR64:$src))>;
5977def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
5978                             (v1i64 (REV64v4i16 FPR64:$src))>;
5979def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
5980                             (v1i64 (REV64v8i8 FPR64:$src))>;
5981def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
5982                             (v1i64 (REV64v4i16 FPR64:$src))>;
5983def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
5984                             (v1i64 (REV64v2i32 FPR64:$src))>;
5985}
5986def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
5987def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;
5988
5989let Predicates = [IsLE] in {
5990def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
5991def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
5992def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
5993def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
5994def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
5995def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
5996}
5997let Predicates = [IsBE] in {
5998def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
5999                             (v2i32 (REV64v2i32 FPR64:$src))>;
6000def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
6001                             (v2i32 (REV32v4i16 FPR64:$src))>;
6002def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
6003                             (v2i32 (REV32v8i8 FPR64:$src))>;
6004def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
6005                             (v2i32 (REV64v2i32 FPR64:$src))>;
6006def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
6007                             (v2i32 (REV64v2i32 FPR64:$src))>;
6008def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
6009                             (v2i32 (REV32v4i16 FPR64:$src))>;
6010}
6011def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
6012
6013let Predicates = [IsLE] in {
6014def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
6015def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
6016def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
6017def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
6018def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
6019def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
6020}
6021let Predicates = [IsBE] in {
6022def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
6023                             (v4i16 (REV64v4i16 FPR64:$src))>;
6024def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
6025                             (v4i16 (REV32v4i16 FPR64:$src))>;
6026def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
6027                             (v4i16 (REV16v8i8 FPR64:$src))>;
6028def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
6029                             (v4i16 (REV64v4i16 FPR64:$src))>;
6030def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
6031                             (v4i16 (REV32v4i16 FPR64:$src))>;
6032def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
6033                             (v4i16 (REV64v4i16 FPR64:$src))>;
6034}
6035def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
6036
6037let Predicates = [IsLE] in {
6038def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
6039def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
6040def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
6041def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
6042def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
6043def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
6044}
6045let Predicates = [IsBE] in {
6046def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
6047                             (v4f16 (REV64v4i16 FPR64:$src))>;
6048def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
6049                             (v4f16 (REV32v4i16 FPR64:$src))>;
6050def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
6051                             (v4f16 (REV16v8i8 FPR64:$src))>;
6052def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
6053                             (v4f16 (REV64v4i16 FPR64:$src))>;
6054def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
6055                             (v4f16 (REV32v4i16 FPR64:$src))>;
6056def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
6057                             (v4f16 (REV64v4i16 FPR64:$src))>;
6058}
6059def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
6060
6061let Predicates = [IsLE] in {
6062def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
6063def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
6064def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
6065def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
6066def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
6067def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
6068def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
6069}
6070let Predicates = [IsBE] in {
6071def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
6072                             (v8i8 (REV64v8i8 FPR64:$src))>;
6073def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
6074                             (v8i8 (REV32v8i8 FPR64:$src))>;
6075def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
6076                             (v8i8 (REV16v8i8 FPR64:$src))>;
6077def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
6078                             (v8i8 (REV64v8i8 FPR64:$src))>;
6079def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
6080                             (v8i8 (REV32v8i8 FPR64:$src))>;
6081def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
6082                             (v8i8 (REV64v8i8 FPR64:$src))>;
6083def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
6084                             (v8i8 (REV16v8i8 FPR64:$src))>;
6085}
6086
6087let Predicates = [IsLE] in {
6088def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
6089def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
6090def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
6091def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
6092def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
6093}
6094let Predicates = [IsBE] in {
6095def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
6096                             (f64 (REV64v2i32 FPR64:$src))>;
6097def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
6098                             (f64 (REV64v4i16 FPR64:$src))>;
6099def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
6100                             (f64 (REV64v2i32 FPR64:$src))>;
6101def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
6102                             (f64 (REV64v8i8 FPR64:$src))>;
6103def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
6104                             (f64 (REV64v4i16 FPR64:$src))>;
6105}
6106def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
6107def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;
6108
6109let Predicates = [IsLE] in {
6110def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
6111def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
6112def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
6113def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
6114def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
6115}
6116let Predicates = [IsBE] in {
6117def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
6118                             (v1f64 (REV64v2i32 FPR64:$src))>;
6119def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
6120                             (v1f64 (REV64v4i16 FPR64:$src))>;
6121def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
6122                             (v1f64 (REV64v8i8 FPR64:$src))>;
6123def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
6124                             (v1f64 (REV64v2i32 FPR64:$src))>;
6125def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
6126                             (v1f64 (REV64v4i16 FPR64:$src))>;
6127}
6128def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
6129def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;
6130
6131let Predicates = [IsLE] in {
6132def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
6133def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
6134def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
6135def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
6136def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
6137def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
6138}
6139let Predicates = [IsBE] in {
6140def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
6141                             (v2f32 (REV64v2i32 FPR64:$src))>;
6142def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
6143                             (v2f32 (REV32v4i16 FPR64:$src))>;
6144def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
6145                             (v2f32 (REV32v8i8 FPR64:$src))>;
6146def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
6147                             (v2f32 (REV64v2i32 FPR64:$src))>;
6148def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
6149                             (v2f32 (REV64v2i32 FPR64:$src))>;
6150def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
6151                             (v2f32 (REV32v4i16 FPR64:$src))>;
6152}
6153def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
6154
6155let Predicates = [IsLE] in {
6156def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
6157def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
6158def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
6159def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
6160def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
6161def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
6162def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
6163}
6164let Predicates = [IsBE] in {
6165def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
6166                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
6167def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
6168                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
6169                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
6170def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
6171                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
6172                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
6173def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
6174                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
6175                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
6176def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
6177                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
6178def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
6179                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
6180                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
6181def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
6182                            (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
6183                                            (REV64v16i8 FPR128:$src), (i32 8)))>;
6184}
6185
6186let Predicates = [IsLE] in {
6187def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
6188def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
6189def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
6190def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
6191def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
6192def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
6193}
6194let Predicates = [IsBE] in {
6195def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
6196                             (v2f64 (EXTv16i8 FPR128:$src,
6197                                              FPR128:$src, (i32 8)))>;
6198def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
6199                             (v2f64 (REV64v4i32 FPR128:$src))>;
6200def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
6201                             (v2f64 (REV64v8i16 FPR128:$src))>;
6202def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
6203                             (v2f64 (REV64v8i16 FPR128:$src))>;
6204def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
6205                             (v2f64 (REV64v16i8 FPR128:$src))>;
6206def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
6207                             (v2f64 (REV64v4i32 FPR128:$src))>;
6208}
6209def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
6210
6211let Predicates = [IsLE] in {
6212def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
6213def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
6214def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
6215def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
6216def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
6217def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
6218}
6219let Predicates = [IsBE] in {
6220def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
6221                             (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
6222                                    (REV64v4i32 FPR128:$src), (i32 8)))>;
6223def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
6224                             (v4f32 (REV32v8i16 FPR128:$src))>;
6225def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
6226                             (v4f32 (REV32v8i16 FPR128:$src))>;
6227def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
6228                             (v4f32 (REV32v16i8 FPR128:$src))>;
6229def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
6230                             (v4f32 (REV64v4i32 FPR128:$src))>;
6231def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
6232                             (v4f32 (REV64v4i32 FPR128:$src))>;
6233}
6234def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
6235
6236let Predicates = [IsLE] in {
6237def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
6238def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
6239def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
6240def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
6241def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
6242def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
6243}
6244let Predicates = [IsBE] in {
6245def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
6246                             (v2i64 (EXTv16i8 FPR128:$src,
6247                                              FPR128:$src, (i32 8)))>;
6248def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
6249                             (v2i64 (REV64v4i32 FPR128:$src))>;
6250def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
6251                             (v2i64 (REV64v8i16 FPR128:$src))>;
6252def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
6253                             (v2i64 (REV64v16i8 FPR128:$src))>;
6254def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
6255                             (v2i64 (REV64v4i32 FPR128:$src))>;
6256def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
6257                             (v2i64 (REV64v8i16 FPR128:$src))>;
6258}
6259def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
6260
6261let Predicates = [IsLE] in {
6262def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
6263def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
6264def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
6265def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
6266def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
6267def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
6268}
6269let Predicates = [IsBE] in {
6270def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
6271                             (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
6272                                              (REV64v4i32 FPR128:$src),
6273                                              (i32 8)))>;
6274def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
6275                             (v4i32 (REV64v4i32 FPR128:$src))>;
6276def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
6277                             (v4i32 (REV32v8i16 FPR128:$src))>;
6278def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
6279                             (v4i32 (REV32v16i8 FPR128:$src))>;
6280def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
6281                             (v4i32 (REV64v4i32 FPR128:$src))>;
6282def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
6283                             (v4i32 (REV32v8i16 FPR128:$src))>;
6284}
6285def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
6286
6287let Predicates = [IsLE] in {
6288def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
6289def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
6290def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
6291def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
6292def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
6293def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
6294}
6295let Predicates = [IsBE] in {
6296def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
6297                             (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
6298                                              (REV64v8i16 FPR128:$src),
6299                                              (i32 8)))>;
6300def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
6301                             (v8i16 (REV64v8i16 FPR128:$src))>;
6302def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
6303                             (v8i16 (REV32v8i16 FPR128:$src))>;
6304def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
6305                             (v8i16 (REV16v16i8 FPR128:$src))>;
6306def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
6307                             (v8i16 (REV64v8i16 FPR128:$src))>;
6308def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
6309                             (v8i16 (REV32v8i16 FPR128:$src))>;
6310}
6311def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
6312
6313let Predicates = [IsLE] in {
6314def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
6315def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
6316def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
6317def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
6318def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
6319def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
6320}
6321let Predicates = [IsBE] in {
6322def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
6323                             (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
6324                                              (REV64v8i16 FPR128:$src),
6325                                              (i32 8)))>;
6326def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
6327                             (v8f16 (REV64v8i16 FPR128:$src))>;
6328def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
6329                             (v8f16 (REV32v8i16 FPR128:$src))>;
6330def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
6331                             (v8f16 (REV16v16i8 FPR128:$src))>;
6332def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
6333                             (v8f16 (REV64v8i16 FPR128:$src))>;
6334def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
6335                             (v8f16 (REV32v8i16 FPR128:$src))>;
6336}
6337def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
6338
6339let Predicates = [IsLE] in {
6340def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
6341def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
6342def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
6343def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
6344def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
6345def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
6346def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
6347}
6348let Predicates = [IsBE] in {
6349def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
6350                             (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
6351                                              (REV64v16i8 FPR128:$src),
6352                                              (i32 8)))>;
6353def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
6354                             (v16i8 (REV64v16i8 FPR128:$src))>;
6355def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
6356                             (v16i8 (REV32v16i8 FPR128:$src))>;
6357def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
6358                             (v16i8 (REV16v16i8 FPR128:$src))>;
6359def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
6360                             (v16i8 (REV64v16i8 FPR128:$src))>;
6361def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
6362                             (v16i8 (REV32v16i8 FPR128:$src))>;
6363def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
6364                             (v16i8 (REV16v16i8 FPR128:$src))>;
6365}
6366
6367def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
6368           (EXTRACT_SUBREG V128:$Rn, dsub)>;
6369def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
6370           (EXTRACT_SUBREG V128:$Rn, dsub)>;
6371def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
6372           (EXTRACT_SUBREG V128:$Rn, dsub)>;
6373def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
6374           (EXTRACT_SUBREG V128:$Rn, dsub)>;
6375def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
6376           (EXTRACT_SUBREG V128:$Rn, dsub)>;
6377def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
6378           (EXTRACT_SUBREG V128:$Rn, dsub)>;
6379def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
6380           (EXTRACT_SUBREG V128:$Rn, dsub)>;
6381
6382def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
6383          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6384def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
6385          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6386def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
6387          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6388def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
6389          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6390
6391// A 64-bit subvector insert to the first 128-bit vector position
6392// is a subregister copy that needs no instruction.
6393multiclass InsertSubvectorUndef<ValueType Ty> {
6394  def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
6395            (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6396  def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
6397            (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6398  def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
6399            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6400  def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
6401            (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6402  def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
6403            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6404  def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
6405            (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6406  def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
6407            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6408}
6409
6410defm : InsertSubvectorUndef<i32>;
6411defm : InsertSubvectorUndef<i64>;
6412
6413// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
6414// or v2f32.
6415def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
6416                    (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
6417           (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
6418def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
6419                     (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
6420           (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
6421    // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
6422    // so we match on v4f32 here, not v2f32. This will also catch adding
6423    // the low two lanes of a true v4f32 vector.
6424def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
6425                (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
6426          (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
6427
6428// Scalar 64-bit shifts in FPR64 registers.
6429def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6430          (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6431def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6432          (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6433def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6434          (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6435def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6436          (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6437
6438// Patterns for nontemporal/no-allocate stores.
6439// We have to resort to tricks to turn a single-input store into a store pair,
6440// because there is no single-input nontemporal store, only STNP.
6441let Predicates = [IsLE] in {
6442let AddedComplexity = 15 in {
6443class NTStore128Pat<ValueType VT> :
6444  Pat<(nontemporalstore (VT FPR128:$Rt),
6445        (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
6446      (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
6447              (CPYi64 FPR128:$Rt, (i64 1)),
6448              GPR64sp:$Rn, simm7s8:$offset)>;
6449
6450def : NTStore128Pat<v2i64>;
6451def : NTStore128Pat<v4i32>;
6452def : NTStore128Pat<v8i16>;
6453def : NTStore128Pat<v16i8>;
6454
6455class NTStore64Pat<ValueType VT> :
6456  Pat<(nontemporalstore (VT FPR64:$Rt),
6457        (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
6458      (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
6459              (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
6460              GPR64sp:$Rn, simm7s4:$offset)>;
6461
6462// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
6463def : NTStore64Pat<v1f64>;
6464def : NTStore64Pat<v1i64>;
6465def : NTStore64Pat<v2i32>;
6466def : NTStore64Pat<v4i16>;
6467def : NTStore64Pat<v8i8>;
6468
6469def : Pat<(nontemporalstore GPR64:$Rt,
6470            (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
6471          (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
6472                  (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
6473                  GPR64sp:$Rn, simm7s4:$offset)>;
6474} // AddedComplexity=10
6475} // Predicates = [IsLE]
6476
6477// Tail call return handling. These are all compiler pseudo-instructions,
6478// so no encoding information or anything like that.
6479let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
6480  def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
6481                   Sched<[WriteBrReg]>;
6482  def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
6483                   Sched<[WriteBrReg]>;
6484}
6485
6486def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
6487          (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>;
6488def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
6489          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
6490def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
6491          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
6492
6493include "AArch64InstrAtomics.td"
6494include "AArch64SVEInstrInfo.td"
6495