1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
3 *
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "qemu/module.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_arm.h"
31 #include "gicv3_internal.h"
32 #include "vgic_common.h"
33 #include "migration/blocker.h"
34 #include "qom/object.h"
35
36 #ifdef DEBUG_GICV3_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
45 typedef struct KVMARMGICv3Class KVMARMGICv3Class;
46 /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
47 DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class,
48 KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3)
49
50 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
51 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56
57 #define ICC_PMR_EL1 \
58 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59 #define ICC_BPR0_EL1 \
60 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61 #define ICC_AP0R_EL1(n) \
62 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63 #define ICC_AP1R_EL1(n) \
64 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65 #define ICC_BPR1_EL1 \
66 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67 #define ICC_CTLR_EL1 \
68 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69 #define ICC_SRE_EL1 \
70 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71 #define ICC_IGRPEN0_EL1 \
72 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73 #define ICC_IGRPEN1_EL1 \
74 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75
76 struct KVMARMGICv3Class {
77 ARMGICv3CommonClass parent_class;
78 DeviceRealize parent_realize;
79 void (*parent_reset)(DeviceState *dev);
80 };
81
kvm_arm_gicv3_set_irq(void * opaque,int irq,int level)82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 {
84 GICv3State *s = (GICv3State *)opaque;
85
86 kvm_arm_gic_set_irq(s->num_irq, irq, level);
87 }
88
89 #define KVM_VGIC_ATTR(reg, typer) \
90 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91
kvm_gicd_access(GICv3State * s,int offset,uint32_t * val,bool write)92 static inline void kvm_gicd_access(GICv3State *s, int offset,
93 uint32_t *val, bool write)
94 {
95 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96 KVM_VGIC_ATTR(offset, 0),
97 val, write, &error_abort);
98 }
99
kvm_gicr_access(GICv3State * s,int offset,int cpu,uint32_t * val,bool write)100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101 uint32_t *val, bool write)
102 {
103 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
105 val, write, &error_abort);
106 }
107
kvm_gicc_access(GICv3State * s,uint64_t reg,int cpu,uint64_t * val,bool write)108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109 uint64_t *val, bool write)
110 {
111 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
113 val, write, &error_abort);
114 }
115
kvm_gic_line_level_access(GICv3State * s,int irq,int cpu,uint32_t * val,bool write)116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117 uint32_t *val, bool write)
118 {
119 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121 (VGIC_LEVEL_INFO_LINE_LEVEL <<
122 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
123 val, write, &error_abort);
124 }
125
126 /* Loop through each distributor IRQ related register; since bits
127 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128 * is enabled, we skip those.
129 */
130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
131 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132
kvm_dist_get_priority(GICv3State * s,uint32_t offset,uint8_t * bmp)133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 {
135 uint32_t reg, *field;
136 int irq;
137
138 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
139 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
140 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
141 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
142 * offset.
143 */
144 field = (uint32_t *)(bmp + GIC_INTERNAL);
145 offset += (GIC_INTERNAL * 8) / 8;
146 for_each_dist_irq_reg(irq, s->num_irq, 8) {
147 kvm_gicd_access(s, offset, ®, false);
148 *field = reg;
149 offset += 4;
150 field++;
151 }
152 }
153
kvm_dist_put_priority(GICv3State * s,uint32_t offset,uint8_t * bmp)154 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
155 {
156 uint32_t reg, *field;
157 int irq;
158
159 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
160 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
161 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
162 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
163 * offset.
164 */
165 field = (uint32_t *)(bmp + GIC_INTERNAL);
166 offset += (GIC_INTERNAL * 8) / 8;
167 for_each_dist_irq_reg(irq, s->num_irq, 8) {
168 reg = *field;
169 kvm_gicd_access(s, offset, ®, true);
170 offset += 4;
171 field++;
172 }
173 }
174
kvm_dist_get_edge_trigger(GICv3State * s,uint32_t offset,uint32_t * bmp)175 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
176 uint32_t *bmp)
177 {
178 uint32_t reg;
179 int irq;
180
181 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
182 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
183 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
184 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
185 * This matches the for_each_dist_irq_reg() macro which also skips the
186 * first GIC_INTERNAL irqs.
187 */
188 offset += (GIC_INTERNAL * 2) / 8;
189 for_each_dist_irq_reg(irq, s->num_irq, 2) {
190 kvm_gicd_access(s, offset, ®, false);
191 reg = half_unshuffle32(reg >> 1);
192 if (irq % 32 != 0) {
193 reg = (reg << 16);
194 }
195 *gic_bmp_ptr32(bmp, irq) |= reg;
196 offset += 4;
197 }
198 }
199
kvm_dist_put_edge_trigger(GICv3State * s,uint32_t offset,uint32_t * bmp)200 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
201 uint32_t *bmp)
202 {
203 uint32_t reg;
204 int irq;
205
206 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
207 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
208 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
209 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
210 * This matches the for_each_dist_irq_reg() macro which also skips the
211 * first GIC_INTERNAL irqs.
212 */
213 offset += (GIC_INTERNAL * 2) / 8;
214 for_each_dist_irq_reg(irq, s->num_irq, 2) {
215 reg = *gic_bmp_ptr32(bmp, irq);
216 if (irq % 32 != 0) {
217 reg = (reg & 0xffff0000) >> 16;
218 } else {
219 reg = reg & 0xffff;
220 }
221 reg = half_shuffle32(reg) << 1;
222 kvm_gicd_access(s, offset, ®, true);
223 offset += 4;
224 }
225 }
226
kvm_gic_get_line_level_bmp(GICv3State * s,uint32_t * bmp)227 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
228 {
229 uint32_t reg;
230 int irq;
231
232 for_each_dist_irq_reg(irq, s->num_irq, 1) {
233 kvm_gic_line_level_access(s, irq, 0, ®, false);
234 *gic_bmp_ptr32(bmp, irq) = reg;
235 }
236 }
237
kvm_gic_put_line_level_bmp(GICv3State * s,uint32_t * bmp)238 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
239 {
240 uint32_t reg;
241 int irq;
242
243 for_each_dist_irq_reg(irq, s->num_irq, 1) {
244 reg = *gic_bmp_ptr32(bmp, irq);
245 kvm_gic_line_level_access(s, irq, 0, ®, true);
246 }
247 }
248
249 /* Read a bitmap register group from the kernel VGIC. */
kvm_dist_getbmp(GICv3State * s,uint32_t offset,uint32_t * bmp)250 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
251 {
252 uint32_t reg;
253 int irq;
254
255 /* For the KVM GICv3, affinity routing is always enabled, and the
256 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
257 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
258 * functionality is replaced by the GICR registers. It doesn't need to sync
259 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
260 * This matches the for_each_dist_irq_reg() macro which also skips the
261 * first GIC_INTERNAL irqs.
262 */
263 offset += (GIC_INTERNAL * 1) / 8;
264 for_each_dist_irq_reg(irq, s->num_irq, 1) {
265 kvm_gicd_access(s, offset, ®, false);
266 *gic_bmp_ptr32(bmp, irq) = reg;
267 offset += 4;
268 }
269 }
270
kvm_dist_putbmp(GICv3State * s,uint32_t offset,uint32_t clroffset,uint32_t * bmp)271 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
272 uint32_t clroffset, uint32_t *bmp)
273 {
274 uint32_t reg;
275 int irq;
276
277 /* For the KVM GICv3, affinity routing is always enabled, and the
278 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
279 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
280 * functionality is replaced by the GICR registers. It doesn't need to sync
281 * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
282 * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
283 * first GIC_INTERNAL irqs.
284 */
285 offset += (GIC_INTERNAL * 1) / 8;
286 if (clroffset != 0) {
287 clroffset += (GIC_INTERNAL * 1) / 8;
288 }
289
290 for_each_dist_irq_reg(irq, s->num_irq, 1) {
291 /* If this bitmap is a set/clear register pair, first write to the
292 * clear-reg to clear all bits before using the set-reg to write
293 * the 1 bits.
294 */
295 if (clroffset != 0) {
296 reg = 0;
297 kvm_gicd_access(s, clroffset, ®, true);
298 clroffset += 4;
299 }
300 reg = *gic_bmp_ptr32(bmp, irq);
301 kvm_gicd_access(s, offset, ®, true);
302 offset += 4;
303 }
304 }
305
kvm_arm_gicv3_check(GICv3State * s)306 static void kvm_arm_gicv3_check(GICv3State *s)
307 {
308 uint32_t reg;
309 uint32_t num_irq;
310
311 /* Sanity checking s->num_irq */
312 kvm_gicd_access(s, GICD_TYPER, ®, false);
313 num_irq = ((reg & 0x1f) + 1) * 32;
314
315 if (num_irq < s->num_irq) {
316 error_report("Model requests %u IRQs, but kernel supports max %u",
317 s->num_irq, num_irq);
318 abort();
319 }
320 }
321
kvm_arm_gicv3_put(GICv3State * s)322 static void kvm_arm_gicv3_put(GICv3State *s)
323 {
324 uint32_t regl, regh, reg;
325 uint64_t reg64, redist_typer;
326 int ncpu, i;
327
328 kvm_arm_gicv3_check(s);
329
330 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false);
331 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false);
332 redist_typer = ((uint64_t)regh << 32) | regl;
333
334 reg = s->gicd_ctlr;
335 kvm_gicd_access(s, GICD_CTLR, ®, true);
336
337 if (redist_typer & GICR_TYPER_PLPIS) {
338 /*
339 * Restore base addresses before LPIs are potentially enabled by
340 * GICR_CTLR write
341 */
342 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
343 GICv3CPUState *c = &s->cpu[ncpu];
344
345 reg64 = c->gicr_propbaser;
346 regl = (uint32_t)reg64;
347 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, true);
348 regh = (uint32_t)(reg64 >> 32);
349 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, true);
350
351 reg64 = c->gicr_pendbaser;
352 regl = (uint32_t)reg64;
353 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, true);
354 regh = (uint32_t)(reg64 >> 32);
355 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, true);
356 }
357 }
358
359 /* Redistributor state (one per CPU) */
360
361 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
362 GICv3CPUState *c = &s->cpu[ncpu];
363
364 reg = c->gicr_ctlr;
365 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, true);
366
367 reg = c->gicr_statusr[GICV3_NS];
368 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, true);
369
370 reg = c->gicr_waker;
371 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, true);
372
373 reg = c->gicr_igroupr0;
374 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, true);
375
376 reg = ~0;
377 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, ®, true);
378 reg = c->gicr_ienabler0;
379 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, true);
380
381 /* Restore config before pending so we treat level/edge correctly */
382 reg = half_shuffle32(c->edge_trigger >> 16) << 1;
383 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, true);
384
385 reg = c->level;
386 kvm_gic_line_level_access(s, 0, ncpu, ®, true);
387
388 reg = ~0;
389 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, ®, true);
390 reg = c->gicr_ipendr0;
391 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, true);
392
393 reg = ~0;
394 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, ®, true);
395 reg = c->gicr_iactiver0;
396 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, true);
397
398 for (i = 0; i < GIC_INTERNAL; i += 4) {
399 reg = c->gicr_ipriorityr[i] |
400 (c->gicr_ipriorityr[i + 1] << 8) |
401 (c->gicr_ipriorityr[i + 2] << 16) |
402 (c->gicr_ipriorityr[i + 3] << 24);
403 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, true);
404 }
405 }
406
407 /* Distributor state (shared between all CPUs */
408 reg = s->gicd_statusr[GICV3_NS];
409 kvm_gicd_access(s, GICD_STATUSR, ®, true);
410
411 /* s->enable bitmap -> GICD_ISENABLERn */
412 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
413
414 /* s->group bitmap -> GICD_IGROUPRn */
415 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
416
417 /* Restore targets before pending to ensure the pending state is set on
418 * the appropriate CPU interfaces in the kernel
419 */
420
421 /* s->gicd_irouter[irq] -> GICD_IROUTERn
422 * We can't use kvm_dist_put() here because the registers are 64-bit
423 */
424 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
425 uint32_t offset;
426
427 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
428 reg = (uint32_t)s->gicd_irouter[i];
429 kvm_gicd_access(s, offset, ®, true);
430
431 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
432 reg = (uint32_t)(s->gicd_irouter[i] >> 32);
433 kvm_gicd_access(s, offset, ®, true);
434 }
435
436 /* s->trigger bitmap -> GICD_ICFGRn
437 * (restore configuration registers before pending IRQs so we treat
438 * level/edge correctly)
439 */
440 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
441
442 /* s->level bitmap -> line_level */
443 kvm_gic_put_line_level_bmp(s, s->level);
444
445 /* s->pending bitmap -> GICD_ISPENDRn */
446 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
447
448 /* s->active bitmap -> GICD_ISACTIVERn */
449 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
450
451 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
452 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
453
454 /* CPU Interface state (one per CPU) */
455
456 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
457 GICv3CPUState *c = &s->cpu[ncpu];
458 int num_pri_bits;
459
460 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
461 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
462 &c->icc_ctlr_el1[GICV3_NS], true);
463 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
464 &c->icc_igrpen[GICV3_G0], true);
465 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
466 &c->icc_igrpen[GICV3_G1NS], true);
467 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
468 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
469 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
470
471 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
472 ICC_CTLR_EL1_PRIBITS_MASK) >>
473 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
474
475 switch (num_pri_bits) {
476 case 7:
477 reg64 = c->icc_apr[GICV3_G0][3];
478 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, true);
479 reg64 = c->icc_apr[GICV3_G0][2];
480 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, true);
481 case 6:
482 reg64 = c->icc_apr[GICV3_G0][1];
483 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, true);
484 default:
485 reg64 = c->icc_apr[GICV3_G0][0];
486 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, true);
487 }
488
489 switch (num_pri_bits) {
490 case 7:
491 reg64 = c->icc_apr[GICV3_G1NS][3];
492 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, true);
493 reg64 = c->icc_apr[GICV3_G1NS][2];
494 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, true);
495 case 6:
496 reg64 = c->icc_apr[GICV3_G1NS][1];
497 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, true);
498 default:
499 reg64 = c->icc_apr[GICV3_G1NS][0];
500 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, true);
501 }
502 }
503 }
504
kvm_arm_gicv3_get(GICv3State * s)505 static void kvm_arm_gicv3_get(GICv3State *s)
506 {
507 uint32_t regl, regh, reg;
508 uint64_t reg64, redist_typer;
509 int ncpu, i;
510
511 kvm_arm_gicv3_check(s);
512
513 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false);
514 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false);
515 redist_typer = ((uint64_t)regh << 32) | regl;
516
517 kvm_gicd_access(s, GICD_CTLR, ®, false);
518 s->gicd_ctlr = reg;
519
520 /* Redistributor state (one per CPU) */
521
522 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
523 GICv3CPUState *c = &s->cpu[ncpu];
524
525 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, false);
526 c->gicr_ctlr = reg;
527
528 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, false);
529 c->gicr_statusr[GICV3_NS] = reg;
530
531 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, false);
532 c->gicr_waker = reg;
533
534 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, false);
535 c->gicr_igroupr0 = reg;
536 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, false);
537 c->gicr_ienabler0 = reg;
538 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, false);
539 c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
540 kvm_gic_line_level_access(s, 0, ncpu, ®, false);
541 c->level = reg;
542 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, false);
543 c->gicr_ipendr0 = reg;
544 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, false);
545 c->gicr_iactiver0 = reg;
546
547 for (i = 0; i < GIC_INTERNAL; i += 4) {
548 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, false);
549 c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
550 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
551 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
552 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
553 }
554 }
555
556 if (redist_typer & GICR_TYPER_PLPIS) {
557 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
558 GICv3CPUState *c = &s->cpu[ncpu];
559
560 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, false);
561 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, false);
562 c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
563
564 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, false);
565 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, false);
566 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
567 }
568 }
569
570 /* Distributor state (shared between all CPUs */
571
572 kvm_gicd_access(s, GICD_STATUSR, ®, false);
573 s->gicd_statusr[GICV3_NS] = reg;
574
575 /* GICD_IGROUPRn -> s->group bitmap */
576 kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
577
578 /* GICD_ISENABLERn -> s->enabled bitmap */
579 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
580
581 /* Line level of irq */
582 kvm_gic_get_line_level_bmp(s, s->level);
583 /* GICD_ISPENDRn -> s->pending bitmap */
584 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
585
586 /* GICD_ISACTIVERn -> s->active bitmap */
587 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
588
589 /* GICD_ICFGRn -> s->trigger bitmap */
590 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
591
592 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
593 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
594
595 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
596 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
597 uint32_t offset;
598
599 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
600 kvm_gicd_access(s, offset, ®l, false);
601 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
602 kvm_gicd_access(s, offset, ®h, false);
603 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
604 }
605
606 /*****************************************************************
607 * CPU Interface(s) State
608 */
609
610 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
611 GICv3CPUState *c = &s->cpu[ncpu];
612 int num_pri_bits;
613
614 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
615 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
616 &c->icc_ctlr_el1[GICV3_NS], false);
617 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
618 &c->icc_igrpen[GICV3_G0], false);
619 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
620 &c->icc_igrpen[GICV3_G1NS], false);
621 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
622 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
623 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
624 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
625 ICC_CTLR_EL1_PRIBITS_MASK) >>
626 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
627
628 switch (num_pri_bits) {
629 case 7:
630 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, false);
631 c->icc_apr[GICV3_G0][3] = reg64;
632 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, false);
633 c->icc_apr[GICV3_G0][2] = reg64;
634 case 6:
635 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, false);
636 c->icc_apr[GICV3_G0][1] = reg64;
637 default:
638 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, false);
639 c->icc_apr[GICV3_G0][0] = reg64;
640 }
641
642 switch (num_pri_bits) {
643 case 7:
644 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, false);
645 c->icc_apr[GICV3_G1NS][3] = reg64;
646 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, false);
647 c->icc_apr[GICV3_G1NS][2] = reg64;
648 case 6:
649 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, false);
650 c->icc_apr[GICV3_G1NS][1] = reg64;
651 default:
652 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, false);
653 c->icc_apr[GICV3_G1NS][0] = reg64;
654 }
655 }
656 }
657
arm_gicv3_icc_reset(CPUARMState * env,const ARMCPRegInfo * ri)658 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
659 {
660 GICv3State *s;
661 GICv3CPUState *c;
662
663 c = (GICv3CPUState *)env->gicv3state;
664 s = c->gic;
665
666 c->icc_pmr_el1 = 0;
667 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
668 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
669 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
670
671 c->icc_sre_el1 = 0x7;
672 memset(c->icc_apr, 0, sizeof(c->icc_apr));
673 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
674
675 if (s->migration_blocker) {
676 return;
677 }
678
679 /* Initialize to actual HW supported configuration */
680 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
681 KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
682 &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
683
684 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
685 }
686
kvm_arm_gicv3_reset(DeviceState * dev)687 static void kvm_arm_gicv3_reset(DeviceState *dev)
688 {
689 GICv3State *s = ARM_GICV3_COMMON(dev);
690 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
691
692 DPRINTF("Reset\n");
693
694 kgc->parent_reset(dev);
695
696 if (s->migration_blocker) {
697 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
698 return;
699 }
700
701 kvm_arm_gicv3_put(s);
702 }
703
704 /*
705 * CPU interface registers of GIC needs to be reset on CPU reset.
706 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
707 * below ARMCPRegInfo. As we reset the whole cpu interface under single
708 * register reset, we define only one register of CPU interface instead
709 * of defining all the registers.
710 */
711 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
712 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
713 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
714 /*
715 * If ARM_CP_NOP is used, resetfn is not called,
716 * So ARM_CP_NO_RAW is appropriate type.
717 */
718 .type = ARM_CP_NO_RAW,
719 .access = PL1_RW,
720 .readfn = arm_cp_read_zero,
721 .writefn = arm_cp_write_ignore,
722 /*
723 * We hang the whole cpu interface reset routine off here
724 * rather than parcelling it out into one little function
725 * per register
726 */
727 .resetfn = arm_gicv3_icc_reset,
728 },
729 REGINFO_SENTINEL
730 };
731
732 /**
733 * vm_change_state_handler - VM change state callback aiming at flushing
734 * RDIST pending tables into guest RAM
735 *
736 * The tables get flushed to guest RAM whenever the VM gets stopped.
737 */
vm_change_state_handler(void * opaque,int running,RunState state)738 static void vm_change_state_handler(void *opaque, int running,
739 RunState state)
740 {
741 GICv3State *s = (GICv3State *)opaque;
742 Error *err = NULL;
743 int ret;
744
745 if (running) {
746 return;
747 }
748
749 ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
750 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
751 NULL, true, &err);
752 if (err) {
753 error_report_err(err);
754 }
755 if (ret < 0 && ret != -EFAULT) {
756 abort();
757 }
758 }
759
760
kvm_arm_gicv3_realize(DeviceState * dev,Error ** errp)761 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
762 {
763 GICv3State *s = KVM_ARM_GICV3(dev);
764 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
765 bool multiple_redist_region_allowed;
766 Error *local_err = NULL;
767 int i;
768
769 DPRINTF("kvm_arm_gicv3_realize\n");
770
771 kgc->parent_realize(dev, &local_err);
772 if (local_err) {
773 error_propagate(errp, local_err);
774 return;
775 }
776
777 if (s->security_extn) {
778 error_setg(errp, "the in-kernel VGICv3 does not implement the "
779 "security extensions");
780 return;
781 }
782
783 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
784 if (local_err) {
785 error_propagate(errp, local_err);
786 return;
787 }
788
789 for (i = 0; i < s->num_cpu; i++) {
790 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
791
792 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
793 }
794
795 /* Try to create the device via the device control API */
796 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
797 if (s->dev_fd < 0) {
798 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
799 return;
800 }
801
802 multiple_redist_region_allowed =
803 kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
804 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
805
806 if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
807 error_setg(errp, "Multiple VGICv3 redistributor regions are not "
808 "supported by this host kernel");
809 error_append_hint(errp, "A maximum of %d VCPUs can be used",
810 s->redist_region_count[0]);
811 return;
812 }
813
814 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
815 0, &s->num_irq, true, &error_abort);
816
817 /* Tell the kernel to complete VGIC initialization now */
818 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
819 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
820
821 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
822 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
823
824 if (!multiple_redist_region_allowed) {
825 kvm_arm_register_device(&s->iomem_redist[0], -1,
826 KVM_DEV_ARM_VGIC_GRP_ADDR,
827 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
828 } else {
829 /* we register regions in reverse order as "devices" are inserted at
830 * the head of a QSLIST and the list is then popped from the head
831 * onwards by kvm_arm_machine_init_done()
832 */
833 for (i = s->nb_redist_regions - 1; i >= 0; i--) {
834 /* Address mask made of the rdist region index and count */
835 uint64_t addr_ormask =
836 i | ((uint64_t)s->redist_region_count[i] << 52);
837
838 kvm_arm_register_device(&s->iomem_redist[i], -1,
839 KVM_DEV_ARM_VGIC_GRP_ADDR,
840 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
841 s->dev_fd, addr_ormask);
842 }
843 }
844
845 if (kvm_has_gsi_routing()) {
846 /* set up irq routing */
847 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
848 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
849 }
850
851 kvm_gsi_routing_allowed = true;
852
853 kvm_irqchip_commit_routes(kvm_state);
854 }
855
856 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
857 GICD_CTLR)) {
858 error_setg(&s->migration_blocker, "This operating system kernel does "
859 "not support vGICv3 migration");
860 if (migrate_add_blocker(s->migration_blocker, errp) < 0) {
861 error_free(s->migration_blocker);
862 return;
863 }
864 }
865 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
866 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
867 qemu_add_vm_change_state_handler(vm_change_state_handler, s);
868 }
869 }
870
kvm_arm_gicv3_class_init(ObjectClass * klass,void * data)871 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
872 {
873 DeviceClass *dc = DEVICE_CLASS(klass);
874 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
875 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
876
877 agcc->pre_save = kvm_arm_gicv3_get;
878 agcc->post_load = kvm_arm_gicv3_put;
879 device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
880 &kgc->parent_realize);
881 device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
882 }
883
884 static const TypeInfo kvm_arm_gicv3_info = {
885 .name = TYPE_KVM_ARM_GICV3,
886 .parent = TYPE_ARM_GICV3_COMMON,
887 .instance_size = sizeof(GICv3State),
888 .class_init = kvm_arm_gicv3_class_init,
889 .class_size = sizeof(KVMARMGICv3Class),
890 };
891
kvm_arm_gicv3_register_types(void)892 static void kvm_arm_gicv3_register_types(void)
893 {
894 type_register_static(&kvm_arm_gicv3_info);
895 }
896
897 type_init(kvm_arm_gicv3_register_types)
898