1 /* LzmaDec.c -- LZMA Decoder
2 2018-02-28 : Igor Pavlov : Public domain */
3 
4 #include "Precomp.h"
5 
6 /* #include "CpuArch.h" */
7 #include "LzmaDec.h"
8 
9 #ifndef EFIAPI
10 #include <string.h>
11 #endif
12 
13 #define kNumTopBits 24
14 #define kTopValue ((UInt32)1 << kNumTopBits)
15 
16 #define kNumBitModelTotalBits 11
17 #define kBitModelTotal (1 << kNumBitModelTotalBits)
18 #define kNumMoveBits 5
19 
20 #define RC_INIT_SIZE 5
21 
22 #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
23 
24 #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
25 #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
26 #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
27 #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
28   { UPDATE_0(p); i = (i + i); A0; } else \
29   { UPDATE_1(p); i = (i + i) + 1; A1; }
30 
31 #define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
32 
33 #define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
34   { UPDATE_0(p + i); A0; } else \
35   { UPDATE_1(p + i); A1; }
36 #define REV_BIT_VAR(  p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
37 #define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m;       , i += m * 2; )
38 #define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m        , ; )
39 
40 #define TREE_DECODE(probs, limit, i) \
41   { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
42 
43 /* #define _LZMA_SIZE_OPT */
44 
45 #ifdef _LZMA_SIZE_OPT
46 #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
47 #else
48 #define TREE_6_DECODE(probs, i) \
49   { i = 1; \
50   TREE_GET_BIT(probs, i); \
51   TREE_GET_BIT(probs, i); \
52   TREE_GET_BIT(probs, i); \
53   TREE_GET_BIT(probs, i); \
54   TREE_GET_BIT(probs, i); \
55   TREE_GET_BIT(probs, i); \
56   i -= 0x40; }
57 #endif
58 
59 #define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
60 #define MATCHED_LITER_DEC \
61   matchByte += matchByte; \
62   bit = offs; \
63   offs &= matchByte; \
64   probLit = prob + (offs + bit + symbol); \
65   GET_BIT2(probLit, symbol, offs ^= bit; , ;)
66 
67 
68 
69 #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
70 
71 #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
72 #define UPDATE_0_CHECK range = bound;
73 #define UPDATE_1_CHECK range -= bound; code -= bound;
74 #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
75   { UPDATE_0_CHECK; i = (i + i); A0; } else \
76   { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
77 #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
78 #define TREE_DECODE_CHECK(probs, limit, i) \
79   { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
80 
81 
82 #define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
83   { UPDATE_0_CHECK; i += m; m += m; } else \
84   { UPDATE_1_CHECK; m += m; i += m; }
85 
86 
87 #define kNumPosBitsMax 4
88 #define kNumPosStatesMax (1 << kNumPosBitsMax)
89 
90 #define kLenNumLowBits 3
91 #define kLenNumLowSymbols (1 << kLenNumLowBits)
92 #define kLenNumHighBits 8
93 #define kLenNumHighSymbols (1 << kLenNumHighBits)
94 
95 #define LenLow 0
96 #define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
97 #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
98 
99 #define LenChoice LenLow
100 #define LenChoice2 (LenLow + (1 << kLenNumLowBits))
101 
102 #define kNumStates 12
103 #define kNumStates2 16
104 #define kNumLitStates 7
105 
106 #define kStartPosModelIndex 4
107 #define kEndPosModelIndex 14
108 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
109 
110 #define kNumPosSlotBits 6
111 #define kNumLenToPosStates 4
112 
113 #define kNumAlignBits 4
114 #define kAlignTableSize (1 << kNumAlignBits)
115 
116 #define kMatchMinLen 2
117 #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
118 
119 /* External ASM code needs same CLzmaProb array layout. So don't change it. */
120 
121 /* (probs_1664) is faster and better for code size at some platforms */
122 /*
123 #ifdef MY_CPU_X86_OR_AMD64
124 */
125 #define kStartOffset 1664
126 #define GET_PROBS p->probs_1664
127 /*
128 #define GET_PROBS p->probs + kStartOffset
129 #else
130 #define kStartOffset 0
131 #define GET_PROBS p->probs
132 #endif
133 */
134 
135 #define SpecPos (-kStartOffset)
136 #define IsRep0Long (SpecPos + kNumFullDistances)
137 #define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
138 #define LenCoder (RepLenCoder + kNumLenProbs)
139 #define IsMatch (LenCoder + kNumLenProbs)
140 #define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
141 #define IsRep (Align + kAlignTableSize)
142 #define IsRepG0 (IsRep + kNumStates)
143 #define IsRepG1 (IsRepG0 + kNumStates)
144 #define IsRepG2 (IsRepG1 + kNumStates)
145 #define PosSlot (IsRepG2 + kNumStates)
146 #define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
147 #define NUM_BASE_PROBS (Literal + kStartOffset)
148 
149 #if Align != 0 && kStartOffset != 0
150   #error Stop_Compiling_Bad_LZMA_kAlign
151 #endif
152 
153 #if NUM_BASE_PROBS != 1984
154   #error Stop_Compiling_Bad_LZMA_PROBS
155 #endif
156 
157 
158 #define LZMA_LIT_SIZE 0x300
159 
160 #define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
161 
162 
163 #define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
164 #define COMBINED_PS_STATE (posState + state)
165 #define GET_LEN_STATE (posState)
166 
167 #define LZMA_DIC_MIN (1 << 12)
168 
169 /*
170 p->remainLen : shows status of LZMA decoder:
171     < kMatchSpecLenStart : normal remain
172     = kMatchSpecLenStart : finished
173     = kMatchSpecLenStart + 1 : need init range coder
174     = kMatchSpecLenStart + 2 : need init range coder and state
175 */
176 
177 /* ---------- LZMA_DECODE_REAL ---------- */
178 /*
179 LzmaDec_DecodeReal_3() can be implemented in external ASM file.
180 3 - is the code compatibility version of that function for check at link time.
181 */
182 
183 #define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
184 
185 /*
186 LZMA_DECODE_REAL()
187 In:
188   RangeCoder is normalized
189   if (p->dicPos == limit)
190   {
191     LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
192     So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
193     is not END_OF_PAYALOAD_MARKER, then function returns error code.
194   }
195 
196 Processing:
197   first LZMA symbol will be decoded in any case
198   All checks for limits are at the end of main loop,
199   It will decode new LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
200   RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
201 
202 Out:
203   RangeCoder is normalized
204   Result:
205     SZ_OK - OK
206     SZ_ERROR_DATA - Error
207   p->remainLen:
208     < kMatchSpecLenStart : normal remain
209     = kMatchSpecLenStart : finished
210 */
211 
212 
213 #ifdef _LZMA_DEC_OPT
214 
215 int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
216 
217 #else
218 
219 static
LZMA_DECODE_REAL(CLzmaDec * p,SizeT limit,const Byte * bufLimit)220 int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
221 {
222   CLzmaProb *probs = GET_PROBS;
223   unsigned state = (unsigned)p->state;
224   UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
225   unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
226   unsigned lc = p->prop.lc;
227   unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
228 
229   Byte *dic = p->dic;
230   SizeT dicBufSize = p->dicBufSize;
231   SizeT dicPos = p->dicPos;
232 
233   UInt32 processedPos = p->processedPos;
234   UInt32 checkDicSize = p->checkDicSize;
235   unsigned len = 0;
236 
237   const Byte *buf = p->buf;
238   UInt32 range = p->range;
239   UInt32 code = p->code;
240 
241   do
242   {
243     CLzmaProb *prob;
244     UInt32 bound;
245     unsigned ttt;
246     unsigned posState = CALC_POS_STATE(processedPos, pbMask);
247 
248     prob = probs + IsMatch + COMBINED_PS_STATE;
249     IF_BIT_0(prob)
250     {
251       unsigned symbol;
252       UPDATE_0(prob);
253       prob = probs + Literal;
254       if (processedPos != 0 || checkDicSize != 0)
255         prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
256       processedPos++;
257 
258       if (state < kNumLitStates)
259       {
260         state -= (state < 4) ? state : 3;
261         symbol = 1;
262         #ifdef _LZMA_SIZE_OPT
263         do { NORMAL_LITER_DEC } while (symbol < 0x100);
264         #else
265         NORMAL_LITER_DEC
266         NORMAL_LITER_DEC
267         NORMAL_LITER_DEC
268         NORMAL_LITER_DEC
269         NORMAL_LITER_DEC
270         NORMAL_LITER_DEC
271         NORMAL_LITER_DEC
272         NORMAL_LITER_DEC
273         #endif
274       }
275       else
276       {
277         unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
278         unsigned offs = 0x100;
279         state -= (state < 10) ? 3 : 6;
280         symbol = 1;
281         #ifdef _LZMA_SIZE_OPT
282         do
283         {
284           unsigned bit;
285           CLzmaProb *probLit;
286           MATCHED_LITER_DEC
287         }
288         while (symbol < 0x100);
289         #else
290         {
291           unsigned bit;
292           CLzmaProb *probLit;
293           MATCHED_LITER_DEC
294           MATCHED_LITER_DEC
295           MATCHED_LITER_DEC
296           MATCHED_LITER_DEC
297           MATCHED_LITER_DEC
298           MATCHED_LITER_DEC
299           MATCHED_LITER_DEC
300           MATCHED_LITER_DEC
301         }
302         #endif
303       }
304 
305       dic[dicPos++] = (Byte)symbol;
306       continue;
307     }
308 
309     {
310       UPDATE_1(prob);
311       prob = probs + IsRep + state;
312       IF_BIT_0(prob)
313       {
314         UPDATE_0(prob);
315         state += kNumStates;
316         prob = probs + LenCoder;
317       }
318       else
319       {
320         UPDATE_1(prob);
321         /*
322         // that case was checked before with kBadRepCode
323         if (checkDicSize == 0 && processedPos == 0)
324           return SZ_ERROR_DATA;
325         */
326         prob = probs + IsRepG0 + state;
327         IF_BIT_0(prob)
328         {
329           UPDATE_0(prob);
330           prob = probs + IsRep0Long + COMBINED_PS_STATE;
331           IF_BIT_0(prob)
332           {
333             UPDATE_0(prob);
334             dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
335             dicPos++;
336             processedPos++;
337             state = state < kNumLitStates ? 9 : 11;
338             continue;
339           }
340           UPDATE_1(prob);
341         }
342         else
343         {
344           UInt32 distance;
345           UPDATE_1(prob);
346           prob = probs + IsRepG1 + state;
347           IF_BIT_0(prob)
348           {
349             UPDATE_0(prob);
350             distance = rep1;
351           }
352           else
353           {
354             UPDATE_1(prob);
355             prob = probs + IsRepG2 + state;
356             IF_BIT_0(prob)
357             {
358               UPDATE_0(prob);
359               distance = rep2;
360             }
361             else
362             {
363               UPDATE_1(prob);
364               distance = rep3;
365               rep3 = rep2;
366             }
367             rep2 = rep1;
368           }
369           rep1 = rep0;
370           rep0 = distance;
371         }
372         state = state < kNumLitStates ? 8 : 11;
373         prob = probs + RepLenCoder;
374       }
375 
376       #ifdef _LZMA_SIZE_OPT
377       {
378         unsigned lim, offset;
379         CLzmaProb *probLen = prob + LenChoice;
380         IF_BIT_0(probLen)
381         {
382           UPDATE_0(probLen);
383           probLen = prob + LenLow + GET_LEN_STATE;
384           offset = 0;
385           lim = (1 << kLenNumLowBits);
386         }
387         else
388         {
389           UPDATE_1(probLen);
390           probLen = prob + LenChoice2;
391           IF_BIT_0(probLen)
392           {
393             UPDATE_0(probLen);
394             probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
395             offset = kLenNumLowSymbols;
396             lim = (1 << kLenNumLowBits);
397           }
398           else
399           {
400             UPDATE_1(probLen);
401             probLen = prob + LenHigh;
402             offset = kLenNumLowSymbols * 2;
403             lim = (1 << kLenNumHighBits);
404           }
405         }
406         TREE_DECODE(probLen, lim, len);
407         len += offset;
408       }
409       #else
410       {
411         CLzmaProb *probLen = prob + LenChoice;
412         IF_BIT_0(probLen)
413         {
414           UPDATE_0(probLen);
415           probLen = prob + LenLow + GET_LEN_STATE;
416           len = 1;
417           TREE_GET_BIT(probLen, len);
418           TREE_GET_BIT(probLen, len);
419           TREE_GET_BIT(probLen, len);
420           len -= 8;
421         }
422         else
423         {
424           UPDATE_1(probLen);
425           probLen = prob + LenChoice2;
426           IF_BIT_0(probLen)
427           {
428             UPDATE_0(probLen);
429             probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
430             len = 1;
431             TREE_GET_BIT(probLen, len);
432             TREE_GET_BIT(probLen, len);
433             TREE_GET_BIT(probLen, len);
434           }
435           else
436           {
437             UPDATE_1(probLen);
438             probLen = prob + LenHigh;
439             TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
440             len += kLenNumLowSymbols * 2;
441           }
442         }
443       }
444       #endif
445 
446       if (state >= kNumStates)
447       {
448         UInt32 distance;
449         prob = probs + PosSlot +
450             ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
451         TREE_6_DECODE(prob, distance);
452         if (distance >= kStartPosModelIndex)
453         {
454           unsigned posSlot = (unsigned)distance;
455           unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
456           distance = (2 | (distance & 1));
457           if (posSlot < kEndPosModelIndex)
458           {
459             distance <<= numDirectBits;
460             prob = probs + SpecPos;
461             {
462               UInt32 m = 1;
463               distance++;
464               do
465               {
466                 REV_BIT_VAR(prob, distance, m);
467               }
468               while (--numDirectBits);
469               distance -= m;
470             }
471           }
472           else
473           {
474             numDirectBits -= kNumAlignBits;
475             do
476             {
477               NORMALIZE
478               range >>= 1;
479 
480               {
481                 UInt32 t;
482                 code -= range;
483                 t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
484                 distance = (distance << 1) + (t + 1);
485                 code += range & t;
486               }
487               /*
488               distance <<= 1;
489               if (code >= range)
490               {
491                 code -= range;
492                 distance |= 1;
493               }
494               */
495             }
496             while (--numDirectBits);
497             prob = probs + Align;
498             distance <<= kNumAlignBits;
499             {
500               unsigned i = 1;
501               REV_BIT_CONST(prob, i, 1);
502               REV_BIT_CONST(prob, i, 2);
503               REV_BIT_CONST(prob, i, 4);
504               REV_BIT_LAST (prob, i, 8);
505               distance |= i;
506             }
507             if (distance == (UInt32)0xFFFFFFFF)
508             {
509               len = kMatchSpecLenStart;
510               state -= kNumStates;
511               break;
512             }
513           }
514         }
515 
516         rep3 = rep2;
517         rep2 = rep1;
518         rep1 = rep0;
519         rep0 = distance + 1;
520         state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
521         if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
522         {
523           p->dicPos = dicPos;
524           return SZ_ERROR_DATA;
525         }
526       }
527 
528       len += kMatchMinLen;
529 
530       {
531         SizeT rem;
532         unsigned curLen;
533         SizeT pos;
534 
535         if ((rem = limit - dicPos) == 0)
536         {
537           p->dicPos = dicPos;
538           return SZ_ERROR_DATA;
539         }
540 
541         curLen = ((rem < len) ? (unsigned)rem : len);
542         pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
543 
544         processedPos += curLen;
545 
546         len -= curLen;
547         if (curLen <= dicBufSize - pos)
548         {
549           Byte *dest = dic + dicPos;
550           ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
551           const Byte *lim = dest + curLen;
552           dicPos += curLen;
553           do
554             *(dest) = (Byte)*(dest + src);
555           while (++dest != lim);
556         }
557         else
558         {
559           do
560           {
561             dic[dicPos++] = dic[pos];
562             if (++pos == dicBufSize)
563               pos = 0;
564           }
565           while (--curLen != 0);
566         }
567       }
568     }
569   }
570   while (dicPos < limit && buf < bufLimit);
571 
572   NORMALIZE;
573 
574   p->buf = buf;
575   p->range = range;
576   p->code = code;
577   p->remainLen = len;
578   p->dicPos = dicPos;
579   p->processedPos = processedPos;
580   p->reps[0] = rep0;
581   p->reps[1] = rep1;
582   p->reps[2] = rep2;
583   p->reps[3] = rep3;
584   p->state = state;
585 
586   return SZ_OK;
587 }
588 #endif
589 
LzmaDec_WriteRem(CLzmaDec * p,SizeT limit)590 static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
591 {
592   if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
593   {
594     Byte *dic = p->dic;
595     SizeT dicPos = p->dicPos;
596     SizeT dicBufSize = p->dicBufSize;
597     unsigned len = (unsigned)p->remainLen;
598     SizeT rep0 = p->reps[0]; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
599     SizeT rem = limit - dicPos;
600     if (rem < len)
601       len = (unsigned)(rem);
602 
603     if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
604       p->checkDicSize = p->prop.dicSize;
605 
606     p->processedPos += len;
607     p->remainLen -= len;
608     while (len != 0)
609     {
610       len--;
611       dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
612       dicPos++;
613     }
614     p->dicPos = dicPos;
615   }
616 }
617 
618 
619 #define kRange0 0xFFFFFFFF
620 #define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
621 #define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
622 #if kBadRepCode != (0xC0000000 - 0x400)
623   #error Stop_Compiling_Bad_LZMA_Check
624 #endif
625 
LzmaDec_DecodeReal2(CLzmaDec * p,SizeT limit,const Byte * bufLimit)626 static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
627 {
628   do
629   {
630     SizeT limit2 = limit;
631     if (p->checkDicSize == 0)
632     {
633       UInt32 rem = p->prop.dicSize - p->processedPos;
634       if (limit - p->dicPos > rem)
635         limit2 = p->dicPos + rem;
636 
637       if (p->processedPos == 0)
638         if (p->code >= kBadRepCode)
639           return SZ_ERROR_DATA;
640     }
641 
642     RINOK(LZMA_DECODE_REAL(p, limit2, bufLimit));
643 
644     if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
645       p->checkDicSize = p->prop.dicSize;
646 
647     LzmaDec_WriteRem(p, limit);
648   }
649   while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
650 
651   return 0;
652 }
653 
654 typedef enum
655 {
656   DUMMY_ERROR, /* unexpected end of input stream */
657   DUMMY_LIT,
658   DUMMY_MATCH,
659   DUMMY_REP
660 } ELzmaDummy;
661 
LzmaDec_TryDummy(const CLzmaDec * p,const Byte * buf,SizeT inSize)662 static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
663 {
664   UInt32 range = p->range;
665   UInt32 code = p->code;
666   const Byte *bufLimit = buf + inSize;
667   const CLzmaProb *probs = GET_PROBS;
668   unsigned state = (unsigned)p->state;
669   ELzmaDummy res;
670 
671   {
672     const CLzmaProb *prob;
673     UInt32 bound;
674     unsigned ttt;
675     unsigned posState = CALC_POS_STATE(p->processedPos, (1 << p->prop.pb) - 1);
676 
677     prob = probs + IsMatch + COMBINED_PS_STATE;
678     IF_BIT_0_CHECK(prob)
679     {
680       UPDATE_0_CHECK
681 
682       /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
683 
684       prob = probs + Literal;
685       if (p->checkDicSize != 0 || p->processedPos != 0)
686         prob += ((UInt32)LZMA_LIT_SIZE *
687             ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
688             (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
689 
690       if (state < kNumLitStates)
691       {
692         unsigned symbol = 1;
693         do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
694       }
695       else
696       {
697         unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
698             (p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
699         unsigned offs = 0x100;
700         unsigned symbol = 1;
701         do
702         {
703           unsigned bit;
704           const CLzmaProb *probLit;
705           matchByte += matchByte;
706           bit = offs;
707           offs &= matchByte;
708           probLit = prob + (offs + bit + symbol);
709           GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
710         }
711         while (symbol < 0x100);
712       }
713       res = DUMMY_LIT;
714     }
715     else
716     {
717       unsigned len;
718       UPDATE_1_CHECK;
719 
720       prob = probs + IsRep + state;
721       IF_BIT_0_CHECK(prob)
722       {
723         UPDATE_0_CHECK;
724         state = 0;
725         prob = probs + LenCoder;
726         res = DUMMY_MATCH;
727       }
728       else
729       {
730         UPDATE_1_CHECK;
731         res = DUMMY_REP;
732         prob = probs + IsRepG0 + state;
733         IF_BIT_0_CHECK(prob)
734         {
735           UPDATE_0_CHECK;
736           prob = probs + IsRep0Long + COMBINED_PS_STATE;
737           IF_BIT_0_CHECK(prob)
738           {
739             UPDATE_0_CHECK;
740             NORMALIZE_CHECK;
741             return DUMMY_REP;
742           }
743           else
744           {
745             UPDATE_1_CHECK;
746           }
747         }
748         else
749         {
750           UPDATE_1_CHECK;
751           prob = probs + IsRepG1 + state;
752           IF_BIT_0_CHECK(prob)
753           {
754             UPDATE_0_CHECK;
755           }
756           else
757           {
758             UPDATE_1_CHECK;
759             prob = probs + IsRepG2 + state;
760             IF_BIT_0_CHECK(prob)
761             {
762               UPDATE_0_CHECK;
763             }
764             else
765             {
766               UPDATE_1_CHECK;
767             }
768           }
769         }
770         state = kNumStates;
771         prob = probs + RepLenCoder;
772       }
773       {
774         unsigned limit, offset;
775         const CLzmaProb *probLen = prob + LenChoice;
776         IF_BIT_0_CHECK(probLen)
777         {
778           UPDATE_0_CHECK;
779           probLen = prob + LenLow + GET_LEN_STATE;
780           offset = 0;
781           limit = 1 << kLenNumLowBits;
782         }
783         else
784         {
785           UPDATE_1_CHECK;
786           probLen = prob + LenChoice2;
787           IF_BIT_0_CHECK(probLen)
788           {
789             UPDATE_0_CHECK;
790             probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
791             offset = kLenNumLowSymbols;
792             limit = 1 << kLenNumLowBits;
793           }
794           else
795           {
796             UPDATE_1_CHECK;
797             probLen = prob + LenHigh;
798             offset = kLenNumLowSymbols * 2;
799             limit = 1 << kLenNumHighBits;
800           }
801         }
802         TREE_DECODE_CHECK(probLen, limit, len);
803         len += offset;
804       }
805 
806       if (state < 4)
807       {
808         unsigned posSlot;
809         prob = probs + PosSlot +
810             ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
811             kNumPosSlotBits);
812         TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
813         if (posSlot >= kStartPosModelIndex)
814         {
815           unsigned numDirectBits = ((posSlot >> 1) - 1);
816 
817           /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
818 
819           if (posSlot < kEndPosModelIndex)
820           {
821             prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
822           }
823           else
824           {
825             numDirectBits -= kNumAlignBits;
826             do
827             {
828               NORMALIZE_CHECK
829               range >>= 1;
830               code -= range & (((code - range) >> 31) - 1);
831               /* if (code >= range) code -= range; */
832             }
833             while (--numDirectBits);
834             prob = probs + Align;
835             numDirectBits = kNumAlignBits;
836           }
837           {
838             unsigned i = 1;
839             unsigned m = 1;
840             do
841             {
842               REV_BIT_CHECK(prob, i, m);
843             }
844             while (--numDirectBits);
845           }
846         }
847       }
848     }
849   }
850   NORMALIZE_CHECK;
851   return res;
852 }
853 
854 
LzmaDec_InitDicAndState(CLzmaDec * p,Bool initDic,Bool initState)855 void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
856 {
857   p->remainLen = kMatchSpecLenStart + 1;
858   p->tempBufSize = 0;
859 
860   if (initDic)
861   {
862     p->processedPos = 0;
863     p->checkDicSize = 0;
864     p->remainLen = kMatchSpecLenStart + 2;
865   }
866   if (initState)
867     p->remainLen = kMatchSpecLenStart + 2;
868 }
869 
LzmaDec_Init(CLzmaDec * p)870 void LzmaDec_Init(CLzmaDec *p)
871 {
872   p->dicPos = 0;
873   LzmaDec_InitDicAndState(p, True, True);
874 }
875 
876 
LzmaDec_DecodeToDic(CLzmaDec * p,SizeT dicLimit,const Byte * src,SizeT * srcLen,ELzmaFinishMode finishMode,ELzmaStatus * status)877 SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
878     ELzmaFinishMode finishMode, ELzmaStatus *status)
879 {
880   SizeT inSize = *srcLen;
881   (*srcLen) = 0;
882 
883   *status = LZMA_STATUS_NOT_SPECIFIED;
884 
885   if (p->remainLen > kMatchSpecLenStart)
886   {
887     for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
888       p->tempBuf[p->tempBufSize++] = *src++;
889     if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
890       return SZ_ERROR_DATA;
891     if (p->tempBufSize < RC_INIT_SIZE)
892     {
893       *status = LZMA_STATUS_NEEDS_MORE_INPUT;
894       return SZ_OK;
895     }
896     p->code =
897         ((UInt32)p->tempBuf[1] << 24)
898       | ((UInt32)p->tempBuf[2] << 16)
899       | ((UInt32)p->tempBuf[3] << 8)
900       | ((UInt32)p->tempBuf[4]);
901     p->range = 0xFFFFFFFF;
902     p->tempBufSize = 0;
903 
904     if (p->remainLen > kMatchSpecLenStart + 1)
905     {
906       SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
907       SizeT i;
908       CLzmaProb *probs = p->probs;
909       for (i = 0; i < numProbs; i++)
910         probs[i] = kBitModelTotal >> 1;
911       p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
912       p->state = 0;
913     }
914 
915     p->remainLen = 0;
916   }
917 
918   LzmaDec_WriteRem(p, dicLimit);
919 
920   while (p->remainLen != kMatchSpecLenStart)
921   {
922       int checkEndMarkNow = 0;
923 
924       if (p->dicPos >= dicLimit)
925       {
926         if (p->remainLen == 0 && p->code == 0)
927         {
928           *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
929           return SZ_OK;
930         }
931         if (finishMode == LZMA_FINISH_ANY)
932         {
933           *status = LZMA_STATUS_NOT_FINISHED;
934           return SZ_OK;
935         }
936         if (p->remainLen != 0)
937         {
938           *status = LZMA_STATUS_NOT_FINISHED;
939           return SZ_ERROR_DATA;
940         }
941         checkEndMarkNow = 1;
942       }
943 
944       if (p->tempBufSize == 0)
945       {
946         SizeT processed;
947         const Byte *bufLimit;
948         if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
949         {
950           int dummyRes = LzmaDec_TryDummy(p, src, inSize);
951           if (dummyRes == DUMMY_ERROR)
952           {
953             memcpy(p->tempBuf, src, inSize);
954             p->tempBufSize = (unsigned)inSize;
955             (*srcLen) += inSize;
956             *status = LZMA_STATUS_NEEDS_MORE_INPUT;
957             return SZ_OK;
958           }
959           if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
960           {
961             *status = LZMA_STATUS_NOT_FINISHED;
962             return SZ_ERROR_DATA;
963           }
964           bufLimit = src;
965         }
966         else
967           bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
968         p->buf = src;
969         if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
970           return SZ_ERROR_DATA;
971         processed = (SizeT)(p->buf - src);
972         (*srcLen) += processed;
973         src += processed;
974         inSize -= processed;
975       }
976       else
977       {
978         unsigned rem = p->tempBufSize, lookAhead = 0;
979         while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
980           p->tempBuf[rem++] = src[lookAhead++];
981         p->tempBufSize = rem;
982         if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
983         {
984           int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
985           if (dummyRes == DUMMY_ERROR)
986           {
987             (*srcLen) += lookAhead;
988             *status = LZMA_STATUS_NEEDS_MORE_INPUT;
989             return SZ_OK;
990           }
991           if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
992           {
993             *status = LZMA_STATUS_NOT_FINISHED;
994             return SZ_ERROR_DATA;
995           }
996         }
997         p->buf = p->tempBuf;
998         if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
999           return SZ_ERROR_DATA;
1000 
1001         {
1002           unsigned kkk = (unsigned)(p->buf - p->tempBuf);
1003           if (rem < kkk)
1004             return SZ_ERROR_FAIL; /* some internal error */
1005           rem -= kkk;
1006           if (lookAhead < rem)
1007             return SZ_ERROR_FAIL; /* some internal error */
1008           lookAhead -= rem;
1009         }
1010         (*srcLen) += lookAhead;
1011         src += lookAhead;
1012         inSize -= lookAhead;
1013         p->tempBufSize = 0;
1014       }
1015   }
1016 
1017   if (p->code != 0)
1018     return SZ_ERROR_DATA;
1019   *status = LZMA_STATUS_FINISHED_WITH_MARK;
1020   return SZ_OK;
1021 }
1022 
1023 
LzmaDec_DecodeToBuf(CLzmaDec * p,Byte * dest,SizeT * destLen,const Byte * src,SizeT * srcLen,ELzmaFinishMode finishMode,ELzmaStatus * status)1024 SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
1025 {
1026   SizeT outSize = *destLen;
1027   SizeT inSize = *srcLen;
1028   *srcLen = *destLen = 0;
1029   for (;;)
1030   {
1031     SizeT inSizeCur = inSize, outSizeCur, dicPos;
1032     ELzmaFinishMode curFinishMode;
1033     SRes res;
1034     if (p->dicPos == p->dicBufSize)
1035       p->dicPos = 0;
1036     dicPos = p->dicPos;
1037     if (outSize > p->dicBufSize - dicPos)
1038     {
1039       outSizeCur = p->dicBufSize;
1040       curFinishMode = LZMA_FINISH_ANY;
1041     }
1042     else
1043     {
1044       outSizeCur = dicPos + outSize;
1045       curFinishMode = finishMode;
1046     }
1047 
1048     res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
1049     src += inSizeCur;
1050     inSize -= inSizeCur;
1051     *srcLen += inSizeCur;
1052     outSizeCur = p->dicPos - dicPos;
1053     memcpy(dest, p->dic + dicPos, outSizeCur);
1054     dest += outSizeCur;
1055     outSize -= outSizeCur;
1056     *destLen += outSizeCur;
1057     if (res != 0)
1058       return res;
1059     if (outSizeCur == 0 || outSize == 0)
1060       return SZ_OK;
1061   }
1062 }
1063 
LzmaDec_FreeProbs(CLzmaDec * p,ISzAllocPtr alloc)1064 void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
1065 {
1066   ISzAlloc_Free(alloc, p->probs);
1067   p->probs = NULL;
1068 }
1069 
LzmaDec_FreeDict(CLzmaDec * p,ISzAllocPtr alloc)1070 static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
1071 {
1072   ISzAlloc_Free(alloc, p->dic);
1073   p->dic = NULL;
1074 }
1075 
LzmaDec_Free(CLzmaDec * p,ISzAllocPtr alloc)1076 void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
1077 {
1078   LzmaDec_FreeProbs(p, alloc);
1079   LzmaDec_FreeDict(p, alloc);
1080 }
1081 
LzmaProps_Decode(CLzmaProps * p,const Byte * data,unsigned size)1082 SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
1083 {
1084   UInt32 dicSize;
1085   Byte d;
1086 
1087   if (size < LZMA_PROPS_SIZE)
1088     return SZ_ERROR_UNSUPPORTED;
1089   else
1090     dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
1091 
1092   if (dicSize < LZMA_DIC_MIN)
1093     dicSize = LZMA_DIC_MIN;
1094   p->dicSize = dicSize;
1095 
1096   d = data[0];
1097   if (d >= (9 * 5 * 5))
1098     return SZ_ERROR_UNSUPPORTED;
1099 
1100   p->lc = (Byte)(d % 9);
1101   d /= 9;
1102   p->pb = (Byte)(d / 5);
1103   p->lp = (Byte)(d % 5);
1104 
1105   return SZ_OK;
1106 }
1107 
LzmaDec_AllocateProbs2(CLzmaDec * p,const CLzmaProps * propNew,ISzAllocPtr alloc)1108 static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
1109 {
1110   UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
1111   if (!p->probs || numProbs != p->numProbs)
1112   {
1113     LzmaDec_FreeProbs(p, alloc);
1114     p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
1115     if (!p->probs)
1116       return SZ_ERROR_MEM;
1117     p->probs_1664 = p->probs + 1664;
1118     p->numProbs = numProbs;
1119   }
1120   return SZ_OK;
1121 }
1122 
LzmaDec_AllocateProbs(CLzmaDec * p,const Byte * props,unsigned propsSize,ISzAllocPtr alloc)1123 SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1124 {
1125   CLzmaProps propNew;
1126   RINOK(LzmaProps_Decode(&propNew, props, propsSize));
1127   RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
1128   p->prop = propNew;
1129   return SZ_OK;
1130 }
1131 
LzmaDec_Allocate(CLzmaDec * p,const Byte * props,unsigned propsSize,ISzAllocPtr alloc)1132 SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1133 {
1134   CLzmaProps propNew;
1135   SizeT dicBufSize;
1136   RINOK(LzmaProps_Decode(&propNew, props, propsSize));
1137   RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
1138 
1139   {
1140     UInt32 dictSize = propNew.dicSize;
1141     SizeT mask = ((UInt32)1 << 12) - 1;
1142          if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
1143     else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
1144     dicBufSize = ((SizeT)dictSize + mask) & ~mask;
1145     if (dicBufSize < dictSize)
1146       dicBufSize = dictSize;
1147   }
1148 
1149   if (!p->dic || dicBufSize != p->dicBufSize)
1150   {
1151     LzmaDec_FreeDict(p, alloc);
1152     p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
1153     if (!p->dic)
1154     {
1155       LzmaDec_FreeProbs(p, alloc);
1156       return SZ_ERROR_MEM;
1157     }
1158   }
1159   p->dicBufSize = dicBufSize;
1160   p->prop = propNew;
1161   return SZ_OK;
1162 }
1163 
LzmaDecode(Byte * dest,SizeT * destLen,const Byte * src,SizeT * srcLen,const Byte * propData,unsigned propSize,ELzmaFinishMode finishMode,ELzmaStatus * status,ISzAllocPtr alloc)1164 SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
1165     const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
1166     ELzmaStatus *status, ISzAllocPtr alloc)
1167 {
1168   CLzmaDec p;
1169   SRes res;
1170   SizeT outSize = *destLen, inSize = *srcLen;
1171   *destLen = *srcLen = 0;
1172   *status = LZMA_STATUS_NOT_SPECIFIED;
1173   if (inSize < RC_INIT_SIZE)
1174     return SZ_ERROR_INPUT_EOF;
1175   LzmaDec_Construct(&p);
1176   RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
1177   p.dic = dest;
1178   p.dicBufSize = outSize;
1179   LzmaDec_Init(&p);
1180   *srcLen = inSize;
1181   res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
1182   *destLen = p.dicPos;
1183   if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
1184     res = SZ_ERROR_INPUT_EOF;
1185   LzmaDec_FreeProbs(&p, alloc);
1186   return res;
1187 }
1188